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 A 18F Radiolabelled Zn(II) Sensing Fluorescent Probe 
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A selective fluorescent probe for Zn(II), AQA-F, has been 

synthesized. AQA-F exhibits a ratiometric shift in emission of up to 

80 nm upon binding Zn(II) ([AQA-F] = 0.1 mM, [Zn(II)Cl2 = 0-300 M). 

An enhancement of quantum yield from Φ = 4.2% to Φ = 35% is also 

observed. AQA-F has a binding constant, Kd = 15.2 M with Zn(II). 

This probe has been shown to respond to endogenous Zn(II) levels 

in vitro in prostate and prostate cancer cell lines. [18F]AQA-F has 

been synthesized with a radiochemical yield of 8.6% and a 

radiochemical purity of 97% in 88 minutes. AQA-F shows the 

potential for a dual modal PET/fluorescence imaging probe for 

Zn(II). 

Prostate cancer (PCa) is the 2nd most common cancer 

worldwide for males, with >161,000 new cases in the US in 2017 

(19% of male cancer cases; 10% of total cancer cases).1 

Diagnosis and active surveillance of PCa involves measurement 

of serum levels of prostate specific antigen (PSA), with invasive 

biopsies used for determination of the prognostic Gleason 

Score. Novel, simple diagnostic tests are needed to catch the 

disease early and this may be achieved by assessing 

endogenous Zn(II) levels. 

Zn(II) has been identified as a key metal in a range of biological 

functions;2,3 its homeostasis is maintained by a number of 

proteins including Zrt-like Irt-like proteins (ZIP) and cation 

diffusion facilitators (CDF).4 Overabundance of Zn(II) is 

implicated in a number of diseases (e.g. Alzheimer’s disease,5 

diabetes6 and PCa7). Zn(II) has emerged as a promising 

diagnostic target in PCa progression as the homeostasis of Zn(II) 

is disrupted in diseased tissue.8,9  

The largest concentration of Zn(II) is found in the prostate gland 

(total Zn(II) concentration = 800-1500 M)10 where uptake from 

extracellular fluids is controlled by the Zrt-like Irt-like Protein 1 

(ZIP1) transporter.7 Mutation of the tumor suppressor gene 

SLC39A1 (encoding ZIP1) downregulates ZIP1 protein levels in 

PCa tissue, leading to 62–75% lower levels of Zn(II) 

accumulation.9 This significant decrease in malignant tissue 

allows for the potential diagnosis of prostate cancer through 

measurement of the Zn(II) concentration in the prostate. 

Over the last two decades, research into probes which give an 

indication of disease progression by responding to different 

concentrations of Zn(II) has become a key area of interest.11,12,13 

A plethora of optical probes for Zn(II) have been developed;14–

23 typically by modifying organic fluorophores to include Zn(II) 

sensing units. Modification of fluorescein by addition of 

dipicolylamine (DPA) units produced a high affinity fluorescence 

based probe, ZP1.24 Further development led to ZPP1 which 

demonstrates a ratiometric based detection of zinc with a 10 

nm shift in emission.25 Compartmentalisation of zinc in diseases 

has been highlighted by similar probes.26 

Scheme 1: Synthesis of AQA-F 

 

Combining these optical probes with an additional imaging 

modality can improve the properties of the probe.27,28 In 

particular, the pairing of PET and optical imaging can allow for 
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direct cellular validation of the PET probe.27,29 Whilst 

radiolabelling of optical probes is well reported,29–33 few 

examples of “smart” dual modal optical-PET probes are present 

in the literature.31,34,35  

The quinoline-based AQZ probe developed by Zhang et al.36 is 

an organic fluorophore and Zn(II) chelator showing excellent 

ratiometric fluorescence properties upon Zn(II) binding. AQZ 

has recently been shown attached to a MRI chelate as a dual-

modal probe for diagnosis of diabetes.37 The Zn(II) binding 

properties of AQZ were retained after functionalization through 

the terminal alcohol group. 

Figure 1. Fluorescence spectra of AQA-F (0.1 mM, λex = 320 nm) 

in HEPES buffer (10 mM, pH 7.68) solution in the presence of 

increasing concentrations of Zn(II) (0-3 equivalents, 2.5-300 M, 

n = 3). 

 

We herein report the development of a fluorinated fluorescent 

probe, AQA-F, which upon binding Zn(II) exhibits a change in 

emission profile allowing endogenous Zn(II) levels to be 

monitored. Furthermore, we have undertaken preliminary 

radiolabeling studies to demonstrate the feasibility of 

producing [18F]AQA-F. This Zn(II) sensor is designed to set the 

foundation for a dual modal PET/fluorescence probe for 

prostate cancer diagnosis. 

AQA-F was synthesized in 4 steps from 2-fluoroethanol (Scheme 

1). The fluorinated chain 2-(2-fluoroethoxy)ethan-1-amine 

hydrochloride (6) was prepared by condensation of tert-butyl 

(2-hydroxyethyl)carbamate (3) with 2-fluoroethyl 4-

methylbenzenesulfonate (4) under basic conditions to yield 5 

followed by deprotection under acidic conditions.38 Conjugation 

of 6 to 2-chloro-N-(quinol-8-yl)-acetamide (2), under the same 

conditions reported for the synthesis of AQZ,36 yielded AQA-F in 

an 80% yield. 

AQA-F demonstrated an excitation maximum of 320 nm and an 

emission maximum of 420 nm (Figure S4) with quantum yield, 

Φ = 4.2% (Table S4). Upon Zn(II) binding an 8-fold enhancement 

in fluorescence intensity was observed (Figure 1). This 

fluorescence enhancement (Φ = 35%) was also accompanied by 

a red shift in the emission maxima of 80 nm to 500 nm.  

Three isosbestic points at 243, 278 and 323 nm were observed 

in the absorption spectra for AQA-F upon addition of Zn(II) 

(Figure 2). The ratio of the absorbance at 260 and 278 nm (Inset, 

Figure 2) highlighted the binding of Zn(II) until the addition of 

one equivalent; following this, the ratio began to plateau. This 

indicates that AQA-F binds Zn(II) in a 1:1 molar ratio with a Kd of 

15.2 M.  

A decrease in fluorescence intensity was observed at acidic pH 

due to protonation of the secondary amine (pKa = 6.62, Figure 

3). This protonation also limits Zn(II) binding; there is no 

increase in fluorescence intensity in the presence of Zn(II) at 

acidic pH. The fluorescence intensity begins to increase at pH 6 

(pKa = 6.86), with the maximum intensity observed in the 

physiological pH window which is promising for biological  

Figure 2. Absorption spectra of AQA-F (0.1 mM) in HEPES buffer 

(10 mM, pH 7.68) in the presence of increasing concentrations 

of Zn(II) (0-3 equivalents, 2.5-300 M, n = 3). 

 

applications. Above pH 8.5 a reduction in fluorescence intensity 

of probe bound to Zn(II) was also observed (pKa= 9.68). This 

decrease could be a result of a deprotonation of a water 

molecule bound to the metal centre.39 

The fluorescent response of AQA-F demonstrates specificity for 

Zn(II) over other divalent metal ions, especially those found in 

biological environments (Figure 4). A small enhancement in the 

emission at 500 nm of AQA-F is seen in the presence of Ca(II). A 

significant increase in fluorescence emission was observed for 

Zn(II). It must be noted that AQA-F has the highest affinity for 

Zn(II) compared to all of these metals (Table S3, Figure S1). 

Figure 3. Fluorescence intensity of AQA-F (0.1 mM, λex = 320 

nm, λem = 500 nm) in KCl (0.1 M) solution with variation of 
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solution pH. Black = AQA-F, Red = AQA-F + 1 equivalent ZnCl2. 

(n = 3) 

 

To validate AQA-F in vitro it was incubated with a healthy 

epithelial prostate cell line (RWPE-1) and a grade IV prostate 

adenocarcinoma cell line (PC-3) (Figure 5, Figure S3). AQA-F is 

internalized by cells following a 30 minute incubation period.  

The change in the emission profile of AQA-F upon binding Zn(II) 

could be used to assess the relative level of Zn(II) in cells. The 

ratio of emission at λem = 500 nm to λem = 420 nm (shown in 

Figure 5) is directly related to the Zn(II) concentration (Figure 1). 

This ratio is greater in the healthy prostate cells than in the PC-

3 cell line (Table S5), indicating a greater Zn(II) concentration in 

the RWPE-1 cell line. This reflects the reduced Zn(II) uptake of 

prostate cancer cells due to the downregulation of the ZIP-1 

Zn(II) transporter.7,9,40 In both cell lines, the ratio increases 

when incubated with additional Zn(II) (Table S5). 

Figure 4. Metal binding assay showing the fluorescence 

response of AQA-F (0.1 mM, λex = 320 nm, λem = 500 nm) in 

HEPES buffer (10 mM, pH = 7.68) upon addition of 1 equivalent 

of metal chloride. (n = 3) 

 

Scheme 2. Synthesis of [18F]AQA-F 

 

A preliminary study to produce [18F]AQA-F (Scheme 2) was 

performed in a two-step process from 8. The first step 

introduces the 18F isotope through nucleophilic substitution at 

the terminal tosylate leaving group, with a radiochemical 

conversion (RCC) of 82.6%, in 15 minutes at 110 oC in anhydrous 

MeCN (Figure S12). Following this, hydrolysis of the Boc 

protecting group under acidic conditions gave [18F]AQA-F with 

a 54.3% RCC (Figure S13). The radiochemical purity after 

purification by semi-preparative HPLC is recorded at 97%, 

(Figure S10), with an isolated radiochemical yield of 8.6% with a 

total synthesis time of 88 minutes, thus showing the 

possibilities for a PET tracer for Zn(II). 

 

Figure 5. A collection of micrographs showing RWPE-1 and PC-3 

cells that have been incubated with 100 M AQA-F and 

Rhodamine Concanavalin A. Scale bar = 50 m. 

 

  

 

AQA-F demonstrates a red shift of 80 nm from 420 nm to 500 

nm when binding Zn(II). This novel probe has been shown to 

bind Zn(II) in a 1:1 ratio with the highest affinity of all the metals 

tested, possessing a Kd of 15.2 M. AQA-F exhibits a 

fluorescence maximum at physiological pH and has been shown 

to be internalized by healthy and cancerous prostate cells 

within 30 minutes. The shift from 420 nm to 500 nm when 

binding Zn(II) allows for differentiation of free probe and Zn(II)-

bound probe through fluorescent microscopy. [18F]AQA-F was 

radiolabelled in 8.6% RCY with radiochemical purity of 97%, 

thus showing the potential for a dual modal PET/fluorescence 

imaging probe for Zn(II). The fluorescent probe, AQA-F, which 

has the potential for the in vitro determination of endogenous 

Zn(II) levels has been synthesized as both a cold standard and 

radiolabelled analogue [18F]AQA-F. 
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