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Abstract. We show that every finite a�ne algebra A admits a full duality.
In the process, we prove that A also allows a strong duality, and that the
duality may be induced by a dualizing structure A

⇠
of finite type. We give an

explicit bound on the arities of the partial and total operations appearing in
A
⇠
. In addition, we show that the enriched partial hom-clone of A is finitely

generated as a clone.

1. Introduction

A full duality represents elements of abstract algebraic structures by using func-
tions on a topological space that is often enriched with a relational and/or oper-
ational structure, and vice versa. This representation allows us to solve algebraic
questions by the way of the additional structure. For example in Stone duality,
Boolean algebras are dual to Boolean spaces. Under this correspondence, the fa-
miliar Cantor space is dual to the denumerable free Boolean algebra, with many of
the universal properties of the Cantor space being dual counterparts to the natural
universal properties of being a free algebra (the universal mapping property for
example).

In a natural full duality, the representation is constructed in a certain systematic
way, using a generating algebra A and a corresponding topological structure A

⇠
,

called an “alter ego” of A. We say that A is fully dualizable, if there exists an
alter ego A

⇠
such that every algebra from the quasi-variety generated by A and

every topological structure from the topological quasivariety generated by A
⇠

has a

representation. We remark that in case of a full duality, the correspondence can be
extended to homomorphisms and continuous structure preserving maps, yielding a
category-theoretic dual equivalence between the corresponding categories.

A full duality is the symmetrized concept of a duality. The definitions of duality
and dualizability di↵er from that of full duality and full dualizability by requir-
ing that only the algebras in the quasivariety generated by A have duals, while
the topological quasivariety generated by A

⇠
might contain structures without a

representation.
Despite a growing understanding of duality theory, dualizability and full dual-

izability of an algebra continue to be mysterious properties. For some classes of
algebras (such as algebras generating congruence-distributive varieties) there exists
a well-behaved dividing line between the dualizable and non-dualizable algebras.
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In other cases, the partial results available seem to defy any discernable pattern.
This latter case includes classes of algebras that are otherwise considered to be
well-understood, such as Maltsev algebras (or even extensions of groups).

Abelian algebras in congruence-modular varieties, are among the most well-
behaved classes of algebras, being polynomially equivalent to modules, hence such
Abelian algebras are a�ne algebras. Surprisingly, most results concerning their
dualizability have been announced relatively recently.

In 1995, Davey and Quackenbush [4] showed the dualizability of finite semi-
simple Abelian algebras from congruence-modular varieties. Recently, Kearnes and
Szendrei [8] established a su�cient condition for dualizability, implying in particular
the dualizability of finite a�ne algebras. Independently, Gillibert also proved the
dualizability of finite a�ne algebras [5], answering a question from [1].

In this article, we will complete the remaining dualizability question for finite
a�ne algebras by showing the following Theorem.

Theorem 1.1. All finite a�ne algebras are fully dualizable.

In fact we will show slightly more. Firstly, we show that a full duality can
be obtained by an alter ego A

⇠
of finite type, and we give an explicit bound on

the arity of the (partial) functions and relations in A
⇠
. Secondly, we establish

full dualizability by showing that every finite a�ne algebra satisfies the stronger
property of (adequately named) strong dualizability.

Additionally, we obtain a structural result in clone theory. An n-ary partial
operation f over A is compatible with an algebra structure A if the domain D of
f is a subalgebra of An, and f is a homomorphism from D to A. We show that
the clone of all partial functions compatible with an a�ne algebra A is finitely
generated as a clone (Corollary 5.4).

The proof of our main theorem relies on a technical condition from [6] (The-
orem 2.7), that requires us to find a suitable factorization for each partial A-
compatible function through a bounded set of partial functions. Our article is
structured around this requirement as follows: In Section 2 we define basic terms
and establish several results about a�ne algebras. Section 3 provides a technical
result about the factorization of projections on partial domains in the quasivariety
generated by A. This result will allow us to concentrate our further considerations
on partial homomorphisms without proper extensions. In Section 4, we prove a
crucial theorem about those partial homomorphisms: namely, a partial homomor-
phism that cannot be extended must have a large domain. This result is then used
in Section 5 to prove a factorization property for all partial homomorphisms, and
to prove our main theorem.

Section 6 and Section 7 contain an example calculation and a list of problems
motivated by our research. Moreover, we have included an appendix that gives
explicit bounds on the number of various algebraic objects. While the results of
the appendix are used in our arguments, they are only necessary in establishing an
explicit bound on the arities used in a fully dualizing alter ego. A reader without
an interest in such an explicit bound may ignore the appendix and instead check
the simple fact that all quantities in our argument are finite.
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2. Basic concepts

Given an algebra A, we denote by A its underlying set, and by Sub(A) the set
of subalgebras of A. The variety Var(A) (respectively, the quasivariety QVar(A))
generated by A is the smallest classes of algebras, with the signature of A that is
closed under taking products, subalgebras, and homomorphic images (respectively,
products, subalgebras, and isomorphic algebras).

For an arbitrary set X and a variety V, we denote by FV(X) the algebra freely
generated by X in V.

A subproduct algebra A  ⇧
i

A
i

is called a subdirect product if ⇡
i

(A) = A
i

for
each projection ⇡

i

. An algebra is subdirectly irreducible if whenever it is isomorphic
to a subdirect product, it is already isomorphic to one of its factors.

An algebra A is a�ne if there exists an Abelian group structure hA; +, 0,�i
such that t(x, y, z) = x� y + z is both a term function of A and a homomorphism
from A3 to A. Such a term t is called a Maltsev term. A class of algebras C is a�ne

if all of its algebras are. In the case of an a�ne variety V, it is easy to see that we
may choose one term t that witnesses the a�nity simultaneously for all members
of V (e.g. we could take the term witnessing the a�nity of FV(!)).

For example, let G be an Abelian group, and consider t : G3 ! G, (x, y, z) 7!
x � y + z. Then (G, t) is an a�ne algebra. Or let A be an a�ne space over some
field F . For all �1, . . . ,�n in F such that �1 + · · ·+ �

n

= 1, consider the operation
f(�1,...,�n) : A

n ! A which maps (a1, . . . , an) to the barycenter of (a1, . . . , an) with
weight (�1, . . . ,�n). Denote by P the set of all such operations. Then (A,P) is an
a�ne algebra.

The notion of an a�ne algebra is closely related to that of an Abelian algebra.
An algebra A is Abelian if [1

A

, 1
A

] = 0
A

, where 1
A

and 0
A

are the universal and
trivial relations on A, and [·, ·] denotes the binary commutator on the congruences
of A (we refer to [3] for the definition of the commutator). In congruence modular
varieties, Abelian and a�ne algebras coincide [3, Corollary 5.9].

We repeat several results about congruences of a�ne algebras from [5].

Definition 2.1 ([5], Definition 3.1). Let A be an a�ne algebra and B 2 Sub(A).
The congruence generated by B, denoted by ⇥

B

is the smallest congruence of A
containing B2.

We remark that not every congruence of A can be written in the form ⇥
B

for
some subalgebra B of A, and that we might have ⇥

B

= ⇥
C

with B 6= C.

Lemma 2.2 ([5], Lemma 3.3). Let A be an a�ne algebra, let B 2 Sub(A), and
let t be a term witnessing the a�nity of A. Then

⇥
B

= {(x, y) 2 A2 | 9b 2 B, t(x, y, b) 2 B} .

Note that this result implies that B is a congruence class of ⇥
B

.

Lemma 2.3 ([5], Corollary 3.7). Let A be an a�ne algebra and let B 2 Sub(A)
such that B is meet irreducible in the semilattice hSub(A);\i. Then A/⇥

B

is

subdirectly irreducible.

It is well known that any a�ne variety is polynomially equivalent to a variety
of modules. Moreover, if a variety is generated by a finite a�ne algebra A with
Maltsev term t, and u 2 A, then the corresponding ring is isomorphic to the set of all
unary polynomial functions ofA fixing u, with addition defined by f+g = t(f, u, g),
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and multiplication as composition of maps. In this case, the zero of the ring is the
constant map with image u, and the unit is the identity map. Also note that any
polynomial function fixing u can be chosen as x 7! f(x, u), for some idempotent
binary term f of A.

Lemma 2.4. Let V be a variety generated by an a�ne algebra A, where |A| =
p↵1
1 . . . p↵k

k

for distinct primes p1, . . . , pk. Let R be a ring associated to V. Then

|R| divides p
↵

2
1

1 . . . p
↵

2
k

k

.

Proof. Let u 2 A. We can assume that R is the set all unary polynomial functions
of A fixing u, as defined before. Consider the group operation + over A defined by
x+y = t(x, u, y) for all x, y 2 A. Note that by construction hR; +i, is a subgroup of
hA; +iA. As A is an a�ne algebra it follows that each f 2 R is compatible with t,
hence for all x, y 2 A the following equalities hold

f(x+ y) = f(t(x, u, y)) = t(f(x), f(u), f(y)) = t(f(x), u, f(y)) = f(x) + f(y) .

Therefore hR; +i is a subgroup of hHom(hA; +i, hA; +i); +i. By Lemma 8.1(2), |R|
divides p

↵

2
1

1 . . . p
↵

2
k

k

. ⇤

Given sets A,B we denote by F(A,B) the set of all maps A ! B. Let A be a
set. Given n 2 N we consider the set of n-ary partial operations defined by:

Cn(A) =
[

{F(X,A) | X ✓ An , X 6= ;} .

The set of all partial operations over A is

C(A) = {;} [
G

n2N
Cn(A) .

Note that alternative definitions distinguish empty functions of di↵erent arity;
the di↵erence is immaterial for our results. Denote by ⇡n

i

: An ! A, ~x 7! x
i

the
canonical projection for all positive integers n and all 1  i  n. A partial clone

over a A is a set F ✓ C(A), such that F contains all projections and is closed under
composition of partial functions.

Let F be a partial clone over A. A domain of arity n of F is a subset D of An

such that there exists f 2 F with dom f = D.

Lemma 2.5. Let F be a partial clone over a set A, n a positive integer, and C,D
domains of arity n of F. The following statements hold.

(1) For all 1  i  n, the restriction of ⇡n

i

to D belongs to F.

(2) The set C \D is a domain in F.

(3) Let p 2 F of arity n. If D ✓ dom p, then p �D belongs to F.

(4) If p = (p1, . . . , pn) : Ak ! An

, where all p
i

are in F, then p�1(D) is a

domain of F.

Proof. Take f : C ! A and g : D ! A in F.

(1) is a special case of (3), shown below.
(2) ⇡2

1(f(~x), g(~x)) is defined if and only if ~x 2 C \D, thus C \D is a domain
in F.

(3) ⇡2
1(p(~x), g(~x)) is defined if and only if ~x 2 dom p \ dom g = D. Moreover

p(~x) = ⇡2
1(p(~x), g(~x)), for all ~x 2 D, therefore p �D belongs to V.

(4) The domain of g � p is p�1(D). ⇤
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We will consider partial functions whose domains are subalgebras and which are
homomorphisms. For algebras A  B and C and a homomorphism f from A to C,
we say that f has a proper extension if there is an algebra D with A < D  B
and a homomorphism f 0 from D to C that extends f .

Our aim is to establish that all a�ne algebras are fully dualizable. We will now
recall the definition of full dualizability and of related terms from [2]. We remark
this we will not actually use any of these definitions, instead relying on established
technical results to prove our claims.

For any finite algebra A, consider a topological structure A
⇠

= hA;F,R, ⌧i on the

universe of A, where F is a set of (total or partial) operations, R is a set of relations,
and ⌧ is the discrete topology. If each fundamental operation of A preserves every
relation in R and is compatible with every functions in F, then A

⇠
is called an alter

ego of A.
To A and A

⇠
we attach two categories A,X, respectively. Here A consists of all

algebras in QVar(A) together with their homomorphisms. The objects of X are all
isomorphic images of (topologically) closed substructures of products of A

⇠
, where

the products are taken over non-empty index sets. The morphisms of X consist of
all continuous mappings that preserve relations of R and are compatible with the
operations of F.

For B 2 A, let D(B) 2 X be the substructure of A
⇠

B whose universe consists

of all homomorphisms from B to A. Reversely, for X 2 X, let E(X) 2 A be
the subalgebra of AX whose universe consists of all homomorphisms from X to
A
⇠
. Then D and E are well-defined and can be extended to contravariant functors

between A and X.
Now for each B 2 A, there is a natural embedding eB of B into ED(B) through

evaluation. That is, for all b 2 B, eB(b) maps h to h(b), for all h 2 D(B). A
correspondingly defined embedding "X : X ! DE(X) exists for all X 2 X.

We say that an alter ego A
⇠

dualizes A, if eB is an isomorphism for each B. If in

addition, all "X are isomorphisms, we say that A
⇠

fully dualizes A. An algebra A

is [fully] dualizable if there exists an alter ego that [fully] dualizes A.
If A is [fully] dualizable, then D and E induce a dual representation [dual

equivalence] between the categories A and X. The aforementioned duality be-
tween Boolean algebras and Boolean spaces can be obtained by choosing A as the
two-element Boolean algebra and A

⇠
as the two-element Boolean space.

Another well known related concept is that of Pontryagin duality, which can be
obtained in a similar fashion by choosing A = A

⇠
to be the circle group with its

usual topology. This induces a self-duality on the category of all locally compact
Abelian groups and continuous homomorphisms. However, Pontryagin duality is
not a direct example of our approach, as the circle group is infinite, carries a non-
discrete topology, and both A and A

⇠
are topological structures.

As mentioned, we will not be using the dualizability definitions directly and
instead utilize the following results from [2] and [6]. Here, strong dualizability is a
special type of full dualizability that we will not define, instead referring the reader
to [2].
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Definition 2.6 ([6]). A finite algebra A has enough total algebraic operations, if
there exists ' : ! ! ! such that for all B  C  An and every h 2 hom(B,A),
which has an extension to C, there exists X ✓ hom(An,A) such that

(1) |X|  '(|B|),
(2) There is a homomorphism q from C/\{ker(f �C) | f 2 X} to A such that

q�↵ = h, where ↵ is the natural homomorphism fromB toC/\{ker(f �C) |
f 2 X}.

Theorem 2.7 ([6], Theorem 4.3). A finite dualizable algebra that has enough total

algebraic operations is strongly dualizable.

Definition 2.8 ([2], p. 73). Let A be an algebra. The enriched partial hom-

clone of A consists of all homomorphisms from B to A, for all subalgebras B of
An, and all positive integers n.

Theorem 2.9 ([2], Brute Force Strong Duality Theorem 3.2.2). Let A be a finite

algebra. If some alter ego A
⇠

0
yields a strong duality on A, then A

⇠
= hA,P, ⌧i,

yields a strong duality on A, where P is the enriched partial hom-clone of A and ⌧
is the discrete topology on A.

Our next result is a special application of the M-shift strong duality Lemma
from [2] to the alter ego hA,P, ⌧i.

Lemma 2.10 ([2], Lemma 3.2.3). Let A, P, and ⌧ be as in the Theorem 2.9. Let

P0 ✓ P be a generating set of P, that is, every h 2 P is a composition of elements of

P0
and projections. If hA,P, ⌧i yields a strong duality on A, then hA,P0, ⌧i yields

a strong duality on A.

3. A generating set for domains of partial functions

In order to show our main result, we want to establish that every a�ne algebra
satisfies the conditions of Definition 2.6, so that we may use Theorem 2.7. The setX
appearing in the definition can actually be taken as a set of coordinate projections.
Hence to establish a necessary bound on X, we need to be able to show that partial
compatible functions on A (i.e. homomorphisms from subpowers of A to A), factor
though partial compatible functions of bounded arity. As a first step towards our
result, in this section we show that we can generate all possible domains of such
functions from a finite set.

The following definitions are from [5]. Given a�ne algebras A and S and a
homomorphism k : A ! S, letH

k

(A2,S) consist of all homomorphisms f : A2 ! S
that satisfy f(x, x) = k(x). We set k̄ 2 H

k

(A2,S) as k̄(x, y) = k(y). In [5,
Lemma 5.4], it is shown that hH

k

(A2,S); +k̄i is an Abelian group (where +k̄ is

defined by f +k g = t(f, k, g) for all f, g in H
k

(A2,S)), and that the isomorphism
type of hH

k

(A2,S); +k̄i does not depend on k. We let hH(A2,S); +i stand for this
isomorphism type.

The following lemma, proved in [5, Lemma 5.7], expresses that a (total) homo-
morphism f : An ! S can be factored through a small power of A, which does not
depend on n but depends only on hH(A2,S); +i.

Lemma 3.1. Let A,S be algebras in a variety of a�ne algebras. Let L be a positive

integer such that hH(A2,S); +i has a family of generators with L�1 elements. Let
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f : An ! S be a homomorphism. Then there exists a homomorphism p : An ! AL

that is a term in t, and a homomorphism q : AL ! S, such that f = q � p.

Corollary 3.2 ([5], Corollary 5.6). Let A and S be a�ne algebras such that |A| =
p↵1
1 . . . p↵k

k

and |S| = p�1
1 . . . p�k

k

for distinct primes p
i

. Then |H(A2,S)| divides
p↵1�1
1 . . . p↵k�k

k

, and hH(A2,S); +i has a generating set of size max1ik

(↵
i

�
i

).

Corollary 3.3. Let A be a finite a�ne algebra. Let p↵1
1 p↵2

2 . . . p↵k
k

be the prime

decomposition of |A|. Let K = 1 + max1ik

(↵3
i

). Denote by F the partial clone

over A generated by t and all ⇡K

1 �C for C a subalgebra of AK

. Then ⇡n

1 �D belongs

to F for all positive integers n and all subalgebras D of An

.

Proof. Let n be a positive integer and D a completely meet-irreducible subalgebra
of An. Set S = An/⇥

D

, and denote by f : An ! S the canonical projection.
By Lemma 2.2, {D} is the underlying set of a (one-element) subalgebra of S,

moreover x 2 D () f(x) = D. That is f�1({D}) = D.
As D is completely meet-irreducible, by Lemma 2.3, S is subdirectly irreducible.

By Theorem 8.4, |S| divides p↵
2
1

1 . . . p
↵

2
k

k

. By Corollary 3.2 the group H(A2,S) has
a generating family with max1ik

(↵3
i

) = K � 1 elements.
Therefore, by Lemma 3.1, there exists a homomorphism p : An ! AK , which is

a term in t, and a homomorphism q : AK ! S such that q � p = f .
Set C = q�1({D}) = {x 2 AK | q(x) = D}. As {D} is the underlying set of

a subalgebra of S and q is a homomorphism, it follows that C is the underlying
set of a subalgebra of AK , hence C is a domain of F. Moreover p is a term
of t, thus it follows from Lemma 2.5(4) that p�1(C) is a domain of F. However
p�1(C) = p�1(q�1({D})) = f�1({D}) = D, so D is a domain of F.

Let B be an arbitrary subalgebra of An. We can write B as the intersection of
finitely many underlying sets of completely subdirectly irreducible subalgebras of
An. Since each of these sets is a domain of F, it follows from Lemma 2.5(2) that
B is a domain of F. Therefore, by Lemma 2.5(3), ⇡n

1 �B is in F. ⇤

4. Extensions of Partial homomorphisms

The results of Corollary 3.3 imply that we may generate a partial homomorphism
from its extension to a larger domain and a bounded number of partial projections.
Thus, the goal of this section is to extend partial homomorphisms of a�ne algebras
(in a finitely generated variety of a�ne algebras). We will show that if the domain
of a partial homomorphism is small enough, then the partial homomorphism has a
proper extension (cf. Lemma 4.5). We will first establish this result for modules
before generalizing to a�ne algebras.

Lemma 4.1. Let B,C be submodules of a module A. Let E be a module. Let

f : B ! E and g : C ! E be homomorphisms. If f �B \C = g �B \C, then there

exists a homomorphism h : B +C ! E that is a common extension of f and g.

Proof. Let b, b0 2 B and c, c0 2 C. Assume that b+ c = b0 + c0. Then b� b0 = c0 � c
belongs to B \ C, hence

f(b)� f(b0) = f(b� b0) = g(b� b0) = g(c0 � c) = g(c0)� g(c) .
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Therefore f(b) + g(c) = f(b0) + g(c0). It follows that the map

h : B + C ! E

b+ c 7! f(b) + g(c) ,

is well-defined, and is a homomorphism of modules. Moreover h(b) = h(b + 0) =
f(b) + g(0) = f(b) for all b 2 B. Similarly h extends g. ⇤

Lemma 4.2. Let V be a locally finite variety of algebras, A 2 V, and n a positive

integer. If each finitely generated subalgebra of A is generated by n elements, then A
is finite.

Proof. Assuming that A is infinite, there is an infinite sequence (x
i

)
i2N of distinct

elements of A. Let k = |FV(n)|.
Denote by B the subalgebra of A generated by {x0, x1, x2, . . . , xk

}. Note that
|B| � k + 1, but B is finitely generated, so is generated by n elements, hence
|B|  |FV(n)| = k, a contradiction. ⇤

Lemma 4.3. Let A be an Abelian group such that |A| = p↵1
1 . . . p↵k

k

, where p1, . . . , pk
are distinct primes. Set M = 1 + ↵1 + · · · + ↵

k

. Let a1, . . . , aM 2 A. Then there

are integers u1, . . . , ui�1, for some i with 1  i  M , such that a
i

=
P

i�1
j=1 uj

a
j

.

Proof. Set A0 = {0}. Given 1  i  M , denote by A
i

the subgroup of A generated
by {a1, . . . , ai}. Note that A

i

is a subgroup of A
j

for 0  i  j  M .
As a maximal chain of subgroups of A has size at most M , it follows that there

is 1  i  M such that A
i

= A
i�1. Therefore a

i

2 A
i�1, so there are integers

u1, . . . , ui�1 such that a
i

=
P

i�1
j=1 uj

a
j

. ⇤

Lemma 4.4. Let R be a finite ring and V the variety of R-modules. Let E 2 V be

finite. Assume that |R| = pr11 . . . prk
k

, and |E| = p�1
1 . . . p�k

k

, where the p
i

are distinct

primes, and that R, as an R-module, has s proper non-trivial submodules. Set

N = s⇥
⇣P

k

i=1 ri�i � 1
⌘
. Then for all modules B  C in V and all homomorphism

f : B ! E, if C/B is not generated by N elements, then f has a proper extension.

Proof. We first find a submodule H of C, such that H is not contained in B and
f(H \B) = {0}. Lemma 4.1 will then allow us to extend f to B +H.

Denote by F the R-module freely generated by {u}, so that F ⇠= R as R-
modules.

Let B  C in V and f : B ! E be a homomorphism. Assume that C/B is not
generated by N elements.

First note that if all finitely generated submodules of C/B are generated by N
elements, then it follows from Lemma 4.2 that C/B is generated by N elements,
which contradicts the assumption. Therefore there is a finitely generated submodule
Q of C/B, whose minimal number of generators is k � N + 1.

Let P be the submodule of C containing B such that P /B = Q. Note that
{x1+B, x2+B, . . . , x

k

+B} generates Q if and only if B[{x1, . . . , xk

} generates P .
We say that x1, . . . , xk

generate P over B.
Given x 2 C we denote by '

x

: F ! C the unique homomorphism that maps u
to x. Note that '

x

+ '
y

= '
x+y

for all x, y 2 C.
Pick x1, . . . , xk

2 P \ B, generating P over B, such that ('�1
xi

(B))1ik

is
maximal. That is, if y1, . . . , yk generate P over B and '�1

yi
(B) ◆ '�1

xi
(B) for all
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1  i  k, then '�1
yi

(B) = '�1
xi

(B) for all 1  i  k. The existence of such a
sequence follows from the finiteness of SubF .

Set S
i

= '�1
xi

(B). That is, S
i

is the largest submodule of F such that '
xi(Si

) ✓
B, for each 1  i  k. Note that '

xi(F ) \B = '
xi(Si

).
Assume that S

i

= {0} for some 1  i  k. Then '
xi(F ) \ B = {0}. Let

g : '
xi(F ) ! E, x 7! 0. Note that dom f \ dom g = {0}, hence it follows from

Lemma 4.1 that there exist a homomorphism h : B + '
xi(F ) ! E that extends

both f and g. As x
i

62 B, it follows that h is a proper extension of f .
We now assume that S

i

6= {0} for each 1  i  k.
Assume we have i such that S

i

= F . Hence u, the generator of F , belongs to
S

i

, so x
i

= '
xi(u) 2 '

xi(Si

) ✓ B, contradicting that x
i

/2 B. Therefore the S
i

are
proper submodules of F , for all 1  i  n.

As k � N + 1 > N and the S
i

are proper nontrivial submodules of F , it
follows that there is a submodule G of F , with G proper and non-trivial, and I ✓
{1, . . . , k}, such that |I| =

P
k

i=1 ri�i and S
i

= G, for all i 2 I. Set  
i

= f �'
xi �G,

for all i 2 I.
As G is a proper submodule of F , it follows from Lemma 8.1 that |Hom(G,E)|

is a proper divisor of pr1�1
1 . . . prk�k

k

, hence by Lemma 4.3, there is i 2 I and a family
of integers (u

j

)
j2J

(where J = I \ {i}) such that

 
i

=
X

j2J

u
j

 
j

.

Let y = x
i

�
P

j2J

u
j

x
j

. Note that x1, . . . , xi�1, y, xi+1, . . . , xk

generates P over B.
Moreover

'
y

(s) = '
xi�

P
j2J ujxj

(s) = '
xi(s)�

X

j2J

u
j

'
xj (s) 2 B , for all s 2 G

thus '�1
y

(B) ◆ G = S
i

. It follows from the maximality of (S1, . . . , Sk

) that
'�1
y

(B) = S
i

= G.
Set H = '

y

(F ). Let z 2 H \ B, and take s 2 G such that '
y

(s) = z. The
following equalities hold

f(z) = f('
y

(s))

= f

0

@'
xi(s)�

X

j2J

u
j

'
xj (s)

1

A

= f('
xi(s))�

X

j2J

u
j

f('
xj (s))

=  
i

(s)�
X

j2J

u
j

 
j

(s)

= 0

Denote by g : H ! E the constant 0 homomorphism. We have

f �H \B = g �H \B .

Set D = B+H. It follows from Lemma 4.1 that f and g have a common extension
h : D ! E.

Note that y = '
y

(u) 2 D and y 62 B, so h is a proper extension of f . ⇤
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By [9], every locally finite variety V of a�ne algebras is generated by a finite
algebra A; hence when V is locally finite we can define the ring associated to V as
the ring associated to A.

Lemma 4.5. Let V be a locally finite variety of a�ne algebras, and R the ring

associated to V. Let E 2 V be finite. Assume that |R| = pr11 . . . prk
k

, and |E| =
p�1
1 . . . p�k

k

, where the p
i

are distinct primes, and that R, as an R-module, has s

proper non-trivial submodules. Set N = s⇥
⇣P

k

i=1 ri�i � 1
⌘
. Then for all algebras

B  C in V and all homomorphism f : B ! E, if C/⇥
B

is not generated by N+1
elements, then f has a proper extension.

Proof. Let t be a Maltsev term of V. Note that we may identify the ring cor-
responding to V with the set R of all idempotent binary terms of V modulo the
equational theory of V. Under this correspondence, multiplication is defined by
(�µ)(x, y) = �(µ(x, y), y), addition is (� + µ)(x, y) = t(�(x, y), y, µ(x, y)), the zero
is (x, y) 7! y, and the unit is (x, y) 7! x.

Let A 2 V, and for u 2 A, denote by +u the operation defined over A by
x +u y = t(x, u, y). Define an action of R over A by �x = �(x, u) for all x 2 A,
then hA; +u,Ri is a module.

Let B  C in V, let f : B ! E be a homomorphism. Assume that C/⇥
B

is not
generated by N + 1 elements. Let v 2 B, set w = f(v). Note that hB; +v,Ri is
a submodule of hC; +v,Ri. Moreover, f : hB; +v,Ri ! hE; +w,Ri is a homomor-
phism of modules.

Assume that hC; +v,Ri/B is generated by x1 + B, . . . , x
N

+ B. It follows that
C/⇥

B

is generated by B = v+B, x1+B, . . . , x
N

+B, and so is generated by N+1
elements; a contradiction. Therefore hC; +v,Ri/B is not generated by N elements.
It follows from Lemma 4.4 that as a module homomorphism, f has a proper exten-
sion g. We claim that g is also an extension of the V-homomorphism f .

Denote by D the domain of g. Note that C is a reduct of the module structure
hC; +v,Ri extended with the constants of V. Moreover, all constants of V are in
B ✓ D, and D is the universe of a submodule of hC; +v,Ri. It follows that D is a
subalgebra of C, and that g : D ! E is a homomorphism. Hence f has a proper
extension. ⇤

5. Factoring partial homomorphisms

The main goal of this section is to factorize a partial homomorphism f : C ! E
(where C  An) through a smaller power D  AN , where N only depends on A
and E. This will allow us to use Theorem 2.7 and to prove our main result.

First note that a�ne algebras have the congruence extension property. To be
more precise we give the following description of extensions of congruences.

Lemma 5.1. Let A be a subalgebra of an a�ne algebra B. Let ↵ be a congruence

of A. Then there exists a smallest extension of ↵ to B. It is the unique congruence

� of B satisfying the following conditions.

(1) For all (x, y) 2 �, if y 2 A, then x 2 A.

(2) � \A2 = ↵.

Proof. Pick 0 2 A and set x+ y = t(x, 0, y). It follows that A is stable for +. Also
note that x� y = t(x, y, 0) and t(x, y, z) = x� y + z.
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Let (x, x0) 2 ↵, (y, y0) 2 ↵. As ↵ is compatible with t, it follows that

(x+ y, x0 + y0) = (t(x, 0, y), t(x0, 0, y0)) 2 ↵.

Therefore ↵ is compatible with + and �.
Define � = {(x, y) 2 B2 | (9a 2 B)((x� a, y � a) 2 ↵)}. We will leave it to the

reader to check that � is a congruence that satisfies conditions (1) and (2).
Let � be a congruence ofB containing ↵. Let x, y, a 2 B such that (x�a, y�a) 2

↵, so (x � a, y � a) 2 �, hence (x, y) = (x � a + a, y � a + a) 2 �. Therefore �
contains �, hence � is the smallest extension of ↵ to B.

Let � be a congruence satisfying (1) and (2). First note that � contains ↵, so
� contains �. Conversely, let (x, y) 2 �. Note that (x � y, 0) = (x � y, y � y) 2 �
and 0 2 A, so x � y 2 A, and so (x � y, y � y) 2 � \ A2 = ↵, that is (x, y) 2 �.
Therefore � = �. ⇤

Lemma 5.2. Let A  B be finite a�ne algebras. Let ↵ be a congruence of A. Let

� be the minimal extension of ↵ to B. Then |B/�| = |B/⇥
A

|⇥ |A/↵|.

Proof. First note that ⇥
A

◆ ↵, hence ⇥
A

◆ �. Also note that A/� is a subalgebra
of B/�.

We first show that ⇥
A

/� = ⇥
A/�

. Let (x/�, y/�) 2 ⇥
A/�

. There is u 2 A/�
such that y/��x/�+u 2 A/�, hence there is c 2 A such that (y�x+c)/� 2 A/�.
That is (y � x + c)/� = a/� for some a 2 A. It follows from Lemma 5.1(1) that
(y � x+ c) 2 A. Therefore (x, y) 2 ⇥

A

, hence (x/�, y/�) 2 ⇥
A

/�.
Conversely, let (x/�, y/�) 2 ⇥

A

/�. That is (x, y) 2 ⇥
A

. There is c 2 A such
that x � y + c 2 A, so x/� � y/� + c/� 2 A/�. As c/� 2 A/�, it follows that
(x/�, y/�) 2 ⇥

A/�

. This proves that ⇥
A/�

= ⇥
A

/�.
Note that B/⇥

A

⇠= (B/�)/(⇥
A

/�) = (B/�)/(⇥
A/�

). Lemma 8.5 implies that
|B/⇥

A

| = |B/�|/|A/�|. Now � \ A2 = ↵, so A/� ⇠= A/↵, and therefore |B/�| =
|B/⇥

A

|⇥ |A/�|. ⇤

Theorem 5.3. Let A,E be finite a�ne algebras of the same type, and V be the va-

riety generated by {A,E}. Assume that |A| = p↵1
1 . . . p↵k

k

, and |E| = pe11 . . . pek
k

, for

distinct primes p1, . . . , pk. For N as in Lemma 4.5, let |FV(N + 1)| = pu1
1 . . . puk

k

,

and set

` = 1 + max
1ik

(↵
i

(u
i

+ e
i

)).

Then for every positive integer n, every subalgebra C of An

, and every homomor-

phism h : C ! E, there exists homomorphisms p : An ! A`

and k : p(C) ! E
such that k � p � C = h. Moreover, we can choose p to be a term in t, the Maltsev

term of V.

Proof. Note that most of the homomorphisms and commuting relations used in this
proof are illustrated in Figure 1. Set P = |FV(N + 1)|⇥ |E| = pu1+e1

1 . . . puk+ek
k

.
Let n be a positive integer, C 2 Sub(An), and h : C ! E a homomorphism.

Let D be a subalgebra of An, such that h0 : D ! E is a maximal extension of h.
Denote by ⌘1 : C ! D the inclusion homomorphism. As h0 extends h, we have

h0 � ⌘1 = h . (5.1)

It follows from Lemma 4.5 that An/⇥
D

is generated by N + 1 elements, hence
|An/⇥

D

| divides |FV(N + 1)|. Let "1 : D ! An be the inclusion homomorphism.
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Denote by ↵ the kernel of h0 and by � the minimal extension of ↵ to An. Set
R = D/↵ and S = An/�. Let "2 : R ! S be the canonical embedding. Let
⇡ : D ! R and ⇡0 : An ! S be the canonical projections. Note that

⇡0 � "1 = "2 � ⇡ . (5.2)

As h0 factors through ⇡, there is an embedding � : R ! E such that

h0 = � � ⇡ . (5.3)

Hence |R| = |D/↵| divides |E|. It follows from Lemma 5.2 that

|S| = |An/�| = |An/⇥
D

|⇥ |D/↵| divides P ,

hence, by Corollary 3.2, the algebra hH(A2,S); +i has a generating family with
max1ik

(↵
i

(e
i

+ u
i

)) = `� 1 elements.
From Lemma 3.1, we have a homomorphism p : An ! A`, which is a term in t,

and q : A` ! S such that
q � p = ⇡0 . (5.4)

As D is a subalgebra of An, it follows that p(D) is a subalgebra of A`. Denote
by "3 : p(D) ! A` the canonical embedding. Note that

"3 � p �D = p � "1 . (5.5)

Similarly we denote by ⌘2 : p(C) ! p(D) the inclusion homomorphism, so

⌘2 � p �C = p �D � ⌘1 . (5.6)

The following equalities are direct consequences of (5.2), (5.4), and (5.5)

q � "3 � p �D = q � p � "1 = ⇡0 � "1 = "2 � ⇡ . (5.7)

So q("3(p(D))) = "2(⇡(D)) = "2(R). However, "2 is an embedding, so q("3(p(D)))
corresponds to a subalgebra of R; hence, there is a homomorphism u : p(D) ! R
such that

q � "3 = "2 � u . (5.8)

It follows from (5.8) and (5.7) that "2 � u � p �D = q � "3 � p �D = "2 � ⇡. As "2
is an embedding it follows that

u � p �D = ⇡ . (5.9)

The following equalities hold

� � u � ⌘2 � p �C = � � u � p �D � ⌘1 by (5.6).

= � � ⇡ � ⌘1 by (5.9).

= h0 � ⌘1 by (5.3).

= h by (5.1).

Therefore, denoting k = � � u � ⌘2 : p(C) ! E, we have k � p �C = h. ⇤

Corollary 5.4. Let A be a finite a�ne algebra, and p↵1
1 . . . p↵k

k

the prime decom-

position of |A|. The enriched partial hom-clone of A is finitely generated by partial

operations of arity at most

1 + max
1ik

�
(Q+ 1)↵3

i

+ 2↵2
i

�
,
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Figure 1. Homomorphisms factor through sub-power of small dimension.

where Q = p
↵

4
1

1 . . . p
↵

4
k

k

⇥
⇣P

k

i=1 ↵
3
i

� 1
⌘
.

Proof. We may assume that A is non-trivial. Let ` be the bound in Theorem 5.3
for the special case E = A. That is,

` = 1 + max
1ik

(↵
i

(u
i

+ ↵
i

)),

where |FV(N + 1)| = pu1
1 . . . puk

k

, N is as in Lemma 4.5 and V is the variety gen-
erated by A. Moreover, let K = 1 + max1ik

(↵3
i

) (i.e. K is the bound from
Corollary 3.3).

Given integers 1  i  n , we denote by ⇡n

i

: An ! A the canonical projection
on the i-th coordinate. Set X = {f : D ! A | D is a subalgebra of A`} and
Y = {⇡K

1 � C | C is a subalgebra of AK}.
Denote by F the partial clone generated by {t} [X [ Y .
Let n be a positive integer, C a subalgebra of An, and h : C ! A a homomor-

phism. By Theorem 5.3, there is a term p : An ! A` in t, and a homomorphism
k : p(C) ! A such that h = k � p � C.

Note that k 2 F, as it is a partial homomorphism of arity `, so k � p belongs
to F. Moreover, by Corollary 3.3, ⇡n

1 �C belongs to F, therefore, by Lemma 2.5(3),
h = k � p � C belongs to F.

Therefore F is the set of all partial operations on A, compatible with A. More-
over, F is, by construction, finitely generated by partial operations of arity at most
max{3, `,K}. Clearly, K and 3 are smaller than the bound from the statement of
the corollary, as we assumed that A is non-trivial.
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It remains to bound the quantity `. Consider the ring R associated to V. By

Lemma 2.4 the cardinality of R divides p
↵

2
1

1 . . . p
↵

2
k

k

. It follows from Lemma 8.1

that R, as a R-module, has at most p
↵

4
1

1 . . . p
↵

4
k

k

submodules, and thus Q � N .
From Lemma 8.6 we have

|FV(N + 1)| divides p(N+1)↵2
1+↵1

1 . . . p
(N+1)↵2

k+↵k

k

.

Therefore

`  1 + max
1ik

(↵
i

((N + 1)↵2
i

+ ↵
i

+ ↵
i

))  1 + max
1ik

((Q+ 1)↵3
i

+ 2↵2
i

)).

The results follows. ⇤

We remark in passing that our corollary provides an additional proof that every
finite a�ne algebra A is dualizable (even though it is unnecessarily complicated
compared to the arguments in [5]). Dualizability of A follows as by the Duality
Compactness Theorem [10, 11], it su�ces to show that the enriched partial hom-
clone of A is finitely generated. Our arguments are however not independent, as
we rely on Lemmas 2.2, 2.3, and 3.1 from [5].

We are now ready to prove our final result about the strong dualizability of a�ne
algebras.

Lemma 5.5. All finite a�ne algebras have enough total algebraic operations.

Proof. Let A be an a�ne algebra, let ` be as in Theorem 5.3 for A = E. We
consider ' : ! ! ! the constant map equal to `.

Let n be a positive integer, and let B  C be subalgebras of An. Denote by
◆ : B ! C the inclusion homomorphism. Let h : B ! A, let h0 : C ! A be an
extension of h, that is h0 � ◆ = h.

By Theorem 5.3 there exist a homomorphism p : An ! A` and a homomorphism
k : p(C) ! A such that h0 = k � p � C. We obtain k � p � C � ◆ = h0 � ◆ = h.

For each 1  i  `, denote by ⇡
i

: A` ! A the canonical projection. Set
X = {⇡

i

� p | 1  i  `}, hence X ✓ Hom(An,A), moreover |X|  ` = '(|B|).
Note that

\
{ker(f � C) | f 2 X} =

\
{ker(⇡

i

� p � C) | 1  i  `} = ker(p � C).

Denote by ⌘ : C/ ker(p �C) ! p(C) the isomorphism induced by p, and by ↵ : B !
C/ ker(p � C) the natural homomorphism. We obtain ⌘ � ↵ = p �B. Set q = k � ⌘.
We have q � ↵ = k � ⌘ � ↵ = k � p � B = k � p � C � ◆ = h. Therefore A has enough
total algebraic operations (cf. Definition 2.6) ⇤

Theorem 5.6. All finite a�ne algebras are strongly dualizable.

Proof. LetA be a finite a�ne algebra. By Lemma 5.5,A has enough total algebraic
operations, moreover A is dualizable ([5], see also the remark after Corollary 5.4).
By Theorem 2.7, A is strongly dualizable. ⇤

Our main Theorem 1.1 now follows from the well known fact that any strongly
dualizable algebra is fully dualizable (see for example [2, Theorem 3.2.4]). In our
final result, we provide an explicit bound on the partial functions in the strongly
dualizing alter ego.
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Theorem 5.7. Let A be a finite a�ne algebra with |A| = p↵1
1 . . . p↵k

k

. Then A is

strongly dualized by hA;P, ⌧i, where ⌧ is the discrete topology on A and P is the set

of all compatible partial operations on A of arity at most

1 + max
1ik

�
(Q+ 1)↵3

i

+ 2↵2
i

�
,

where Q = p
↵

4
1

1 . . . p
↵

4
k

k

⇥
⇣P

k

i=1 ↵
3
i

� 1
⌘
.

Proof. AsA is strongly dualizable, it is in particular strongly dualized by the strong
brute force alter ego hA;P, ⌧i of Theorem 2.9. Moreover, by Lemma 2.10 we may
replace P with a generating set, and by Corollary 5.4, P is finitely generated by
partial operations whose arity is limited by the stated bound. The result follows.

⇤

6. Example

We apply our results to an algebra whose examination was crucial in developing
the proofs of the previous sections.

Let F2 be the 2-element field. Consider the 8-element ring R = F2[x, y]/I, where
I is the ideal generated by {x2, y2, xy, yx}. Let A be the module that is obtained
by considering R as a module over itself.

By [5], A is dualizable by an alter ego that includes all compatible relations
of size 28. By our main result, A is strongly dualizable. A direct application of
Theorem 5.7 will result in a very large bound of 702 · 281 + 46 on the arities of the
partial operations in the alter ego.

By adapting the results of the previous sections to this specific example, we can
show that a lower bound su�ces. As A generates a variety V of R-modules, we
know the cardinality of the corresponding ring directly. It also means that we can
use Lemma 4.4 instead of Lemma 4.5 in our further arguments, which reduces the
“Q + 1”-factor in Theorem 5.7 by 1. Also, the estimate Q can be replaced by
exact calculations. Instead of the first factor, we can use the number of nontrivial
proper submodules of A, which is easily seen to be 4. The second factor of Q
can be replaced by 1 more than the exponent of 2 in the maximal number of
homomorphisms from a proper A-submodule G to A. This number can be shown
to be 5, meaning that Q+ 1 can be replaced with 20. It then follows that we may
obtain a strong duality by using an alter ego with “only” the compatible partial
operations of arity 559.

7. Problems

We close with several problems motivated by our results.

Problem 1. Which Abelian algebras that do not generate congruence-modular
varieties are dualizable? Which are fully and strongly dualizable?

Problem 2. Are nilpotent dualizable algebras (from congruence-modular varieties)
always fully dualizable? Are they strongly dualizable?

We remark that in many well-behaved classes of algebras, dualizability, full du-
alizability and strong dualizability coincide. Among nilpotent algebras, the results
of [1] show that in the subclass of supernilpotent algebras, all non-Abelian algebras
are non-dualizable (and by [1] supernilpotence may be replaced by a slightly weaker
condition).
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Problem 3. Can the arity bound in our main theorem be improved upon?

We conjecture that a bound of the form (log2 |A|)n su�ces, for some fixed inte-
ger n.

Problem 4. Which a�ne algebras are strongly dualized by some alter ego that is
a total structure?

8. Appendix: Counting homomorphisms and algebras

Lemma 8.1. Let E,F be Abelian groups. Assume that |E| = p↵1
1 . . . p↵k

k

and

|F | = p�1
1 . . . p�k

k

, where the p
i

are distinct primes. Then the following statements

hold.

(1) The number of subgroups of E is at most p
↵

2
1

1 . . . p
↵

2
k

k

.

(2) |Hom(F ,E)| divides p↵1�1
1 . . . p↵k�k

k

.

Proof. Note that Abelian subgroups of E are determined by their p
i

-Sylow sub-
groups. Denote by E

i

the p
i

-Sylow subgroup of E, such that |E
i

| = p↵i
i

. Each
subgroup of E

i

has a family of generators with ↵
i

elements. Therefore E
i

has at

most p
↵

2
i

i

subgroups. It follows that (1) holds.
We refer to [5, Lemma 4.1] for (2). ⇤

Lemma 8.2. Let E,F be a�ne algebras. Assume that |E| = p↵1
1 . . . p↵k

k

and

|F | = p�1
1 . . . p�k

k

, where the p
i

are distinct primes. Then the following statements

hold.

(1) The number of subalgebras of E is at most p
1+↵

2
1

1 . . . p
1+↵

2
k

k

.

(2) |Hom(F ,E)| divides p
(↵1+1)�1

1 . . . p
(↵k+1)�k

k

.

Proof. For each c 2 E, x+
c

y = t(x, c, y) induces an Abelian group structure on E.
There are |E| such structures. Let A be a subalgebra of E, then for c 2 A, hA; +

c

i
is a subgroup of hE; +

c

i. With Lemma 8.1, the number of subalgebras of E is at

most |E|⇥ p
↵

2
1

1 . . . p
↵

2
k

k

= p
1+↵

2
1

1 . . . p
1+↵

2
k

k

.
We refer to [5, Lemma 4.1] for (2). ⇤

Lemma 8.3 ([5], Lemma 4.2). Let E be an a�ne algebra such that |E| = p↵1
1 . . . p↵k

k

,

where the p
i

are distinct primes, and let M = 1 + max1ik

(↵
i

). Then E has a

generating set with M elements.

The following theorem is a particular case of Kearnes’ result in [7], also see [5,
Corollary 4.4].

Theorem 8.4. Let A be finite a�ne algebra. Let p↵1
1 . . . p↵k

k

be the prime decompo-

sition of |A|. Let S be a subdirectly irreducible algebra in VarA. Then |S| divides
p
↵

2
1

1 . . . p
↵

2
k

k

.

Lemma 8.5. Let A  B be a�ne algebras, then |B/⇥
A

| = |B|/|A|.

Proof. A�ne algebras are well known to have congruence classes of equal cardinality
(see for example [3, Corollary 7.5]). As A is a congruence class of ⇥

A

, the result
follows. ⇤
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Lemma 8.6. Let A be an a�ne algebra, with |A| = p↵1
1 . . . p↵k

k

where the p
i

are

distinct primes. Set V = VarA. Let L 2 N. Then

|FV(L)| divides p
L↵

2
1+↵1

1 . . . p
L↵

2
k+↵k

k

.

Proof. We may identify FV(L) with the term clone Clo
L

(A). Each s : AL !
A in Clo

L

(A) is compatible with t, moreover Clo
L

(A) is stable under t, there-
fore hClo

L

(A); ti is a subalgebra of hHom(hA, tiL, hA, ti); ti. Hence |FV(L)| =

|Clo
L

(A)| divides |Hom((A, t)L, (A, t))| which itself divides p
L↵

2
1+↵1

1 . . . p
L↵

2
k+↵k

k

by
Lemma 8.2(2). ⇤
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