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ABSTRACT
Indoor object recognition is a key task for indoor navigation by mobile robots. Although previous
work has produced impressive results in recognizing known and familiar objects, the research of
indoor object recognition for robot is still insufficient. In order to improve the detection precision,
our study proposed a prior knowledge-based deep learning method aimed to enable the robot to
recognize indoorobjects on sight. First,we integrate thepublic Indoordataset and theprivate frames
of videos (FoVs) dataset to train a convolutional neural network (CNN). Second, mean images, which
are used as a type of colour knowledge, are generated for all the classes in the Indoor dataset. The
distance between every mean image and the input image produces the class weight vector. Scene
knowledge, which consists of frequencies of occurrence of objects in the scene, is then employed
as another prior knowledge to determine the scene weight. Finally, when a detection request is
launched, the two vectors together with a vector of classification probability instigated by the deep
model are multiplied to produce a decision vector for classification. Experiments show that detec-
tion precision can be improved by employing the prior colour and scene knowledge. In addition, we
applied themethod to object recognition in a video. The results showed potential application of the
method for robot vision.
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1. Introduction

The detection and recognition of indoor objects is an
essential task in robot vision. Real-time, highly accu-
rate indoor object recognition can greatly assist in robot
navigation and manipulation (Khan, Hayat, Bennamoun,
Togneri, & Sohel, 2016). In fact, many tasks associated
with robot navigation depend directly on the recogni-
tion of indoor objects (Collet, Berenson, Srinivasa, & Fer-
guson, 2009; Ramisa, Alenyà, Moreno-Noguer, & Torras,
2014; Srinivasa et al., 2010). To enhance the robot’s perfor-
mance during indoor navigation, it is therefore necessary
to design a reliable recognition method.

Classical studies on indoor object recognition mainly
relied on machine learning techniques (Ding et al., 2016,
2017;Mei, Yang, & Yin, 2017; Nan, Xie, & Sharf, 2012; Serre,
Wolf, Bileschi, Riesenhuber, & Poggio, 2007; Uijlings, van
de Sande, Gevers, & Smeulders, 2013). However, these
methods involve a complex pipeline design and can-
not learn deep features to generalize their extension.
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Other studies focussed on the design of statistical mod-
els to understand indoor geometry (Espinace, Kollar, Roy,
& Soto, 2013; Pero et al., 2012; Wang, Gould, & Roller,
2013). However, these models lack sufficient precision
(Pero et al., 2012; Wang et al., 2013).

Because RGB-D sensors, such as Kinect, provide not
only colour but also depth information in scenes, RGB-D
cameras are beingwidely used to guide indoor robot nav-
igation (Husain, Schulz, Dellen, Torras, & Behnke, 2017).
Jiang, Koch, and Zell (2016) developed a real-time recog-
nition system for fruit and small-textured objects for
a mobile robot equipped with the Kinect RGB-D sen-
sor. Other studies also contributed the design of RGB-D
descriptors for object recognition. Blum, Springenberg,
Wülfing, and Riedmiller (2012) proposed a convolutional
k-means descriptor for object recognition in RGB-D data.
Chae, Park, Yu, and Song (2016) proposed away to recog-
nize objects for simultaneous localisation and mapping
(SLAM) based on an object-level descriptor using a depth
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sensor. Bo, Ren, andFox (2013) proposedanunsupervised
feature learning method for RGB-D data, and the fea-
tures were employed for object recognition using linear
support vector machines. By using RGB-D data, Asif, Ben-
namoun, and Sohel (2017) employed convolutional neu-
ral networks (CNNs) to extract features for object recog-
nition and grasp detection. Although depth information
contained in the RGB-D data can produce more robust
results, relevant techniques are usually more complex
and computationally expensive. Furthermore, because
depth information is generally capturedby infrared lasers,
RGB-D implementation involves a process of multimode
optimization. For the sake of brevity, we focus on object
recognition within the scope of the RGB mode.

Recently, deep learning has gained increasing atten-
tion in the area of computer vision. It has been employed
to undertake many computer vision tasks, such as recog-
nition (Eitel, Springenberg, Spinello, Riedmiller, & Bur-
gard, 2015; Neverova, Wolf, Taylor, & Nebout, 2014;
Schwarz, Schulz, & Behnke, 2015; Zhang et al., 2016),
detection (Bianco, Celona, & Schettini, 2016; Gupta, Gir-
shick, Arbeláez, & Malik, 2014), and image segmentation
(Couprie, Farabet, Najman, & Lecun, 2013; Gupta et al.,
2014). The task of indoor recognitionmay be divided into
two main types: scene recognition and object recogni-
tion. In this study, we focus on indoor object recognition.
However, the practice of extending existing deepmodels
to indoor objects is still in its infancy, partially owing to
the insufficiency of training datasets.

In order to improve detection precision, our study
carries out indoor object recognition using a prior
knowledge-based deep learning method, which learns

deep features using annotated objects and predicts
unknown objects using the features. Generally, public
deep learning datasets (e.g. ImageNet (Schwarz et al.,
2015), Chalearn’s Looking at People dataset (Neverova
et al., 2014), and Washington RGB-D Object (Eitel et al.,
2015)) or private datasets (e.g. MIT campus buildings
(Zhang et al., 2016)) are employed for training indoor
objects. In this study, we first combine the public Indoor
dataset (Quattoni&Torralba, 2009) and theprivate frames
of videos (FoVs) dataset to train aCNNmodel, because the
integration datasets are in favour of improving the detec-
tion precision (Ding et al., 2017). Because object colour
may be helpful for object recognition, we second employ
colour as a type of prior knowledge to enhance the detec-
tion precision of the resulting deep model. In addition,
due to particular objects having a tendency to occur in
certain scenes, we then employ scene as another type of
prior knowledge to enhance the detection precision of
the model.

The remainder of this paper is structured as follows.
Section 2 describes our proposed method. Training and
experiments are presented in Section 3 and Section
4, respectively. Section 5 focuses on an application of
the method for robot vision. Finally, some concluding
remarks follow in Section 6.

2. Proposedmethod

Figure 1 shows the architecture of the method pro-
posed in this paper. For the implementation of indoor
object recognition, we propose deep features involving
colour knowledge and scene knowledge for recognition

Figure 1. Outline of the proposedmethod. (a) CNN trainingmodule. (b) Colour knowledge. (c) Scene knowledge. (d) Input for detection.
(e) Knowledge fusion. (f ) Output classification.
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(Figure 1). After combining the public Indoor dataset
(Quattoni & Torralba, 2009) and the private FoVs dataset,
we first train a CNN model (Figure 1a). Mean images,
which are used for colour knowledge, are then generated
for all the corresponding classes in the Indoor dataset
(Figure 1b). After that, scene knowledge, which consists
of frequencies of occurrence of objects in the scene, is
employed as another type of prior knowledge (Figure 1c).
When a detection request is launched, as shown in Figure
1d, the input image is first forwarded to the deep learn-
ing model to produce a vector of classification probabil-
ity pCNN. Second, the input image subtracts every mean
image in Figure 1b to produce a class weight vector. Sim-
ilarly, its scene knowledge is used to produce a scene
weight vector. After that, the three vectors are multi-
plied to produce a decision vector, as shown in Figure
1e. Finally, the output classification of the input image is
the index with the maximum value in the decision vector
(Figure 1f).

2.1. Convolutional neural network

In order to implement recognition of indoor objects, we
employ a CNN to train a deep model for classification.
In detail, we use CaffeNet as our reference implementa-
tion, as shown in Figure 2. The images used for training
consist of the public Indoor dataset (Quattoni & Tor-
ralba, 2009) and the private FoVs dataset. They were
scaled to 256× 256 pixels without regard for their origi-
nal width and height ratio, since Caffenet requires input
images of this size. Every private video was recorded
from the surroundings of an object. The Indoor dataset
contains 481 categories, while the number of annota-
tions among categories varies. There are over 300 cat-
egories containing no more than 100 objects. Because
a category with small object numbers cannot be used
to train a deep model, and the number of samples
used for training must be greater than the number of
parameters, we rebuilt Caffenet by designing the size of
the full connection layers, i.e. fc6 and fc7, to be 2048
(Figure 2).

2.2. Class weighting

Because object colour may be helpful for object recogni-
tion, we employ colour as a type of prior knowledge to
enhance the hit rate of the resulting deep model. Let D
be the Indoor dataset (Quattoni & Torralba, 2009), let Dk ,
(k = 1, 2, · · · , K) be the k-th class in D. Let I(k)i be the i-th

image in Dk , i.e. I
(k)
i ∈ Dk ⊂ D. Let the mean image of Dk

beMIDk . Then,MIDk is given by equation (1):

MIDk =
∑

Ii∈Dk
(Ii)M×N

card(Dk)
(1)

where M and N are the number of rows and the number
of columns of I, respectively; card(Dk) is the number of
elements in Dk .

An input image I is compared with MIDk to produce
class distance, as shown in equation (2):

dk =
M∑

y=1

N∑

x=1

|I(x, y) − MIDk (x, y)| (2)

where I(x, y) is the intensity of I at a pixel lying at the x-
column and y-row. Similarly, we haveMIDk (x, y).

The class weight is then defined as in equation (3).

wc = (d1, d2, · · · , dK)T
255MN

(3)

2.3. Sceneweighting

Generally, particular objects are found in certain scenes,
such as a bed is usually found in a bedroom. Therefore,
we also employ scene as another type of prior knowledge
to help the deep model in decision-making. Let Sl , (l =
1, 2, · · · , L)be the l-th scene inD. The sceneweight vector
of the l-th scene fl is defined as in equation (4).

fl = (fl,1, fl,2, · · · , fl,K)T (4)

where fl,k is the scene weight of the k-th class in the l-th
scene, and it may be calculated as equation (5).

fl,k = card(Ii ∈ Sl ∩ Dk)

card(Sl)
(5)

Figure 2. Illustration of the architecture of our Caffenet.
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2.4. Knowledge fusion

When a detection request is launched, colour and scene
knowledge are fused to help detection. The detection
image is first forwarded to the deep model to produce a
vector of classification probability pCNN. Then, its colour
and sceneweights are generated from (3) and (4), respec-
tively. The output classification of image I, which comes
from the l-th scene, is the index for which the decision
vector is at a maximum, as shown in equation (6).

c = arg
i
maxwc ◦ fl ◦ pCNN (6)

wherewc ◦ fl is the Hadamard product ofwc and fl , which
is defined as (wc ◦ fl)i = wc(i)fl(i).

2.5. Time analysis

For our knowledge-based method, there is no additional
work involved in the training stage. During the stage
of detection, the input image is subtracted by every
mean colour image, which is in size of 256× 256. There-
fore there are K× 256× 256 subtractions for using colour
knowledge. In order to use its scene knowledge, a L
loop is required to index the input scene knowledge.
During the knowledge fusion step, two Hadamard pro-
ductions tailed by the probability vector normalization
are required. The operations for this step total to 6 K.
In all, additional K× 256× 256+ L+ 6 K operations are
required compared with the non-knowledge method.

3. Training the deepmodel

Our pre-trainingmodule runs on a dual-core i-3 4160 CPU
with 16GB RAM equipped with the NVIDIA GeForce GTX
1080 graphics card with 8 GB memory. Caffenet is com-
piled under Ubuntu 16.04 with CUDA Toolkit 8.0, cuDNN
5.1 library, Anaconda3, and OpenCV 3.1. The protocol
buffer version employed for Python 3.5 is 3.0.0.

We use the Indoor dataset (Quattoni & Torralba, 2009)
and the FoVs for our CNN model. The experimental
dataset consists of indoor objects belonging to 21 differ-
ent classes. Because a category with a small number of
objects cannot be used to train a deep model, an Indoor
dataset class was retained if it contained more than 500
members. Using these parameters, weobtained 18object
categories, as shown in Table 1. In order to take per-
sonalized objects into account, we extended the result-
ing dataset using the FoVs. The extension included 17
categories. Every category extension employed multiple
videos, and each video was created from the surround-
ings of a particular object. The extended categories DP,
screen, and TM are three new categories added to the
categories from the Indoor dataset. The other fourteen

Table 1. Categories used for our CNNmodel.

Class
index

Semantic
class

Class
index

Semantic
class

Class
index

Semantic
class

0 Wall 7 Picture 14 Bottle
1 Lamp 8 Plant 15 Table
2 Floor 9* Chair top 16 Curtain
3 Window 10* Painting 17* Book
4 Ceiling 11* Chair occluded 18 Desk partition
5 Chair 12 Door 19 Screen
6 Books 13 Pillow 20 TV monitor

The class indexes 0–17 are those categories with more than 500 members
from the Indoor dataset. Class indexes 18–20 are extended personal cate-
gories using FoVs. The semantic classes marked with asterisks are the four
categories not extended by FoVs.

categories are shared by both the Indoor dataset and the
FoVs dataset. FoVs were appended to the correspond-
ing Indoor categories. In all, Indoor and FoVs datasets are
employed for Caffenet in this study (Table 1). For conve-
nience, the four categories that are not extended by FoVs
are marked with asterisks.

The whole dataset was divided into three subsets
used for training, validation, and testing. The division
was implemented using a loop choice in the ratio 2:1:1.
The resulting element counts were 36,268, 18,134, and
18,133. After 450,000 iterations, the resulting accuracy of
the Indoor+FoVs model was 0.9009. The time spent on
training was 27.5 h.

4. Experiments

4.1. Test experiments

In this section, we describe the test experiments imple-
mented against the test subset. After parsing all the
object images from the Indoor dataset, all images anno-
tated with the same object were placed in a folder. The
mean images were generated by a folder scan using
equation (1). Figure 3 shows the mean images of classes
0–17 in the Indoor dataset.

In this study, all the annotation files of the Indoor
dataset were scanned to count the occurrence of the
18 classes. The images from the Indoor dataset were
placed in 67 different folders. When the object images of
the Indoor dataset were parsed, we counted their scene
occurrences to find the scene weight. Figure 4 shows the
resulting scene weight, in which the scenes were sorted
by their names in alphabetical order. The scene with tag
0 represented ‘airport_inside’ in the Indoor dataset.

Figures 3 and 4 present heterogeneity, which may be
helpful for object recognition. The mean image (MI) of
plant, i.e. class 8, in Figure 3 presents green. The MI of
painting, i.e. class 10, in Figure 3 shows four borders like
a frame around it. Class 1 presents high intensity in its
centre. It is lamp. On the contrary, classes 5 and 11 show
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Figure 3. The mean image (MI) of 18 classes in the Indoor dataset.

Figure 4. Heatmapof scene knowledgeof all classes found in the
Indoor dataset.

low intensity. In Figure 4, certain classes in a certain scene
present high weights. Overall, the deep model may take
advantage of prior knowledge, such as colour and scene,
during detection.

After the acquisition of prior knowledge, we imple-
ment detection using equation (6). In order to evaluate
our approach, we use top-1 precision and mean average
precision (mAP) as two measures of performance, where

mAP is the average of all the precisions obtained for all
queries. Together with mAP, the resulting classes’ top-1
precisions on the test subset are shown in Table 2.

Compared with Caffenet, the prior knowledge-based
method achieves a better result with amAP of 86.3%. The
increase in the detection precision for wall, books, paint-
ing, chair occluded, and book categories are remarkable.
Although the resulting precisions for ceiling, door, table,
and curtain categories are inferior, the small differences
show the comparability of the method. Results demon-
strate that detection precision can be improved by
employing colour and scene knowledge.

Table 3 shows some top-3 classifications togetherwith
their probabilities. The semantic classes marked with
asterisks are top-1 classification. (F|T) reveals the exam-
ple, in which CaffeNet results in a false classification
whereas our proposed method results in a correct classi-
fication under top-1 classification. Similarly, we have (F|F)
and (T|F).

It is unavoidable for top-1 classification to incur mis-
classification due to samples that are difficult to cate-
gorize, such as chair, wall, picture, and ceiling in Table
3. However, misclassification may be reduced if top-3
evaluation is implemented, as shown in Table 3. For Caf-
feNet and our proposed method, both chair and ceiling
are correctly classified under top-3 evaluation. The wall

Table 2. Top-1 precision (%) on test dataset. mAP is the abbreviation of mean average precision.

Class index 0 1 2 3 4 5 6 7 8 9* 10*

Caffenet 85.9 90.8 92.2 88.8 90.1 93.6 89.9 92.3 95.9 74.7 45.2
Proposed method 90.0 92.3 92.2 91.1 90.0 94.4 93.2 93.8 96.1 80.7 51.0
Class index 11* 12 13 14 15 16 17* 18 19 20 mAP
Caffenet 38.6 92.7 93.4 92.9 91.5 91.3 27.9 1.00 1.00 1.00 84.2
Proposed method 50.3 92.5 95.3 94.0 90.8 90.3 33.3 1.00 1.00 1.00 86.3
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Table 3. Top-3 classifications together with their probabilities.

Object True class CaffeNet Proposed method

(F|T) ceiling (window*, ceiling, books)
(0.48, 0.30, 0.12)

(ceiling*, window, wall)
(0.69, 0.18, 0.11)

(F|T) chair (bottle*, chair, plant)
(0.64, 0.32, 0.01)

(chair*, lamp, plant)
(0.89, 0.06, 0.02)

(F|F) wall (ceiling*, floor, lamp)
(0.53, 0.41, 0.02)

(ceiling*, floor, wall)
(0.53, 0.45, 0.02)

(F|F) picture (books*, chair, painting)
(0.55, 0.33, 0.05)

(chair*, painting, window)
(0.36, 0.26, 0.13)

(T|F) ceiling (ceiling*, wall, table)
(0.65, 0.35, 0.00)

(wall*, ceiling, table)
(0.66, 0.34, 0.00)

(T|F) painting (painting*, floor, lamp)
(0.30, 0.24, 0.09)

(floor*, painting, picture)
(0.41, 0.37, 0.10)

Table 4. Timing (s) on a dual-core i-3 4160 CPU equipped with
GTX 1080 GPU. ATpS is the abbreviation for average time per
sample.

Method Time (s) ATpS (s)

CaffeNet 1862.2 0.10
Our method 2471.8 0.13

is correctly detected by our proposed method. Neither
CaffeNet nor knowledge-based method is able to cor-
rectly detect picture in (F|F). However, painting, which
occurs in top-3 classification, is a close classification of the
object picture. It can be inferred that top-3 accuracy may
alleviate misclassification.

In Table 4we summarize the running time of the entire
object detection on test dataset using python. Since the
total number of samples in test dataset is 18,133, the
test results reveal that our proposed method requires
approximately 30ms for every input.

4.2. Comparison experiments

In this section, we describe the comparison experiments
implemented on theNYU v2 dataset. The dataset consists
of a total of 1449 samples of different indoor scenes. We
parsed seven object classes from images in the labelled

Table 5. Comparison experiments for NYU v2 on 7 classes.

Method Wall Floor Win Ceiling Books Pic Table

Couprie et al. 89.4 68.0 37.8 33.2 31.7 38.5 18.0
Hermans et al. 71.8 91.5 46.1 83.4 45.4 35.8 27.7
Caffenet 83.2 66.2 47.0 77.8 13.5 12.8 15.8
Proposed method 86.7 73.1 46.8 73.0 14.6 19.4 15.4

dataset based on annotated labels. After resizing the
parsed patches to 256× 256 pixels, they are inputted
into the proposed model for recognition. Couprie et al.,
2013 applied a multiscale convolutional network to learn
features combining the images and its depth informa-
tion. Hermans, Floros, and Leibe (2014) proposed a fast
2D semantic segmentation approach based on a novel
2D-3D label transfer method. Table 5 shows our individ-
ual labelling top-1 precisions compared with the Couprie
et al. (2013), Hermans et al. (2014), and Caffenetmethods.

Although Couprie et al. (2013) and Hermans et al.
(2014) result in higher accuracies, the results of Caffenet
and the proposed method shown in Table 5 are transfer
results from the Indoor dataset to the NYU dataset. The
average accuracies of Caffenet and the proposedmethod
are 45.2 and 47.0, respectively. Compared with Caffenet,
our proposed method achieves a better result overall.
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5. Application

In this section, we present an application of our proposed
method for robot vision. A videowas createdusing a cam-
era to test indoor object recognition. The scene is a typical
indoor office environment. A video of the room was cap-
turedover a spanof 31 s. The video is thenparsed into 940
frame images. The resolution of the FoVs is 1280× 720.

Figure 5 illustrates the overall structure of the appli-
cation presented in this paper. To implement indoor
object recognition, we parse the input video into frame
images (Figure 5a). Then, the regions of interest (RoIs) are
extracted using a selective search (Uijlings et al., 2013)
(Figure 5b). These RoIs are then resized to 256× 256 pix-
els and classified into candidates using the proposed
method (Figure 5c). Those candidates that are in the same
category and show an overlap greater than 0.5 between
thenearest framesare fused intooneclassification (Figure
5d). Finally, the frames annotated with bounding boxes
are concatenated into video as theoutput (Figure 5e). The
parameter k, which controls the size of segments in the
initial segmentation, is set to 200 in this study. The num-
ber of RoIs extracted fromFoVs ranges from45 to 217. The
detection was implemented offline. The detection result
was resized into a 256× 256 image and forwarded to our
proposed model for classification.

Although our model (Figure 5c) may predict a clas-
sification for every RoI, misclassification is unavoidable.
In order to reduce misclassification, detection fusion is
employed in our design. We fused candidates that were
derived from the deep model between nearest frames
when they were classified in the same category and their

Table 6. Interval counting over all the prediction probabilities.

Interval (0,0.5] (0.5,0.75] (0.75,0.9] (0.9,1]

counting 9 5312 5765 7779
hit rate (%) 0.5 28.2 30.6 41.2

overlap was greater than 0.5. Figure 5d shows object
fusion in two frames. The top-left object shown by a black
line is indexed with category 12. However, the top-left
object shownby a red line is classified into category 15. As
the two candidates are classified in different categories,
they are misclassified. On the contrary, both the second
candidates shown in the two framesare classified into cat-
egory 1, and their overlap area is greater than 0.5. They
are annotated in a fused state and the annotation box is
the minimum coverage of the two candidates. After the
decision vector is normalized to a unit vector, the frame
of the box is coloured red, yellow, green, or blue to show
the probability of the prediction if its probability is in the
interval (0.9,1], (0.75,0.9], (0.5,0.75], or (0,0.5], respectively.
Table 6 shows these intervals countingover all the predic-
tion probabilities, which totals to 18,865. Table 6 shows
that most of predictions hit their classifications with a
probability more than 0.75. The low prediction probabil-
ity that less than 0.5 is rare.

After all of the FoVs are assigned the aforementioned
probability, wemerge the frames into an annotated video
at a frame rate of 6 fps (Supplement 1). For convenience,
some detection results are shown in Figure 6. Figure 6a
is the first output frame, in which the recognized object
does not fuse with other objects. The detection results

Figure 5. Pipeline of application. (a) Input video. (b) Extraction of proposed regions of interest (RoIs). (c) Prior knowledge-based deep
model. (d) Detection fusion. (e) Output video.



256 X. DING ET AL.

Figure 6. Some detection results. (a) The first output frame from our proposed model in which recognized objects do not fuse with
others. (b), (c), and (d) are the detection results of the 70th, 494th, and 808th frames, respectively.

of the 70th, 494th, and 808th frames are shown in Figure
6b–d, respectively.

Our method may be applied to indoor object detec-
tion. Figure 6 shows that detection fusion is necessary
in our pipeline. Although there are a lot of detections in
Figure 6a before fusion, many of them are misclassified.
Furthermore, although the door of the cupboard is mis-
classified to ‘floor’ (Figure 6b), the misclassification may
be corrected when the cupboard goes through the video
and comes to the centre of the scope. The video (Sup-
plement 1) shows the door of the cupboard is detected
frequently and correctly from the 40th frame to the 108th
frame. The real windows, floor, table, DP, TM, chair, and
door are almost all correctlydetected in Figure6c andd. In
the detection video, the objects labelled ‘window’, ‘desk
partition’, ‘TV monitor’, and ‘chair’ can be frequently and
correctly detected most of the time when they are in the
scope of the video.

The experimental results suggest that our proposed
method may be applied to indoor object detection, and
the use of prior knowledge is helpful in enhancing a robot
vision for indoor object recognition.

6. Conclusion

In this paper, we proposed a prior knowledge-based
deep model for indoor object recognition. In our design,

prior knowledge of colour and scene was utilized to help
the deep model to make a decision when a detection
request is launched. Both the test and comparison exper-
iments demonstrate that the knowledge-based method
enhances the hit rate for object detection. Based on our
proposed model, we implemented an application for an
indoor video. The application experiments show that this
method may be applied to robot vision. The main con-
tribution of this work is three-fold. (a) This work con-
tributes to indoor object recognition for robot vision.
(b) Our study proposed a knowledge-based method. (c)
The proposed method is in favour of improving detec-
tion precision. A potential future research project may
concentrate on accelerating detection speed so that
real-time detection may be implemented on a mobile
robot.
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