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A Microfluidic Device for Rapid Screening of E. coli O157:H7 

Based on IFAST and ATP Bioluminescence Assay for Water 

Analysis 

Bongkot Ngamsom,[a] Alma Truyts,[b] Louis Fourie,[b] Shavon Kumar,[b] Mark D. Tarn, [a] Alexander Iles,[a] 

Klariska Moodley,[b] Kevin J. Land,[b] and Nicole Pamme*[a]  

 

Abstract: We present a simple microfluidic system for rapid screening 

of Escherichia coli (E. coli) O157:H7 employing the specificity of 

immunomagnetic separation (IMS) via immiscible filtration assisted by 

surface tension (IFAST), and the sensitivity of the subsequent 

adenosine triphosphate (ATP) assay by the bioluminescence 

luciferin/luciferase reaction. The developed device was capable of 

detecting E. coli O157:H7 from just 6 colony forming units (CFU) in 

1 mL spiked buffer within 20 min. When tested with wastewater 

discharged effluent samples, without pre-concentration, the device 

demonstrated the ability to detect 104 CFU per mL seeded; suggesting 

great potential for point-of-need microbiological water quality 

monitoring. 

E. coli is a fecal coliform bacterium among those usually present 

in large numbers in the intestinal flora and feces of humans and 

other warm-blooded animals. The pathogenic strain of E. coli 

O157:H7 is generally present at very low concentrations (<200 

CFU/100 mL) in a larger heterogeneous microbial population in 

environmental water.[1] Detection of coliforms, specifically E. coli, 

is used to indicate microbiological water quality.[1] Several 

methods for detecting E. coli have been approved by regulatory 

bodies, e.g. the US Environmental Protection Agency (US EPA), 

and include membrane filtration followed by growth on selective 

M-Fc agar plates, and enzyme-based techniques, e.g. Colilert, 

Colisure (IDEXX Laboratories, Inc.)[1-2] Microfluidic platforms 

based on the enzyme-based method i.e. Mobile Water Kit 

(MWK),[3] and plunger-tube assembly[4] allowed field deployable 

E. coli detection in 1 h; these still rely on incubation period to 

increase bacteria concentration.  

Rapid techniques such as polymerase-chain reaction (PCR)-

based methods,[5] fluorescent in situ hybridization (FISH)[6] have 

been explored; however, these methods require expensive, 

specialized laboratory instrumentation and highly skilled 

personnel. A one-step detection of pathogenic bacteria employing 

immunomagnetic recognition and sample perfusion was 

reported; [7] based on volume change caused by bacterial growth 

in the fluidized chamber, and results were obtained within 2-8 h. 

The ATP-bioluminescence approach has been investigated as an 

alternative method to evaluate microbiological water quality.[8] 

The assay measures the bioluminescence produced during the 

reaction of luciferin/luciferase and molecular ATP, producing 

results within minutes. However, as ATP is a non-selective 

measure of bacterial cells, the ATP-bioluminescence assay was 

combined with the highly selective technique of IMS; which has 

been previously applied for the detection of E. coli in beach 

water.[8a] The target bacteria were selectively captured onto 

superparamagnetic beads functionalized with antibodies, forming 

bead-bacteria complexes which were subsequently separated 

from the matrix by a magnet. Quantitation of the captured 

bacterial cells was subsequently conducted using ATP 

bioluminescence assays. Together with pre-concentration by 

filtration; a detection of 20 CFU/100 mL can be achieved. This 

method, when used for rapid detection of E. coli and for 

enterococci enumeration in various wastewater sources, 

suggested a linear correlation between the results from IMS/ATP 

and traditional culture-based methods, with the benefit of results 

within 1 h rather than 24-72 h.[9] A microfluidic IMS/ATP system, 

so-called “3D immunomagnetic flow assay” reported 3 min 

detection of Salmonella in spiked lettuce solution after pre-

concentration by incubation of 3 h.[10]  

Analogous to tube-based IMS, IFAST is another microfluidic 

method that has been reported as a means to isolate and purify 

analytes of interest from complex matrices prior to detection 

methods.[11] Exploitation of the dominant surface tension and 

microfluidic geometries allowed immiscible liquids to be 

compartmented side-by-side, creating virtual walls.[11a-c, 12] The 

IFAST device consists of a series of fluidic chambers 

interconnected via gates. Paramagnetic particles, specifically 

bound to target analytes, can be transferred through these 

microfluidic gates by applying a moving magnetic field. 

Contaminants are unlikely to traverse the aqueous/oil interfaces 

as they remain magnetically inactive. In conventional tube-based 

IMS, where time and reagent consuming washing steps are 

required, IFAST enables rapid purification of the target analyte 

while also reducing costs by minimizing the use of expensive 
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reagents through miniaturization. IFAST has been applied for 

concentration of nucleic acids from cell lysates,[11b, 13] breast 

cancer cells from whole blood,[11c] and Helicobacter pylori from 

stool samples.[11d]  

In this work, the combination of the IFAST specificity and ATP 

assay sensitivity was exploited for the rapid detection of E. coli 

O157:H7 in contaminated water samples. The key technological 

approach comprises three consecutive steps (Scheme 1): (1) 

immunomagnetic capture of E. coli O157 by antibody 

functionalized superparamagnetic particles in the sample 

chamber, (2) magnetic isolation of E. coli O157-bound magnetic 

beads by applying a moving external magnetic field through 

immiscible liquids contained in the wash chambers and (3) rapid 

detection of E. coli O157 by ATP assay in the detection chamber 

using a photomultiplier tube (PMT) based detection device.  

 
 
Scheme 1. The three-step microfluidic IFAST/ATP approach enables 
concentration of E. coli O157, followed by detection via light produced by 
bioluminescence reaction between luciferin/luciferase and ATP released from 
isolated bacterial cells. 

 

First, the ability of the IFAST chip to concentrate and purify E. coli 

O157 from spiked buffered samples (steps 1 and 2, Scheme 1), 

was validated against the conventional tube-based IMS, 

employing a PDMS microfluidic chip (Figure 1a) where 1 mL of 

spiked sample was mixed with functionalized magnetic beads. 

The bead-captured cells were then moved through the immiscible 

liquids for washing (Figure 1b and Section 2.2, supporting 

information). In previous IFAST investigations, capture and hence 

concentration of target molecules/cells by immunomagnetic 

binding was achieved by fast manipulation from an external 

magnetic field.[11, 13] This approach was initially employed here but 

resulted in only limited capture of the bacteria (<60%). To 

enhance the immunomagnetic binding, the magnetic beads were 

gently agitated by manually shaking the IFAST chip in order to 

ensure even dispersion of magnetic beads and improved contact 

with the spiked bacteria; resulting in much higher bacterial capture 

(>80%). Figure 1c shows the improvement in E. coli capture with 

incubation time. Comparable isolation performance (Figure 1d) 

and cell viability (not shown) were achieved for both the 

conventional tube based IMS and the IFAST system for set 

incubation times. Manual agitation of the device by the user was 

replaced by an orbital shaker (Section 2.2, supporting 

information); allowing improved repeatability and productivity. 

The second part of the design approach exploited the sensitivity 

of the ATP assay to measure the light produced by the 

bioluminescence reaction of luciferin/luciferase and ATP from 

bacterial cells (step 3, Scheme 1). A custom-made battery 

operable PMT based detection device[14] was connected to a 

simple digital multimeter for readout (Figure 2a, Supporting 

Information). This offered a more user-friendly system compared 

to the conventional luminescence plate reader which could not 

accommodate on-chip detection and requires trained personnel 

to operate.  

 
 
 
Figure 1. (a) Design of the microfluidic chip featuring a large sample chamber 
(26x26x4 mm3), three wash chambers (3x3x4 mm3) and a detection chamber 
(same dimensions as wash chambers), interconnected via trapezoidal 

microfluidic gates (3 mm to 500 m wide, 1.5 mm long, 500 m deep). (b) 
Photograph showing isolation of E. coli by IFAST, consisting of two consecutive 
steps of immunomagnetic binding and separation of isolated cells through 
immiscible liquids using magnet assemble. (c) Isolation performance quantified 
by plating revealed 15 min as an optimum incubation time required for IFAST 
immunomagnetic binding (n=3). (d) Isolation performance observed from IFAST 
and conventional tube-based IMS (n=3). (e) Similar number of viable isolated 
cells from IFAST and tube-based IMS.   

 

Good linearity was observed from a logarithmic plot of ATP 

standard concentrations and bioluminescence responses 

measured by the portable device (Figure 2b). The molecular ATP 

released from E. coli O157:H7 revealed a value of 2.5×10-6 pmol 

CFU-1, (Figure 2c) in good agreement with the reported value 

(2.0×10-6 pmol CFU-1).[8b] This demonstrated a successful 

portable system for rapid E. coli detection (< 5 min).  

 

 
 
 
 
 
 
 
 
 
 
 
Figure 2. (a) The portable detection device for detection of light produced 
during bioluminescence ATP assays. (b) Logarithmic plots between 
luminescence responses (mV) and ATP from standard solutions and molecular 
ATP released from E. coli O157 (n=3, s.d. < 1%).  
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Figure 3. IFAST/ATP assays for rapid detection of E. coli O157 from seeded 
buffer employing the developed microfluidic system. (a) Isolation performance 
(n=3). (b) Excellent linearity obtained from bioluminescence responses of 
isolated E. coli (n=3, s.d. <1%). (c) By improving the light collection optics, the 
system was capable of detecting lower concentrations (6-600 CFU mL-1) (n=3).  
 

In the combined IFAST/ATP experiment (Figure S3, Supporting 

Information), bead-bacteria complexes formed via 

immunomagnetic reaction resulted in high E. coli isolation ( 90%, 

Figure 3a) and bioluminescence responses from the isolated cells 

demonstrated excellent linearity (r2 = 0.9996) and repeatability 

(s.d. < 1%), from 500-105 CFU mL-1 in spiked buffer samples 

(Figure 3b). To improve the detection sensitivity, a mirror was 

placed opposite the PMT element to increase the light collected 

and hence increase the output signal.[14] This allowed lower 

concentrations of E. coli (as low as 6 CFU mL-1) to be detected in 

spiked buffer samples (Figure 3c).  

 

As further proof of principle, the system was applied to treated 

urban wastewater effluents (collected from a wastewater 

treatment plant in South Africa) spiked with E. coli O157: H7. 

Immunomagnetic capture with selective culturing on Sorbitol 

MacConkey agar plates showed good isolation of E. coli O157:H7 

(Figure 4a:  96%). Similar data was obtained when bead-bound 

bacteria was cultured on selective and non-selective agar. Only a 

few non-O157:H7 strains (≤ 5%) were in differential media); an 

indication of highly specific binding. Although Dynabeads anti-E. 

coli O157 are designed to specifically target O157 strains; 

antigenically similar organisms, e.g. E. hermanii and Serratia 

liquifaciens, can cross-react and non-specifically bind, albeit to a 

very limited extent.[15] A linear luminescence response was 

obtained from 104 CFU mL-1 (Figure 4b) for the E. coli O157:H7 

isolated from effluent samples. This limit of detection was 

achieved for those effluent samples where the overall background 

ATP reading was low as a result of adequate wastewater 

treatment. In cases of inefficient wastewater treatment, this limit 

of detection was lost as a result of interference from background 

ATP. This could be improved by redesigning the chip to enhance 

the buffer washing step. The current set-up requires minimal 

hands-on time, 2 min chip preparation including sample and 

reagent loading, and 1 min chip placement within detection box 

for ATP assay. Importantly, the results can be obtained in a single 

device within 20 min (16 min bacteria isolation, < 5 min detection) 

without off-chip pre-treatment. 

 
 
Figure 4. IFAST/ATP assays for rapid detection of E. coli O157:H7 from spiked 
wastewater effluents. (a) Isolation performance (n=3). (b) Luminescence signals 
detected from isolated E. coli O157:H7 from spiked effluents by the developed 
device (n=3). 
  

In summary, a portable and user-friendly microfluidic system for 

the detection of E. coli O157:H7 in water samples was 

developed. To our knowledge, this is the first time an integrated 

system where bacterial isolation and detection are combined in 

one device, enabling 104 CFU E. coli O157:H7 to be detected 

from 1 mL of contaminated urban wastewater effluents within 

20 min. The system is inexpensive, involves no off-chip pre-

concentration, and requires minimal reagents and only semi-

skilled personnel. Further development could yield a protocol 

capable of real-time monitoring of microbiological water quality, 

suitable for point-of-need use. The versatility of functionalized 

magnetic particles, coupled with appropriate assay chemistry, 

would also benefit other applications, e.g. rapid screening of 

pathogenic bacteria in food or clinical samples.   
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