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ABTRACT: Macrocyclic ligands have been explored extensively as scaffolds for transition met-

al catalysts for oxygen and hydrogen atom transfer reactions. C-C reactions facilitated using 

earth abundant metals bound to macrocyclic ligands have not been well-understood but could be 

a green alternative to replacing the current expensive and toxic precious metal systems most 

commonly used for these processes. Therefore, the yields from direct Suzuki-Miyaura C-C cou-

pling of phenylboronic acid and pyrrole to produce 2-phenylpyrrole facilitated by eight high-spin 

iron complexes ([Fe3+L1(Cl)2]+, [Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], [Fe3+L7(Cl)2]+,  

[Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, and [Fe2+L10(Cl)]+) were compared to identify the effect of 

structural and electronic properties on catalytic efficiency. Specifically, catalyst complexes were 

compared to evaluate the effect of five properties on catalyst reaction yields: 1. the coordination 

requirements of the catalyst, 2. Redox half-potential of each complex, 3. topological con-

straint/rigidity, 4. N-atom modification(s) increasing oxidative stability of the complex, and 5. 

geometric parameters. The need for two labile cis-coordination sites was confirmed based on a 

42% decrease in catalytic reaction yield observed when complexes containing penta-dentate lig-

ands were used in place of complexes with tetra-dentate ligands. A strong correlation between 

iron(III/II) redox potential and catalytic reaction yields was also observed, with [Fe2+L6(Cl)2] 

providing the highest yield (81%, -405 mV). A Lorentzian fitting of redox potential versus yields 

predicts that these catalysts can undergo more fine tuning to further increase yields. Interestingly, 

the remaining properties explored did not show a direct, strong relationship to catalytic reaction 

yields. Altogether, these results show that modifications to the ligand scaffold using fundamental 

concepts of inorganic coordination chemistry can be used to control the catalytic activity of mac-

rocyclic iron complexes by controlling redox chemistry of the iron center. Furthermore, the data 

provides direction for the design of improved catalysts for this reaction and strategies to under-

stand the impact of a ligand scaffolds on catalytic activity of other reactions.   

KEYWORDS. C-C coupling, iron, catalysis, high-spin iron, cross-bridged cyclen, cross-bridged 

cyclam 
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Introduction  

Biological systems functionalize unreactive compounds such as alkanes and alkenes un-

der mild conditions, but comparable laboratory transformations require multiple steps that in-

clude expensive and/or toxic materials such as palladium, protecting groups, and strong oxi-

dants.1-9 Efforts to translate the chemistry of earth abundant metal systems such as iron-based 

metalloenzymes to the laboratory have resulted in many publications concentrating on the sub-

strate scope of a particular metal salt or complex.10-13 These studies optimized directing groups, 

steric requirements, and electronic properties of the substrate using a single catalyst.  

Although it is necessary to identify the limitations of the catalyst, it is also important to 

determine the properties of the metal center and the ligand scaffolds that allow catalytic process-

es to occur. For example, structural characterization of tetra-azamacrocycles in nature, specifical-

ly, hemoglobin, myoglobin, and cytochrome p450 revealed that the axial ligands tune the reactiv-

ity of the enzymes by changing the resting state and accessible oxidation states of the iron center, 

while ligand modification is also well-understood for tuning Fe-S clusters.14-15 The insight 

gained from characterization of natural systems has led to the development of biomimetic cata-

lysts containing synthetic tetra-azamacrocycles to emulate the reactivity of natural systems.16-18 

The reactivity of biomimetic catalysts has been altered by varying the ring size, rigidity, and 

amine functionalization of tetra-azamacrocycles bound to the metal center.11, 13, 19-22 The inorgan-

ic chemistry of metallo-biomimetic catalysts used for oxygen insertion or oxygen activation reac-

tions has also been thoroughly investigated.23-27 For example, [Fe2+(L8)(OTf)2] catalyzes the 

epoxidation and cis-dihydroxylation of olefins,28 [Fe3+LN4Me2]+ (LN4Me2 = N,N’-dimethyl-

2,11-diaza[3.3](2,6)pyridinophane) catalyzes cis-dihydroxylation of alkenes29 and intradiol-

cleavage,30 and [Fe3+cyclen(Cl)2]+ (cyclen = 1,4,7,10-tetraazacyclododecane) catalyzes  water 
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oxidation.31 Mechanistic studies have shown that each oxidative reaction proceeds through a dif-

ferent catalytic pathway. The iron center is proposed to be redox active in both the cis-

hydroxylation [iron (III/V)] and water oxidation [iron(III/IV)] mechanisms.29, 31 Conversely, the 

iron(III) catalyst was proposed to be redox inert in intradiol-cleavage reactions.30 Two labile cis-

coordination sites are necessary for each of these catalytic reactions, despite the varied oxidation 

state of the iron catalyst.  

Fewer details are understood for iron-based catalysts using tetra-azamacrocyclic scaffolds 

for C-C coupling reactions. Interestingly, Bedford and co-workers reported that iron catalysts 

derived from rigid tetra-azamacrocycles, such as L8, resulted in poor yields for the cross-

coupling of pre-activated species such as 4-tolyl magnesium bromide with cyclohexylbromide.7 

Conversely, iron salts in the presence or absence of organic chelates have also been reported to 

catalyze direct C-C coupling reactions.7, 12-13 Most studies have focused on the scope and versa-

tility of specific ligand and metal salt mixtures, leaving the metal complex(es) unstudied.  For 

example, Wen et al. reported that together, a 12-membered tetra-azamacrocycle (L1=1,4,7,10-

tetra-aza-2,6-pyridinophane, Figure 1), oxygen, and an iron(II) salt are capable of catalyzing di-

rect Suzuki-Miyaura type C-C coupling reactions. The direct coupling is highly advantageous by 

avoiding the need for reagent pre-modifications, such as aryl halides.32 Although a general cata-

lytic mechanism was presented, the oxidation state of the iron catalyst was not assigned. Moreo-

ver, the authors claim to have mass spectrometry evidence for the catalytic species, but the pro-

posed structure does not match the isotopic envelope reported (detailed in Figure S1). Recently, 

we reported that in the presence of oxygen, L1 and Fe(ClO4)2 
 form a high-spin iron(III) complex 

that is capable of arylation of  pyrrole with phenylboronic acid to produce 2-phenylpyrrole, thus 

showing that the catalyst enters the catalytic cycle in the 3+ oxidation state.33 Iron(III) complexes 
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of L2 and L3 (L2 =1,4,7,10-tetra-aza-2,6-pyridinophane-14-ol; L3 =1,4,7,10-tetra-aza-2,6-

pyridinophane-13-ol]) were shown to be equally competent catalysts. Herein, a fundamental in-

organic approach was used to analyze the properties of iron catalysts derived from a range of 

macrocyclic complexes that increase C-C efficiency for this reaction.  

Importance of the interplay of ligand properties. This work seeks to evaluate the ef-

fect of five different properties (1. coordination number, 2. redox properties, 3. complex ri-

gidity/topological constraint, 4. N-atom modification to increase resistance to oxidative 

degradation, and 5. complex geometric parameters) on the catalytic efficiency of a series of 

iron complexes. Our approach, below, will discuss each parameter separately. However, these 

parameters cannot typically be considered completely in isolation from one another, as they are 

related in a complex interplay that defines a given transition metal catalyst. Here, we would 

briefly like to point out some of the relationships between these parameters and provide an ex-

ample of their interplay in a related catalytic system to provide more context for this current 

work. 

Topological constraint (complexity of ligand donor atom interconnectedness) is intimate-

ly associated with complex stability through the chelate, macrocycle, and cryptate effects.34  In 

small ligand systems, such as those studied here, topological complexity also results in increased 

rigidity of the complex, as the ligand freedom of motion is restricted by the many rotation-

restricted bonds holding its donor atoms in place. The “constraint” factors (increased topological 

complexity and increased rigidity) tend to make transition metal complexes much more kinetical-

ly stable towards solvolytic decomposition. The constraint factors have resulted in modern coor-

dination complexes with stabilities well beyond the elementary matching of size, geometry, and 
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electronic preferences of the ligand with the metal ion; these factors are known as “complemen-

tarity” factors.28, 35-39   

 

Ligand 
Size of 

Macrocycle 

N-Donor 

Atoms 
Cross- 

Bridged 

(CB) -NH -NMe -N(CB)N- -PyN 

L1-L3 12 3 0 0 1 X 

L4 12 0 3 0 1 X 

L5 12 2 2 0 0 X 

L6 14 2 2 0 0 X 

L7 12 0 2 2 0   

L8 14 0 2 2 0   

L9 12 0 2 2 1   
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Figure 1. Tetra-azamacrocycles used to produce high-spin iron catalysts described herein 

and comparison of structures.33, 40, 32, 41, 42 43  

 

Yet, these complementarity factors are still important and also help control the stability of a 

complex. The electronic match between the hard/soft acid/base properties of nitrogen donors and 

iron(III/II) ions control the redox potentials and reversibilities of the catalysts studied. Similarly, 

the geometric preference of an octahedral geometry for a d6 iron(II) cation must match the donor 

placement and cavity size of the azamacrocycle, and this match is evident in the bond angles and 

bond lengths of the Fe-N coordination sphere.  Returning to the chelate effect, an additional che-

lated donor appended to the ligand is expected to increase complex stability via the chelate ef-

fect, but must also alter redox properties, geometric parameters, and coordination number in 

ways which may not be helpful to overall catalyst activity.  Finally, changing secondary nitrogen 

donors to tertiary ones by simple methylation may be intended only to protect against oxidative 

degradation, yet will also increase slightly the rigidity of the ligand and will alter the redox po-

tentials of the complex.  Thus, the challenge in designing the “ideal ligand” is to “shim” these 

collected properties collectively by incrementally improving them one-by-one to give a collec-

tively more stable, yet still reactive, catalyst. 

An example of a successfully realized catalytic system, manganese azamacrocyle oxida-

tion catalysts, “shimmed” in this way may be useful to illustrate the challenges and the potential 

for this approach. Catalytic oxidation in water of “stain” molecules on clothing inspired the 

Mn(TMTACN) catalysts developed in the 1990’s (Figure 3).44-46 Yet, their lack of selectivity in 

oxidation reactivity contributed to their removal from consumer products because of their dam-

L10 14 0 2 2 1   
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age to cloth.46   Busch looked to the cross-bridged tetra-azamacrocycles of Weisman to increase 

the stability of the metal complexes by increasing the coordination number, as well as increasing 

the topological complexity and rigidity of the system.35, 47-65 However, the parent cross-bridged 

tetraazamacrocycles (like H2EBC, Figure 3) containing two secondary amines were ineffective 

oxidation catalysts under harsh aqueous conditions as they formed µ-oxo dimers that were coor-

dinatively saturated and thermodynamic sinks.48 Methylation of the two secondary amines re-

sulted in just enough steric bulk to prevent dimerization, decreased oxidative degradation of the 

complex, and resulted in monomeric catalysts stable enough to withstand harsh aqueous oxida-

tion conditions.  Selection of the cyclam-based ligand over the cyclen-based system was based 

on (1) greater kinetic stability toward solvolytic decomplexation of the larger ligand which could 

better engulf the metal ion and make stronger, more nearly octahedral bond angles; and (2) high-

er oxidation potentials (thus more oxidizing power) for the cyclam system due to a preference of 

the larger macrocycle for the larger manganese(II) ion.  The resulting [Mn(L8)Cl2] oxidation 

catalyst has been extensively studied and patented over the last 20 years because it is the result of 

a combination of optimized parameters.  Yet even this very successful complex may be “too re-

active” for some purposes, and is not particularly selective for producing single specific oxida-

tion products.  A recent parameter modification was the appending of a pyridine pendant arm 

(L10), which increased the coordination number to five, reduced the oxidation potential(s), and 

made the catalyst more selective towards single major oxidation products.66 It is this type of iter-

ative parameter examination that we explore here for the optimization of iron catalysts for C-C 

bond formation. 
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Figure 2. Iron catalysts derived from macrocyclic ligands discussed in this work.33, 47, 66 

 

Figure 3. Ligands and catalytically active manganese complexes studied previously.44-46, 48, 51, 66-

67 
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A comparison of the catalytic reaction yields of four high-spin iron(III) and four high-

spin iron(II) complexes for the coupling of phenylboronic acid and pyrrole to form 2-

phenylpyrrole was used to identify key properties of the iron catalyst responsible for providing 

enhanced yields. Specifically, the ligands in Figure 1 were chosen to vary five properties: the 

coordination requirements of the catalyst, increasing redox stability of the complex, topological 

constraint/rigidity, N-atom modification(s), and geometric parameters around the metal center of 

the complexes shown in Figure 2. Complexes, [Fe3+L7(Cl)2]PF6,47 [Fe3+L8(Cl)2]PF6,47 and 

[Fe2+L10(Cl)]PF6
 66 were synthesized using previously reported procedures. However, complex-

es [Fe3+L4(Cl)2]PF6, [Fe2+L5(Cl)]Cl, [Fe2+L6(Cl)2], [Fe2+L9(Cl)]PF6, and [Fe3+L1(Cl)2]Cl 

were produced for the first time and are reported herein. As noted above, many of these ligands 

or similar systems have been used to support metal catalyzed oxidation, hydroxylation, or other 

reactions.29,35, 68-69,71 This study serves to show the versatility of macrocyclic systems and specif-

ic features that should be retained in these ligands to obtain optimized yields in the coupling C-C 

coupling of phenylboronic acid and pyrrole.  

Experimental 

General Methods.  Pyrrole was distilled under reduced pressure prior to use; all other 

reagents including anhydrous iron(II) chloride (Sigma Aldrich) used were obtained from com-

mercial sources and used as received, unless noted otherwise. 1H-NMR spectra were obtained on 

a 300- or 400-MHz Bruker Avance spectrometer using deuterated solvents and spectra were ref-

erenced using the corresponding solvent resonance (in parts per million; CDCl3, δ = 7.26 ppm).70 

For proper identification of the NMR signals the following abbreviations were used: s = singlet, 

d = doublet, t = triplet, m = multiplet. No NMR data were obtainable for [Fe3+L4(Cl)2]PF6  and 

[Fe3+L1(Cl)2]Cl. Elemental analysis was performed by Canadian Microanalytical Service Ltd. 
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The following compounds were synthesized using previously published procedures: L1 – L3,71-72 

PyNMe3 (L4),73 Me2Cyclen (L5;1,7-dimethyl-1,4,7,10-tetraazacyclododecane)74, Me2Cyclam 

(L6; 1,8-dimethyl-1,4,8,11-tetraazacyclotetradecane)75, Me2BCyclen (L7),42 Me2EBC (L8),35 

CB-MePyCyclen (L9),43 PyMeEBC (L10),66 [Fe3+L7(Cl)2]PF6,47 [Fe3+L8(Cl)2]PF6,47 and 

[Fe2+L10]PF6.   

Synthesis. [Fe3+L4(Cl)2]PF6: FeCl3·6H2O (109 mg, 0.404 mmol) was dissolved in 9 mL 

methanol and added drop-wise to L4 (124 mg, 0.500 mmol) dissolved in minimum volume of 

methanol. A large amount of precipitate formed when half of the iron solution was added, the 

reaction was allowed to stir overnight at which time the majority of precipitate re-dissolved. The 

remaining solid was removed by filtration through celite, and [(Bu)4N]PF6 (787 mg, 2.03 mmol) 

was added as a solid resulting in precipitate of a yellow powder. The product was isolated via 

filtration and washed with small amount of methanol. Yield: 78% (164 mg, 0.316 mmol). ESI-

MS+ Calc (Found):  374.0727 (373.9824). Absorption spectrum (CH3CN), λmax, (ε, M-1·cm-1): 

326 (5,000) and 408 (sh; 1,400) nm; ([Fe3+L4(Cl)2]+). Elemental Analysis: Calc. (Found) for 

C14H24Cl2FeN4PF6: C, 32.33(32.15); H, 4.65(4.90); N, 10.77(10.67). 

[Fe2+L5(Cl)]+: In an inert atmosphere glovebox, 0.401 g (2.0 mmol) of L574 and 0.254 g 

(2.0 mmol) of anhydrous iron(II) chloride were added to a 20 mL reaction vial and 15 mL of an-

hydrous dimethylformamide was added with stirring, making a clear pale yellow solution. The 

reaction was stirred at room temperature for seven days. The solution was filtered into a 500 mL 

Erlenmeyer flask to remove any trace solids. Anhydrous ether (200 mL) was added and a pre-

cipitate formed immediately. Using a filter frit the solid was filtered off and washed with ether 

and left on the frit to dry in glovebox.  A white solid powder product was obtained.  Yield = 

0.570g (87%). 1H NMR (CD3OH, 300 MHz): δ 0.837ppm (m, 4H); 1.129 (triplet, 6H); 1.332 (s, 
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2H); 1.237 (br singlet, 6H); 2.038 (s, 2H); 3.442 (m, 2H). ESI-MS+:m/z = 292 (FeLCl+). Ab-

sorption spectrum (CH3CN), λmax, (ε, M-1·cm-1): 276 (sh, 2,540) and 337 (2,480) nm. Ele-

mental Analysis: Calc. (Found) for (Fe(C10H24N4)Cl2 ∙ 0.4 H2O): C 35.93(35.93), H 7.48(7.09), 

N 16.76(16.56).  Blue X-ray quality crystals were obtained from ether diffusion into methanol 

solution, grown outside of the glovebox, and included an FeCl4
2- anion not present in the bulk 

white solid.  It is possible trace unreacted FeCl2, or complex decomposition, led to formation of 

this anion during the crystal growth. 

[Fe2+L6(Cl)2]: In an inert atmosphere glovebox, 0.342 g (1.5 mmol) of L675 and 0.190 g 

(1.5 mmol) of anhydrous iron(II) chloride were added to a 20 mL reaction vial and 15 mL of an-

hydrous acetonitrile was added with stirring, making a clear, colorless solution. The reaction was 

stirred at room temperature for seven days. The solution was filtered into a 50 mL round bottom 

flask to remove any trace solids. The flask was fitted with a gas inlet valve, removed from the 

glovebox under nitrogen, and attached to a vacuum line to remove the solvent under vacuum 

without exposing the complex to air.  A white solid powder product was obtained, which was 

pumped back into the glovebox without exposing to air.  Yield = 0.347 g (65%). 1H NMR 

(CD3OH, 300 MHz): Paramagnetically broadened, only two peaks, free solvent, and metal-

bound solvent observed; no peaks for the ligand observed.  3.240ppm (br singlet); 4.831ppm (br 

singlet) δ ESI-MS+: m/z = 319 (FeLCl+). Absorption spectrum (CH3CN), λmax, (ε, M-1·cm-1): 

278 (2,520) and 330 (990) nm. Elemental Analysis: Calc. (Found) for ([Fe(C12H28N4)Cl2): C 

40.59(40.65), H 7.95(8.29), N 15.78(15.62).  Pale pink X-ray quality crystals were obtained from 

ether diffusion into a methanol solution, grown inside of the glovebox. 

[Fe2+L9(Cl)]PF6: (303 mg, 1.00 mmol) of L943 and (127 mg, 1.00 mmol) of anhydrous 

FeCl2 (Aldrich) were stirred together in 5 mL anhydrous acetonitrile in an inert atmosphere 
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glovebox at room temperature for 48 h.  Insoluble solids were removed and discarded. The or-

ange-brown filtrate was allowed to evaporate to dryness (10 days) in the glovebox. The brown 

oil residue was dissolved in a minimum of anhydrous methanol.  (805 mg, 5.00 mmol) of anhy-

drous NH4PF6 was dissolved in 5 mL anhydrous methanol and added dropwise with stirring to 

the complex solution causing a tan precipitate to form. This precipitate was filtered off, washed 

with minimal methanol, then ether, and allowed to dry in the glovebox to give the pure product 

(297 mg, 55%). 1H NMR (CD3CN, 300 MHz): δ 0.884 (m, 2H); 1.288 (s, 3H); 3.015, (br m, 

10H); 3.304 (s, 4H); 3.550 (br m, 6H); 7.577 (m, 2H); 7.953 (m, 1H); 8.906 (m, 1H).  ESI-MS+ = 

394 (FeLCl+).  Absorption spectrum (CH3CN), λmax, (ε, M-1·cm-1): 257(4,010) and 419(580). 

Elemental Analysis: Calc (Found) for FeC17H29N5ClPF6 (539.71 g/mol): C 37.83 (37.60); H 5.42 

(5.22); N 12.98 (12.76). 

[Fe3+L1(Cl)2]Cl: Ligand (L1) (252 mg, 0.799 mmol) was dissolved in 3 mL DI water. 

Iron(III) chloride hexahydrate (222.3 mg, 0.823 mmol) was dissolved in 3 mL methanol, the 

metal was added dropwise to the ligand. Slow evaporation of methanol yielded yellow X-ray 

quality crystals. Yield: 12% (34 mg, 0.0932 mmol). Absorption spectrum (CH3CN), λmax, (ε, 

M-1·cm-1): 319 (4,500) and 390 (sh; 1,600) nm. Elemental analysis: Calc (Found) for 

C12H18Cl3FeN4·3H2O:  C 35.85(35.29); H 4.92(4.95); N 15.20(14.92). ESI-MS+ was consistent 

with the ClO4
- congener from previous reports.33  

Catalytic Reactions: Phenylboronic acid (24 mg, 0.20 mmol) and iron complex (0.02 

mmol) were added to a 2-10 mL flask equipped with a stir bar. Pyrrole (1 mL) was added to 

flask, the mixture was heated to 130 oC for 10 hours.  

  Yield Determination: Reactions were cooled to room temperature, and the pyrrole was 

removed in vacuo until no visible liquid was present. Care was taken to avoid product loss under 
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high vacuum. The reaction was dissolved in a minimum amount of CDCl3 and 5 µL of dimethyl-

diphenyl silane was added. The solution was filtered through a 0.2 µm nylon filter and a known 

amount of sample was added to a pre-weighed NMR tube. Yield determinations were performed 

using three resonances 6.875, 6.532, and 6.307 ppm, corresponding to 2-phenylpyrrole and a 

resonance at 0.533 ppm corresponding to dimethyldiphenyl silane. The reported values are aver-

ages of all resonances; each reaction was run in triplicate. 

Electrochemistry. Cyclic voltammetry experiments utilized 2-3 mM complex and 100 

mM tetrabutylammonium hexafluoroborate as the supporting electrolyte in DMF. The electro-

chemical cell was composed of a working glassy carbon electrode, a Pt auxiliary electrode, and a 

silver wire as the reference electrode.  The potential values presented here have been normalized 

to the half-wave potential of the Fc+/Fc = 0.00 mV. 

X-ray Crystallography. (For [Fe3+L1(Cl)2]+) Crystal diffraction data for [Fe3+L1(Cl)2]+ 

were collected at 100 K on a Bruker D8 Quest Diffractometer. Data collection, frame integration, 

data reduction (multi-scan) were carried out using APEX3 software.76  The structure was solved 

via intrinsic phasing methods using ShelXT77 and refined with ShelXL78 within the Olex2 graph-

ical user interface.79   All non-hydrogen atoms were refined using anisotropic thermal parame-

ters, while the hydrogen atoms were treated as mixed.  The ORTEP molecular plots (50 %) were 

produced using Platon.80 (For [Fe2+L5(Cl)]+) A small block-like crystal of [Fe2+L5(Cl)]2[FeCl4] 

having dimensions 0.13 x 0.07 x 0.05 mm3 was secured to a Mitegen micromount using Paratone 

oil and its single crystal reflection data was collected at 100 K using a Rigaku Oxford Diffraction 

(ROD) SuperNova X-ray diffractometer equipped with an Atlas S2 CCD detector and micro-

focused Cu Kα1 radiation (= 1.54184 Å).    Data collection strategies to ensure completeness and 

redundancy were determined using CrysAlisPro.81  Data processing for all samples was done us-
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ing CrysAlisPro and included a numerical absorption correction applied via face-indexing using 

the SCALE3 ABSPACK scaling algorithm.82  The structure was solved via intrinsic phasing 

methods using ShelXT77 and refined with ShelXL78 within the Olex2 graphical user interface.79  

The space group was unambiguously verified by PLATON.83  The final structural refinement 

included anisotropic temperature factors on all constituent non-hydrogen atoms.  Given the 

quality of the data collected, hydrogen atoms were located in the difference map and refined. 

(For [Fe2+L6(Cl)2]) Single crystal X-ray diffraction data were collected in series of x-scans us-

ing a Stoe IPSD2 image plate diffractometer utilizing monochromated Mo radiation (k = 0.71073 

Å). Standard procedures were employed for the integration and processing of the data using X-

RED.84 Samples were coated in a thin film of perfluoropolyether oil and mounted at the tip of a 

glass fiber located on a goniometer. Data were collected from crystals held at 150 K in an Oxford 

Cryosystems nitrogen gas cryostream.  Crystal structures were solved using routine automatic 

direct methods implemented within SHELXS-97.85 Completion of structures was achieved by 

performing least squares refinement against all unique F2 values using SHELXL-97.85 All non-H 

atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed us-

ing a riding model. Where the location of hydrogen atoms was obvious from difference Fourier 

maps, C-H bond lengths were refined subject to chemically sensible restraints. 

 

Results and Discussion 

As previously shown, the iron(III) complexes [Fe3+L1(Cl)2]+, [Fe3+L2(Cl)2]+, and 

[Fe3+L3(Cl)2]+ catalyze the C-C coupling reaction between pyrrole and phenylboronic acid to 

yield 2-phenylpyrrole.33 This study established that the macrocyclic ligand, iron salt, and oxygen 

were all required for the reaction to proceed and that L1-L3 iron(III) complexes provided similar 
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reaction yields.  Encouraged by our preliminary results, the availability of a library of macrocy-

clic scaffolds, and the positive attributes of an iron catalyst to carry out direct C-C coupling reac-

tions. Therefore, we set out to (1) exemplify/expand the versatility of macrocyclic ligands, previ-

ously shown to facilitate other catalytic transformations12,35, 68-69,71, to C-C chemistry to produce 

2-phenylpyrrole for the first time and (2) identify properties of such an iron catalyst that result in 

increased catalytic yields. Modifications to tetra-azamacrocyclic ligands abound in the literature 

and are known to impact electronics and structural features of metal complexes.10, 12, 17, 29, 47, 86-92 

For the study described herein, [Fe3+L1(Cl)2]+, [Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], 

[Fe3+L7(Cl)2]+,  [Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, and [Fe2+L10(Cl)]+ (Figure 2) at 10% loading 

resulted in a catalytic yields ranging from 19-81% (Table 1).  Given that each catalyst was iso-

lated and characterized prior to the catalytic studies, the inorganic properties of the iron catalysts 

could be compared for correlations to catalytic yield. Specifically, catalytic reaction yields, and 

the following properties were compared for each complex: (property 1) coordination require-

ments, (property 2) the reductive and oxidative properties of the complex, (property 3) the rigidi-

ty/topological constraint of the complex, (property 4) the resistance of the complex against oxi-

dative degradation, and (property 5) geometric parameters about the iron center.  

Rational for ligand/complex comparison. As detailed in Figure 1, ligands L1-L8 have 

four N-atom donor atoms but vary from one another by ring size (12 versus 14), N-atom substi-

tution (secondary versus tertiary amine), and the presence of the cross-bridge between N-atom 

donors. Ligands L9-L10 are 12- and 14-membered systems, respectively, and provide five N-

atom donors. Therefore, the importance of coordination requirements (property 1) of the result-

ing iron catalyst was achieved by comparing complexes with tetra-dentate ligands 

([Fe3+L7(Cl)2]+ and [Fe3+L8(Cl)2]+) to penta-dentate ligands ([Fe2+L9(Cl)]+ and 
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[Fe2+L10(Cl)]+). The importance of the reductive and oxidative properties of the complexes 

(property 2) was determined by comparing the iron(III/II) half-wave potentials versus catalytic 

reaction yields of [Fe3+L1(Cl)2]+, [Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], [Fe3+L7(Cl)2]+
,  

[Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, and [Fe2+L10(Cl)]+. The effect of rigidity/topological ligand con-

straint (property 3) was investigated by comparing the most rigid metal complexes 

([Fe3+L7(Cl)2]+ and [Fe3+L8(Cl)2]+) to the least rigid metal complexes ([Fe3+L1(Cl)2]+, 

[Fe2+L5(Cl)]+, and [Fe2+L6(Cl)2]), based on the factors described above. The presence of tertiary 

amines has been shown to increase the stability of complexes toward oxidative degradation; 

therefore, the impact of complex stability against oxidative degradation (property 4) on C-C cata-

lytic reaction yields was evaluated directly by comparing the [Fe3+L1(Cl)2]+ (N-atom donors) 

with [Fe3+L4(Cl)2]+ (-NMe donor atoms).29 Finally, geometric parameters about the iron center 

(property 5) were probed by comparing geometric parameters of [Fe3+L1(Cl)2]+, [Fe2+L6(Cl)2],  

[Fen+L7(Cl)2]+, and [Fen+L8(Cl)2]+ determined through X-ray diffraction analysis.  

 

Table 1. Half-potential and catalytic reaction yield of iron complexes used to couple pyrrole and 

phenylboronic acid to produce 2-phenylpyrrole using 10% catalyst loading in the presence of air.  

 

Catalyst Yield (%)a E1/2 (mV)b 

[Fe3+L1(Cl)2]+ 57 ± 3 -465 

[Fe3+L4(Cl)2]+ 60 ± 1 -285 

[Fe2+L5(Cl)]+ 30 ± 2 -442 
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[Fe2+L6(Cl)2] 81 ± 7 -405 

[Fe3+L7(Cl)2]+ 74 ± 3 -391 

[Fe3+L8(Cl)2]+ 68 ± 4 -306 

[Fe2+L9(Cl)]+ 32 ± 5 -285 

[Fe2+L10(Cl)]+ 19 ± 2 73 

L3 + FeC2O4 ·2H2O 61 ± 5 - 

a Yields determined by NMR analysis.  
b Referenced vs. Fc/Fc+ 0.0 mV. 

 

Property 1: Coordination Requirements 

 Mechanistic studies pertaining to catalytic oxygen-atom transfer and insertion reactions 

indicate that two exchangeable cis-sites are needed for oxygen activation during the catalytic cy-

cle.28, 30 To date, the need for two cis-labile coordination sites has not been identified in iron 

catalyzed direct Suzuki-Miyaura C-C coupling reactions. Herein, the requirement for two labile 

cis-cites was determined by comparing catalysts with one exchangeable site ([Fe2+L9(Cl)]+, 

[Fe2+L10(Cl)]+) versus two cis-sites ([Fe3+L7(Cl)2]+, [Fe3+L8(Cl)2]+).  The loss of an exchange-

able cis-site led to a 42% reduction in catalyzing 2-phenylpyrrole formation using [Fe3+L7(Cl)2]+ 

(74 ± 3%) compared to [Fe2+L9(Cl)]+ (32 ± 5%). Similarly, a yield decrease of 49% was ob-

served when comparing [Fe3+L8(Cl)2]+ (68 ± 4%) with [Fe2+L10(Cl)]+ (19 ± 2%). Next, catalyt-

ic yields obtained from a mixture of L3 and iron(II) oxalate (an iron(II) complex of L3 was not 

isolable) were compared to [Fe3+L1(Cl)2]+ (Table 1) to validate that it was not the iron(II) oxida-

tion states of [Fe2+L9(Cl)]+ and [Fe2+L10(Cl)]+ that contribute to a decrease in catalytic yields 

versus the loss of a coordination site. As with all of the studies described herein, the conditions 

used mimic those reported previously.32 The mixture of L3 and iron(II) oxalate afforded 61 ± 5% 
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of 2-phenylpyrrole, which is comparable to the 57 ± 3% obtained when [Fe3+L1(Cl)2]+ was used. 

Therefore, the use of an iron(II) complex as opposed to the iron(III) complex does not decrease 

the amount of 2-phenylpyrrole produced. This is further supported when comparing 

[Fe2+L5(Cl)]+ (30 ± 3%) and [Fe2+L6(Cl)2] (81 ± 7%), which provide the lowest and highest re-

action yields, respectively, within the series of four-coordinate ligand based complexes explored. 

Furthermore, no significant differences are observed between catalytic yields of bona fide com-

plexes with chloride or perchlorate counter ions versus conditions mixing iron oxalate and L3 

(Table 1).32  This is in contrast to Wen et al., which reported that when mixtures of iron salts and 

L1 are used in the catalytic reaction, the oxalate salt afforded better yields than sulfate or chlo-

ride salts. The counter-ion effect previously reported may be attributed to solubility of the iron 

salts being prohibitive of catalyst formation in situ. Altogether, these results show that the addi-

tion of a 5th coordinating amine to the ligand scaffold significantly decreased catalytic yields, and 

therefore confirms the need for two exchangeable cis-sites.  

 

Property 2: Reductive and Oxidative Properties of the Complexes  

Ligand modifications are known to result in tuning the redox potential of the subsequent 

metal-ion complexes.93-95 In nature, the electrochemical potential of metalloenzymes is tuned by 

the ligand environment to produce different reactivities.15, 96-97 Therefore, the catalytic reaction 

yields of [Fe3+L1(Cl)2]+, [Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], [Fe3+L7(Cl)2]+
,  

[Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, and [Fe2+L10(Cl)]+ were compared to the iron(III/II) electro-

chemical potential of each catalyst to determine if the position of the iron redox potential effects 

the efficiency of 2-phenylpyrrole production (Table 1 and Figure 4-5). Cyclic voltammetry stud-

ies were carried out under identical conditions to one another and standardized to Fc/Fc+ (0.00 
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mV). As indicated in Figure 4, each scan was collected by beginning with the resting potential of 

each complex. The results indicate that the [Fe3+L1(Cl)2]+ complex affords the most negative 

iron(III/II) half potential (-465 mV), followed by [Fe2+L5(Cl)]+ (-442 mV), [Fe2+L6(Cl)2] (-405 

mV),  [Fe3+L7(Cl)2]+  (-391 mV), [Fe3+L8(Cl)2]+ (-306 mV), [Fe3+L4(Cl)2]+ (-285 mV), 

[Fe2+L9(Cl)]+ (-232 mV), and [Fe2+L10(Cl)]+ (73 mV). The more positive half-wave potentials 

derived from the pyridine pendant arm containing complexes, [Fe2+L9(Cl)]+ and [Fe2+L10(Cl)]+, 

could be related to having only one negatively charged chloride ion to stabilize the higher oxida-

tion state of the iron center versus two in the remainder of the complexes. This observation is in 

accordance with previous reports of similar manganese complexes.66 The half potentials of the 

iron complexes, thereby, indicates that L1 is the most donating followed by L5 > L6 > L7 > L8 

> L4 > L9 > L10. This order is in accordance to ring size and modifications of the N-atom do-

nors from the macrocycle scaffold. Overall, the 14-membered complexes result in more positive 

iron(III/II) potentials compared to 12-membered congeners; e.g. a shift of +85 mV is observed 

for [Fe3+L7(Cl)2]+
 versus  [Fe3+L8(Cl)2]+. Conversion of –NH to –NMe donors also results in a 

shift to more positive potentials, consistent with the N-atoms becoming weaker donors upon 

methylation. For example, a difference of +180 mV is observed for [Fe3+L1(Cl)2]+ versus 

[Fe3+L4(Cl)2]+. Finally, the topological constraint obtain by substituting the -NH donor ligands 

(L5 and L6) with an ethylene cross-bridge (L7 and L8) results in a more positive iron(III/II) po-

tential; [Fe3+L5(Cl)]+ versus [Fe2+L7(Cl)2]+ results in a shift of +51 mV.      

Figure 5 shows a plot of the iron(III/II) half-potentials versus catalytic reaction yields for 

each complex. Lorentzian fitting of the data predicts that a complex with iron(III/II) potentials in 

the range of -325.5 to -389.0 mV would be optimal for this C-C coupling reaction. The Lorentzi-

an fitting parameters can be found in the supporting information (Table S1). The direct relation-
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ship between catalytic reaction yield and iron(III/II) redox potentials suggests that the reaction 

mechanism depends upon an iron based electron transfer, which can be modulated by ligand 

choice. Altogether, this comparison shows redox potentials of the iron center should be a factor 

to consider when tuning a catalyst. As detailed in the interplay of ligand properties description, 

this redox potential is clearly tied to the rigidity and modification to the donor and could serve as 

a more direct predictor for catalytic success. Finally, this result helps to explain why the C-C 

coupling reaction does not proceed without a ligand donor present33; the redox chemistry of the 

iron center needs to be tuned to match that of the key step(s) involved in the C-C coupling reac-

tion cycle being carried out. 
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 Figure 4. Cyclic voltammogram overlay of the iron(III/II) couple measured for [Fe3+L1(Cl)2]+, 

[Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], [Fe3+L7(Cl)2]+,  [Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, 

and [Fe2+L10(Cl)]+ in DMF containing 0.1 M [Bu4N][BF4] as electrolyte, Ag wire as the refer-

ence electrode, a glassy carbon working electrode, and a platinum auxiliary electrode at a scan 

rate of 100 mV/s. The trace color indicates the initial direction of each scan: Black trace (toward 

more positive potential), Blue trace (toward more negative potential). 
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Figure 5. Plot of iron(III/II)  half-potentials versus yield for complexes: [Fe2+L10(Cl)]+ 

(●);[Fe2+L9(Cl)]+ (□); [Fe3+L4(Cl)2]+ (); [Fe3+L8(Cl)2]+ (◊); [Fe3+L7(Cl)2]+ (○); [Fe2+L6(Cl)2] 

(𝛁); [Fe2+L5(Cl)]+ (-); [Fe3+L1(Cl)2]+ (x).    

 

Property 3: Effect of Rigidity/Topological Constraint  

The series of cross-bridge free ([Fe3+L1(Cl)2]+, [Fe2+L5(Cl)]+, and [Fe2+L6(Cl)2]) versus 

cross-bridged complexes ([Fe3+L7(Cl)2]+ and [Fe3+L8(Cl)2]+) provide a good comparison to 

evaluate the impact of rigidity on catalytic reaction yields as they vary by both ring size and 
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presence of the rigidifying ethylene cross-bridge (CB). To the best of our knowledge, the incor-

poration of a cross-bridge into a ligand has not been explored as supports for direct C-C coupling 

reactions, particularly iron catalysts. For an example of a cross-bridged ligand supporting indi-

rect C-C coupling (pre-activated substrates), see reference 7. The rigidity of a complex can be 

controlled by the presence of an ethylene cross-bridge and the size of the macrocyclic ligand (12 

versus 14).48 Specifically, topological constraint34, a term that describes making a ligand’s donor 

atoms more interconnected, leads to more kinetically stable interactions between the metal ion 

and the ligand.36 The simple bridging of two nitrogen atoms of a cyclic ligand by a two-carbon 

chain dramatically changes how the ligand coordinates the metal ion, vastly increases the kinetic 

stability and ability to catalyze oxidation reactions.28, 35 In addition, smaller macrocyclic rings 

(12 versus 14 membered rings) also impart greater rigidity through ring strain that results when 

metals bind to the donor atoms. Based on these principles, the order of rigidity in the series stud-

ied is [Fe3+L7(Cl)2]+ (12 membered, CB) > [Fe3+L8(Cl)2]+ (14 membered, CB) > [Fe3+L1(Cl)2]+ 

(12 membered) ≥  [Fe2+L5(Cl)]+ (12 membered) > [Fe2+L6(Cl)2] (14 membered). The catalytic 

reaction yields do not parallel the rigidity/topological constraint: [Fe2+L6(Cl)2] (81 ± 7%) > 

[Fe3+L7(Cl)2]+ (74 ± 3%)  > [Fe3+L8(Cl)2]+ (68 ± 4%)  >  [Fe3+L1(Cl)2]+ (57 ± 3%) > 

[Fe2+L5(Cl)]+ (30 ± 2%). The results indicate that cross-bridged complexes ([Fe3+L7(Cl)2]+ and 

[Fe3+L8(Cl)2]+) in general result in higher yields compared to 12-membered noncross-bridged 

complexes ([Fe3+L1(Cl)2]+ and [Fe2+L5(Cl)]+). Conversely, the absence of a cross-bridge in 

[Fe2+L6(Cl)2] compared to [Fe2+L8(Cl)2] results in higher (+13 %) catalytic reaction yields. This 

supported that the presence of a cross-bridge and ring strain (12- versus 14-membered rings) 

tunes the reactivity. However, the effect on reduction and oxidation properties was dominant 
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compared to structural and stability considerations typically associated with cross-bridged sys-

tems alone.  

 

Property 4: Stability of the Complex against Oxidative Degradation 

The comparison of protected versus unmodified N-atoms in the ligands was prompted by 

Chow and co-workers, who reported that the use of iron catalysts for oxygen atom transfer reac-

tions derived from azamacrocycle ligands with the N-atoms methylated (-NMe) afforded a 99% 

conversion of substrate. This is in contrast to the non-methylated congeners, which resulted in 

only 38% substrate conversion. The observed increase in conversion with N-atom protected 

complexes was attributed to the presence of tertiary versus secondary amine donors, that provid-

ed an increased stability by resistance to oxidative degradation of the catalyst.29 The effect of in-

creased stability against oxidative degradation through protection of the N-atoms was evaluated 

for C-C coupling chemistry by comparison of [Fe3+L1(Cl)2]+ and [Fe3+L4(Cl)2]+, which utilize 

unprotected, secondary (-NH) amine donors versus tertiary (-NMe) donors, respectively (Figure 

2). The [Fe3+L1(Cl)2]+ (57 ± 3%) and [Fe3+L4(Cl)2]+ (60 ± 1%) complexes afforded comparable 

yields under identical conditions. Therefore, the substitution of the N-atoms as protection from 

catalyst decomposition is not a property to be considered in catalyst design for this reaction. 

Furthermore, this, along with the need for oxygen, suggests that the catalytic cycle may not 

involve highly reactive oxidative intermediates or conditions.  

 

 Property 5: Effect of Geometric Parameters  

A brief structural comparison between the novel catalysts presented here and related lit-

erature analogues may be helpful to orient the rationalization of catalytic performance with struc-
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tural parameters.  Figure 6 contains solid-state structures of each relevant complex and Table 2 

includes useful geometric parameters for comparison. A full list of structural parameters related 

to previously unreported complexes [Fe3+L1(Cl)2]Cl, [Fe2+L5(Cl)]2[FeCl4], and 

[Fe2+L10(Cl)]PF6 are available in supplementary information and supporting files (Figure S2, 

Tables S2-S8). 
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Table 2. Comparison of the catalytic reaction yields and useful geometric parameters, derived from solid-state structural data. Values 
in () indicate yields based on congener with complementary oxidation state to the species used for catalysis. 

Fig. 7 Complex 
(Coord Geometry) 

Catalytic 
Yield 

Mn+ ar 
(pm) 

Nax-Fe-Nax  
Angle (o) 

Neq-Fe-Neq  
Angle (o) 

Cl-Fe-Cl  
Angle (o) 

Cl-Cl 
Bond  
Dist (Å) 

M-N Bond  
Dist (Å) 

M-Cl Bond  
Dist (Å) Ref 

a 
[Fe2+L7(Cl)2]+ 
(Octahedral) (74) Fe2+ 92 145.78 77.31 93.42 3.511 

2.276 
2.269 
2.248 
2.240 

2.416 
2.407 

35 

b 
[Fe2+L8(Cl)2] 
(Octahedral) (68) Fe2+ 92 161.88 78.36 95.53 3.593 

2.275 
2.287 
2.257 
2.263 

2.426 
2.427 

35 

c 
[Fe3+L7(Cl)2]+ 
(Octahedral) 74 Fe3+ 79 153.20 77.81 95.10 3.377 

2.179 
2.158 
2.171 
2.163 

2.2853 
2.2911 
 

98 

d 
[Fe3+L8(Cl)2]+ 
(Octahedral) 68 Fe3+ 79 166.8 79.8 95.70 3.412 

2.188 
2.197 
2.223 
2.229 

2.278 
2.288 

99 

e [Fe2+L5Cl]+ 
(Square Pyramidal 
(τ) = 0.098b) 

30 Fe2+ 92 131.14 125.27 - - 

2.296 
2.278 
2.228 
2.232 

2.304 
This 
work 

f [Fe2+L6(Cl)2] 
(Octahedral) 

81 Fe2+ 92 162.4 91.5 94.4 3.58 2.27 
2.31 

2.438 
2.438 

This 
work 

g 

[Fe3+L1(Cl)2]+ 
(Octahedral) 57 Fe3+ 79 146.68 86.62 95.78 3.388 

2.181 
2.182 
2.161 
2.098(Npy) 

2.2862 
2.2805 

This 
work 

h 

[Fe2+L10(Cl)]+ 
(Octahedral) 19 Fe2+ 92 168.27 80.82 - - 

2.204 
2.232 
2.246 
2.285 
2.215(Npy) 

2.3805 66 

a Shannon, R. D. Acta Crystallogr. Sect. A 1976, 32, 751-767. 
b
 Addison, A. W.  et al. J Chem Soc Dalton 1984, 7, 1349-1356. 
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a)                 b)                                        c)                               d) 

  

e)               f)                                g)                                   h) 

                           

Figure 6. ORTEP (50% TELP) representation of a) [Fe2+L7(Cl)2] b) [Fe2+L8(Cl)2] c) 

[Fe3+L7(Cl)2]+  d) [Fe3+L8(Cl)2]+  e) [Fe2+(L5)Cl]+  f) [Fe2+(L6)Cl2]  g) [Fe3+L1(Cl)2]+  h) 

[Fe2+L10(Cl)]+. Hydrogen atoms and counter-ions have been omitted for clarity.35, 98-99  

 

The X-ray derived crystal structures of iron(II) and (III) dimethyl cross-bridged cyclen and 

cyclam complexes are found in Figure 6a-d and all have distorted octahedral geometries with the 

macrocyclic nitrogen atoms at the axial and two cis equatorial positions, leaving the remaining 

cis equatorial positions filled by chloro- ligands. The iron(II) complexes (Figure 6a-b,h) are pre-

sented for comparison with the other iron(II) structures, since we were unable to obtain iron(III) 

structures of [Fe2+L5(Cl)]+, [Fe2+(L6)Cl2], and [Fe2+L10(Cl)]+. For our purposes, these struc-

tures mainly differ by the extent to which the metal ion extends from the macrocyclic cavity to 

be available for catalytic reactivity.  The iron ion extends further from the cavity in both cyclen 

analogues (L5, L7) than the larger cyclam analogues (L6, L8), which can more fully engulf the 
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metal ion and thereby more closely approach octahedral geometry. Finally, the larger iron(II) 

cations are extended further away from the macrocycle cavity than the smaller iron(III) cations. 

The unbridged analogues ([Fe2+L5(Cl)]+ and [Fe2+(L6)Cl2]) of these just-discussed 

iron(II) complexes are found in Figure 6e-f and demonstrate the enhanced flexibility available 

without the ethylene cross-bridges. A direct comparison can be made between both octahedral 

cross-bridged cyclam complexes, which have Neq-Fe-Neq bond angles of 79.8o and 78.36o, re-

spectively, to the Neq-Fe-Neq bond angle of 91.5o in the likewise octahedral [Fe2+L6(Cl)2] (Fig-

ure 6f).  The Fe-N and Fe-Cl bond distances change less than 0.02 Å between the cross-bridged 

and unbridged iron(II) complexes even as the bond angles are adjusted. The unbridged ligand has 

more nearly octahedral bond angles and likely better orbital overlap for bonding, while the cross-

bridged complex has gained topological constraint that is most readily demonstrated as higher 

kinetic stability.40 The [Fe2+L5(Cl)]+ (Figure 6e) complex, on the other hand,  has a unique 5-

coordinate geometry that is best described as distorted square pyramidal (τ = 0.098).100 The flex-

ible cyclen macrocycle unfolds from its tight cis-configuration in the two cross-bridged cyclen 

octahedral structures in Figure 6a,c which have Neq-Fe-Neq bond angles of 77.81o and 77.3o, re-

spectively, to the analogous smallest Neq-Fe-Neq bond angle of 125.27o in the square pyramidal 

structure of [Fe2+L5(Cl)]+. This expansion of the macrocycle around the “equator” allows steric 

space for only one chloro- ligand, which is more tightly held, as would be expected, in this 5-

coordinate complex (Fe2+-Cl = 2.304 Å) than in the octahedral iron(II) bridged cyclen complex 

(Fe2+-Cl = 2.407 Å and 2.416 Å).  Presumably, the unbridged ligand could have folded more 

tightly to accommodate an octahedral structure with a second chloro- ligand, but at least in the 

solid state, the 5-coordinate mono chloro- complex was favored. 
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The [Fe3+L1(Cl)2]+ complex (Figure 6g) is pseudo-octahedral, folded like the cross-

bridged ligands, with two cis chloro- ligands and the pyridine donor located equatorially.  This 

complex has a Neq-Fe-Neq bond angle of 86.62o, which is larger than the 77.81o of the con-

strained complex [Fe3+L7(Cl)2]+, but much smaller than the highly flexible 125.27o of 

[Fe2+L5(Cl)]+.  Interestingly, the Nax-Fe-Nax bond angle of 146.68o for [Fe3+L1(Cl)2]+ is also 

intermediate between the 153.20o of [Fe3+L7(Cl)2]+ and the 131.14o of [Fe2+L5(Cl)]+.  It appears 

that inclusion of a pyridine in the macrocyclic ring is an effective strategy to select these inter-

mediate bond angles between those of the ethylene cross-bridged and unbridged cyclen ana-

logues and could be used for tuning complexes in future ligand design. 

Finally, the octahedral [Fe2+L10(Cl)]+ complex (Figure 6h) has metric parameters fairly 

similar to its L8 analogue (Figure 6b), with the trend of slightly larger N-Fe-N bond angles, as 

the pyridine pendant arm helps pull the iron(II) ion more fully into the ligand cavity.66 However, 

this ligand is pentadentate donor, and its pendant pyridine may interfere with the catalytic pro-

cess rather than enhance it, as the catalytic yield of [Fe2+L10(Cl)]+ is the lowest studied.  Pre-

sumably, the [Fe2+L9(Cl)]+ complex, though no crystal structure was obtained, would also have 

a pentadentate macrocyclic ligand and was likewise not a very active catalyst. 

In summary, comparison of the N-Fe-N angles versus reaction yields indicate that equa-

torial space about the exchangeable cis-sites and/or iron accessibility does not correlate to in-

creased catalytic reaction yield; the Neq-Fe-Neq and Nax-Fe-Nax were 91.5o and 162.4o  for 

[Fe2+L6(Cl)2], 86.62o and 146.68o for [Fe3+L1(Cl)2]+
, 79.83o

 and 166.8o for [Fe3+L8(Cl)2]+, and 

79.62o
 and 153.20o for [Fe3+L7(Cl)2]+

. Likewise, the differences in the corresponding Cl-Fe-

Cl() and Cl-Cl(Å) geometric parameters for the cis-chloride ions are derived from the chelate 
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composition and were analyzed as well. Small variations between [Fe3+L1(Cl)2]+ (95.78o, 3.388 

Å),  [Fe3+L7(Cl)2]+ (95.10o, 3.377 Å), and [Fe3+L8(Cl)2]+ (95.70o, 3.412 Å) are noted, but, like 

N-Fe-N angles, none correlate to the observed trends in catalytic yields. These studies help to 

support that the redox chemistry of the iron center plays the key role in controlling the catalytic 

reaction yields. Although, the accessibility to the iron center is a factor to consider, as shown by 

the need for two labile cis sites (property 1), the small changes in the axial and equatorial iron 

angles within the series studied does not correlate to catalytic reaction yields. This encourages 

the use of the range of tetra azamacrocycles available to synthetic chemists as considerations for 

tuning redox potentials to optimal ranges for this reaction.   

 

Conclusion 

Catalytic reaction yields of a library of high-spin iron complexes [Fe3+L1(Cl)2]+, 

[Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], [Fe3+L7(Cl)2]+,  [Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, 

and [Fe2+L10(Cl)]+ has been determined for the C-C coupling reaction that yields 2-

phenylpyrrole. Complex [Fe2+L6(Cl)2] afforded the highest yield (81%).  The systematic evalua-

tion of the coordination requirements, the reductive and oxidative properties of the complex, ri-

gidity/topological constraint of the complex, the stability of the complex toward oxidative degra-

dation by N-atom modification, and geometric parameters about the iron center revealed that op-

timized iron redox potential are responsible for the increase in catalytic reaction yield. The need 

for two labile cis-sites was probed and confirmed as a 42% decrease in yield was observed when 

only one labile labile-site was present. Altogether the fundamental approach to this series of 

catalysts for C-C coupling reactions shows some similarities to iron catalysts used in oxidation 

catalytic reactions, but there are differences that should be taken in to consideration when carry-



31 

 

ing out these reactions. The studies presented herein suggest that electronic control of the iron 

center via rationalized modification of the macrocycle ring size, modification to the N-atoms 

(methylation or cross-bridging) and/or further modification to the pyridine for electronic tuning 

could be used to improved yields obtained to date. Such a new class of molecules is the focus of 

our future studies. Altogether, this work provides an inorganic/coordination chemistry focused 

approach to optimizing catalytic reactions and expands the applications in which macrocycles 

and cross-bridged macrocycles are used. 
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