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Abstract

We define the open string version of the nonlinear sigma model on doubled geometry intro-

duced by Hull and Reid-Edwards, and derive its boundary conditions. These conditions include

the restriction of D-branes to maximally isotropic submanifolds as well as a compatibility condi-

tion with the Lie algebra structure on the doubled space. We demonstrate a systematic method

to derive and classify D-branes from the boundary conditions, in terms of embeddings both in

the doubled geometry and in the physical target space. We apply it to the doubled three-torus

with constant H-flux and find D0-, D1-, and D2-branes, which we verify transform consistently

under T-dualities mapping the system to f -, Q- and R-flux backgrounds.
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1 Introduction

It was shown in [1, 2] that an invariance of a string background generated by an abelian isometry

of the metric can be used to construct a T-dual background – an alternative description of the

same physics. If the isometry is globally defined the T-dual background is a conventional geometry,

perhaps with non-trivial curvature, B-field or H-flux [3]. If the isometry is not globally defined,

there is evidence that T-duality can still be performed, but that it gives rise to a non-geometric

background [4, 5]. For example, acting with T-duality once on a flat three-torus with constant

H-flux yields a nilmanifold – a two-torus fibration over a circle with monodromy in SL(2;Z), the

mapping class group of the fibres. A second duality, which must be performed fibrewise, produces

a space which is locally geometric but globally non-geometric [4]. That is, its group of transition

functions between charts is generalised with respect to geometric manifolds, to include T-duality

transformations. This space is an example of a T-fold [5, 6, 7], a class of non-geometric spaces

that locally can be described as torus fibrations, with transition functions in the T-duality group

O(d, d;Z). It has been speculated that analogous spaces, with transition functions which include

U-dualities, called U-folds [8, 9, 10], would provide good M-theory backgrounds. Since the Hilbert

space of the quantum conformal field theory arising from a two-dimensional nonlinear sigma model

on the worldsheet of the string is invariant under T-duality, even though the local target space

geometry might change, T-folds make consistent perturbative string backgrounds.

Hull [9] introduced a geometric description for T-folds by means of doubled formalism, where the
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torus fibres are doubled to include in the picture the torus defined by the dual coordinates. The fibre

degrees of freedom are then doubled, and Hull defined a “doubled” nonlinear sigma model with this

new extended geometry as its target space, the worldsheet fields corresponding to coordinates on

both the original and dual tori. The O(d, d;Z) T-duality transformation is then realised geometri-

cally in this formalism as a large diffeomorphism of the doubled fibres since O(d, d;Z) ⊂ GL(2d;Z).

By imposing a certain self-duality constraint the number of fibre coordinates may be halved, to

recover the standard sigma model on a physical target space.

A generalisation of the doubled formalism to a description where all the coordinates, including

the base, of a given space are doubled was introduced in [11], and specific examples were explored

in [12]. These papers outlined a target space description of the doubled geometry which generalised

previous constructions to backgrounds which are not torus fibrations. These more general doubled

spaces are locally group manifolds. The sigma model in the doubled torus construction [9] was

further generalised in [13]. This sigma model allows for a description of the doubled spaces consid-

ered in [11, 12] from the worldsheet perspective. We shall not be concerned with the details of this

sigma model here and will only introduce those aspects relevant to a study of open string boundary

conditions on the doubled space. A thorough study of this model, including the techniques which

allow a conventional description of the background to be recovered (where this is possible), was

presented in [13].

In certain circumstances one may describe doubled geometry as generalised geometry [14, 15].

In such a description the vectors of the doubled space tangent bundle (or forms of the doubled space

cotangent bundle) are rewritten in terms of vectors and forms on the generalised tangent bundle

T ⊕ T ∗. For the particular backgrounds considered in section 4 this was done in1 [12]. There are

currently only limited examples of (highly symmetric) backgrounds for which a doubled construction

is known (see, e.g., [18]). However, it is anticipated that all backgrounds admitting a description

in terms of generalised geometry should also have a description in terms of an appropriate doubled

formalism; see, e.g., [19, 20].

Already in ref. [9] the necessary conditions were established for consistent D-brane embeddings

in the doubled torus formalism. This was elaborated on by Lawrence et al [21], who demonstrated

by explicit examples what additional considerations are necessary to realise and interpret consistent

D-branes in the doubled formalism for the flat three-torus with NS-NS three-form flux (“H-flux”).

Here we promote their analysis to the more general doubled group framework, where all the coordi-

nates are doubled, using the doubled sigma model in ref. [13] with boundaries introduced to derive

and classify the allowed D-brane configurations in a systematic way. A three-dimensional torus

with constant H-flux can be described by a six-dimensional doubled geometry, the local structure

of which is given by a six-dimensional Lie algebra. The structure constants of this algebra are

locally determined by the H-flux. Different, possibly T-dual, descriptions of this background are

1Another example is the Drinfel’d double, an object defined [16] as the bialgebra of a Poisson-Lie group G. This

bialgebra acts on the generalised tangent bundle TG ⊕ T ∗G, and it was shown by Lu and Weinstein [17] that the

Drinfel’d double structure may be encoded in terms of a doubled group geometry.
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characterised by the structure constants, which are often referred to as “fluxes” [22]. In more

realistic compactifications these structures would be related to the four-dimensional low-energy

effective theory [5, 23, 24], but the space considered here is just a toy model for the purpose of

demonstrating the doubled geometry formalism.

Performing T-duality on the doubled torus with H-flux yields an “f -flux” structure constant on

the doubled space, which, as expected, characterises a nilmanifold when restricted to the physical

degrees of freedom. Further T-dualities, along other directions on the doubled space, yield the “Q-

flux” structure constant corresponding to a T-fold in the physical model, and so-called “R-flux”,

which hints at a locally non-geometric background [22]. Each of these structure constants represent

local values of the Wess-Zumino term in the doubled sigma model [13]. To be well-defined on the

doubled space the D-branes must be consistent under all T-dualities, as well as satisfy the sigma

model boundary conditions on each local patch.

The structure of the paper is as follows. In section 2 we review the closed string nonlinear

sigma model on the doubled geometry introduced in ref. [13]. In section 3 we extend their model

to an open string version with boundaries. We derive the equations of motion both in the bulk

and on the boundary, in the process introducing Neumann and Dirichlet projectors to define D-

branes. In section 4 we solve the resulting boundary conditions, together with a geometrically

motivated orthogonality condition as well as integrability, for the flat three-torus with constant

NS-NS three-form flux embedded in doubled geometry, and find the most generic form of Dirichlet

projector allowed. We focus on solutions based on a slightly simplifying assumption, which we

classify, interpret in physical terms, and check for global consistency, including compatibility with

T-duality transformations. We find four consistent solutions, in H-flux corresponding to D0-branes

(the same that was found in ref. [21]), D1-branes, and two kinds of D2-brane foliations. Finally,

section 5 contains a summary and discussion.

2 Doubled sigma model without boundaries

We will be interested in the generalisation of the nonlinear sigma model for a closed string worldsheet

Σ embedded in a 2d-dimensional doubled twisted torus X [13], to a worldsheet with boundaries.

The target space is constructed as

X = Γ\G ,

where G is a possibly non-compact 2d-dimensional Lie group and Γ is a discrete subgroup of G

chosen such that X is compact (Γ is “co-compact”). We choose Γ to act on G from the left so that

the left-invariant one-forms P = G−1dG (for elements G ∈ G ), which are globally defined on G , are

globally defined also on2 X . The local structure of X is given by the Lie algebra of G ,

[TM , TN ] = tMN
PTP ,

2Right-invariant objects such as the one-forms dGG−1, although they are globally defined on G , are not in general

globally defined on X = Γ\G .
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where TM are the Lie algebra generators and tMN
P the structure constants. The sigma model

describing the physics of closed string worldsheets embedded in X , as introduced in ref. [13], reads

S =
1

4

∮

Σ
MMNP

M ∧ ∗PN +
1

12

∫

V

tMNPP
M ∧ PN ∧ PP , (2.1)

where V is an extension of the worldsheet such that3 ∂V = Σ. The left-invariant one-forms

PM = PM
IdX

I , where X
I are the coordinates on X , satisfy the Maurer-Cartan equations,

dPM +
1

2
tNP

MPN ∧ PP = 0 , (2.2)

and the metricMMN , which is independent of XI , takes values in the coset O(d)× O(d)\O(d, d).

We require the Lie algebra on G to allow an O(d, d)-invariant constant symmetric bilinear form

LMN with signature (d, d). We work in a basis in which it has the form (1I denotes the d×d identity

matrix)

LMN =

(
0 1I

1I 0

)
. (2.3)

Using this metric the structure constants of the Lie algebra on G may be expressed on the totally

antisymmetric form tMNP = LMQtNP
Q.

2.1 Recovering the physical model

To recover the ordinary nonlinear sigma model on a physical target space we need to eliminate half

of the degrees of freedom. This is done by imposing the self-duality constraint [9, 13]

PM = LMNMNP ∗ P
P , (2.4)

where the star denotes Hodge duality on the worldsheet. One also needs to define a projection from

the doubled space to a “physical” subspace; this choice of projection is referred to as a polarisation

[9].

2.1.1 Polarisation of the Lie algebra

In ref. [13] the Lie algebra of G was given a polarisation by introducing a polarisation projector

Π and its complement Π̃, the latter projecting onto the complement of the image of Π in T ∗G .

The choice of polarisation encodes a choice of subgroup GL(d,R) ⊂ O(d, d) under which the

fundamental representation of O(d, d) splits into the fundamental representation of GL(d,R) and

its dual representation [25]. The ranks of Π and Π̃ are thus equal. Then the Lie algebra generators

in this polarisation may be written as

Xm = Πm
MLMNTN , Zm = Π̃mMLMNTN .

3The Wess-Zumino term should really be written as 1

12

R

V
tMNPP

M ∧PN ∧PP where PM ∈ TG ⊗T ∗V depends

on the coordinates (τ, σ, v) on V such that PM (τ, σ, v)|Σ = PM (τ, σ). By a slight abuse of notation we shall refer to

the pull-backs to both Σ and V of one-forms in T ∗
G as P .
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Here it will be useful to define the 2d× 2d matrix projectors

ΠM
N ≡

(
Πm

N

0

)
, Π̃M

N ≡

(
0

Π̃mN

)
,

which satisfy the standard projection conditions

ΠN
MΠM

P = ΠN
P , Π̃N

M Π̃M
P = Π̃N

P , ΠN
M Π̃M

P = 0 , ΠN
M + Π̃N

M = δNM .

Then the left-invariant generators in a given polarisation may be represented as

ΠM
NLNPTP =

(
Xm

0

)
, Π̃M

NLNPTP =

(
0

Zm

)
. (2.5)

One can show that the self-duality constraint (2.4) is well-defined only if Π is null with respect

to L, ΠT L Π = 0. That is, the Π-projection defines a maximally isotropic subalgebra of the Lie

algebra on G . We also require that Π defines a subgroup, i.e., the Xm close to form a subalgebra.

2.1.2 Polarisation of the coordinates

In a given open simply connected patch of X we can define an analogous polarisation of the

coordinates,

xi = Πi
IX

I , x̃i = Π̃iIX
I .

The polarisation of the coordinates is not globally defined [11, 13] and it is not always possible to

choose a set of physical coordinates xi globally. It is useful to define the projectors

ΠI
J ≡

(
Πi

J

0

)
, Π̃I

J ≡

(
0

Π̃iJ

)
,

and we may represent the coordinates xi and x̃i by the following quantities,

XI ≡ ΠI
JX

J =

(
xi

0

)
, X̃I ≡ Π̃I

JX
J =

(
0

x̃i

)
.

If we choose the simple background MMN = δMN then in the coordinate frame the polarised

doubled metric takes the form

MIJ =

(
gij −Bikg

klBlj Bikg
kj

−gikBkj gij

)
, (2.6)

for a symmetric field gij and an antisymmetric field Bij. The vielbeins P
M

I are maps P : O(d, d)→

O(d) × O(d) and can therefore be brought to lower block-triangular form by an O(d) × O(d)

transformation [12], so that

PM
I =

(
emi 0

−em
jBji em

i

)
, (2.7)
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with emi the vielbein relating the metric g to the flat metric,4 gij = ei
mδmne

n
j . Note that if the

vielbeins PM
I are elements of O(d, d), then they preserve LMN so that also LIJ = LMNP

M
IP

N
J

has the form (2.3). In this case the polarisation projectors in the coordinate frame are related to

the ones in the Lie algebra frame by

ΠI
J = (P−1)IMΠM

NP
N

J , Π̃I
J = (P−1)IM Π̃M

NP
N

J .

If one chooses a different polarisation Π′, Π̃′, the doubled metric will be unchanged, while the

constituent fields g,B transform in a non-trivial way. This change of background may also be viewed

as the effect of T-duality, in physical space reducing to Buscher’s rules [1, 2]. There is thus a direct

correspondence between changing the polarisation and performing a T-duality transformation [9],

as we will see more explicitly in sections 3.3 and 4.

3 Including boundaries

To describe the embedding of an open string in the doubled space we need to generalise the sigma

model (2.1) to include worldsheets with boundaries, ∂Σ 6= 0. Note that now we cannot have

Σ = ∂V . Instead, for the extension of the worldsheet to a three-dimensional space V to be well-

defined, we require

∂V = Σ+D ,

where D is a region on the worldvolume of the D-brane bounded by the worldsheet boundary

such that ∂Σ = −∂D. However, the restriction of the Wess-Zumino term to D will yield an extra

term, which must be compensated for by adding a term to the closed string action, so that the full

Wess-Zumino part of the sigma model with boundaries reads [27]

SWZ =

∫

V

T −

∫

D

ω ,

where

T ≡
1

12
tMNPP

M ∧ PN ∧ PP ,

and ω is a two-form defined only on the D-brane, satisfying (ι denotes interior product)

ιT |D = ιdω . (3.1)

As we will see below, ω contributes only to the boundary equations of motion. Therefore the

self-duality constraint (2.4) is not affected by the extra Wess-Zumino term.

4Notice that the vielbein may be written

PM
I =

 

e 0

−e−TB e−T

!

=

 

e 0

0 e−T

! 

1 0

−B 1

!

,

i.e., as the product of GL(d) and B-shift transformations [26]. This makes explicit the fact that the vielbein is an

element of O(d, d).
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For a general configuration of n D-branes, the Wess-Zumino term is generalised to

SWZ =

∫

V

T −

n∑

i=1

∫

Di

ωi , ιT |Di
= ιdωi , ∂V = Σ+

n∑

i=1

Di .

3.1 Equations of motion

The total sigma model action now reads

S =
1

4

∫

Σ
MMNP

M ∧ ∗PN +
1

12

∫

V

tMNPP
M ∧ PN ∧ PP −

1

2

∫

D

ωMNP
M ∧ PN , (3.2)

and we next derive its equations of motion, in the bulk and on the boundary. Under infinitesimal

variations in X
I , the one-forms PM transform as

δPM = PM
Id(δX

I) + (∂JP
M

I)δX
JdXI .

To derive the equations of motion we first vary the kinetic term,

δSkin =
1

2

∫

Σ
d
(
MMNP

M
IδX

I ∗ PN
)

−
1

2

∫

Σ

(
MMN d ∗ PN +MPN tMQ

PPQ ∧ ∗PN
)
PM

IδX
I , (3.3)

where we have used the Bianchi identity (2.2). The first term in eq. (3.3) is a total derivative,

giving the boundary term

δS∂Σ =
1

2

∫

Σ
d
(
MMNδXIPM

I ∗ P
N
)
= −

1

2

∫
dτ
[
PM

IδX
IMMNP

N
J∂σX

J
]
∂Σ

. (3.4)

Next we vary the Wess-Zumino term in the action (3.2), obtaining

δSWZ =

∫

V

Lε (T )−

∫

D

Lε (ω) =

∫

V

d (ιεT )−

∫

D

d (ιεω)−

∫

D

ιε (dω) ,

where Lε = dιε + ιεd is the Lie derivative along the vector field ε = δXI∂I , and we have used

dT = 0, which follows from the Jacobi identity t[MN
QtP ]Q

R = 0. Inserting ∂V = Σ+D as well as

the definition (3.1) of ω, the variation can be rewritten as

δSWZ =

∫

Σ
ιεT −

∫

D

d (ιεω) ,

which, because ∂Σ = −∂D, becomes

δSWZ =

∫

Σ
ιεT +

∫

∂Σ
ιεω

=
1

2

∫

Σ
δXI tMNPP

M
IP

N ∧ PP +

∫

∂Σ
δXIωIJdX

J . (3.5)

From eqs. (3.3), (3.4) and (3.5) the equations of motion are found to be, in the bulk,

d ∗MMNP
N +MNP tMQ

PPQ ∧ ∗PN −
1

2
tMNPP

N ∧ PP = 0 , (3.6)
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and on the boundary,

δXJ PM
J

[
−
1

2
MMNP

N
I∂σX

I + ωMNP
N

I∂τX
I

]

∂Σ

= 0 . (3.7)

As expected, the bulk equation of motion (3.6) agrees with that of the closed string in ref. [13], as

it is of course not affected by the existence of a boundary. In particular, the extra ω-term appears

only in the boundary equation of motion.

3.2 Boundary conditions

The analysis of the boundary condition (3.7) is essentially identical to that performed by Hull

[9] and Lawrence et al [21] for the doubled torus construction, leading to analogous results. We

introduce projectors that define D-branes in the doubled space, namely,

φI = Ξ
I
JX

J Normal vectors: Dirichlet

ξI = ΞI
JX

J Tangential vectors: Neumann

where Ξ and Ξ are Dirichlet and Neumann projectors, respectively, satisfying

Ξ
J
I + ΞJ

I = δJ I , Ξ
J
KΞK

I = 0 , Ξ
J
KΞ

K
I = Ξ

J
I , ΞJ

KΞK
I = ΞJ

I .

The projectors Ξ and Ξ are defined only on the brane and so all expressions involving them are

assumed to be evaluated on the boundary ∂Σ. The projectors have counterparts on the Lie algebra

of G , or more conveniently on the cotangent bundle,

(
P⊥
)M

= Ξ
M

NP
N ∈ N∗D ,

(
P‖
)M

= ΞM
NP

N ∈ T ∗D ,

where D is the D-brane worldvolume. These Lie algebra projectors satisfy the corresponding

projector conditions,

Ξ
M

N + ΞM
N = δMN , Ξ

M
PΞ

P
N = 0 , Ξ

M
PΞ

P
N = Ξ

M
N , ΞM

PΞ
P
N = ΞM

N .

We also require the Neumann projector to be integrable, so that it locally defines the brane as a

smooth submanifold of the target space,

ΞI′
IΞ

J ′

J∂[I′Ξ
K

J ′] = 0 . (3.8)

The projectors are moreover required to be orthogonal with respect to the doubled metricMIJ ,

0 = ΞI
KMIJΞ

J
L = ΞI

KP
M

IMMNP
N

JΞ
J
L . (3.9)

We are now fully equipped to derive the final form of the boundary conditions for the doubled

sigma model. The boundary equation of motion (3.7) may be written as

δXI

[
−
1

2
PM

IMMNP
N

J∂σX
J + ωIJ∂τX

J

]

∂Σ

= 0 . (3.10)
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It has solutions

δXKΞ
I
K = Ξ

N
MP

M
I∂τX

I = 0 Dirichlet condition (3.11a)

ΞI
K

(
−
1

2
PM

IMMNP
N

J∂σX
J + ωIJ∂τX

J

)
= 0 Neumann condition (3.11b)

Note that the Dirichlet condition can be written as

0 = Ξ
J
K∂τX

K = Ξ
J
K (P−1)KM P

M
I ∂τX

I = (P−1)JN Ξ
N

M P
M

I ∂τX
I .

The Dirichlet and Neumann conditions need to be consistent with the self-duality constraint (2.4).

The latter implies (with worldsheet metric η = diag(1,−1) and antisymmetric symbol ǫ01 = 1)

PM
I∂τX

I = −LMNMNPP
P
J∂σX

J , (3.12a)

PM
I∂σX

I = −LMNMNPP
P
J∂τX

J . (3.12b)

Using (3.12b) and (3.11a) in (3.10), as well as LMN =MMPL
PQMQN , one finds

δXKΞI
K

(
1

2
LIJ + ωIJ

)
ΞJ

L∂τX
L = 0 .

Since LIJ is symmetric and ωIJ antisymmetric the pull-back of the two terms in parentheses to the

brane must vanish separately,

ΞI
K LIJ Ξ

J
L = 0 , (3.13)

ΞI
K ωIJ Ξ

J
L = 0 . (3.14)

Condition (3.13) implies that any vectors tangent to the D-brane are null with respect to LIJ , so

the D-brane is a tangentially null space with respect to LIJ , hence the D-brane is an isotropic

subspace of X . The condition (3.14) says that ω restricts to zero on the brane, and since in fact ω

is defined only on the brane, we see that ω = 0. Given the definition (3.1) it follows immediately

that ιT |D = 0, so

ΞI
J ιIT |D = 0 ,

and because Ξ is integrable, cf. eq. (3.8), it follows that the Wess-Zumino term restricted to the

brane vanishes, T |D = 0, i.e.,

ΞI′

[IΞ
J ′

JΞ
K ′

K] tI′J ′K ′ = 0 , tI′J ′K ′ ≡ tMNPP
M

I′P
N

J ′PP
K ′ . (3.15)

Note that since ω = 0 is a non-dynamical condition, one could set ω to zero already in the action

(3.2), at the expense of having to impose the condition ιT |D = 0 by hand.

One finds another condition by substituting the self-duality constraint (3.12a) into the Dirichlet

condition (3.11a), namely

Ξ
Q
MLMNMNPP

P
J∂σX

J = 0 ,

or

Ξ
K

IL
ILPN

LMNPP
P
J∂σX

J = Ξ
K

IL
ILMLJ∂σX

J = 0 . (3.16)
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From the Neumann condition (3.11b) follows, upon insertion of (3.14) and (3.11a), that

ΞI
KP

M
IMMNP

N
J∂σX

J = 0 ,

so eq. (3.16) becomes

Ξ
K

IL
ILΞ

L′

LML′J∂σX
J = 0 ,

from which immediately follows that

Ξ
I
K LIJ Ξ

J
L = 0 . (3.17)

Hence both the Neumann and Dirichlet projectors are null with respect to L, so that the D-brane

is a maximally isotropic subspace of the doubled geometry, and we see that

ΞI
KLIJ = LKLΞ

L
J . (3.18)

Thus for every Neumann condition there is a Dirichlet condition, and they are related by an action

of L, so that there are equal numbers of Neumann and Dirichlet conditions. The results (3.13) and

(3.17) are just the doubled geometry extension of the null conditions in ref. [21], while the condition

(3.18) is the generalisation of the corresponding condition in [9].

To summarise, the set of boundary conditions defining smooth D-branes in the doubled space

X are5 (where we have included the two geometrically motivated assumptions (3.8) and (3.9)):

5It is unclear whether or not the boundary conditions for the doubled sigma model admit an analogue of the

gluing matrix R defined for the conventional nonlinear sigma model, cf. refs. [28, 29]. In particular, the gluing matrix

of refs. [28, 29] encodes conformal invariance on the boundary, and it is not obvious how the conformal invariance of

the conventional sigma model may be represented within the doubled formalism. We leave the question of existence

and interpretation of such a doubled analogue of the gluing matrix to future investigations.
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• Null conditions (3.13) and (3.17):

ΞI
KLIJΞ

J
L = Ξ

I
KLIJΞ

J
L = 0 (I)

The D-brane must be a maximally isotropic subspace of X .

• Structure constant condition (3.15):

ΞI′

[IΞ
J ′

JΞ
K ′

K]tI′J ′K ′ = 0 (II)

The two-form ω on the D-brane must vanish and the Wess-Zumino term

tIJK imposes a restriction on the orientation of the brane.

• Orthogonality (3.9):

ΞI
KMIJΞ

J
L = 0 (III)

The Neumann and Dirichlet projectors are mutually orthogonal with

respect to the doubled metricMIJ .

• Integrability (3.8):

ΞI′
IΞ

J ′

J∂[I′Ξ
K

J ′] = 0 (IV)

The D-brane is locally a smooth submanifold of X .

3.3 T-duality

Since we will need to apply T-duality to our system, including boundaries, here we define the T-

duality transformations in explicit matrix representation. Of particular interest are d-dimensional

backgrounds constructed as T d−1 fibrations over a base circle. The doubled space is a 2d-dimensional

geometry on which there is a natural action of O(d, d;Z). The action of O(d−1, d−1;Z) ⊂ O(d, d;Z)

can be realised as a fibrewise T-duality on the T d−1 fibres, and there is some evidence [5] that the

action of the full O(d, d;Z) can be realised as a nonisometric generalisation of T-duality. Then

Buscher’s rules, where applicable, are reproduced by the action of the matrices [30, 31, 32, 33]

ρi =

(
1I− Ti Ti

Ti 1I− Ti

)
, (3.19)

where the submatrices Ti, i = 1, ..., d are zero everywhere, except for a 1 in the i-th diagonal entry.

The operator ρi thus T-dualises along the i-th direction, e.g., ρxi exchanges xi with its dual x̃i (cf.

section 2.1.2). The left-invariant one-forms transform as

P(X) 7→ P ′(X′) = TM ρMN P
N

I(X
′) dX′I , X

′I ≡ ρIJ X
J .

This transformation may be viewed in two different ways, the “active” versus the “passive” approach

[9, 25]. In the active transformation the polarisation is kept invariant while the geometry (doubled

12



vielbeins, doubled metric, Neumann and Dirichlet projectors, as well as their arguments) changes.

The passive transformation on the other hand acts only on the polarisation, leaving the geometry

unchanged. Here we use the active transformation, for which the explicit duality rules read [11, 12]

PM
I(X) 7→ P

′M
I(X

′) = ρMNP
N

J(ρX) ρ
J
I ,

MIJ(X) 7→ M
′
IJ(X

′) = ρKIMKL(ρX) ρ
L
J ,

ΞI
J(X) 7→ Ξ′I

J(X
′) = ρIKΞK

L(ρX) ρ
L
J .

(3.20)

The dual branes must satisfy the dual boundary conditions. The null condition (I) transforms as

Ξ(X)TL Ξ(X) 7→ Ξ′(X′)TL′ Ξ′(X′)

= (ρTΞ(X′)TρT )(ρT L ρ)(ρ Ξ(X′) ρ) = ρT Ξ(X′)TL Ξ(X′) ρ = 0 ,

hence if Ξ is null, then the dual Ξ′ is automatically null, and the same holds for Ξ. Similarly the

orthogonality condition (III) transforms in a trivial way,

Ξ(X)TM(X) Ξ(X) 7→ Ξ′(X′)TM′(X′) Ξ
′
(X′)

= (ρTΞ(X′)T ρT ) (ρTM(X′) ρ) (ρ Ξ(X′) ρ)

= ρT Ξ(X′)TM(X′) Ξ(X′) ρ = 0 ,

so that the duals of any pair of mutually orthogonal projectors Ξ and Ξ are always orthogonal

to each other. The pull-back of the structure constants by the vielbeins PM
I , tIJK = LII′t

I′
JK ,

transform as

tIJK 7→ t′IJK = LII′t
′I′

JK =
[
ρRILRS ρSI′

] [
ρI

′

R′tR
′

J ′K ′ (ρ−1)J
′

J (ρ
−1)K

′

K

]

=
[
LI′Rt

R
J ′K ′

]
ρI

′

I(ρ
−1)J

′

J (ρ
−1)K

′

K

= tI′J ′K ′ ρI
′

I(ρ
−1)J

′

J (ρ
−1)K

′

K = t ρ ρ ρ,

whence follows the dual version of condition (II), schematically (total antisymmetrisation is under-

stood),

Ξ(X) Ξ(X) Ξ(X) t 7→ Ξ′(X′) Ξ′(X′) Ξ′(X′) t′

= (ρ Ξ(X′) ρ) (ρ Ξ(X′) ρ) (ρ Ξ(X′) ρ) ρ ρ ρ t

= ρ ρ ρ Ξ(X′) Ξ(X′) Ξ(X′) t = 0 ,

i.e., it is automatically satisfied if the original condition is. Finally, the integrability condition (IV)

similarly transforms linearly,

Ξ(X)I [I′ Ξ(X)
J
J ′] ∂IΞ(X)

K
J 7→ Ξ′(X′)Î [Î′ Ξ

′(X′)Ĵ
Ĵ ′] ∂ÎΞ

′(X′)K̂
Ĵ

= (ρ Ξ(X′) ρ)Î [Î′ (ρ Ξ(X′) ρ)Ĵ
Ĵ ′] ρ

I
Î
∂IΞ(X

′)KJ ρ
J
Ĵ
ρK̂K

= ρI
′

Î′
ρJ

′

Ĵ ′ ρK̂K Ξ(X′)I [I′ Ξ(X
′)JJ ′] ∂IΞ(X

′)KJ = 0 ,

hence the dual brane is always integrable if the original one is.

Note that in the passive approach, where only the polarisation projectors transform, the invari-

ance of conditions (I)–(IV) is obvious since the polarisation is not manifest in these conditions.
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4 An explicit example

We consider a six-dimensional doubled group G and study the boundary conditions for the sigma

model on the twisted torus X = Γ\G . The local structure of X is given by the structure constants

of the group G , t12
6 = t23

4 = t31
5 = −m ∈ Z, which appear in the Lie algebra

[T1, T2] = −mT6 , [T2, T3] = −mT4 , [T3, T1] = −mT5 , (4.1)

with all other commutators vanishing. A dual representation of this Lie algebra is given by the

left-invariant one-forms (obtained by solving the Bianchi identities (2.2))

P1 = dX1 P4 = dX4 + 1
2mX

2dX3 − 1
2mX

3dX2

P2 = dX2 P5 = dX5 + 1
2mX

3dX1 − 1
2mX

1dX3

P3 = dX3 P6 = dX6 + 1
2mX

1dX2 − 1
2mX

2dX1

(4.2)

where local coordinates XI on X have been chosen. In this dual representation the local structure

of X is fixed by the Bianchi identities for PM , while the global structure is determined by the co-

compact subgroup Γ, which may be defined by its action on the coordinates XI as the identifications

X
1 ∼ X

1 + c1 X
4 ∼ X

4 − 1
2mX

3c2 + 1
2mX

2c3 + c4

X
2 ∼ X

2 + c2 X
5 ∼ X

5 − 1
2mX

1c3 + 1
2mX

3c1 + c5

X
3 ∼ X

3 + c3 X
6 ∼ X

6 − 1
2mX

2c1 + 1
2mX

1c2 + c6
(4.3)

where cI are real constants depending on the details of Γ. The Wess-Zumino term in the action

(3.2) can be written as (since t123 = −m)

T = −
1

2
m dX1 ∧ dX2 ∧ dX3 , (4.4)

and much of our focus will be on the constraints imposed by this three-form on the Dirichlet

and Neumann projectors. We shall proceed by choosing a polarisation that corresponds to a

conventional sigma model describing the embedding of the worldsheet in a three-torus T 3 with

a constant H-flux background. Other, possibly T-dual, sigma models may be obtained from the

“doubled” sigma model (3.2) by different choices of polarisation – effectively different coordinate

choices in the doubled space. The relationship between changing the polarisation, which can be

understood as an action of an element of O(3, 3;Z), and T-duality was discussed in section 3.3 and

at length in refs. [9, 25].

The doubled geometry allows for eight different polarisations, related by O(3, 3;Z) transforma-

tions summarised in the following diagram,

hxyz
y ւ ցz

fzx
y fxy

z

z ց ւy

Qx
yz

←→x

fyz
x

z ւ ցy

Qy
zx Qz

xy

y ց ւz

Rxyz
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where x, y, z are three of the coordinates XI , and the arrow with label x denotes a T-duality along

the x-direction, or along its dual x̃. The structure constants h, f and Q fix the local structure

of the H-flux, nilmanifold and T-fold backgrounds, respectively, while the R-flux background does

not have a description as a conventional spacetime. Some of these dualities have been shown to be

true symmetries of string theory [34], others are only conjectural. The issue of whether or not the

action of O(3, 3;Z) is a symmetry of string theory is an important one, but will not be discussed

further here.

The remainder of this section is devoted to the derivation and description of the D-branes living

on the eight backgrounds in the above diagram, from the embedding in doubled geometry.

4.1 T 3 with H-flux

Consider the choice of polarisation of coordinates

x = Πx
IX

I = X
1 , y = Πy

IX
I = X

2 , z = Πz
IX

I = X
3 ,

x̃ = Π̃xIX
I = X

4 , ỹ = Π̃yIX
I = X

5 , z̃ = Π̃zIX
I = X

6 ,
(4.5)

whence the Wess-Zumino term in eq. (4.4) becomes

T = −
1

2
mdx ∧ dy ∧ dz . (4.6)

To simplify the discussion we choose the doubled metric in the Lie algebra frame to be MMN =

δMN . The pull-back of this metric to the doubled space is MIJ = PM
IδMNP

N
J , so that, using

eq. (2.7) in this polarisation6 (m′ ≡ m/2),

MIJ =




1 +m′2y2 +m′2z2 −m′2xy −m′2xz 0 m′z −m′y

−m′2xy 1 +m′2z2 +m′2x2 −m′2yz −m′z 0 m′x

−m′2xz −m′2yz 1 +m′2x2 +m′2y2 m′y −m′x 0

0 −m′z m′y 1 0 0

m′z 0 −m′x 0 1 0

−m′y m′x 0 0 0 1




.

This polarisation gives rise to a physical background which is a three-dimensional torus with con-

stant H-flux. The “local frame” version of the Lie algebra reads

[Zx, Zy] = hxyzX
z , [Zy, Zz] = hyzxX

x , [Zz, Zx] = hzxyX
y ,

hxyz = hyzx = hzxy = −m,

where Zi ≡ (Zx, Zy, Zz) and Xi ≡ (Xx,Xy,Xz) are obtained as contractions of the corresponding

generators in eq. (2.5) with the inverse of vielbeins. The Zi and Xi are related, respectively, to the

isometries of the three-torus and to the antisymmetric tensor transformation of the B-field.

6Since the three-torus is flat, the three-dimensional vielbein is emi = δmi , and we have gij = δij . Moreover, we

have chosen B = m′(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy).

15



4.1.1 Solving the boundary conditions

To begin the analysis of D-brane embeddings, first note that due to the relation (3.18) between

Neumann and Dirichlet projectors any given D-brane has equal numbers of Neumann and Dirichlet

directions in the doubled space. Thus in this example each brane has three Neumann and three

Dirichlet directions.

The polarisation projectors and the O(3, 3) invariant metric in a given open contractible patch

can always be written as

ΠI
J =

(
1I 0

0 0

)
, Π̃I

J =

(
0 0

0 1I

)
, LIJ =

(
0 1I

1I 0

)
. (4.7)

The form of allowed Dirichlet projectors in this basis is determined by the four boundary conditions

(I)–(IV) listed in section 3.2, and we start with condition (I). That is, we solve the null condition

(3.17) together with the projector condition Ξ
2
= Ξ. One finds

Ξ =

(
a b

c 1I− aT

)
, (4.8a)

where the 3× 3 submatrices a, b, c satisfy

bT = −b ,

cT = −c ,

ab+ (ab)T = 0 ,

ca+ (ca)T = 0 ,

bc = a(1I− a) .

(4.8b)

With the restrictions (4.8b) the null condition (3.13) for the Neumann projector Ξ = 1I− Ξ is also

satisfied, and as a consequence so is the relation (3.18).

Next we impose the boundary condition (II), i.e., we require that ω = 0 in eq. (3.1), so that

ΞI
J ιIT |D = 0 . (4.9)

As shown in section 3.2 this is equivalent to requiring

ΞI′

[IΞ
J ′

JΞ
K ′

K] tI′J ′K ′ = −6m Ξx
[IΞ

y
JΞ

z
K] ≡ 0 , (4.10)

and since m 6= 0 this means that the totally antisymmetrised product of Neumann projector entries

in the x-, y- and z-rows must vanish. Thus we may keep only those of the Dirichlet projectors which

correspond to such Neumann projectors. The physical interpretation of this requirement is obtained

by inserting the projector in the doubled Dirichlet condition (3.11a), which shows that the projector

defines one of the Dirichlet directions in the doubled space to include a component in the space

spanned by the x-, y- and z-axes. On the other hand, it is immediately clear that any brane with

at least one Neumann direction in the space spanned by the x̃-, ỹ- and z̃-axes will automatically

satisfy (4.9), since ιx̃T = ιỹT = ιz̃T = 0. Thus boundary condition (II) prohibits branes wrapping

the whole of the physical T 3.
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Further limitations on the solutions (4.8) are imposed by boundary condition (III), which re-

quires the Neumann and Dirichlet projectors to be orthogonal with respect to the doubled metric,

ΞTM Ξ = 0 . (4.11)

Solving the system of equations (4.8b), (4.10) and (4.11) one finds a generic form of the Dirichlet

projectors allowed, plus a number of solutions corresponding to those values of the free parameters

in a, b, c where the projector (4.8a) blows up. The generic solution has the block matrix form

Ξ0 =

(
a b

c 1I− aT

)
, (4.12a)

with the matrices a, b, c given by

a =




a11 m′xb13 −m′x(a32−m′zb13)b13
m′yb13+a33−1

0 1− a33 + a11
(a33−1)(a32−m′zb13)

m′yb13+a33−1

0 a32 a33


 , (4.12b)

b =




0 (a32−m′zb13)b13
m′yb13+a33−1 b13

− (a32−m′zb13)b13
m′yb13+a33−1 0 0

−b13 0 0


 , c =




0 a11a32
b13

a11(a33−1)
b13

−a11a32
b13

0 m′xa11

−a11(a33−1)
b13

−m′xa11 0


 ,

(4.12c)

where there are two free parameters, here taken to be b13 and a33. The other matrix elements

depend on these two parameters via the relations

{
0 = a232 − 2m′zb13a32 + b213(1 +m′2z2) + (m′yb13 + a33)(m

′yb13 + a33 − 1) ,

a11 = −[b213(1 +m′2z2) +m′yb13(m
′yb13 + a33 − 1)−m′zb13a32]/(m

′yb13 + a33 − 1) .

(4.12d)

There are a number of values for the parameters b13 and a33 for which certain elements in Ξ0 blow

up, in particular when b13 = 0 or a33 = 1 − m′yb13. We can still make sense of the Dirichlet

projector Ξ at these specific values of the parameters by first setting the divergent elements in the

submatrices a, b, c to zero and then solving eqs. (4.8b), (4.10) and (4.11). In this way one finds

three independent solutions, each evaluated at b13 = 0 and/or a33 = 1 −m′yb13, in addition to Ξ0

(which is evaluated at b13 6= 0 and a33 6= 1−m′yb13). Two of these solutions will be given in eqs.

(4.17) and (4.18) below, while the third is of the form

a =




0 0 0

0 1− a33 a23

0 a23 a33


 , b = O0 , a223 = a33(1− a33) , (4.13a)

c =




0 −m′za33 −m′ya23 m′y(1− a33) +m′za23

m′za33 +m′ya23 0 0

−m′y(1− a33)−m′za23 0 0


 , (4.13b)
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where O0 denotes the 3×3 matrix of zeros. We have thus found that the Dirichlet projectors which

satisfy the conditions (I), (II) and (III) of section 3.2, fall into two classes. The first, of the form

(4.12), is valid when b13 6= 0 and a33 6= 1 −m′yb13. The second class, given in eqs. (4.13), (4.17)

and (4.18), contains projectors valid at the special points b13 = 0 and/or a33 = 1 − m′yb13. All

other solutions can be derived from these four by permutation of the coordinates x, y, z, x̃, ỹ, z̃,

and by setting the free parameters to appropriate values or functions.

It remains to impose boundary condition (IV), integrability. However, due to the complexity of

the generic solution (4.12) we failed to confirm, or to derive conditions for integrability in general.

We therefore choose to focus on a subset of solutions, namely those for which one of the x-, y- and

z-rows in the Neumann projector vanishes. Such projectors trivially satisfy the structure constant

condition (4.10), and we single out the x-direction so that

Ξx
I = (1I− Ξ)xI = 0 . (4.14)

In other words, (1I − a,−b)xI = 0 ∀ I ∈ {x, y, z, x̃, ỹ, z̃}. Inserting this projector in the doubled

Dirichlet condition (3.11a) tells us that what we have done is to choose the x-direction to be Dirich-

let. Similarly, choosing the y- or z-row to vanish renders the corresponding coordinate Dirichlet,

and the respective analysis is related to the one for x by a coordinate permutation.

The system of equations (4.8b), (4.11) and (4.14) has four solutions (according to Maple 9.5

and 11).

• The first solution is

Ξ1 =

(
1I 0

B 0

)
, (4.15)

where B is the B-field appearing in the doubled metric, cf. eq. (2.6).

• The second is

Ξ2 =

(
a 0

c 1I− aT

)
, (4.16a)

where the submatrices a and c are given by

a =




1 0 0

0 0 0

0 0 0


 , c =




0 0 0

0 0 −m′x

0 m′x 0


 . (4.16b)

• The third solution is

Ξ3 =

(
a 0

c 1I− aT

)
, (4.17a)

where

a =




1 0 0

0 1− a33 a23

0 a23 a33


 , c =




0 c12 c13

−c12 0 0

−c13 0 0


 , (4.17b)
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and the entries in a and c satisfy

a223 = a33(1− a33) , c12 = m′z(1− a33)−m′ya23 , c13 = m′za23 −m′ya33 . (4.17c)

• The fourth and final solution is

Ξ4 =

(
a b

c 1I− aT

)
, (4.18a)

where

a =




1 0 0

−m′yb23 a33 0

−m′zb23 0 a33


 , b =




0 0 0

0 0 b23

0 −b23 0


 , (4.18b)

c =




0 m′za33 −m′ya33

−m′za33 0 a33(a33 − 1)/b23

m′ya33 −a33(a33 − 1)/b23 0


 , (4.18c)

and b23 and a33 satisfy

b23 =
m′x(2a33 − 1)±

√
(m′x)2 − 4a33(a33 − 1)

2(1 + (m′x)2)
6= 0 , 4a33(a33 − 1) ≤ (m′x)2 . (4.18d)

Note that Ξ2 is just a permuted version of the solution (4.13) with a33 = 1.

The Dirichlet projectors given in eqs. (4.15) – (4.18) satisfy three of the conditions derived in

section 3.2, namely (I)–(III), and the integrability condition (IV) is now relatively straightforward

to solve. It is easy to see that integrability is automatically satisfied for Ξ1 and Ξ2, whereas for

Ξ3 one finds that only a33 = 0 and a33 = 1 give integrable Neumann projectors, and for Ξ4 it is

necessary that

{
a33 = 0 , b23 = −

m′x

1 + (m′x)2

}
or

{
a33 = 1 , b23 =

m′x

1 + (m′x)2

}
. (4.19)

Note that since b23 = 0 in Ξ4 is a singular point, this projector is ill-defined at x = 0. However,

upon inspection one finds that in the limit x → 0, Ξ4 approaches Ξ1 when a33 = 1, and Ξ2 when

a33 = 0.

In the following subsections we derive the explicit embeddings of branes corresponding to the

projectors (4.15) – (4.18), both in doubled space and in physical space.

4.1.2 The Dirichlet projector Ξ1: D0-branes

For the Dirichlet projector Ξ1, solution (4.15) with non-trivial B-field, the Dirichlet conditions

(3.11a) become

Ξ
I
J∂τX

J = 0 ⇒ {∂τx = ∂τy = ∂τ z = 0} . (4.20)
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Thus this brane is necessarily fully Dirichlet in the {x, y, z} dimensions, giving a D0-brane.7 From

the Neumann condition (3.11b) we find

ΞI
KMIJ∂σX

J = 0 ⇒





∂σx̃−m′z∂σy −m′y∂σz = 0

∂σ ỹ +m′z∂σx−m′x∂σz = 0

∂σ z̃ +m′y∂σx+m′x∂σy = 0

(4.21)

The solutions to (4.20) and (4.21) are of the form





x̃(τ, σ) = f1(τ) +m′z(σ)y(σ)

ỹ(τ, σ) = f2(τ) +m′
∫
dσ[z(σ)∂σx(σ)− x(σ)∂σz(σ)]

z̃(τ, σ) = f3(τ)−m′x(σ)y(σ)

for some arbitrary functions fi. Since the fi:s are mutually independent, the moduli space of

allowed motions for the end-point of a string (which by definition is at some fixed σ) coincides with

the three dual dimensions. Thus the brane fills up the dual {x̃, ỹ, z̃} dimensions, as expected from

the Dirichlet conditions (4.20) and the fact that the brane must have three Neumann directions in

doubled space.

Because the brane is fully Dirichlet in the {x, y, z} directions, the application of the self-duality

constraint (2.4), which we use to eliminate dual coordinates, yields no new information. In fact, the

constraint becomes just the Neumann conditions (4.21). Thus the Dirichlet projector Ξ1 defines a

D0-brane located at an arbitrary point in the physical space, or rather, a foliation of D0-branes.

4.1.3 The Dirichlet projector Ξ2: D2-branes

The Dirichlet conditions (3.11a) for the solution Ξ2 in eqs. (4.16) become

Ξ
I
J∂τX

J = 0 ⇒





∂τx = 0

m′x∂τy + ∂τ z̃ = 0

m′x∂τ z − ∂τ ỹ = 0

(4.22)

This brane is always normal to the x-direction (a requirement imposed by eq. (4.14)), but a straight

line in the y-z̃ plane and a straight line in the z-ỹ plane, and it is inclined by an angle determined

by the position along the x-axis. From the Neumann condition (3.11b) we find

ΞI
KMIJ∂σX

J = 0 ⇒ {∂σx̃ = ∂σy = ∂σz = 0} . (4.23)

Note that for x = 0 the directions ỹ and z̃ are Dirichlet. This is a D2-brane located at x = 0 and

filling up the y, z and x̃ dimensions. The description in terms of physical space coordinates (x, y, z)

is straightforward, since the self-duality constraint (2.4) reduces to a trivial exchange of Neumann

and Dirichlet conditions on original and dual coordinates: ∂τ x̃i = −∂σx
i, ∂σx̃i = −∂τx

i, where

xi ≡ (x, y, z), x̃i ≡ (x̃, ỹ, z̃).

7In our notation a Dp-brane extends in p of the physical dimensions x, y, z. This is because our target space does

not include the physical time direction, which is part of the external uncompactified four-dimensional spacetime.
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For x 6= 0 eqs. (4.22) and (4.23) are solved by (f1 and f2 are arbitrary functions)





x = x(σ)

y = y(τ)

z = z(τ)





x̃ = x̃(τ)

ỹ = m′x(σ)z(τ) + f1(σ)

z̃ = −m′x(σ)y(τ) + f2(σ)

(4.24)

The end-point (at fixed σ) of this string moves freely along the x̃-direction, while it is restricted to a

straight line in the z-ỹ plane and a straight line in the y-z̃ plane, with inclinations parameterised by

the position of the brane along the x-axis. The values of the functions f1(σ) and f2(σ) determine

the position of the lines in their respective planes. Since the number of Neumann degrees of

freedom in the {y, z, ỹ, z̃} directions is two, given by y(τ) and z(τ), the brane defines a two-

dimensional plane in these dimensions. Thus eqs. (4.24) define a foliation of D-branes extending

along the x̃-direction, whose remaining two Neumann directions span a two-dimensional surface

in the {y, z, ỹ, z̃} directions, with x-dependent orientation. Note how this embedding consistently

reduces to the x = 0 case analysed above, with the brane oriented along the y- and z-directions.

Thus there is a continuous foliation for all x.

Since this brane is rotated in a subspace of the doubled space involving both physical and

dual coordinates, it is not immediately obvious what kind of physical brane it corresponds to. To

find out, we insert the solution (4.24) for ỹ and z̃ into the self-duality constraint and solve the

resulting system of equations. Imposing the Dirichlet and Neumann conditions (4.22) and (4.23)

the self-duality constraint (2.4) reduces to





∂τ x̃ = m′z∂τy −m′y∂τz − ∂σx

∂σ ỹ = −m′z∂σx− ∂τy

∂σ z̃ = m′y∂σx− ∂τ z

(4.25)

Because y and z are both independent of σ, the first equation implies that ∂σx is in fact a constant.

As a consequence ∂σf1 and ∂σf2 are also constants. The two equations for ∂σ ỹ and ∂σ z̃ in (4.25)

become, upon insertion of the solutions (4.24) for ỹ and z̃, a system of partial differential equations

for y and z, {
∂τy(τ) + 2m′z(τ)∂σx+ ∂σf1 = 0

∂τ z(τ)− 2m′y(τ)∂σx+ ∂σf2 = 0

Discarding the trivial unphysical solution with all coordinates set to constants, this system has two

solutions (Ci are arbitrary nonzero constants),

{
x = C1 , y = C2τ + C3 , z = C4τ + C5

}
(4.26)





x = C6σ +C7

y = C8 sin(2C6m
′τ) + C9 cos(2C6m

′τ) + C10

z = C9 sin(2C6m
′τ)− C8 cos(2C6m

′τ) + C11

(4.27)

The solution (4.26) dictates that the string end-point move on a straight line in the y-z plane, while

the solution (4.27) describes a circular motion in the same plane. In physical terms, the straight
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line solution corresponds to an electrically charged string end-point moving in an electric field,

while the circular motion is that of the charge in a magnetic field. The actual path of a given string

is an arbitrary linear combination of the two propagation modes, whence the number of Neumann

degrees of freedom is two. Hence the physical brane is a D2-brane normal to the x-axis, filling

up the y-z plane. Since the x-position is also a free parameter, there is actually a foliation of the

physical space by D2-branes normal to the x-axis.

4.1.4 The Dirichlet projector Ξ3: D1-branes

For the Dirichlet projector Ξ3 in (4.17), the Dirichlet conditions (3.11a) become

Ξ
I
J∂τX

J = 0 ⇒





∂τx = 0

a23∂τy + a33∂τ z = 0

(1− a33)∂τy + a23∂τ z = 0

a23∂τ z̃ − a33∂τ ỹ = 0

(1− a33)∂τ z̃ − a23∂τ ỹ = 0

(4.28)

where a223 = a33(1− a33). Analogously to the previous analysis, we see immediately that the brane

is always normal to the x-direction (as required by eq. (4.14)), while the orientation in the y-z and

ỹ-z̃ planes depends on a33. Recall that integrability restricts a33 to be either 0 or 1 (see section

4.1.1). For a33 = 0 the Neumann conditions (3.11b) read

ΞI
KMIJ∂σX

J = 0 ⇒





∂σz = 0

∂σ ỹ +m′z∂σx = 0

∂σx̃−m′z∂σy = 0

and the Dirichlet conditions (4.28) reduce to

∂τx = ∂τy = ∂τ z̃ = 0 .

This is a foliation of D1-branes extending along the z-, x̃- and ỹ-axes, for arbitrary x, y and z̃. For

a33 = 1 the Neumann conditions are

ΞI
KMIJ∂σX

J = 0 ⇒





∂σy = 0

∂σ z̃ −m′y∂σx = 0

∂σx̃+m′y∂σz = 0

and the Dirichlet conditions (4.28) become

∂τx = ∂τz = ∂τ ỹ = 0 ,

so again we have a foliation of D1-branes, but now extending along the y-, x̃- and z̃-axes, for

arbitrary x, z and ỹ.

The description of these branes in terms of physical coordinates (x, y, z) is simple, since the self-

duality constraint just reproduces the Neumann and Dirichlet conditions in each of the two cases

above. Thus for a33 = 0 we have a foliation of physical D1-branes extending in the z-direction, and

for a33 = 1 a foliation of physical D1-branes extending in the y-direction.
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4.1.5 The Dirichlet projector Ξ4: D2-branes

Inserting the Dirichlet projector Ξ4, defined in eqs. (4.18), into the Dirichlet conditions (3.11a)

yields

Ξ
I
J∂τX

J = 0 ⇒





∂τx = 0

a33∂τy + b23∂τ z̃ = 0

a33∂τ z − b23∂τ ỹ = 0

(4.29)

and the Neumann conditions (3.11b) read

ΞI
KMIJ∂σX

J = 0 ⇒





∂σx = 0

∂σx̃−m′z∂σy +m′y∂σz = 0

(b23 +m′x(m′xb23 − a33))∂σy

+(m′xb23 − a33)∂σ z̃ = 0

(b23 +m′x(m′xb23 − a33))∂σz

−(m′xb23 − a33)∂σ ỹ = 0

where a33 and b23 are restricted by integrability to the values (4.19). In particular, recall that

x 6= 0. For a33 = 0 we have

∂τx = ∂τ z̃ = ∂τ ỹ = 0 ,

i.e., a D2-brane coinciding with the y-z plane. For a33 = 1 the brane in doubled space is a straight

line in the y-z̃ plane and a straight line in the z-ỹ plane, with orientation determined by the position

on the x-axis. In the four dimensions {y, z, ỹ, z̃} it is thus a two-dimensional plane, while it extends

also along x̃ and is normal to the x-direction. This is similar to the situation in the analysis of

Ξ2 (see section 4.1.3), and in the same way it projects to a physical D2-brane at arbitrary x 6= 0,

coinciding with the y-z plane. Substituting the self-duality constraint in the Neumann conditions

yields the partial differential equations

{
(m′xb23 − a33)∂τy + b23∂σz = 0 ,

(m′xb23 − a33)∂τz − b23∂σy = 0 ,

which describe a foliation of physical D2-branes normal to the x-axis. Thus Ξ2 and Ξ4 both define

D2-branes, however they describe different foliations, because of the difference in parameterisation

of the orientation of the brane in doubled space. After the physical projection this translates into

a difference in dynamics of the end-points of strings.

As noted in section 4.1.1, in the singular limit x → 0 (so that b23 → 0), for a33 = 0, Ξ4

approaches Ξ2 at x = 0. That is, also at x = 0 there is a D2-brane coinciding with the y-z plane,

as there is for nonzero x, so the foliation is continuous. For a33 = 1 it is easy to see from eqs. (4.29)

that Ξ4 approaches Ξ1 when x→ 0. That is, as x approaches zero the two-dimensional surface in

the {y, z, ỹ, z̃} dimensions changes orientation until it coincides entirely with the ỹ-z̃ plane, leaving

all the coordinates x, y, z Dirichlet, resulting in a D0-brane at x = 0. As a result, we have an

interpolation of sorts, between D2-branes and D0-branes, related by a rotation in doubled space.
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It is more difficult to see a direct connection with the D1-branes Ξ3, but since all solutions are

in principle related via the generic one in eq. (4.12) we expect them all to rotate into each other,

unless there are branch cuts in the moduli space of solutions.

4.1.6 Summary

We have found that the four boundary conditions (I)–(IV) defining D-branes of the doubled space

sigma model, supplemented with the restriction (4.14), Ξx
I = 0, allow only the following physical

branes on a flat torus with H-flux (4.6):

• Every D-brane has at least one Dirichlet direction; we chose the x-direction (Ξx
I = 0).

• Ξ1: D0-branes (fully Dirichlet) at arbitrary position.

• Ξ2 and Ξ4: D2-branes normal to the x-axis and filling up the y-z plane, at arbitrary x-position.

• Ξ3: Straight line D1-branes along the y- and z-axes.

All other branes are prohibited, including spacefilling D3-branes.

In doubled space, with the polarisation (4.7), the allowed configurations are illustrated in the

table below, where we denote worldvolume directions by ⊙, directions perpendicular to the brane

by -, and directions with respect to which the brane is inclined by / or \ (same inclination of the

slash indicates the plane in which the brane is a straight line).

Dirichlet Type of

projector brane x y z x̃ ỹ z̃

Ξ1 D0 - - - ⊙ ⊙ ⊙

Ξ2, Ξ4(a33 = 1) D2 - / \ ⊙ \ /

Ξ3(a33 = 0) D1 - - ⊙ ⊙ ⊙ -

Ξ3(a33 = 1) D1 - ⊙ - ⊙ - ⊙

Ξ4(a33 = 0) D2 - ⊙ ⊙ ⊙ - -

4.2 Nilmanifold (f-flux)

Having completed the analysis of branes in the H-flux case, we now apply T-duality to the set of

consistent Dirichlet projectors Ξ1, Ξ2, Ξ3(a33 = 0, 1), Ξ4(a33 = 0, 1), and analyse the resulting dual

projectors for consistency. In terms of the doubled geometry, such an action entails a global trans-

lation and rotation of the brane, or from another point of view, a different choice of polarisation.

In terms of the physical target space, the local geometry as well as the flux are radically changed,

but we will see that the D-branes transform in a standard way.
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Strictly speaking, Buscher’s rules can only be applied along isometric directions for which the

background is invariant. The solution to the Bianchi identities chosen in (4.2) is the most democratic

one, but the corresponding vielbein (2.7) is not invariant along any of the T 3 directions x, y, z. One

can therefore not perform a T-duality along these directions. However, a different parameterisation

(or gauge choice) of the solutions to the Bianchi identities may render some directions isometry

invariant, along which T-duality is then allowed.8 The solutions to the Bianchi identities on the

dual side may be restored to the form (4.2) by an appropriate coordinate change.

We derive the dual backgrounds and Dirichlet projectors in each of the three f -flux configu-

rations obtained by dualising once along, respectively, the x-, y- and z-directions. The dualised

Neumann projectors are listed in appendix A.1, and they trivially satisfy all dual boundary condi-

tions. It is for instance straightforward to see that the structure constant condition (II) is satisfied

on the dual side, as follows. Since in the H-flux case the only nonzero component of the structure

constant is txyz = −m, after dualising once the only nonzero components are, respectively, t′x̃yz,

t′xỹz and t′xyz̃. The corresponding conditions then read

Ξ′x̃
[IΞ

′y
JΞ

′z
K]t

′
x̃yz = 0 , Ξ′x

[IΞ
′ỹ
JΞ

′z
K]t

′
xỹz = 0 , Ξ′x

[IΞ
′y
JΞ

′z̃
K]t

′
xyz̃ = 0 .

In the case of T-duality along x, all of the dual Neumann projectors satisfy Ξ′x̃
I = 0, while for

duality along y or z they all satisfy Ξ′x
I = 0. Thus we see that all the branes corresponding to Ξ1,

Ξ2, Ξ3(a33 = 0, 1), Ξ4(a33 = 0, 1) transform consistently under one T-duality.

4.2.1 Dual description of the branes

To see what kind of branes the dual projectors correspond to, one may simply exchange the relevant

coordinates in the corresponding boundary conditions in the analysis in section 4.1. For instance

the brane corresponding to the T-dual along x of Ξ1 may be obtained by exchanging x↔ x̃ in the

Dirichlet conditions (4.20), so that

∂τ x̃ = ∂τy = ∂τ z = 0 .

We thus find a D1-brane along the x-axis, which is consistent with dualising a D0-brane along the

x-axis. For the T-duals along y and z we find D1-branes along the y- and z-axes, respectively.

Similarly, for Ξ2 the T-dual along x is seen to be a D3-brane while the T-duals along y and z are

D1-branes inclined in the y-z plane at angles parameterised by x. For Ξ3(a33 = 0) the T-duals

along x and y are D2-branes in the x-z and y-z planes, respectively, whereas the T-dual along z

is a D0-brane at an arbitrary point. The same holds for Ξ3(a33 = 1), except the roles of y and z

are exchanged. The D2-brane Ξ4(a33 = 0) becomes a D3-brane under dualisation along x, while

8For instance, in eq. (4.2) we can make the change of coordinates X
5 → X

′5 = X
5 − 1

2
mX

3
X

1 and X
6 → X

′6 =

X
6 − 1

2
mX

2
X

1, which leaves the Bianchi identities invariant. The Maurer-Cartan one-forms then become P5 =

dX′5 +mX
3dX1 and P6 = dX′6 +mX

1dX2, which corresponds to a duality twist reduction with monodromy around

the x-direction [11].
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its dual in the y-direction is a D1-brane along z and its dual in the z-direction a D1-brane along

y. Finally, also Ξ4(a33 = 1) T-dualises along x to a D3-brane, but its dual along y describes a

straight line in the y-z plane and a straight line in the ỹ-z̃ plane, with one Neumann degree of

freedom in each plane. It thus projects to a physical D1-brane in the y-z plane, with orientation

parameterised by x. The T-dual along z is analogous, again giving a D1-brane in the y-z plane,

but with a different orientation.

All branes thus transform under T-duality in the standard way, and we summarise the analysis

in tables below, together with the dual backgrounds, for each of the three dualisations along the

x-, y- and z-directions.

4.2.2 Nilmanifold with structure constant fyz
x = −m

Performing a T-duality along x corresponds to choosing the polarisation

x = Πx
IX

I = X
4 , y = Πy

IX
I = X

2 , z = Πz
IX

I = X
3 ,

x̃ = Π̃xIX
I = X

1 , ỹ = Π̃yIX
I = X

5 , z̃ = Π̃zIX
I = X

6 .
(4.30)

Note that the roles of X1 and X
4 have been exchanged relative to the H-flux case in section 4.1.

The explicit form of the Lie algebra is

[Zy, Zz] = fyz
xZx , [Zz,X

x] = −fzy
xXy , [Xx, Zy] = fyz

xXz ,

fyz
x = −m.

The doubled metric in this polarisation is

M′
x =




1 −m′z m′y 0 0 0

−m′z 1 +m′2x̃2 +m′2z2 −m′2yz −m′2x̃y 0 m′x̃

m′y −m′2yz 1 +m′2x̃2 +m′2y2 −m′2x̃z −m′x̃ 0

0 −m′2x̃y −m′2x̃z 1 +m′2y2 +m′2z2 m′z −m′y

0 0 −m′x̃ m′z 1 0

0 m′x̃ 0 −m′y 0 1




.

After imposing the self-duality constraint (2.4) the physical background is a three-dimensional

nilmanifold with zero B-field and no flux. The spectrum of allowed D-branes, which all wrap the

x-direction (since the original branes are all Dirichlet along x), are summarised in the table below.

Duality Dirichlet Type of

direction projector brane x y z x̃ ỹ z̃

x

Ξ1 D1 ⊙ - - - ⊙ ⊙

Ξ2, Ξ4(a33 = 1) D3 ⊙ / \ - \ /

Ξ3(a33 = 0) D2 ⊙ - ⊙ - ⊙ -

Ξ3(a33 = 1) D2 ⊙ ⊙ - - - ⊙

Ξ4(a33 = 0) D3 ⊙ ⊙ ⊙ - - -
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Note that the branes corresponding to the projectors Ξ2 and Ξ4(a33 = 1) are not fully Neumann

along the directions x, y, z in doubled space; they are inclined in the y-z̃ and ỹ-z planes. Never-

theless, after imposing the self-duality constraint (2.4), with x, y, z becoming physical coordinates,

these branes correspond to D3-branes in physical space, completely filling up the x, y, z dimensions.

4.2.3 Nilmanifold with structure constant fzx
y = −m

Here we T-dualise along y, corresponding to the polarisation

x = Πx
IX

I = X
1 , y = Πy

IX
I = X

5 , z = Πz
IX

I = X
3 ,

x̃ = Π̃xIX
I = X

4 , ỹ = Π̃yIX
I = X

2 , z̃ = Π̃zIX
I = X

6 .
(4.31)

The Lie algebra in this case reads

[Zx,X
y ] = −fxz

yXz , [Xy, Zz] = fzx
yXx , [Zz, Zx] = fzx

yZy ,

fzx
y = −m.

The doubled metric in this polarisation is

M′
y =




1 +m′2ỹ2 +m′2z2 m′z −m′2xz 0 −m′2xỹ −m′ỹ

m′z 1 −m′x 0 0 0

−m′2xz −m′x 1 +m′2x2 +m′2ỹ2 m′ỹ −m′2ỹz 0

0 0 m′ỹ 1 −m′z 0

−m′2xỹ 0 −m′2ỹz −m′z 1 +m′2x2 +m′2z2 m′x

−m′ỹ 0 0 0 m′x 1




.

Again, the physical background corresponding to this polarisation is a nilmanifold, but with the

roles of the coordinates x and y exchanged relative to the previous case. The spectrum of allowed

D-branes is given by

Duality Dirichlet Type of

direction projector brane x y z x̃ ỹ z̃

y

Ξ1 D1 - ⊙ - ⊙ - ⊙

Ξ2, Ξ4(a33 = 1) D1 - \ \ ⊙ / /

Ξ3(a33 = 0) D2 - ⊙ ⊙ ⊙ - -

Ξ3(a33 = 1) D0 - - - ⊙ ⊙ ⊙

Ξ4(a33 = 0) D1 - - ⊙ ⊙ ⊙ -

4.2.4 Nilmanifold with structure constant fxy
z = −m

T-dualising along z, with polarisation

x = Πx
IX

I = X
1 , y = Πy

IX
I = X

2 , z = Πz
IX

I = X
6 ,

x̃ = Π̃xIX
I = X

4 , ỹ = Π̃yIX
I = X

5 , z̃ = Π̃zIX
I = X

3 ,
(4.32)
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and Lie algebra

[Zx, Zy] = fxy
zZz , [Zy,X

z ] = −fyx
zXx , [Xz, Zx] = fxy

zXy ,

fxy
z = −m,

the doubled metric is

M′
z =




1 +m′2y2 +m′2z̃2 −m′2xy −m′y 0 m′z̃ −m′2xz̃

−m′2xy 1 +m′2x2 +m′2z̃2 m′x −m′z̃ 0 −m′2yz̃

−m′y m′x 1 0 0 0

0 −m′z̃ 0 1 0 m′y

m′z̃ 0 0 0 1 −m′x

−m′2xz̃ −m′2yz̃ 0 m′y −m′x 1 +m′2x2 +m′2y2




.

In this nilmanifold the coordinates x and z are interchanged with respect to the nilmanifold in

section 4.2.2. The spectrum of dual D-branes is given by

Duality Dirichlet Type of

direction projector brane x y z x̃ ỹ z̃

z

Ξ1 D1 - - ⊙ ⊙ ⊙ -

Ξ2, Ξ4(a33 = 1) D1 - / / ⊙ \ \

Ξ3(a33 = 0) D0 - - - ⊙ ⊙ ⊙

Ξ3(a33 = 1) D2 - ⊙ ⊙ ⊙ - -

Ξ4(a33 = 0) D1 - ⊙ - ⊙ - ⊙

4.3 T-fold (Q-flux)

Performing a fibrewise T-duality along two directions of the T 3 with H-flux background gives a

T-fold [4, 6]. Such backgrounds are often referred to as tori with “Q-flux” [22]. The dualised

Neumann projectors are listed in appendix A.2, and again they all satisfy the dual boundary

conditions. All branes corresponding to Ξ1, Ξ2, Ξ3(a33 = 0, 1), Ξ4(a33 = 0, 1) are thus consistent

under two T-dualities. Below we list the branes appearing in each of the three Q-flux cases.

4.3.1 T-fold with structure constant Qz
xy = −m

T-dualising successively along x and y corresponds to the polarisation

x = Πx
IX

I = X
4 , y = Πy

IX
I = X

5 , z = Πz
IX

I = X
3 ,

x̃ = Π̃xIX
I = X

1 , ỹ = Π̃yIX
I = X

2 , z̃ = Π̃zIX
I = X

6 .
(4.33)

The Lie algebra in this polarisation is

[Xx,Xy ] = Qz
xyXz , [Xy, Zz] = −Qz

yxZx , [Zz,X
x] = Qz

xyZy ,

Qz
xy = −m,

28



and the doubled metric is

M′
xy =




1 0 m′ỹ 0 −m′z 0

0 1 −m′x̃ m′z 0 0

m′ỹ −m′x̃ 1 +m′2x̃2 +m′2ỹ2 −m′2x̃z −m′2ỹz 0

0 m′z −m′2x̃z 1 +m′2ỹ2 +m′2z2 −m′2x̃ỹ −m′ỹ

−m′z 0 −m′2ỹz −m′2x̃ỹ 1 +m′2x̃2 +m′2z2 m′x̃

0 0 0 −m′ỹ m′x̃ 1




.

The physical background is a T-fold constructed as a T 2 fibration over the z coordinate. The

dual branes are interpreted in the same way as in the nilmanifold case, by exchanging dualised

coordinates in the relevant boundary conditions, resulting in the following table.

Duality Dirichlet Type of

directions projector brane x y z x̃ ỹ z̃

x, y

Ξ1 D2 ⊙ ⊙ - - - ⊙

Ξ2, Ξ4(a33 = 1) D2 ⊙ \ \ - / /

Ξ3(a33 = 0) D3 ⊙ ⊙ ⊙ - - -

Ξ3(a33 = 1) D1 ⊙ - - - ⊙ ⊙

Ξ4(a33 = 0) D2 ⊙ - ⊙ - ⊙ -

4.3.2 T-fold with structure constant Qx
yz = −m

The polarisation for duality along y and z is

x = Πx
IX

I = X
1 , y = Πy

IX
I = X

5 , z = Πz
IX

I = X
6 ,

x̃ = Π̃xIX
I = X

4 , ỹ = Π̃yIX
I = X

2 , z̃ = Π̃zIX
I = X

3 ,
(4.34)

the Lie algebra reads

[Zx,X
y] = Qx

yzZz , [Xy,Xz ] = Qx
yzXx , [Xz , Zx] = −Qx

zyZy ,

Qx
yz = −m,

and the doubled metric in this polarisation is

M′
yz =




1 +m′2ỹ2 +m′2z̃2 m′z̃ −m′ỹ 0 −m′2xỹ −m′2xz̃

m′z̃ 1 0 0 0 −m′x

−m′ỹ 0 1 0 m′x 0

0 0 0 1 −m′z̃ m′ỹ

−m′2xỹ 0 m′x −m′z̃ 1 +m′2x2 +m′2z̃2 −m′2ỹz̃

−m′2xz̃ −m′x 0 m′ỹ −m′2ỹz̃ 1 +m′2x2 +m′2ỹ2




.

The T-fold here is given by a T 2 fibration over a circle with coordinate x. The resulting dual branes

are
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Duality Dirichlet Type of

directions projector brane x y z x̃ ỹ z̃

y, z

Ξ1 D2 - ⊙ ⊙ ⊙ - -

Ξ2, Ξ4(a33 = 1) D2 - \ / ⊙ / \

Ξ3(a33 = 0) D1 - ⊙ - ⊙ - ⊙

Ξ3(a33 = 1) D1 - - ⊙ ⊙ ⊙ -

Ξ4(a33 = 0) D0 - - - ⊙ ⊙ ⊙

4.3.3 T-fold with structure constant Qy
zx = −m

T-duality along x and z corresponds to the polarisation

x = Πx
IX

I = X
4 , y = Πy

IX
I = X

2 , z = Πz
IX

I = X
6 ,

x̃ = Π̃xIX
I = X

1 , ỹ = Π̃yIX
I = X

5 , z̃ = Π̃zIX
I = X

3 ,
(4.35)

with Lie algebra

[Xx, Zy] = −Qy
xzZz , [Zy,X

z ] = Qy
zxZx , [Xz ,Xx] = Qy

zxXy ,

Qy
zx = −m,

and dual doubled metric

M′
xz =




1 −m′z̃ 0 0 0 m′y

−m′z̃ 1 +m′2x̃2 +m′2z̃2 m′x̃ −m′2x̃y 0 −m′2yz̃

0 m′x̃ 1 −m′y 0 0

0 −m′2x̃y −m′y 1 +m′2y2 +m′2z̃2 m′z̃ −m′2x̃z̃

0 0 0 m′z̃ 1 −m′x̃

m′y −m′2yz̃ 0 −m′2x̃z̃ −m′x̃ 1 +m′2x̃2 +m′2y2




.

The background is again a T-fold, but this time the fibration is over a circle with coordinate y.

The dual branes are

Duality Dirichlet Type of

directions projector brane x y z x̃ ỹ z̃

x, z

Ξ1 D2 ⊙ - ⊙ - ⊙ -

Ξ2, Ξ4(a33 = 1) D2 ⊙ / / - \ \

Ξ3(a33 = 0) D1 ⊙ - - - ⊙ ⊙

Ξ3(a33 = 1) D3 ⊙ ⊙ ⊙ - - -

Ξ4(a33 = 0) D2 ⊙ ⊙ - - - ⊙

4.4 R-flux

It has been conjectured [5] that one can perform a T-duality along all three of the x, y and z

directions of the three-torus with H-flux background. Following the nomenclature of [22], we refer
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to the conjectured resulting background as an “R-flux” background. The self-duality constraint

(2.4) cannot be consistently imposed on the background in such polarisations so as to eliminate

the dual coordinates. It is unclear what the precise nature of such backgrounds is, but it has been

conjectured that conventional notions of Riemannian geometry break down locally (in contrast to

the T-fold, where Riemannian geometry breaks down only globally). Regardless of what the final

conclusion concerning such backgrounds may turn out to be, the only understanding we currently

have is through the doubled formalism [11].

Assuming one can dualise along all three directions, in the present setup there is only one dual,

to which the projectors transform as

Ξ 7→ Ξ′ = ρzyx Ξ ρxyz ,

where ρxyz ≡ ρxρyρz. The dualised Neumann projectors are listed in appendix A.3, and they all

satisfy the dual boundary conditions.

The polarisation corresponding to the R-flux background is

x = Πx
IX

I = X
4 , y = Πy

IX
I = X

5 , z = Πz
IX

I = X
6 ,

x̃ = Π̃xIX
I = X

1 , ỹ = Π̃yIX
I = X

2 , z̃ = Π̃zIX
I = X

3 ,
(4.36)

and the associated Lie algebra is

[Xx,Xy] = RxyzZz , [Xy ,Xz] = RyzxZx , [Xz ,Xx] = RzxyZy ,

Rxyz = −m.

The doubled metric in this polarisation is

M′
xyz =




1 0 0 0 −m′z̃ m′ỹ

0 1 0 m′z̃ 0 −m′x̃

0 0 1 −m′ỹ m′x̃ 0

0 m′z̃ −m′ỹ 1 +m′2ỹ2 +m′2z̃2 −m′2x̃ỹ −m′2x̃z̃

−m′z̃ 0 m′x̃ −m′2x̃ỹ 1 +m′2x̃2 +m′2z̃2 −m′2ỹz̃

m′ỹ −m′x̃ 0 −m′2x̃z̃ −m′2ỹz̃ 1 +m′2x̃2 +m′2ỹ2




.

As was discussed in ref. [11] it is not possible in this case to even locally define a description of the

background as a conventional three-dimensional manifold. From the doubled metric one can read

off an effective metric g (cf. eq. (2.6)),

ds2xyz = χ−1
[
dx2 + dy2 + dz2 +m′2(x̃dx+ ỹdy + z̃dz)2

]
,

where

χ ≡ 1 +m′2(x̃2 + ỹ2 + z̃2) ,

and a B-field,

B′
xyz = −χ

−1m′ (z̃ dx ∧ dy + x̃ dy ∧ dz + ỹ dz ∧ dx) .

The doubled space interpretation of our Dirichlet projectors in the R-flux frame is given in the

following table.
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Duality Dirichlet Type of

directions projector brane x y z x̃ ỹ z̃

x, y, z

Ξ1 D3 ⊙ ⊙ ⊙ - - -

Ξ2, Ξ4(a33 = 1) D3 ⊙ \ / - / \

Ξ3(a33 = 0) D2 ⊙ ⊙ - - - ⊙

Ξ3(a33 = 1) D2 ⊙ - ⊙ - ⊙ -

Ξ4(a33 = 0) D1 ⊙ - - - ⊙ ⊙

As in the nilmanifold case there appears a “D3-brane” that is not completely Neumann along

x, y, z if viewed as embedded in doubled space. Although there is no physical projection here, for

consistency of terminology we have chosen to call it a D3-brane.

To summarise this section, we have seen that all the Dirichlet projectors (4.15)–(4.18) transform

consistently under all T-dualities, thus defining consistent D-branes on the entire doubled space X .

The projector Ξ1 was found also in [21] using the five-dimensional doubled torus construction, but

the projectors Ξ2, Ξ3(a33 = 0, 1) and Ξ4(a33 = 0, 1) are new solutions.

5 Discussion

We have extended the doubled geometry closed string nonlinear sigma model [13] to a model

with boundaries, corresponding to an open string worldsheet, and derived the associated boundary

conditions. Including two geometrically motivated assumptions, the result is a set of four conditions,

which are necessary and sufficient to define consistent locally smooth D-branes in the doubled target

space: the brane must be a maximally isotropic submanifold; its orientation must be compatible

with the Lie algebra structure; its tangent and normal spaces must be orthogonal with respect to

the metric on the doubled geometry; it must be integrable.

Solving these conditions, we derived and classified in a systematic way the allowed D-branes

in a toy model, the doubled three-torus with constant NS-NS flux. We obtained the most general

possible Dirichlet projectors satisfying all boundary conditions except integrability, and then anal-

ysed a subset of solutions where we fixed one Dirichlet direction. This choice was made in order to

avoid the complexity of the most general solution, which prevented us from solving the integrability

condition. For these slightly simpler solutions the integrability condition could be solved, and even

though our attention was confined to a subset of solutions, we established a clear strategy to derive

them and how to interpret them in physical terms. This included applying T-duality along all

physical directions and analysing the dual boundary conditions, as well as imposing a self-duality

constraint.

We found four types of globally consistent D-branes, defined by the Dirichlet projectors (4.15)–

(4.18) in the H-flux case, which correspond to D0-branes, D1-branes along the y- and z-axes, and

D2-branes in the y-z plane; D3-branes are prohibited. Lawrence et al [21] already found the D0-
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branes (here labelled Ξ1) in their doubled-fibre approach to the same model, but the other solutions

are new. Our branes all transform in the standard way under T-duality, to the f -flux, Q-flux and

R-flux frames. We moreover found that the D2-branes and D0-branes are related by rotations in

the doubled space, as one would expect from solutions that stem from the same generic projector.

Our analysis here was done only on the classical level, and should be extended to quantum the-

ory. Quantum studies have been performed in cases of vanishing flux [35, 36] and for models where

the T-duality twist reduces to orbifolding [37]. In the latter analysis the authors found fractional

branes apparently lacking geometric counterparts in the doubled formalism. More generally, the

self-duality constraint may be imposed on the quantum level via a gauging procedure [25, 13]. In

this paper we considered sigma models describing the worldsheet in internal space only. Moreover,

the example in section 4 took into account only three compact dimensions of the physical target

space. In order to describe viable string theory backgrounds based on these toy models, the addi-

tional spacetime directions of the target space need to be included in such a way that the sigma

model is a conformal field theory, describing the embedding of the worldsheet into a target space

of critical dimension, so that the background fields satisfy the string equations of motion. It would

be interesting to see how the conformal symmetry appears in the doubled formalism, and how it is

related to the self-duality constraint.

Another example of a doubled geometry is Drinfel’d doubles, which are relevant in Poisson-Lie

T-duality [38, 39, 40], a generalisation of T-duality to target spaces with nonabelian isometry, as well

as to nonisometric target spaces. The study of D-branes in that framework encountered problems

due to nonlocality issues [41], and we hope to resolve them by applying the present methodology.

Acknowledgments: We wish to thank Chris Hull for allowing certain details of the doubled

group sigma model to be presented prior to the publication of ref. [13]. We are also grateful to

Chris Hull for useful discussions and comments, and for kindly reading our draft. We wish to thank

Libor Šnobl and Ladislav Hlavatý for useful comments. TK acknowledges support in part by the

Grant-in-Aid for the 21st Century COE “Center for Diversity and Universality in Physics” from

the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

A Dual projectors

Here we list the Neumann projectors obtained from the H-flux ones by applying T-duality along

various directions.

A.1 Nilmanifold

T-dualising only along one direction the configurations are translated to the f -flux frame, with

different dual projectors depending on which coordinate is dualised.
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A.1.1 Nilmanifold with structure constant fyz
x = −m

Dualising along the x-direction the resulting Neumann projectors Ξ′ = ρx Ξ ρx read

Ξx
1 =




1 −m′z m′y 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −m′x̃ m′z 1 0

0 m′x̃ 0 −m′y 0 1




, Ξx
2 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 m′x̃ 0 0 0

0 −m′x̃ 0 0 0 0




,

Ξx
3(a33 = 0) =




1 −m′z 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 m′z 1 0

0 0 0 0 0 0




, Ξx
3(a33 = 1) =




1 0 m′y 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −m′y 0 1




,

Ξx
4(a33 = 0) =




1 0 0 0 −m′yb23 −m′zb23
0 1 0 m′yb23 0 −b23
0 0 1 m′zb23 b23 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, b23 = −
m′x

1 + (m′x)2
,

Ξx
4(a33 = 1) =




1 −m′z m′y 0 −m′yb23 −m′zb23
0 0 0 m′yb23 0 −b23
0 0 0 m′zb23 b23 0

0 0 0 0 0 0

0 0 0 m′z 1 0

0 0 0 −m′y 0 1




, b23 =
m′x

1 + (m′x)2
.

A.1.2 Nilmanifold with structure constant fzx
y = −m

Dualising along the y-direction the Neumann projectors Ξ′ = ρy Ξ ρy read

Ξy
1 =




0 0 0 0 0 0

m′z 1 −m′x 0 0 0

0 0 0 0 0 0

0 0 m′ỹ 1 −m′z 0

0 0 0 0 0 0

−m′ỹ 0 0 0 m′x 1




, Ξy
2 =




0 0 0 0 0 0

0 0 m′x 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 −m′x 0




,
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Ξy
3(a33 = 0) =




0 0 0 0 0 0

m′z 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 −m′z 0

0 0 0 0 0 0

0 0 0 0 0 0




, Ξy
3(a33 = 1) =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 m′ỹ 1 0 0

0 0 0 0 1 0

−m′ỹ 0 0 0 0 1




,

Ξy
4(a33 = 0) =




0 0 0 0 0 0

0 0 0 0 0 0

m′zb23 b23 1 0 0 0

0 −m′ỹb23 0 1 0 −m′zb23
m′ỹb23 0 0 0 1 −b23

0 0 0 0 0 0




, b23 = −
m′x

1 + (m′x)2
,

Ξy
4(a33 = 1) =




0 0 0 0 0 0

m′z 1 0 0 0 0

m′zb23 b23 0 0 0 0

0 −m′ỹb23 m′ỹ 1 −m′z −m′zb23
m′ỹb23 0 0 0 0 −b23
−m′ỹ 0 0 0 0 1




, b23 =
m′x

1 + (m′x)2
.

A.1.3 Nilmanifold with structure constant fxy
z = −m

Dualising along the z-direction the Neumann projectors Ξ′ = ρz Ξ ρz read

Ξz
1 =




0 0 0 0 0 0

0 0 0 0 0 0

−m′y m′x 1 0 0 0

0 −m′z̃ 0 1 0 m′y

m′z̃ 0 0 0 1 −m′x

0 0 0 0 0 0




, Ξz
2 =




0 0 0 0 0 0

0 1 0 0 0 0

0 −m′x 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 m′x

0 0 0 0 0 1




,

Ξz
3(a33 = 0) =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −m′z̃ 0 1 0 0

m′z̃ 0 0 0 1 0

0 0 0 0 0 1




, Ξz
3(a33 = 1) =




0 0 0 0 0 0

0 1 0 0 0 0

−m′y 0 1 0 0 0

0 0 0 1 0 m′y

0 0 0 0 0 0

0 0 0 0 0 0




,

Ξz
4(a33 = 0) =




0 0 0 0 0 0

m′yb23 1 −b23 0 0 0

0 0 0 0 0 0

0 0 −m′z̃b23 1 −m′yb23 0

0 0 0 0 0 0

m′z̃b23 0 0 0 b23 1




, b23 = −
m′x

1 + (m′x)2
,
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Ξz
4(a33 = 1) =




0 0 0 0 0 0

m′yb23 0 −b23 0 0 0

−m′y 0 1 0 0 0

0 −m′z̃ −m′z̃b23 1 −m′yb23 m′y

m′z̃ 0 0 0 1 0

m′z̃b23 0 0 0 b23 0




, b23 =
m′x

1 + (m′x)2
.

A.2 T-fold

T-dualising along two directions the configurations are translated to the Q-flux frame, with different

dual projectors depending on which pair of coordinates is dualised.

A.2.1 T-fold with structure constant Qz
xy = −m

Dualising along the (x, y)-directions the resulting Neumann projectors Ξ′ = ρyρx Ξ ρxρy read

Ξxy
1 =




1 0 m′ỹ 0 −m′z 0

0 1 −m′x̃ m′z 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −m′ỹ m′x̃ 1




, Ξxy
2 =




1 0 0 0 0 0

0 0 m′x̃ 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 −m′x̃ 0




,

Ξxy
3 (a33 = 0) =




1 0 0 0 −m′z 0

0 1 0 m′z 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, Ξxy
3 (a33 = 1) =




1 0 m′ỹ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 −m′ỹ 0 1




,

Ξxy
4 (a33 = 0) =




1 −m′ỹb23 0 0 0 −m′zb23
0 0 0 0 0 0

0 b23 1 m′zb23 0 0

0 0 0 0 0 0

0 0 0 m′ỹb23 1 −b23
0 0 0 0 0 0




, b23 = −
m′x

1 + (m′x)2
,

Ξxy
4 (a33 = 1) =




1 −m′ỹb23 m′ỹ 0 −m′z −m′zb23
0 1 0 m′z 0 0

0 b23 0 m′zb23 0 0

0 0 0 0 0 0

0 0 0 m′ỹb23 0 −b23
0 0 0 −m′ỹ 0 1




, b23 =
m′x

1 + (m′x)2
.
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A.2.2 T-fold with structure constant Qx
yz = −m

Dualising along the (y, z)-directions the Neumann projectors Ξ′ = ρzρy Ξ ρyρz read

Ξyz
1 =




0 0 0 0 0 0

m′z̃ 1 0 0 0 −m′x

−m′ỹ 0 1 0 m′x 0

0 0 0 1 −m′z̃ m′ỹ

0 0 0 0 0 0

0 0 0 0 0 0




, Ξyz
2 =




0 0 0 0 0 0

0 0 0 0 0 m′x

0 0 0 0 −m′x 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




,

Ξyz
3 (a33 = 0) =




0 0 0 0 0 0

m′z̃ 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 −m′z̃ 0

0 0 0 0 0 0

0 0 0 0 0 1




, Ξyz
3 (a33 = 1) =




0 0 0 0 0 0

0 0 0 0 0 0

−m′ỹ 0 1 0 0 0

0 0 0 1 0 m′ỹ

0 0 0 0 1 0

0 0 0 0 0 0




,

Ξyz
4 (a33 = 0) =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −m′ỹb23 −m′z̃b23 1 0 0

m′ỹb23 0 −b23 0 1 0

m′z̃b23 b23 0 0 0 1




, b23 = −
m′x

1 + (m′x)2
,

Ξyz
4 (a33 = 1) =




0 0 0 0 0 0

m′z̃ 1 0 0 0 0

−m′ỹ 0 1 0 0 0

0 −m′ỹb23 −m′z̃b23 1 −m′z̃ m′ỹ

m′ỹb23 0 −b23 0 0 0

m′z̃b23 b23 0 0 0 0




, b23 =
m′x

1 + (m′x)2
.

A.2.3 T-fold with structure constant Qy
zx = −m

Dualising along the (x, z)-directions the Neumann projectors Ξ′ = ρzρx Ξ ρxρz read

Ξxz
1 =




1 −m′z̃ 0 0 0 m′y

0 0 0 0 0 0

0 m′x̃ 1 −m′y 0 0

0 0 0 0 0 0

0 0 0 m′z̃ 1 −m′x̃

0 0 0 0 0 0




, Ξxz
2 =




1 0 0 0 0 0

0 1 0 0 0 0

0 −m′x̃ 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 m′x̃

0 0 0 0 0 1




,
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Ξxz
3 (a33 = 0) =




1 −m′z̃ 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 m′z̃ 1 0

0 0 0 0 0 1




, Ξxz
3 (a33 = 1) =




1 0 0 0 0 m′y

0 1 0 0 0 0

0 0 1 −m′y 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




,

Ξxz
4 (a33 = 0) =




1 0 −m′z̃b23 0 −m′yb23 0

0 1 −b23 m′yb23 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 m′z̃b23 b23 1




, b23 = −
m′x

1 + (m′x)2
,

Ξxz
4 (a33 = 1) =




1 −m′z̃ −m′z̃b23 0 −m′yb23 m′y

0 0 −b23 m′yb23 0 0

0 0 1 −m′y 0 0

0 0 0 0 0 0

0 0 0 m′z̃ 1 0

0 0 0 m′z̃b23 b23 0




, b23 =
m′x

1 + (m′x)2
.

A.3 R-flux

T-dualising along all three directions x, y, z the configurations are translated to the R-flux frame,

with structure constant Rxyz = −m and dual Neumann projectors given by Ξ′ = ρzρyρx Ξ ρxρyρz:

Ξxyz
1 =




1 0 0 0 −m′z̃ m′ỹ

0 1 0 m′z̃ 0 −m′x̃

0 0 1 −m′ỹ m′x̃ 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, Ξxyz
2 =




1 0 0 0 0 0

0 0 0 0 0 m′x̃

0 0 0 0 −m′x̃ 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




,

Ξxyz
3 (a33 = 0) =




1 0 0 0 −m′z̃ 0

0 1 0 m′z̃ 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1




, Ξxyz
3 (a33 = 1) =




1 0 0 0 0 m′ỹ

0 0 0 0 0 0

0 0 1 −m′ỹ 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0




,
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Ξxyz
4 (a33 = 0) =




1 −m′ỹb23 −m′z̃b23 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −b23 m′ỹb23 1 0

0 b23 0 m′z̃b23 0 1




, b23 = −
m′x

1 + (m′x)2
,

Ξxyz
4 (a33 = 1) =




1 −m′ỹb23 −m′z̃b23 0 −m′z̃ m′ỹ

0 1 0 m′z̃ 0 0

0 0 1 −m′ỹ 0 0

0 0 0 0 0 0

0 0 −b23 m′ỹb23 0 0

0 b23 0 m′z̃b23 0 0




, b23 =
m′x

1 + (m′x)2
.
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