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Abstract. Neutrons produced by the carbon fusion reaction 12C(12C,n)23Mg play an im-

portant role in stellar nucleosynthesis. Past studies have shown large discrepancies be-

tween experimental data and theory, leading to an uncertain cross section extrapolation at

astrophysical energies. We present the first direct measurement which extends deep into

the astrophysical energy range along with a new and improved extrapolation technique

based on experimental data from the mirror reaction 12C(12C,p)23Na. The new reaction

rate has been determined with a well-defined uncertainty which exceeds the precision re-

quired by astrophysics models. Using our constrained rate, we find that 12C(12C,n)23Mg

is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae.

1 Introduction

The first stars in the early Universe formed about 400 million years after the big bang. Verification of

the existence of these stars is important for our understanding of the evolution of the Universe [1]. It
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has been predicted that for Population-III stellar production yields, the abundances of odd-Z elements

are remarkably deficient compared to their adjacent even-Z elements [2]. Astronomers are searching

for long-lived, low mass stars with the unique nucleosynthetic pattern matching the predicted yields

[3]. The relevance of 12C(12C,n)23Mg in the first stars has been discussed by Woosley, Heger, and

Weaver [4]. By the end of helium burning in Pop-III stars, the neutron to proton ratio in the ash is

almost exactly 1. In the subsequent carbon burning phase,however, frequent β+ decay of produced
23Mg converts protons into neutrons, thus increasing the neutron to proton ratio. A slight excess of

neutrons would significantly affect the abundances of the odd-Z isotopes with neutron to proton ratios

higher than 1, e.g. 23Na and 27Al.
12C(12C,n)23Mg is also a potentially important neutron source for the weak s-process occurring in

Pop-I and II stars. Pignatari et al. [5] recently performed a study of the weak s-process during carbon

shell burning for a 25 M� stellar model using different 12C(12C,n)23Mg rates. They found that a factor

of 2 precision or better would be desirable to limit its impact on the s-process predictions to within

10%.

Stellar carbon burning has three main reaction channels:

12C + 12C → 23Mg + n − 2.60 MeV

→ 23Na + p + 2.24 MeV

→ 20Ne + α + 4.62 MeV

With Q < 0, the probability of decay through the neutron channel is weakest among the three at the

low energies relevant for stellar burning conditions. For a typical carbon shell burning temperature

of T9 = 1.1, the important energy range for this channel is 2.7<Ecm < 3.6 MeV. The reaction was

first studied in 1969 by Patterson et al. [6] who measured the cross section over the range Ecm=4.23

to 8.74 MeV by counting β-rays from 23Mg decays. From this measurement, a constant neutron

branching ratio, βn= 2%, was deduced [7]. Later Dayras et al. extended the measurement down to

Ecm=3.54 MeV by counting the γ-rays emitted following the 23Mg beta decay. The experimental

uncertainty is about 40% at Ecm ≈ 3.8 MeV and increases to 90% at the lowest energy [8]. To

estimate the cross section at the stellar burning energies, Dayras et al. had to rely on an extrapolation

of the experimental data based on a Hauser-Feshbach statistical model calculation. Because of the

unique molecular resonances existing in the 12C+12C fusion reaction, their calculation could only be

renormalized to the average trend of the data whereas the resonant behavior of the 12C+12C fusion

reaction was ignored. The maximum deviation between the experimental result and the renormalized

statistical model prediction is more than a factor of 4. Nevertheless, based on the statistical model

extrapolation, this work recommended a neutron branching ratio of βn= 0.011%, 0.11%, 0.40%, and

5.4% at T9= 0.8, 1.0, 1.2, and 5, respectively, though no attempt was made to quantify the uncertainties

in these predictions [8].

In 1988, Caughlan and Fowler (CF88) excluded this result from their rate compilations [9]. In-

stead, they recommended βn= 0 (T9< 1.75), βn= 5% (1.75≤T9< 3.3) and βn= 7% (3.3≤T9 < 6.0).

This rate was adopted by REACLIB after fitting the CF88 ratio with the standard REACLIB for-

mula [10]. So far, to our knowledge, the Dayras rate has only been implemented in the stellar code

KEPLER [11, 12].

2 Direct measurement of 12C(12C,n)23Mg at energies above Ecm=3 MeV

The experimental work was performed at the University of Notre Dame’s Nuclear Science Laboratory

using the 11 MV FN tandem Pelletron accelerator. Carbon beams were produced at energies ranging

from 5.1 to 8.7 MeV (lab frame) with typical currents on target between 0.5 and 1.5 pμA. A 1-mm
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Figure 1. (Color online) Upper: The 12C(12C,n)23Mg S*-factor results from the present measurement (black

squares) compared with previous data sets from Dayras 1977[8] (purple circles) and Bucher 2013[14, 16] (ma-

genta triangles). Also shown is the neutron branching ratio calculated by Dayras applied to the total 12C+12C

fusion S*-factor recommended by CF88 [9] (red solid line) and the new extrapolation from this work (blue cir-

cles). Only statistical errors are shown for the experimental data, while the extrapolation includes both statistical

and a 40% systematic error. Lower: The Gamow yield for T9=1.1 is plotted.

thick hydrogen-free Highly Ordered Pyrolytic Graphite (HOPG) target made from natural carbon was

used to control the hydrogen-induced background [13]. The target was cooled by circulating deionized

water through the supporting flange, which was centered in a block of polyethylene containing 20 3He

proportional counters arranged around the beam axis in two concentric rings [14, 15].

The main sources of beam-induced neutron background were from the reaction 13C(12C,n)24Mg

[14]. With a large positive Q-value (8.99 MeV) and the relatively high natural abundance of 13C in

the target (1.1%), neutrons from 13C(12C,n)24Mg dominate the total yield at very low beam energies

near the 12C(12C,n)23Mg reaction threshold. To estimate its contribution, the 13C(12C,n)24Mg reaction

was studied with the same setup using a 13C beam with energies ranging between 9.5 and 5.4 MeV.

Since the cross section for this reaction is much higher, relatively low beam intensities (�50 pnA) with

shorter run times were sufficient. The normalized 12C(13C,n)24Mg yield was then subtracted from the

measured total neutron yield recorded with the 12C beam [16].

The room background rate was measured to be 9.015(92) evts/min, which dominated the yield at

energies below Ecm= 3.0 MeV. The background contribution from 2H(12C,13N)n was studied using a

thin TiD2 target with thick Cu backing. After removing the room background, this contribution was

found to be less than 5% of the total yield at Ecm= 3.3 MeV increasing to 19% at 3.1 MeV.

The cross section for the 12C(12C,n)23Mg reaction was determined by differentiating the thick tar-

get yield [17]. In Fig. 1, it has been converted to a modified S-factor (S*) [6, 17] for comparison with

previous results. It is seen that the new results display good agreement with previous measurements in

the overlapping energy region while extending much deeper into the astrophysical energy range. The

15% systematic uncertainty primarily results from the uncertainties in the beam current (10%), de-

tector efficiency (6%) [15], angular distribution (5%), and stopping power (7%) [16, 18]. The Dayras

results also have an additional systematic uncertainty of 16% [8] not shown in Fig. 1.
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3 Extrapolation based on 12C(12C,p)23Na

An extrapolation is required to estimate the reaction cross section at the lower energies beyond experi-

mental reach. As mentioned earlier, Dayras et al. provided a renormalized statistical model calculation

for this purpose. However, the large discrepancy between the experimental data and their theory calls

into question the reliability of the extrapolation. To provide a better prediction including the effect of

the molecular resonances in the entrance channel, a novel extrapolation method has been developed

based on experimental information from the mirror reaction 12C(12C,p)23Na. The predicted neutron

cross section, σn(pred), is obtained using the formula

σn(pred) =

N∑

i=0

σni(th)

σpi(th)

σpi(exp) (1)

where N is the highest available decay channel in the residual 23Mg, which depends on the reaction

energy. For Ecm≤ 4.6 MeV, only the n0 and n1 channels are open. The theoretical ratio,
σni(th)

σpi(th)
, is calcu-

lated using TALYS [19] combined with entrance channel spin populations supplied from a coupled-

channels calculation by Esbensen [20]. The resonances in 12C(12C,ni)
23Mg and 12C(12C,pi)

23Na orig-

inate from both the molecular resonances in the entrance channel and the characteristic resonances

in the final decay channels. The traditional statistical model calculation employed by Dayras uses

the optical model and assumes a high level density to describe the entrance and exit channels and

therefore could only reproduce the average trend of the experimental data. In our approach, the com-

plicated molecular resonance associated with the entrance channel is embodied in the experimental

cross sections (σpi(exp)) of 12C(12C,pi)
23Na, the mirror system of 12C(12C,ni)

23Mg, whereas the statisti-

cal model is only used to predict the decay width ratio between the ni and pi channels. Since the proton

energy resolution in the Zickefoose experiment from Ref. [21] was insufficient to resolve p0 from p1,

only the sum, σp0
+ σp1

, is available for Ecm< 4 MeV. Eq. 1 has been modified to accommodate the

combination of p0 and p1. Additionally, the measurements of 12C(12C,pi)
23Na performed by Fang et

al. in the energy range 3<Ecm< 6 MeV [22] have also been used to predict the 12C(12C,n)23Mg cross

section [14]. In this case, up to N=6 possible decay channels are required for the prediction calculated

in Eq. 1.

Figure 2 shows the ratios between our measured 12C(12C,n)23Mg cross section σn(exp) and the two

σn(pred) based on the Zickefoose and Fang proton data sets plotted as a function of Ecm. The average

ratios (standard deviations) for the Zickefoose and Fang predictions are 0.9(4) and 0.9(3), respectively.

The ratios to the Dayras calculation are also shown for comparison. The large deviation at Ecm� 4.8

MeV has been eliminated by our approach. The fluctuations, which are larger than the quoted statis-

tical uncertainties, reflect the systematic errors associated with our extrapolation. They consist of the

systematic errors in the proton measurements, the assumed entrance channel spin populations, and the

TALYS calculation used in the prediction of
σni(th)

σpi(th)
. To provide better consistency with the experimen-

tal 12C(12C,n)23Mg data, our extrapolation has been renormalized by the factor 0.9. We have adopted

0.4 as the systematic error in accordance with the Zickefoose-based prediction since that data set was

used for the extrapolation, being the only one to reach sufficiently low energies.

4 New reaction rate for 12C(12C,p)23Na and its astrophysical impact

The new cross section defined by our extrapolation and experimental data has been used to calculate

the 12C(12C,n)23Mg reaction rate. To highlight the important stellar energy range for a typical car-

bon shell burning temperature of T9= 1.1, the Gamow yield is computed and shown in Fig. 1. Our
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Figure 2. (Color online) The ratio of our 12C(12C,n)23Mg cross section data σn(exp) to the two σn(pred) based on the
12C(12C,p)23Na data from Zickefoose (blue diamonds) [21] and from Fang (red squares) [22]. while the dashed

lines represent 1 standard deviation. As a comparison, the ratios of our σn(exp) to the Dayras prediction are shown

as black circles.

measurement covers about half of the stellar energy range. It reduces the dependence on extrapola-

tion in the astrophysical reaction rate and provides a base for examining the systematic uncertainty of

extrapolation.

A good fit of the 12C(12C,n)23Mg reaction rate was difficult to achieve using the standard

REACLIB format due to its endothermic character. Following the convention of Dayras [8], our
12C(12C,n)23Mg rate has been normalized to the standard CF88 12C+12C total fusion rate. The neu-

tron branching ratio, βn, has been fitted and can be found in [23]. The uncertainty for the reaction rate

is estimated based on the error bars of experimental and extrapolated cross sections. It is found that

only the Dayras rate agrees with our new rate within the quoted uncertainty. At typical carbon shell

burning temperatures T9� 1.1–1.3, the uncertainty is less than 40% which is sufficient for studying

the weak s-process. The uncertainty is reduced to 20% at T9� 1.9–2.1 which is relevant for explosive

carbon burning.

The impact of 12C(12C,n)23Mg on the nucleosynthetic pattern of 200 M� Pair Instability Super-

novae (PI SNe) has been investigated using the 1D stellar evolution code, KEPLER [11, 12]. It is

found that this reaction is important for the nucleosynthesis of odd-Z elements such as Na and Al. By

including our 12C(12C,n)23Mg rate in the calculation, the production of 23Na is increased by a factor

of 5 (0.7 dex) with an uncertainty less than ∼10%. The yield of 27Al is increased by nearly a factor of

2 (0.3 dex). The impact on the nucleosynthesis of 18 M� Pop-III star and Pop-I star can be found in

ref. [23].

5 Summary

We have measured the 12C(12C,n)23Mg cross section for the first time within the Gamow window for

the stellar carbon burning processes. Our measurement covers half of the important energy range.

For the lower unmeasured energies, we have developed a novel extrapolation method based on the
12C(12C,p)23Na channel. A new reaction rate has been determined with, for the first time, a quantified

uncertainty that satisfies the precision required from astrophysics models. As a result, the ambiguity

arising from the uncertain 12C(12C,n)23Mg reaction rate has been eliminated. With our new rate,

we find that 12C(12C,n)23Mg is crucial for constraining the production of Na and Al in Pop-III pair

instability supernovae.
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