
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 1

Explicit Modelling and Treatment of Repair in
Prediction of Dependability

Jose Ignacio Aizpurua, Member, IEEE , Yiannis Papadopoulos, and Guillaume Merle

Abstract—In engineering practice, multiple repair actions are considered carefully by designers, and their success or failure defines
further control actions and the evolution of the system state. Such treatment is not fully supported by the current state-of-the-art in
dependability analysis. We propose a novel approach for explicit modelling and analysis of repairable systems, and describe an
implementation, which builds on HiP-HOPS, a method and tool for model-based synthesis of dependability evaluation models.
HiP-HOPS is augmented with Pandora, a temporal logic for the qualitative analysis of Temporal Fault Trees (TFTs), and capabilities for
quantitative dependability analysis via Stochastic Activity Networks (SAN). Dependability prediction is achieved via explicit modelling of
local failure and repair events in a system model and then by: (i) propagation of local effects through the model and synthesis of
repair-aware TFTs for the system, (ii) qualitative analysis of TFTs that respects both failure and repair logic and (iii) quantification of
dependability via translation of repair-aware TFTs into SAN. The approach provides insight into the effects of multiple and alternative
failure and repair scenarios, and can thus be useful in reconfigurable systems that typically employ software to utilise functional
redundancies in a variety of ways.

Index Terms—Repairable systems, dynamic dependability, reliability, reconfiguration.

✦

ACRONYMS AND ABBREVIATIONS

BDMP Boolean-logic Driven Markov Process
BE Basic Event
BTF Base Temporal Form
CSQ Cut-Sequence
DFT Dynamic Fault Tree
DRBD Dynamic Reliability Block Diagram
DSPN Deterministic and Stochastic Petri Net
FA Failure Automaton
FTA Fault Tree Analysis
FMEA Failure Mode Effects Analysis
GFT Generalized Fault Tree
HiP-HOPS Hierarchically Performed - Hazard Origin

and Propagation Studies
H2SM HiP-HOPS State Machine model
MCSQ Minimal Cut-Sequence
PAND Priority AND gate
PDF Probability Density Function
POR Priority OR gate
PS Primary Standby
RBD Reliability Block Diagram
SEFT State Event Fault Tree
SAN Stochastic Activity Network
SM State Machine
TE Top Event

• J. I. Aizpurua is with the Institute of Energy and Environment, University
of Strathclyde, Glasgow, UK. E-mail: jose.aizpurua@strath.ac.uk

• Y. Papadopoulos is with the School of Engineering and Computer Science,
University of Hull, Hull, UK. E-mail: y.i.papadopoulos@hull.ac.uk

• G. Merle is with the Sino-French Engineering School, Beihang University,
Beijing, China. E-mail: guillaume.merle@gmail.com

Manuscript received April 19, 2005; revised August 26, 2015.

TFT Temporal Fault Tree

1 INTRODUCTION

S YSTEM dependability includes safety, reliability, avail-
ability, maintainability, confidentiality, and integrity at-

tributes [1]. In this work we will consider reliability, avail-
ability, maintainability and safety. Traditionally, Reliability
Block Diagrams (RBD) [2] or Fault Tree Analysis (FTA) [3]
have been applied for the dependability analysis of systems.
Whilst these methods can be used to assess the effects of
combinations of faults, they are not able to capture system
dynamics such as event sequences, triggering events or
redundancies.

Industrial systems typically include repairable compo-
nents either through self-healing or via external reconfigu-
ration which repairs the failed component by restarting it
or switching to an alternative component. In this paper we
focus on dynamic repairable systems. The repair strategy
determines the system’s reaction to failures through repair
events, e.g. when a component fails, the repair strategy
determines which component should replace the failed com-
ponent, and when the failed component is repaired whether
it should come into operation or remain in the standby state.

There are dynamic dependability methods that deal
with repair. Among these approaches we can distinguish
between low-level pure stochastic models and high-level,
analyst-friendly approaches. Pure stochastic models such as
Markov Chains and Petri Nets can model any-complexity
system including repairs. However, the system characteriza-
tion is time-consuming, error-prone, and difficult to main-
tain due to the flatness and high number of states and
events. High-level dynamic repairable approaches (e.g., Dy-
namic FTA [4], Dynamic RBD [5]) enable simpler and more

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 2

scalable specification of the dynamics including repair, but
these approaches face limitations which will be discussed.

When assessing the dependability of dynamic repairable
systems, both qualitative and quantitative assessments are
useful [6]. For the dynamic qualitative analysis the con-
cept of Minimal Cut-Sequences (MCSQs) was introduced
[7]. MCSQ defines the minimal sequences of event failures
which lead to top-event occurrence, i.e. the order in which
some events occur determines the system failure occurrence.
It is minimal in the sense that if any of the events of the se-
quence are removed, it is not possible to obtain another cut
sequence leading to the TE occurrence. Although originally
the concept was used with non-repairable Dynamic FTA [8],
its use has been extended including the qualitative analy-
sis of dynamic repairable systems [9]. In the latter, time-
dependent events that cause system failure are investigated,
and the designer can adopt design decisions to mitigate
their effect e.g. via introduction of redundancies.

Currently, approaches treat failure and repair processes
within their main failure modelling constructs, e.g. dy-
namic gates [4] or blocks [5]. For this, the system model
with its repair logic must be mapped to the corresponding
dependability analysis model counterpart. However, this
model will not always work when the designer wishes to
use repair as a design mechanism which allows alternative
design decisions. In general, approaches to dependability
analysis that account for repair do not provide mechanisms
for explicitly considering different repair possibilities. Failed
components are assumed functional following repair thus
restoring their original function and position in the system
configuration. The proposed approach differs from already
existing approaches in that it allows explicit modelling of
repair events as a part of the failure model. Using such
events the designer may define multiple and alternative
detailed repair scenarios and thus gain valuable insight into
the impact of possible failure and repair sequences.

The proposed implementation of this approach is built
around the event propagation concept of HiP-HOPS [10].
System components are augmented with failure and repair
events and local effects. Using algorithms, local effects of
failure and repair are then propagated among all the inter-
connected components. In the course of this, and using
Pandora temporal operators [11], sequences of failure and
repair that lead to hazards are captured in Temporal Fault
Trees (TFTs). TFTs are analysed and MCSQs are determined.
The disjunction of MCSQs that define the system failure
behaviour forms the system structure function [12]. The
resulting MCSQs show qualitatively the explicit influence
of repair events on success and subsequent failure and
give a causal view of system failure. Once the system’s
structure function is obtained, we introduce transformation
algorithms that convert MCSQs to corresponding Stochastic
Activity Networks (SAN) model [13]. At this point, the
influence of the system’s failure and repair can be predicted
in a quantitative manner.

Therefore the contribution of this paper is a method
which considers explicitly repair actions, enables improved
qualitative dependability analysis of the combined effects of
failure and repair, and quantifies the system failure prob-
ability via transformation of HiP-HOPS models into SAN.
The explicit modelling and analysis of repair and its imple-

mentation are novel and can contribute to useful insights
into the robustness of a design. In this paper, we assume
reactive repair strategies, not prevention. The repair process
is ideal, and therefore, the system and components are as-
good-as-new after repair. Repair events for each component
are independent, and two statistically independent events
cannot occur simultaneously.

The paper is organised as follows. Section 2 presents
related work for analysis of repairable systems. Section 3
presents an overview of the proposed approach. Section
4 focuses on qualitative analysis while Section 5 examines
quantitative analysis and finally, Section 7 concludes.

2 RELATED WORK

Many dynamic dependability models embed failure and
repair processes in the modelling constructs to facilitate the
system design and posterior dependability analysis.

Repairable Dynamic Fault Tree (DFT) [4] was developed
to capture system dynamics through dynamic gates (Fig. 1)
and embed failure and repair processes in the basic events
(BEs) (Fig. 2a). Generalized Fault Tree (GFT) [14] adds repair
processes to the DFT by adding an explicit repair-triggering
mechanism which repairs a single or a group of BEs through
predefined failure and repair processes.

Fig. 1. A subset of Dynamic [4] and Temporal [11] Fault Tree gates.

Boolean logic Driven Markov Processes (BDMP) [15] add
repair processes to the BEs which are triggered by Markov
processes. That is, events or subsystems are triggered as
a consequence of the occurrence of other events or sub-
systems. This mechanism provides flexibility to model the
dependent behaviour of systems.

For BDMP and repairable DFT models, BEs are mod-
elled with different predefined states depending if they are
standby events or not (Figs. 2a, 2b). BEs are modelled as
standby elements when they are inputs of a spare gate (DFT
case) or when they are affected by the trigger mechanism
(BDMP case). If the BE is a primary input of the spare or
source of the trigger the initial state is the working (W) state.
If the BE is a spare input or it is affected by the trigger, the
initial state will be the standby state. In the standby state the
BE can be in an operative (sW) or failed (sF) state.

Dynamic RBDs (DRBDs) [5] are based on the dynamic
extension of RBDs. In DRBDs each block is modelled with
three states (see Fig. 2c). The transitions between states
are predefined and dependencies between components are
also defined. The quantification of DRBD models can be
done through Markov chains or Generalized Stochastic Petri
Nets transforming the DRBD model into these formalisms.
This allows dealing with repair but in a rather fixed set

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 3

of situations, and not in the general case considered in
this paper, i.e. where multiple and alternative repair and
reconfiguration scenarios are considered during design.

Fig. 2. (a) Repairable BE; (b) standby repairable BE; (c) DRBD states
[5].

State-Event Fault Trees (SEFTs) add states and events
to FTA for the analysis of dynamic systems [16]. SEFTs
deal with functional and failure behaviour and allow the
transformation into Deterministic and Stochastic Petri nets
(DSPN) models (see Fig. 5 for an example).

DRBD, DFT or BDMP models provide flexibility to rep-
resent dynamic systems through dependencies, but this is
limited when dealing with dynamic and repairable systems.
Namely, standby situations are modelled correctly, but the
specification of reconfiguration mechanisms requires more
flexible modelling constructs (see next subsection). SEFTs
are able to model reconfiguration more explicitly, however,
the underlying dependability evaluation formalism is a
flat DSPN model that includes all the transformations of
states and gates. For complex systems this can cause state-
explosion.

BDMP is a powerful mechanism, but only one type of
dependency among components is allowed (the trigger can
model two processes) and two triggers must not have the
same destination component. BDMP has also been extended
to address some of these limitations and model accurately
complex systems through Switched Markov processes [17].

Among these models only BDMP and SEFT support
qualitative analysis. However, due to the underlying as-
sumptions, their qualitative analysis models do not fully
cover classes of standby repairable systems. To the best
of our knowledge, the qualitative analysis of dynamic re-
pairable systems has not been fully addressed. Additionally,
there is no support for compositional modelling of both
failure and repair processes and the underlying stochastic
model.

There are other high-level specification formalisms for
dynamic repairable systems, but they are outside the scope
of this work because they are focused on transforming
a high-level design language into different dependability
models. The reader is referred to [18] for an overview of
high-level dependability specification formalisms and their
transformation into different dependability formalisms.

To highlight the complications of repair in dependability
analysis and illuminate the motivation of our work, we will
introduce a repairable primary standby (PS) system. The
system is simple enough for detailed analysis, but captures
important dependability mechanisms encountered in safety-
critical systems such as cold/warm redundancies, single
points of failure, and reconfiguration strategies.

2.1 Running Example: Repairable PS System

The non-repairable version of PS in [19] has three main com-
ponents (Fig. 3a): the primary component A; the monitoring

component S, and the backup standby component B. S
detects omission failures of A and it reconfigures the backup
component B. Input I feeds A and B and is a common
cause failure, while OUT must receive at least one input to
perform correctly, otherwise the system fails. Fig. 3c shows
the State Machine (SM) for the non-repairable PS system.

Fig. 3. PS system: (a) non-repairable configuration, (b) repairable con-
figuration, (c) state machine of the non-repairable case.

For the dynamic qualitative analysis, Pandora and its
temporal laws [11] are applied to the SM in Fig. 3c. For
the comprehension of the example, it is sufficient to say that
Pandora includes TFT gates and these are modelled with the
next symbols. Logical OR “+”, logical AND “.”, and priority
AND “<”, where A < B means that A must happen before
B (see Section 4 for more details). To extract the structure
function of the non-repairable PS system, we analyse the
sequences of non-redundant events starting from the initial
state A active that end in the System Failure state. We can see
that the failure of I, or the failure of A and B in any order, or
the failure of S prior to the failure of A lead to the system’s
failure. Translating these events into Pandora results in the
structure function:

TE = FI + FA.FB + FS < FA (1)

where Fx designates the failure event of the component x.
The repairable PS system operates slightly differently. S

detects the failure of A and activates B and also detects the
failure of B and activates A (it is bidirectional, see Fig. 3b).
In normal operation: input I (which is also repairable) feeds
A and B. Initially B is in standby state and it needs a signal
from S to activate. The system will operate safely so long as
the OUT component receives a signal from A or B. S detects
an omission failure of A and activates B. If A is repaired
while B is operating, A remains in standby state until the
failure of B. When B fails, S detects its failure and activates
A.

S integrates fault detection and reconfiguration mecha-
nisms. To detect omission failures, time- and value-based
fault detection mechanisms can be used. In order to reac-
tivate A and B from the standby state, these components
have an internal mechanism which is triggered by the recon-
figuration signal issued by S. Thereby, S generates trigger
signals according to the system state.

2.2 Dynamic Qualitative Analysis: Failure Automaton

The Failure Automaton (FA) defines the effect of all possible
failure and repair events [20]. To define the FA, first it is
necessary to model the system failure logic using a depend-
ability model. Fig. 4a shows the DFT model of the repairable
PS system and Fig. 4b shows the equivalent BDMP model
which uses the trigger mechanism (dashed arrow) to model
dependencies and reactivate spare components.

DRBD and SEFT models enable modelling reconfigu-
ration strategies. Fig. 5 shows the SEFT model of the PS

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 4

Fig. 4. Failure models of the repairable PS system: (a) DFT (b) BDMP.

system. The model of B is the same as A adding another
output port from the B KO state, and the model of I is the
same as S. The only difference between A-B and I-S is that
each of these models will have their own failure and repair
rates. We explicitly model the reconfiguration behaviour of
S by adding the conditions in which the components A and
B should be reactivated (Reactivate A, Reactivate B).

Fig. 5. SEFT model of the repairable PS system.

For brevity we will limit the discussion to the SEFT
model, but note that the DRBD model results in the same
qualitative and quantitative dependability results as SEFT.

The qualitative analysis of the reviewed models results
in the FA shown in Fig. 6. Note that the unsafe states are
modelled as absorbing states (double circles). For simplicity
input I is not included. It is a single point of failure in
disjunction with other MCSQs in the structure function and
the effect is obvious.

Fig. 6. FA of the repairable PS system using state-of-the-art approaches.

The FA of Fig. 6 shows that the reviewed approaches will
struggle to capture accurately the dynamics of the repairable
PS system. We list a few subtle issues. (i) The transition
from the state #4 to #3 (dashed red line) should not be
allowed, because S is failed. In the case of the sequence
FA<FS<RA, the system should continue operating with B
because the component that enables the trigger function (S)
is failed and A cannot be restored to operative state. (ii) The
logic of the spare gate integrated in all these approaches

(except DRBD and SEFT) is not sufficient rich to capture the
standby behaviour of the repairable PS system. A is initially
working and when it fails S activates B. Once A is repaired
it should remain in standby state until B fails. However, in
the methods applied here, A is activated as soon as its repair
happens and B returns to the standby state. The subtlety of
the design cannot be expressed. (iii) There is an additional
MCSQ which can cause system failure post-repair which is
also not captured (see Section 4 for details).

Note that the repair of A and B is independent of the
operation of S. That is, they can be repaired even if S has
already failed, and their default state after repair is standby.
However, the reactivation of these components is dependent
on the reconfiguration signal issued by S. These are issues
that cannot be easily modelled in the state-of-the-art.

Embedding repair within the failure logic using fixed
constructs such as specialised gates indeed limits flexibility
and causes partial loss of insight into the effects of repair.
If the designer adopts the simple decision of changing the
behaviour of BEs from non-repairable to repairable, the
system will fail to cover all the possible failure situations.

In our view, unless repair is modelled explicitly and
qualitative analysis that includes failure and repair events is
performed, the designer may fail to address all failure sce-
narios. That is at the heart of our proposal and distinguishes
it from other work in the field.

3 OVERVIEW OF APPROACH

HiP-HOPS defines a modelling approach for system failure
annotation and posterior processing algorithms that extract
FTA models from the system topology [10]. In classical
HiP-HOPS, the local failure logic of each component in the
system architecture is defined. The local failure logic defines
how each component reacts to incoming failures and how
the component fails by itself. This is expressed as a set
of failure expressions which relate the component’s output
failures to input and internal failures.

After the model has been augmented, algorithms
traversing the system topology determine how the local
failures propagate through connections in the model and
cause the failures at the output of the system. This is
captured deductively (from effects towards causes) in a set
of interconnected FTs which share branches and BEs that
arise from the dependencies in the system topology. The
graph of connected FTs is post-processed to calculate system
dependability.

HiP-HOPS failure expressions may include temporal
operators in Pandora logic [11]. Pandora operators allow
specifying sequence-dependent and relative temporal or-
dered events and thus modelling of dynamic systems. Use
of Pandora in HiP-HOPS means creation of system TFTs.

In this paper, we extend HiP-HOPS with repair pro-
cesses. The failure and repair behaviour of each compo-
nent is described locally using input and internal failure
and repair events. Furthermore, we integrate component
State Machine (SM) models within HiP-HOPS to gain better
understanding of behaviour and provide flexibility. For the
qualitative analysis, SM models are extended into FA mod-
els to include all the failure causes and effects of a compo-
nent. Thereby, the system design specification is created by

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 5

separating the component interface and detailed behaviour.
Fig. 7 shows an overview of the approach.

The system architecture specification (#1) is comprised of
a set of interconnected components that exchange material,
energy or data flows. There are failure events and repair
events to activate reconfiguration mechanisms, or status
information to monitor the system performance. For each
component, the component specification (#2) is performed in
two parallel activities. The interface specification (#3) defines,
for each component, the I/O interfaces relating input and
internal event occurrences (both failure and repair events)
to the output events. The detailed specification determines
how the events are propagated by each component. Firstly,
the functional specification (#4) is defined, which models the
minimal and sufficient set of states, events, and propagated
functional events by means of interconnected SMs. Then,
augmenting the functional specification, the component
Failure Automaton (#5) is specified introducing the effect of
all influencing events.

Note that the SM used for the functional specification
and the FA used for qualitative analysis use the same
modelling constructs with two differences. The FA has
marked states to identify the failure states and the functional
specification is a subset of the FA. That is, the FA integrates
all failure causes and effects, and the SM includes minimal
necessary set of states and propagated events for operation.

The synthesized component TFT (#6) is extracted from the
FA of each component as a disjunction of combinations
and sequences of events that define the possible failure
causes. Subsequently, annotations (#7) are performed for each
component including input failures, internal failures, repair
events, and output propagated failure modes. Once all com-
ponents have been annotated, failure and repair events are
propagated through their interfaces defining the overall be-
haviour of the system. Thereby, the System Failure Automaton
(#8) is extracted from the system architecture specification
and component annotations. The system architecture can be
seen as a set of repairable TFTs, in which each component
specifies its part in the synthesis of the global repairable TFT
from this set.

The TFT synthesis (#9) step creates temporal expressions
of system failure which contain component failure and
repair events. These expressions may include redundant
terms. Using the reduction rules in [11] the TFT minimization
(#10) activity is performed. Redundant terms are removed
and structure function is produced, which contains only
non-redundant MCSQ sets. To automate the TFT synthesis
activity, we propose an algorithm to generate TFTs from the
SMs.

The model transformation (#11) activity is where quantita-
tive evaluation takes place. It takes interconnected component
state machines (denoted Behavioural Model) and the structure
function of the system (denoted Failure Model) as input, and
outputs Stochastic Activity Networks (SAN) [13]. These are
used for quantification (#12) of the system failure probability
for any PDF of failure and repair events, e.g. [21]. In Sections
4 and 5 we focus on qualitative analysis, i.e. calculation of
minimal structure function, and quantitative analysis, i.e.
calculation of system failure probability, respectively.

4 QUALITATIVE ANALYSIS

For qualitative analysis we use Pandora which introduces
TFT gates (ordered from lower to higher priority) [11]: Pri-
ority AND (PAND, symbol “<”) Y=In1<In2, Y occurs if In1

occurs before In2; Priority OR (POR, symbol “|”) Y=In1|In2, Y
occurs if In1 occurs before or without the occurrence of In2;
and Simultaneous AND (SAND, symbol “&”) Y=In1&In2, Y
occurs if In1 occurs at the exact time as In2.

Pandora introduces temporal laws that can be used for
minimization of Pandora expressions. Temporal laws are
validated through temporal truth tables (TTTs), which are
equivalent to Boolean truth tables. Temporal laws aid in this
process and provide mechanisms for removing redundant
sequences (e.g., Priority Laws) and contradictions that may
exist in temporal expressions (e.g., Mutual Exclusion Laws).
Table 1 displays some examples of Pandora Temporal Laws
and temporal equivalences derived from TTTs.

TABLE 1
Examples of Pandora Temporal Laws.

ID Temporal law Example
1 Absorption X.(X < Y) ⇔ (X < Y)
2 Pand right distr. (X.Y) < Z ⇔ (X < Z).(Y < Z)

3
Pand: Not Left

Distributive
X < (Y.Z) < (X < Y).(X < Z);

X < (Y.Z) ⇔ Y.(X < Z) + Z.(X < Y)
4 Conj. Complet. X.Y ⇔ X < Y +X&Y + Y < X

5 Extension
(X < Y).(Y < Z) ⇔ (X < Y).(X <

Z).(Y < Z)
6 Temp. Equiv. X < (Y |Z) ⇔ (X < Y).(Y |Z)

For complete details about Pandora and temporal laws
please refer to [11]. We use Pandora’s TFT gates and tempo-
ral laws to express the system’s failure and repair behaviour,
and extract the non-redundant causes that lead the system
to failure, i.e. structure function.

4.1 Representing Repairable Systems with Pandora

The goal of the qualitative analysis is to identify the neces-
sary and sufficient causes that lead the system to failure. The
minimization of the structure function is crucial to remove
redundant sequences and loops.

Retaking the FA shown in Fig. 6, we identify each path i,
denoted by πi, that the system can take from the initial state
S0 to the failure state S5, S7, or S9. Each path πi consists of a
set of ordered states,Si, from which the system starts, passes
through intermediate states and ends in a non-recoverable
failure state πi={S0, S1,. . . ,Sfailure-1, Sfailure}. Considering only
the failure state #5 in Fig. 6, the set of possible paths that lead
the system to a failure are: π1={S0, S1, S5}, π2={S0, S2, S5},
π3={S0, S3, S8, S2, S5}, π4={S0, S2, S6, S3, S8, S2, S5}, π5={S0,
S1, S0, S1, . . ., S0, S1, S5}, π6={S0, S2, S0, S2, . . ., S0, S2, S5},
π7={S0, S3, S0, S3, . . ., S0, S3, S8, S3, S8, . . . S8, S2, S0, S2,. . . S0,
S2, S5}, π8={S0, . . ., S5}.

From all the infinite paths that end in the failure state, an
adaptation is necessary to evaluate the finite set of scenarios
leading the system to failure. For qualitative analysis, only
the paths π1 and π2 provide useful information identifying
the original system failure causes. The remaining paths do
not include new information and they can be determined
from π1 or π2. For instance, π3 includes the path π2 plus the
failure and repair events of S. Accordingly, the paths which

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 6

Fig. 7. Overview of the repairable HiP-HOPS approach.

include failure-repair loops (π4 − π7) do not provide infor-
mation about new causes, but only possible failure/repair
iterations until the component moves to the system failure
state. For simplicity we have only considered the failure
state #5, but #7 and #9 are also failure states and the same
qualitative analysis process should be repeated.

4.2 Qualitative Analysis: state-of-the-art approaches

From the FA of the reviewed approaches (Fig. 6), we iden-
tify these non-redundant paths that cause system failure:
π1={S0, S1, S5}, π2={S0, S2, S5}, π3={S0, S3, S7}, π4={S0, S1,
S4, S9}, π5={S0, S2, S6, S9}, π6={S0, S3, S8, S9}.

By applying Pandora’s laws to these sequences of states
and include the influence of the component I , the following
minimal cut sequence sets are extracted:

MCSQ0 = FI

MCSQ1 = (FA < FB).(FA|FS).(FB |RA)

MCSQ2 = (FB < FA).(FB |FS).(FA|RB)

MCSQ3 = (FS < FA).(FS |FB).(FA|RS)

MCSQ4 = (FA < FS).(FA|FB).(FS < FB).(FS |RA).(FB |RS)

MCSQ5 = (FB < FS).(FB |FA).(FS < FA).(FS |RB).(FA|RS)

MCSQ6 = (FS < FB).(FS |FA).(FB < FA).(FB |RS).(FA|RB)

(2)

From Eqs. in (2) we can see that the sequences of events
are expressed using the PAND gate, and constraints which
involve priorities between events are determined using the
POR gate. For instance, in MCSQ1: (i) A must fail prior to
the failure of B, (ii) if S fails, it must fail after the failure of
A, and (iii) if A is repaired, it must be repaired after B fails.

4.3 Qualitative Analysis: Repairable HiP-HOPS

To perform the qualitative analysis we first introduce the
independent failure and repair operation of each compo-
nent, i.e. functional specification (Fig. 7). The functional
specification of each component includes a SM (later treated
as a FA adding further events and states) and HiP-HOPS

propagation interfaces. For generality, let us integrate these
modelling constructs in the definition of HiP-HOPS SM:

Definition 1: HiP-HOPS State Machine - A
HiP-HOPS State Machine (H2SM) is a 6-tuple
H2SM =< S,

∑

, δ, s0, EPIn, EPOut > where:

• S 6= ∅ is a set of states.
•

∑

is a set of events. Each event e ∈
∑

is of the type
τ={immediate, stochastic, conditional}, where stochastic
events occur after a random period of time speci-
fied by their corresponding PDF, immediate events
occur instantaneously, and conditional events are of
the form e = event[guard(s)]|action. That is, if the
guard(s) condition(s) holds when the event occurs,
the action event is executed.

• δ: S ×
∑

→ S is a transition function such that for
(u, u′) ∈ S2 and e ∈

∑

, u′ = σ(u, e) iff e is incident
from u to u′, which is written as u

e
−→ u′.

• s0 ∈ S is the initial state.
• EPIn is the set of incoming events eEPIn

∈ EPIn

propagated to the H2SM model by other H2SM
components.

• EPOut is the set of outgoing events eEPOut
∈ EPOut

propagated by the H2SM model to other compo-
nents.

The functional specification of each component is given
in a HiP-HOPS SM. Fig. 8 shows the repairable PS com-
ponents and their functional interfaces. For instance, the
component A is defined as follows: S={A Working, A Failed,
A Standby};

∑

={A Fails, A Repair, Reconfigure A}, where
A Fails and A Repair are stochastic and Reconfigure A is
immediate; δ is defined in Fig. 8a; s0 = A Working; EPIn =
{Rec-A}; EPOut = {O-A, S-A}.

Note that the I/O propagated events are described using
the HiP-HOPS notation, i.e., [event class]-[component]. In
this case: O(mission)-A; S(tandby)-A; and Rec(onfigure)-A.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 7

Fig. 8. Functional specification of the repairable PS system components.

To describe the stochastic failure and repair events of
each component, their failure and repair PDFs are used.
S (cf. Fig.8d) sends an immediate signal (Rec-A, Rec-B) to
activate (or reconfigure) A or B when required. Unless S is
working, it is not possible to activate A and B.

The propagation of the failure and repair events between
the components enables an accurate and manageable speci-
fication of the system operation. However, when performing
the qualitative analysis of the system, additional failure and
repair events need to be propagated to evaluate all the
possible causes/effects and their influence on the system
performance. These states/events are formalised in the FA.

For clarity, the following decisions have been adopted
when modelling the FA of components: the propagation
of the failure and repair events is done in one direction
(from component A to B) and once a component reaches an
absorbing failure state, it is not further propagated because
it causes the system failure (e.g., Input Fail event in Fig. 7). If
we consider events in both directions the component FA will
have overlapping information. For instance, if we include
the influence of S and B in the FA of A via interface In2

(see Fig. 3b), we will end up with the same component FA
as if we consider the influence of A and S in the component
FA of B. The characterization of each component with their
interface behaviour, FA and corresponding TFT equation are
shown in Fig. 7 (component A) and Fig. 9 (S and B).

The system FA is constructed as shown in Fig. 10 based
on the component FA of components A, B, and S. For
simplicity I is not included. In Fig. 10 we can see that the
system cannot move from the state #1 back to #0 because if
A is repaired after its failure, B would be working and A

will not come back into operation until B fails. The possible
states are displayed in Table 2.

4.4 Representing the HiP-HOPS FA using Pandora

We can extract Cut-Sequences (CSQ) directly from the FA
in Fig. 10. We will focus on the paths that end in the
failure states #6, #8, and #12 because the path to #11 con-
tains non-minimal cut sequences as it includes the situation
in which all the events have failed. Namely, a CSQi is
included in one of the CSQj if it satisfies the criterion
[12]: CSQi.

∑

j 6=1
CSQj = CSQi. That is, if CSQi can be

included in one of the CSQj , it is redundant and can be
removed from the structure function.

Fig. 9. Characterization of the components B and S.

Fig. 10. Failure Automaton of the repairable PS system.

TABLE 2
States of components in Fig. 10.

System State
Components State

A B S
0 AW BS SW

1 AF BW SW

2 AW BF SW

3 AW BS SF

4 AS BW SW

5 AF BW SF

6 AF BF SW

7 AW BF SF

8 AF BS SF

9 AW BF SF

10 AS BW SF

11 AF BF SF

12 AS BF SF

These are the failure paths: π1={S0, S1, S6}, π2={S0, S2,
S6}, π3={S0, S3, S8}, π4={S0, S1, S4, S10, S12}, π5={S0, S1, S5,
S10, S12}. If we apply Pandora’s TFT gates to these paths we
end up with the following equations:

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 8

CSQO = FI

CSQ1 = (FA < FB).(FA|FS).(FB |RA) = (FA < (FB |RA)).(FA|FS)

CSQ2 = (FB < FA).(FB |FS).(FA|RB) = (FB < (FA|RB)).(FB |FS)

CSQ3 = (FS < FA).(FS |FB).(FA|RS) = (FS < (FA|RS)).(FS |FB)

CSQ4 = (FA < RA).(RA < FS).(FS < FB).(FB |RS)

CSQ5 = (FA < FS).(FS < RA).(RA < FB).(FB |RS)
(3)

The POR gate enables identifying consistently each fail-
ure path avoiding non-deterministic states. We remove the
redundancies existing in the CSQs to get the MCSQs (cf.
Fig. 7). Namely, we can apply Pandora’s Conjunctive Com-
pletion Law to CSQ4 and CSQ5 (Table 1 ID4). Eq. (4) shows
the MCSQ set of the PS system including repair events.

TE = FI + (FA < (FB |RA))(FA|FS) + (FB < (FA|RB))(FB |FS)

+ (FS < (FA|RS))(FS |FB) + [FA < (RA.FS)] < (FB |RS)
(4)

The minimal cut sequences CSQ1, CSQ2, and CSQ3

have been identified by the application of previous ap-
proaches [Eqs. in (2)], but the next MCSQ expression has not
been identified: MCSQ4 = [FA < (RA.FS)] < (FB |RS),
which means that the following sequence of events have to
occur to cause the TE occurrence: initially A fails and as a
result, S activates B. While B is operating, two events must
happen (in any order): repair of A and failure of S. At this
instant: B is operating, A is in standby state, and S is failed.
Finally B fails and the repair of S happens (if it occurs at
all) after the failure of B. Therefore, A cannot be reactivated.

Eq. (4) defines the system failure as function of failure
and repair events. Fig. 11 shows the corresponding failure
model including explicit repair events (cf. symbols in Fig. 1).

Fig. 11. Pandora TFT model of the repairable PS system.

Failure and repair events are modelled as undeveloped
events (rhomboid symbol) because the behaviour of these
events will be determined by the functional operation of
each component.

4.5 Qualitative Analysis Discussion

If we compare the structure function in Eq. (4) extracted
from the FA of the proposed approach (Fig. 10) with the
equations extracted from the FA of other approaches applied
on the same system (Fig. 6), we see uncovered failure
situations in the latter. (i) In Fig. 10 the transition from state

#1 to #0 is not modelled, while in Fig. 6 it is modelled.
In the repairable PS system, once A fails it will remain in
standby state until B fails and S is operative. (ii) In Fig. 6
the transition from state #4 to #3 is not possible because S
must be operative in order to reconfigure A. This situation is
correctly described in Fig. 10 with the transition from state
#5 to #10. (iii) The failure event B undet. (Fig. 9, component
B) included in the state #12 of the FA of the proposed
approach (cf. Fig. 10) is not included in the FA of the
reviewed approaches.

A key difference made by the use of Pandora, which
allows rich modelling and analysis of failure scenarios that
include repair events. For instance, reactivation events that
must occur to prevent the occurrence of the system failure
could be defined with POR gates in failure equations and
their effects properly captured at system level.

5 QUANTITATIVE ANALYSIS

The goal of the quantitative analysis is to evaluate the
system failure probability with the possibility to model any
PDF for failure and repair events. Failure events are stochas-
tic events which are not dependent on other operational
conditions. However, repair events occur as a result of other
actions, and they need to be considered accordingly includ-
ing the conditions to initiate the repair and the repair event
itself. Therefore, specifying directly the events in Eq. (4) with
the corresponding failure and repair PDF and evaluating
the top-event failure probability is infeasible because the
specification of the PDF of the repair events is not trivial.

5.1 Overview of the Quantitative Analysis

Fig. 12 provides an overview of the quantification process.
Firstly the designer models the system in HiP-HOPS and
extracts the system structure function according to the dynamic
qualitative analysis process described in Section 4. Secondly,
the transformation of the functional specification of the inter-
connected system components into the interconnected SAN
component models is performed creating the behavioural
model.

Fig. 12. Quantitative analysis of the repairable HiP-HOPS approach.

Finally, the system structure function is implemented in
SAN by means of the TFT gates. As a result of this process,
the structure function is connected with the behavioural

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 9

model in order to quantify the system failure probability.
The resulting hybrid model connects the behavioural and
failure model by implementing HiP-HOPS event propaga-
tion concepts.

The transformations from the source (H2SM and Pan-
dora) into target (SAN) models are automated by imple-
menting: (i) a transformation algorithm to convert the func-
tional specification of interconnected system components
specified as H2SM (see Definition 1) into their counterpart
SAN component models, i.e., the behavioural model. (ii) A
synthesis algorithm to compile automatically any structure
function expressed with Pandora into SAN models, i.e. the
failure model. To this end, the interfaces of the behavioural
model are linked with the events in the failure model
according to the system structure function.

5.2 Preliminaries on Stochastic Activity Networks

SAN [13] provides the modelling capabilities and solver
support to meet the requirements for modelling complex
repairable systems effectively including (i) the specifica-
tion of system dynamics (time-dependent events, sequen-
tial events, standby situations), (ii) the modelling of repair
processes, (iii) the support for the specification of any PDF
of failure and repair events, and (iv) the support for the
modular construction of the failure and repair model and
the underlying stochastic analysis model. Refer to [22] for
more details about the Möbius implementation framework.

SAN extends stochastic Petri Nets generalizing the
stochastic relationships and adding mechanisms to con-
struct hierarchical models [13]. Accordingly, SAN can over-
come some of the limitations of pure stochastic models.
Figure 13 shows SAN modelling primitives.

Join

SubmodelJoin

Instantaneous
Activity

Timed
Activity

model

Atomic/
Composed

Extended
place

Input
gate

Standard
place

Output
gate

Fig. 13. SAN modelling mechanisms.

Before formally defining a SAN model, let us define
concepts related with the marking of the net. Places repre-
sent the state of the modeled system. Each place contains a
certain number of tokens defining the marking of the place.
Let P denote the set of places of the network. If S is a set
of places (S ⊆ P), a marking of S is a mapping µ : S → N.
We will denote interchangeably the marking function of
the place x as m(x) or µ(x), e.g., µ(x) = m(x) = 1
means that the place x has a marking equal to 1. Similarly,
the set of possible markings of S is the set of functions
MS = {µ|µ : S → N}.

Activities fire based on the conditions defined over the
marking of the net and their effect is to modify the marking
(µ) of the places. The completion of an activity of any kind
is enabled by a particular marking of a set of places. The
presence of at least one token in each input place enables
the firing of the activity removing the token from its input
places and placing them in the output places. Formally a
SAN model is defined as follows [13]:

Definition 2: Stochastic Activity Networks (SAN) - A
SAN model is a 5-tuple SAN =< AN,µ0, C, F,G > where:

• AN is the activity network, which is a 8-tuple
AN =< P,A, IG,OG, γ, τ, i, o >, where P 6= ∅

is some finite set of places, A 6= ∅ is a finite set
of input places, IG 6= ∅ is a finite set of input
gates, each input gate ig ∈ IG defined as a triple
ig =< G, ena, f > where G ⊆ P is the set of places
associated with the gate, ena : MG → {0, 1} is the
enabling predicate of the gate, and f : MG →MG is
the input function of the gate, and OG is a finite set
of output gates, each output gate og ∈ OG defined
as a pair og =< G, f >. Furthermore, γ : A → N∗

specifies the number of cases for each activity, and
τ : A → {timed, instantaneous} specifies the type
of each activity. The net structure is specified via the
functions i and o : i : IG → A maps input gates to
activities, while o : OG → {(a, c)|a, c ∈ J1, γ(a)K}
maps output gates to cases of activities.

• µ0 ∈MP is the initial marking.
• C is the case distribution assignment.
• F is the activity time distribution function assign-

ment, an assignment of continuous functions to
timed activities such that for any timed activity a,
Fa : MP × R → [0, 1]. Furthermore, for any stable
marking µ ∈MP and timed activity a that is enabled
in µ, Fa(µ, .) is a continuous PDF called the activity
time distribution function of a in µ; Fa(µ, τ) = 0 if
τ 6 0.

• G is the reactivation function assignment.

In the proposed approach we do not use output gates
and reactivation functions. Furthermore, we assume that the
number of cases for each activity is one, simplifying the
final structure of the SAN model. Accordingly, for clarity
we have avoided introducing the complete definitions of
the case distribution assignments and reactivation function
assignments (for a complete specification refer to [13]).

The SAN models which include the specified SAN ele-
ments (Fig. 13) are modelled in an atomic model. The join
operator links through a compositional tree structure differ-
ent SAN models in a unique composed model. It is possible
to link atomic models, composed models, or combinations
thereof. In the tree structure, the composed/atomic SAN
models are linked through join operators using the shared
places between the composed/atomic SAN models. Thus,
the analyst can focus on specific characteristics of the system
behaviour through fit-for-purpose atomic/composed mod-
els and later join independently validated models to obtain
a more complex composed system model (e.g. see [23]).

The performance measurements are carried out through
reward functions defined over the designed model. Reward
functions are evaluated as the expected value of the reward
function and they are defined based on the marking of the
net (state reward function), e.g. quantification of the probabil-
ity for being in a specific place, and completion of activities
(impulse reward function), e.g. count the number of times an
activity triggers within a time interval.

Fig. 14 shows a simple repairable component example.
In this case the SAN places are initialized to working state
<m(W)=1, m(F=0)>. The token will move from W to the
F place according to the cumulative distribution function
(CDF) determined by the fault timed activity. The time
to failure is calculated with the parameters of the fault
activity and after the time to failure has elapsed the system

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 10

moves to the failed state <m(W)=0, m(F=1)>. After moving
to the failure state the time to repair is calculated from the
repair timed distribution and the token moves from F to
the W place after the calculated time to repair has elapsed.

Fig. 14. Repairable asset example in SAN.

We focus on Monte Carlo simulations for the quantifi-
cation of different probabilities. For evaluating the failure
probability or availability we use the reward functions indi-
cated in Figure 14 with F_Rew and W_Rew reward variables
respectively. Formally, for evaluating the probability of a
generic place x, at time instant t, first we define the reward
function, rx(t):

rx(t) =

{

rx(t) + 1 if m(x) = 1

rx(t) if m(x) = 0
(5)

Note that the marking of the place x changes according
to the SAN atomic logic throughout the lifetime of the sys-
tem. The transition times and marking values vary between
trials. Assuming M trials, the expected value of the reward
function of the place, rx (probability for being in place x at
time t), is calculated as:

p̂x(t) =
1

M

M
∑

i=1

rix(t), x ∈ E (6)

where E denotes the set of places in the system, e.g. E = {W,
F} in Fig. 14 and rix(t) denotes reward value at time t of the
i-th trial. The required number of iterations M depends on
the required confidence level for the reward variables.

5.3 Transformation from HiP-HOPS to SAN

The transformation process is done in two steps (cf. Fig. 7).
Firstly the HiP-HOPS functional specification is transformed
into the behavioural model in SAN (Subsec. 5.3.1). Then, the
failure model is created according to the system structure
function and it is connected with the behavioural model to
propagate failure, repair, and status information events from
the behavioural to the failure model (Subsec. 5.3.2).

The source model G is a HiP-HOPS State Machine (see
Definition 1) and at each step of the transformation process,
the modelling constructs of the model G are replaced by
the equivalent SAN modelling constructs (see Definition 2)
in the destination model D. The transformation steps are
expressed as LHS = RHS, where LHS expresses the left
hand side of the rule, and RHS is the right hand side
of the rule. The transformation works as follows: find an
occurrence of LHS in G; if found, transform LHS in RHS
in the target graph D. As Table 3 displays, there is a direct
correspondence (C) between the HiP-HOPS State Machine
and SAN elements.

Note that it may have been possible to express C6 with
SAN output gates. However, we use input gates for the flex-
ibility provided for defining complex guarded expressions.

TABLE 3
Correspondence between HIP-HOPS and SAN elements.

C HiP-HOPS State Machine SAN
1 States; si ∈ S, 1 6 i 6 N Places; pi ∈ P, 1 6 i 6 N

2
Failure/Repair events;

ei ∈
∑

, τ = {stochastic}
Timed activities;

ai ∈ A, τ = {timed}

3
Input propagated event;

eIP ∈
∑

IP

Instantaneous activities;
ai ∈ A; τ = {inst.}

4
Output propagated event;

eOP ∈
∑

OP

Out propagated activity
aOP ; out propagated place

pOP

5 Not occurred; occurred event µ(place)=0; µ(place)=1

6
Conditional events;

Event[Guard]|Action events
Input gates; IG

The HiP-HOPS event propagation is implemented by
creating a shared place between the source and destination
components (C4). When the source component changes the
marking of the shared place it affects the destination com-
ponents that share the same place. The marking of the place
must be updated every time the analysed event occurs.

5.3.1 Behavioural Model

The transformation of each component’s functional model
modelled with HiP-HOPS State Machines (H2SM , Fig. 8)
into SAN behavioural model A SAN (Fig. 15) is performed
through the next steps implemented in Algorithm 1:

Step 1 (lines 2-7): replace states with places (lines
5, 6) and set the initial marking to 1 or 0 for all the
places according to the initial state of the source functional
specification models (line 7).

Step 2 (lines 8-28): replace events with activities ac-
cording to the nature of the source events (lines 8-9) and
link them with the corresponding places. That is, stochastic
events are replaced with timed activities (lines 11-14);
immediate events are replaced with instantaneous activities
(lines 15-21); if the instantaneous event’s name matches
with any of the input propagated events name (line 19),
create the corresponding place in the component to prop-
agate the effect of its marking change inwards, i.e., event
propagation (lines 20, 21). If the event is a conditional
event, create the corresponding logic in SAN using IGs and
places that model the events implicated in the transition
events. Also add the equivalent C++ function which models
the guard, i.e., if event[guard] then [action] (lines 22-28).
Note that we unconditionally activate the enabling predicate
(line 25), but we model the guarding condition using the
input function (line 26).

Step 3 (lines 29-37): if the component propagates
events outwards and it does not have a state counterpart in
the SAN model (line 31), create the corresponding place
and link it to the event that needs to be propagated (lines
32-34). To remove the marking of the added place, connect
the added place and the place connected to the event to be
propagated to an immediate transition (lines 35-37).

The components shown in Fig. 15 are created by ap-
plying Algorithm 1. The components A, B and S need to
create an extra place to propagate the repair event from
the component outwards, i.e., A Repaired, B Repaired, and
S Repaired (cf. line 32). Accordingly, they are connected
to an immediate activity to remove the token from these
places, so that when the marking of the places connected to

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 11

Algorithm 1 Behavioural model generation

1: function HIPHOPS 2 SAN(H2SM)
2: get S from H2SM; ⊲ set of states in the HiP-HOPS state machine model
3: let P=∅; A=∅; IG=∅
4: let N = |S| ⊲ number of states in the H2SM model
5: for each si ∈ S, 1 6 i 6 N do ⊲ for all the states in the H2SM model
6: P← P ∪ {pi} ⊲ create SAN component place
7: if si = s0 then µ(pi) = 1 else µ(pi) = 0 ⊲ set the initial marking

8: for each e ∈
∑

do ⊲ for all the events in the H2SM model

9: let exy = e, where exy ∈ Σ|sx
exy

−−→ sy , (sx, sy ∈ S2) ⊲ transitions from sx to sy : sx
exy

−−→ sy
10: switch τxy do ⊲ depending on the type of transition
11: case stochastic
12: A← A ∪ {axy} where τxy = timed ⊲ create a timed activity axy
13: link px → axy ⊲ from state x

14: link axy → py ⊲ to state y, i.e. px
axy

−−→ py

15: case immediate
16: A← A ∪ {axy} where τxy = instantaneous ⊲ create an instantaneous activity
17: link px → axy ⊲ from state x

18: link axy → py ⊲ to state y, i.e. px
axy
−−→ py

19: if ∃eEPIn
∈ EPIn|exy = eEPIn

then ⊲ if the transition matches with any of the input propagated events
20: P ← P ∪ {pEPIn

} ⊲ add a place that will propagate the event to other component

21: link pEPIn
→ axy ⊲ link the place to the activating activity: {px, pEPIn

}
axy
−−→ py

22: case conditional ⊲ create the IG that contains the transition logic
23: IG← IG ∪ {ig} ⊲ create an input gate, where ig =< G, ena, f >
24: P ← P ∪ {pxy} ⊲ create places for all the events involved in the conditional event logic
25: ig ∋ ena← true ⊲ activate the enabling predicate
26: ig ∋ f ← exy ⊲ parse the conditional event logic exy into the IG function, i.e. event[guard(s)]|action
27: A← A ∪ {aig} where τig = instantaneous ⊲ create an instantaneous activity
28: link ig → aig ⊲ map input gate to activity: IG→ A

29: let J = |P | ⊲ number of created places in the SAN model
30: for each eEPOut

∈ EPOut do
31: if ∄pj ∈ P |eEPOut

= pj , 1 6 j 6 J then ⊲ if there is no matching place
32: P ← P ∪ {pEPOut

} ⊲ create a place to propagate events outwards

33: let axy = apEPOut
⊲ take the activity with the name of the propagated event px

axy

−−→ py , where axy = apEPOut

34: link axy → pEPOut
⊲ link it to the created place px

axy

−−→ {py, PEPOut
}

35: A← A ∪ {arem} where τ = instantaneous ⊲ create removing activity to remove the token instantaneously
36: link pEPOut

→ arem ⊲ link the place to the instantaneous activity

37: link px → arem ⊲ link the source place of axy to remove the marking; {px, pEPOut
}

arem−−−→ ∅

38: return P ∪ A ∪ IG

this activity is 1, the token is removed from each of these
places (cf. lines 33-37). Note that we have deliberately
connected the input place of the event that needs to be
propagated to an immediate activity to avoid interfering
with the marking (behaviour) of the system.

Component A (resp. B) will be activated only when
there is a token in the Reconfigure and Standby places
simultaneously, S is working, and B (resp. A) has failed.
The marking of the Reconfigure places is managed by
the Reconfiguration Logic component, which is im-
plemented according to the logic described in Fig. 8d using
IGs (lines 22-28). The IGs implement the operation of S
reconfiguring A and B depending on the system status.

After creating the components according to Algorithm
1, the event propagation between the behavioural compo-
nents is defined by the interface connections implemented
through join operators. The join operator creates a unique

state linking the shared states between components. When
the marking of a shared place is modified by the source com-
ponent it will affect all the shared places of the destination
components propagating its influence across the system. In
Fig. 15 the places of the source components are represented
in bold, e.g., Reconfiguration Logic generates reconfiguration
signals Rec-A and Rec-B, which are propagated towards A
and B respectively. Thanks to the matching names of places
in the different components, the shared places are created
automatically when joining the atomic models.

Subsequently, the behavioural model is connected with
the failure model in order to evaluate the system’s failure
probability according to Eq. (4).

5.3.2 Failure Model

The objective of the failure model is to evaluate the failure
probability of the system according to the structure function
extracted in the qualitative analysis phase. To this end, it

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 12

Fig. 15. Behavioural Model of the repairable PS components.

is necessary to specify the TFT gates in the target depend-
ability evaluation formalism and connect TFT gates with the
system events according to the system structure function by
propagating failure and repair events from the behavioural
model to the failure model (cf. Fig. 17).

For the design of the failure model SAN enables mod-
elling the logic of the TFT gates and reusing it in order
to create user-defined temporal expressions. Besides, SAN
can model repeated events and subsystems through the join
operator. Its modular specification enables the creation of a
manageable model improving the readability and maintain-
ability of the model for complex systems.

We focus on a subset of TFT (PAND, POR) and combina-
torial (AND, OR) gates. For the systematic consideration of
the gates and automatic generation of temporal expressions
we introduce reusable building blocks. That is, gates are
designed as functions, and the same function is used to
solve all the expressions that include these gates by creating
their corresponding SAN models. This is possible thanks to
the modularity of SAN, which makes possible the reuse of
composed and atomic models.

Instead of generalizing each TFT gate for N input events,
for clarity, we characterize TFT gates for two input events
(A, B). We nest operators if equations with more than two
inputs are needed. Thereby, the system structure function is
synthesized by connecting TFT gates with the behavioural
model, and nesting the resulting composed SAN models
according to the system structure function.

In SAN we design TFT gates using IGs. Places model the
input events of the gates, and IGs model the gate behaviour
by controlling the occurrence instances and implementing
the corresponding temporal logic. The atomic models of
the gates can be generated automatically or they can be
imported using a library of TFT gates.

Fig. 16 shows the specification of repairable TFT gates
in SAN using state machines and their corresponding SAN
model. In the state machine the initial state is indicated with
an arc, failure states are identified with doubled circles,

and Fx and Rx indicate failure and repair events of x.
The resultant reusable blocks are used to create the TFT
expressions. In each of these models, the IG implements
the logic expressed in the annexed code by controlling the
marking of the places connected to it. The activity associated
to the IG determines the nature of the IG execution. That is,
it defines how the marking change will be updated by the
code. In all the cases, the IGs are connected to instantaneous
activities and the marking change determined by the IG is
executed as soon as the logic in the code is true.

Fig. 16. Specification of TFT gates in SAN.

The PAND event happens when the first input event A
happens prior to the occurrence of the second input event
B. For two input events (A, B), the PAND implementation
in SAN is as follows (cf. Fig. 16): A happens prior to B (BF
input gate); and given that A happened prior to B (y_BF
place), B happens (AND input gate). The resulting PAND
reusable block implements the function: Y=PAND(A, B).

The POR event happens when the first input event A
happens prior to the second input event B, independent that
the event B occurs or not. For two input events, the POR
implementation in SAN is as follows (Fig. 16). POR is true
if either: A happens prior to B (BF input gate), and B occurs
(pAND input gate); or A happens prior to B and B does not
occur (i.e., A_nB input gate). That is, POR is true when the
PAND expression is true (m(pand)=1, pAND input gate) or
A_noB expression is true (m(A_noB)=1, A_nB input gate) as
defined by the pOR input gate in Fig. 16. The resulting POR
reusable block implements the next function: Y=POR(A, B).

The TFT reusable blocks can be used to solve any
temporal expression which involves the AND, OR, PAND,
and POR operators. To this end, places A and B will be
shared with the corresponding events to be analysed and
the Y place will indicate the occurrence probability of
the corresponding TFT expression. Note that the TFT gate
specifications in Fig. 16 are extendible to N input events.
For example, it is possible to connect N-1 2-input TFT gates
to obtain an N-input TFT gate. However, it is important
to remember that all TFT gates are left associative [11], i.e.
A|B|C is evaluated as (A|B)|C in the same way as A<B<C
is evaluated as (A<B)<C.

We have defined a set of reusable models that implement
the logic of the TFT and Boolean gates, i.e., library of TFT
gates. Using these functions, we evaluate any MCSQ ex-
pression that contains the temporal (PAND, POR) and non-
temporal (AND, OR) operators automatically by creating

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 13

composed SAN models (which include other composed
and/or atomic models), that make use of the TFT gates
across different composed models to solve all the temporal
expressions. Fig. 17 shows the synthesis process.

Fig. 17. Synthesis of the structure function.

The implementation of the structure function requires
connecting the failure/repair events in the behavioural
model with the events in the system structure function. For
this, we join the corresponding SAN models by means of
shared places. That is, places which correspond to the input
and output events of the temporal and non-temporal opera-
tors are shared with the behavioural model’s failure/repair
events according to the equation that needs to be analysed.
Thereby, we compose models by automatically linking the
corresponding places of the behavioural model (i.e., fail-
ure and repair events) with the failure model in order to
evaluate the failure probability of the system. Furthermore,
replicated events and states between different expressions of
the MCSQs are joined to remove repetitions in the composed
SAN model.

The equation under study determines the connections
between the behavioural and failure model.

For simplicity and consistency, we opt for transforming
the structure function into Base Temporal Form (BTF) using
doublets [11]. An expression in the BTF contains only AND
gates, OR gates, and doublets. Doublets link a pair of
events connected by a temporal gate indicated by square
brackets. Generally it can be expressed as follows: [In1

OP In2], where OP = {SAND,PAND,POR}. Doublets
encapsulate the temporal information in an expression so
that it can be manipulated like a non-temporal expression.

In BTF, the resulting structure function will be a dis-
junction of individual MCSQ sets and each set will have
doublets, normal events, or combinations thereof linked by
AND gates. Eq. (7) shows the structure function in BTF.

TE =
M∑

i=1

MCSQi;MCSQi =
K∏

j=1

eventij (7)

where eventij ∈ {doublet, event}; doublet = [eventx OP eventy]
and event is any failure/repair event characterized with its
corresponding PDF.

Any expression containing temporal gates can be con-
verted into a set of doublets via the temporal laws intro-
duced in [11]. Accordingly, Eq. (4) is transformed into:

MCSQ1 = [FA < FB].[FA|FS].[FB|RA]

MCSQ2 = [FB < FA].[FB|FS].[FA|RB]

MCSQ3 = [FS < FA].[FS|FB].[FA|RS]

MCSQ4 =

[RA < FB].[FS < FB].[FB < RS].([FA < FS] + [FA < RA])

(8)

MCSQ1, MCSQ2 and MCSQ3 are created directly by ap-
plying the temporal equivalence ID6 in Table 1 and MCSQ4

is obtained through applying sequentially ID5, ID2, ID3,
ID6, and ID1 temporal laws in Table 1 to MCSQ4.

Algorithm 2 generates automatically composed SAN
models according to the structure in Eq. (4), taking as input
the structure function (TE) and the behavioural model of
the system. The algorithm iterates among the M disjunctive
MCSQ expressions. For each event in the MCSQ expression
it is checked if it is a doublet or not (line 7). If it is, first the
left hand side input, right hand side input, and the logical
operation of the doublet are extracted through LHS, RHS,
and gate functions, respectively (lines 8-10). Then the
doublet operation is transformed into the corresponding
SAN composed model using the join function. The join
function links input events specified in the Model with the
corresponding operator creating a composed model (line
11). To this end, the join(OP, In1, In2,Model) function
will search in the Model the places In1 and In2 (identified
by their names) and then it will join them with the operation
OP (In1 with the first input of OP, and In2 with the second
input of OP) creating a SAN composed model.

If there are more than one conjunctive expressions in
the equation MCSQi ∈ TE, these are nested iteratively by
connecting them using the SAN composed models via the
function nest (line 17). The function nest(OP,M1,M2)
links the first input of the operation OP with the output of
the composed SAN model M1 and the second input of the
operation OP with the output of the composed SAN model
M2 (Fig. 17). Once the inner for loop is over (line 18)
the variable SAN composed MCSQi will specify a MCSQ
expression in a SAN composed model which will have inner
composed models if the expression has conjunctive events.

Depending on the number of MCSQ expressions in the
structure function (line 20), MCSQ expressions are nested
iteratively using OR gates via the nest function that will
link composed models with TFT gates using shared places
(line 23). The variable SAN composed TEi will include
all the information corresponding to the top event occur-
rence by nesting composed and atomic SAN models. Finally,
places with the same name are shared automatically in the
resulting SAN model that implements the structure function
(line 25). The failure probability is then quantified by
Monte Carlo simulations as defined in Eq. (6).

5.4 Repairable PS System: Results

The generic functionality of the repairable PS system can
be seen as a power supply system which has the primary
power supply (A), the secondary power supply (B), the fault
detection and reconfiguration component (S) and the input
power (I). Plausible values are assigned to each component.
Without loss of generality, all the system events are char-
acterized with exponential distributions according to their
corresponding failure and repair rates (all rates in hours-1

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 14

Algorithm 2 SAN model generation from MCSQ expressions

1: function SYNTHESIZE TE SAN(TE, BehaviouralModel)
2: let MCSQi ∈ TE, 1 6 i 6 M ; ⊲ M disjoint sets
3: for each MCSQi ∈ TE do ⊲ transform BDMP elements into SAN
4: let lenMCSQ = |MCSQi| ⊲ number of doublets or events in MCSQi, i.e., AND-ed conjunctive terms
5: let eventij ∈MCSQi, 1 6 j 6 lenMCSQ ⊲ doublet(s) or event(s) in MCSQi

6: for each eventij ∈MCSQi do
7: if eventij=doublet then ⊲ check if it is a doublet
8: let Op = gate(eventij) ⊲ Operation, e.g. A <<< B
9: let In1 = LHS(eventij) ⊲ LHS of the doublet, e.g. A < B

10: let In2 = RHS(eventij) ⊲ RHS of the doublet, e.g. A < B
11: let SAN composedj = join(Op, In1, In2, BehaviouralModel) ⊲ Create SAN composed model
12: else let SAN composedj = eventij ⊲ Non-temporal single event

13: if j=1 then ⊲ eventij ∈MCSQi;MCSQi ∈ TE

14: if lenMCSQ = 1 then let SAN composed MCSQi=SAN composedj ⊲ single event no linking logic
15: else let SAN composed nest=SAN composedj ⊲ variable to store nested events

16: else ⊲ Nest in SAN, AND-ing previous events in a SAN composed model
17: let SAN composed MCSQi=nest(AND,SAN composed nest, SAN composedj)
18: let SAN composed nest=SAN composed MCSQi ⊲ prepare for the next iteration

19: if i=1 then ⊲ MCSQi ∈ TE
20: if M = 1 then let SAN composed TEi=SAN composed MCSQi ⊲ A single MCSQ term
21: else let SAN composed TE nest=SAN composed MCSQi

22: else ⊲ Nest disjoint sets by using OR gates
23: let SAN composed TEi=nest(OR,SAN composed TE nest, SAN composed MCSQi)
24: let SAN composed TE nest=SAN composed TEi ⊲ prepare for the next iteration

25: return share common places(SAN composed TEi)

units): λI=1e-4, µI=2.5e-1; λA=2.3e-3, µA=2.6; λB=5.3e-3,
µB=8.7e-2; λS=1e-4, µS=2.5e-1.

Three configurations have been analysed focusing on the
properties of the approaches addressed in Section 4:

#1 Repairable HiP-HOPS (behavioural model according to
Fig. 10 and failure model according to Eq. (4)).

#2 SEFT approach (behavioural model according to Fig. 5
and failure model according to Eq. (1)).

#3 State-of-the-art approaches (behavioural model accord-
ing to Fig. 6 and failure model according to Eq. (1)).

The behavioural model and failure model of each con-
figuration depends on the underlying assumptions of each
configuration. As for the behavioural model, the compo-
nents shown in Fig. 15 describe component operations for
the configurations #1 and #2. With configuration #3 the be-
haviour of the components A, B, and Reconfiguration Logic
is different: A does not have a standby state and, according
to the Reconfiguration Logic, when A is repaired B returns
back to the standby state. Furthermore, in order to model
the state transition from state #4 to #3 in the FA shown in
Fig. 6, the status of S is not checked when performing the
reconfigurations. With respect to the failure model the con-
figuration #1 implements Eq. (4), and configurations #2 and
#3 implement Eq. (7). Fig. 18 shows the failure probability
values for these configurations at different time instants. All
the simulations have been performed with confidence level
= 0.99 and confidence interval = 9e-6.

The differences between configuration #1 and configura-
tions #2 and #3 are caused by MCSQ4, which is not covered
by the state-of-the-art approaches in general, and configura-
tions #2 and #3 in particular. With respect to configuration

Fig. 18. Failure probability of the tested configurations.

#3 we can see that the differences are higher. This is because
the modelled system behaviour in configuration #3 does not
match with the desired behaviour of the primary standby
system and results are thus based on different underlying
Failure Automaton. The obtained failure probability values
may lead the designer to adopt optimistic design decisions
for this scenario which is potentially problematic.

6 DISCUSSION

The computational and modelling complexity of the anal-
ysis can increase substantially with system scale. This can
be a substantial issue so care must be taken in the scope of
application of the techniques described in the paper.

SAN models can be directly solved via Monte Carlo
simulations, which can be parallelized so as to speed-up
complex system simulations. In addition, in order to alle-
viate substantially the state-explosion problem, SAN makes
use of reduced base models [24]. This concept enables the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 15

implementation of join operators and hierarchical modelling
of complex systems (see Section 5.2).

The modelling effort, e.g. the specification of failure au-
tomata for each component, can be a cumbersome process.
However, this is a trade-off decision that the designer needs
to make when designing dynamic repairable systems: either
focus on simpler and more coarse approaches with fixed
predefined constructs for representing repair or follow a
more detailed modelling process to address accurately all
the possible failure and repair scenarios.

One possible solution to alleviate the modelling effort
may be to automate the model transformation steps. The
system architecture specification and component annota-
tions need to be manually defined (cf. Fig. 7) because this is
dependent on expert knowledge. However, it is possible to
automate subsequent qualitative and quantitative analysis
steps. Indeed, as indicated in the next section, this is part of
our future work.

7 CONCLUSIONS

We presented a novel approach for analysis of dynamic
repairable systems. Compared with the state-of-the-art, the
proposed approach differs in that repair processes are ex-
plicitly modelled. Analyses evaluate the influence of failure
and repair scenarios under assumptions of any PDF. The
proposed approach captures a detailed view of the effects of
failure and repair and can give improved insights which are
currently unavailable. The particular implementation of the
approach via HiP-HOPS and SAN brings the computational
combined benefits of these tools. However, the key idea
of explicit treatment of repair in dependability analysis
could also inform the development of other techniques.
Applicability of this concept is important in systems where
the possibilities of repair multiply with the ability to dy-
namically redirect resources via software reconfiguration.

Some of the disadvantages of Petri Net models includ-
ing modelling complexity and state explosion are to some
extent inherited in this approach. However, the hierarchical
structure of SAN models and their underlying resolution
method mean that to some extent these issues are addressed.
SAN models are less computationally expensive to solve,
less error-prone and less difficult to maintain than classical
Petri Net models.

The different formalisms and models used in this work
have been designed to demonstrate the feasibility and
added value of the proposed approach. In principle other
reliability modelling and solving tools like Möbius could
be connected to HIP-HOPS and Pandora to enable similar
capabilities for analysis of systems, but that would require
substantial conceptual work and tool extensions. Future
work may consider the integration of Pandora, TFTs, SMs,
FA, and SAN models in an integrated automated software
tool within the HiP-HOPS framework.

ACKNOWLEDGMENT

This work was partially supported by the DEIS H2020
project (Grant Agreement 732242).

REFERENCES

[1] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” IEEE
Trans. Dependable Secure Comput., vol. 1, no. 1, pp. 11–33, 2004.

[2] IEC, “Analysis Techniques for Dependability,” IEC 61078, 2006.
[3] IEC, “Fault Tree Analysis,” IEC 61025, 2006.
[4] G. Manno, F. Chiacchio, L. Compagno, D. D’Urso, and N. Trapani,

“Conception of Repairable Dynamic Fault Trees and resolution
by the use of RAATSS, a Matlab toolbox based on the ATS
formalism,” Rel. Eng. & Sys. Safety, vol. 121, pp. 250 – 262, 2014.

[5] S. Distefano and A. Puliafito, “Dependability evaluation with
dynamic reliability block diagrams and dynamic fault trees,” IEEE
Trans. Dependable Secure Comput., vol. 6, no. 1, pp. 4–17, Jan 2009.

[6] IEC, “Functional safety of electrical/electronic/programmable
electronic safety related systems,” IEC 61508, 2000.

[7] Z. Tang and J. Bechta Dugan, “Minimal cut set/sequence genera-
tion for dynamic fault trees,” in Reliability and Maintainability, 2004
Annual Symposium - RAMS, Jan 2004, pp. 207–213.

[8] J. B. Dugan, S. J. Bavuso, and M. A. Boyd, “Dynamic fault-tree
models for fault-tolerant computer systems,” IEEE Transactions on
Reliability, vol. 41, no. 3, pp. 363–377, Sep 1992.

[9] P.-Y. Chaux, J.-M. Rousel, J.-J. Lesage, G. Delezeu, and M. Bouis-
sou, “Towards a Unified Definition of Minimal Cut Sequences,” in
Proc. of Dependable Control of Discrete Systems, vol. 4, 2013, pp. 1–6.

[10] Y. Papadopoulos, M. Walker, D. Parker, S. Sharvia, L. Bottaci,
S. Kabir, L. Azevedo, and I. Sorokos, “A synthesis of logic and bio-
inspired techniques in the design of dependable systems,” Annual
Reviews in Control, vol. 41, pp. 170 – 182, 2016.

[11] M. Walker and Y. Papadopoulos, “Qualitative temporal analysis:
Towards a full implementation of the fault tree handbook,” Control
Engineering Practice, vol. 17, no. 10, pp. 1115 – 1125, 2009.

[12] G. Merle, J. Roussel, J. Lesage, and A. Bobbio, “Probabilistic
algebraic analysis of fault trees with priority dynamic gates and
repeated events,” IEEE Trans. Rel., vol. 59, no. 1, pp. 250–261, 2010.

[13] W. H. Sanders and J. F. Meyer, “Stochastic activity networks:
Formal definitions and concepts,” in Lectures on Formal Methods
and Performance Analysis. Springer, 2001, vol. 2090, pp. 315–343.

[14] D. Codetta-Raiteri, “Integrating several formalisms in order to
increase fault trees’ modeling power,” Reliability Engineering &
System Safety, vol. 96, no. 5, pp. 534 – 544, 2011.

[15] M. Bouissou and J. Bon, “A new formalism that combines ad-
vantages of fault-trees and markov models: Boolean logic driven
markov processes,” Rel. Eng. & Sys. Safety, vol. 82, no. 2, pp. 149 –
163, 2003.

[16] B. Kaiser, C. Gramlich, and M. Förster, “State/event fault treesa
safety analysis model for software-controlled systems,” Reliability
Engineering & System Safety, vol. 92, no. 11, pp. 1521 – 1537, 2007.

[17] P.-Y. Piriou, J.-M. Faure, and J.-J. Lesage, “Generalized boolean
logic driven markov processes: A powerful modeling framework
for model-based safety analysis of dynamic repairable and recon-
figurable systems,” Reliability Engineering & System Safety, vol. 163,
pp. 57 – 68, 2017.

[18] J. I. Aizpurua and E. Muxika, “Model based design of dependable
systems: Limitations and evolution of analysis and verification
approaches,” Int. J. on Advances in Security, vol. 6, pp. 12–31, 2013.

[19] N. Mahmud, Y. Papadopoulos, and M. Walker, “A translation of
state machines to temporal fault trees,” in Int. Conf. on Dependable
Systems and Networks, June 2010, pp. 45–51.

[20] D. Coppit, K. J. Sullivan, and J. B. Dugan, “Formal semantics of
models for computational engineering: a case study on dynamic
fault trees,” in Proc. of IEEE ISSRE, 2000, pp. 270–282.

[21] G. Manno, A. Zymaris, N. Kakalis, F. Chiacchio, F. Cipollone,
L. Compagno, D. D’Urso, and N. Trapani, “Dynamic reliability
analysis of three nonlinear aging components with different failure
modes characteristics,” Safety, Reliability and Risk Analysis: Beyond
the Horizon, pp. 3047–3055, 2013.

[22] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M.
Doyle, W. H. Sanders, and P. G. Webster, “The mobius framework
and its implementation,” IEEE Transactions on Software Engineering,
vol. 28, no. 10, pp. 956–969, Oct 2002.

[23] C. Di Martino, M. Cinque, and D. Cotroneo, “Automated genera-
tion of performance and dependability models for the assessment
of wireless sensor networks,” Computers, IEEE Transactions on,
vol. 61, no. 6, pp. 870–884, June 2012.

[24] W. H. Sanders and J. F. Meyer, “Reduced base model construction
methods for stochastic activity networks,” IEEE Journal on Selected
Areas in Communications, vol. 9, no. 1, pp. 25–36, Jan 1991.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. Y, AUGUST 2017 16

Jose Ignacio Aizpurua (M’17) is a Research
Associate within the Institute for Energy and En-
vironment at the University of Strathclyde, Scot-
land, UK. He received his Eng., M.Sc., and Ph.D.
degrees from Mondragon University (Spain) in
2010, 2012, and 2015 respectively. He was a
visiting researcher in the Dependable Systems
Research group at the University of Hull in
2014. His research interests include prognostics
and health management, dependability, condi-
tion monitoring and systems engineering.

Yiannis Papadopoulos is a professor and
leader of the Dependable Intelligent Systems
research group at the University of Hull. He pi-
oneered the HiP-HOPS MBSA method and con-
tributed to the EAST-ADL automotive design lan-
guage, working with Volvo, Honda, Continental,
Honeywell, and DNV-GL, among others. He is
actively involved in two technical committees of
IFAC (TC 1.3 & 5.1).

Guillaume Merle received the Ph.D. degree
from the Ecole Normale Supérieure de Cachan
(France) in 2010. He is currently Professeur
Agregé of engineering science at Beihang Sino-
French Engineering School (Beijing, China),
where he teaches engineering science, automa-
tion control and engineering thermodynamics.

