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Abstract 

The Pt L3-edge X-ray absorption spectrum of Pt atoms generated in a hollow cathode 

sputtering device and trapped in an Ar matrix yielded a Pt-Ar distance of 3.78(4) Å with a 

coordination number of ca. 12 which confirms the evidence from electronic absorption 

spectroscopy that Pt atoms occupy a substitutional site in the Ar lattice. These data also yield 

a van der Waals radius for Pt atoms of 1.90 Å. The Pd K-edge X-ray absorption spectrum of 

sputtered Pd atoms trapped in an Ar matrix is radically different to that for Pt atoms. This 

contains a much shorter Pd-Ar distance of 2.53(3) Å with a low coordination number close to 

1, together with an “atomic” EXAFS like spectrum with no significant oscillations indicating 

the absence of any well defined nearest neighbours. On annealing to 25 K, the 2.53(3) Å 

interaction essentially disappears to leave the “atomic” spectrum. The featureless “atomic” 

spectrum is associated with Pd 1S0 atoms in an argon substitutional site, or other site such as a 

grain boundary with high disorder. The short Pd-Ar distance of 2.53(3) Å is consistent with 

Pd atoms with a 1S0 atomic ground state in an interstitial octahedral site, the formation of a 

PdArn exciplex with a short Pd-Ar distance, or the formation of a more formal palladium 
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argon compound such as PdAr2. Although it is not possible to be definitive, the most likely 

carrier of the short Pd-Ar distance is a PdArn exciplex. What is clear is that this work has 

identified a short Pd-Ar interaction for the first time. 
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Introduction 

The electronic absorption spectra of platinum atoms in argon matrices [1, 2] are very similar 

to those of the 3D3 (5d96s1) ground state in the gas phase [3], apart from consistent blue-shifts 

of 2000 – 3000 cm−1. The data from krypton matrices are similar, but there is the possibility 

of a specific interaction between platinum and xenon [2]. Nickel atoms have a 3F4 (3d84s2) 

ground state in the gas phase [3], but are known to co-exist as both 3D3 and 3F4 ground states 

in noble gas (Ng) matrices, with their relative populations changing on photolysis and 

annealing [4-9]. The history of palladium atoms in noble gas matrices has been much more 

chequered and controversial. The initial spectra reported by Mann and Broida [10] with bands 

at 33700 cm−1 (297 nm, 4.18 eV), 31900 cm−1 (313nm, 3.96 eV), 31300 cm−1 (320 nm, 3.88 

eV) and 29600 cm−1 (338 nm, 3.67 eV) had large red-shifts of ca. 6500 cm−1 from the gas 

phase data [3]. This was thought to be odd at the time as it is much more usual for matrix 

atomic data to be blue-shifted from the gas phase data due to the repulsive interaction 

between the metal atom and the matrix host. Klotzbücher and Ozin [2] subsequently showed 

that the spectral features identified by Mann and Broida [10] were in fact due to Pd(N2)n 

complexes. Whilst the presence of nitrogen might be due to an air leak, Klotzbücher and Ozin 

thought it was much more likely to be due to chemisorbed impurities on the metal films 

which required careful outgassing, and we have observed similar phenomena in our 

experiments as well. The genuine spectra of Pd atoms in argon and krypton matrices had 

intense features between 40000 and 50000 cm−1 [2] which were in reasonable agreement with 

the gas phase values [3] but with relatively large blue-shifts of 3500 – 6300 cm−1. As for 

platinum atoms, the xenon data were subtly different and could indicate an interaction 

between Pd and Xe. Klotzbücher and Ozin [11] reinvestigated the palladium atom noble gas 

systems as whilst the peak positions were in reasonable agreement with the atomic data and 

could be assigned to transitions from the 1S0 (4d10) ground state to the 1P1, 
3D1, 

3F2 and 3P1 
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excited states arising from the 4d95p1 configuration, the intensities were more complex than 

expected. In particular, the spectra consisted of relatively intense high energy triplets, despite 

two of these transitions being spin-forbidden with low gas-phase oscillator strengths [3]. In 

Kr matrices, the doublet of triplets observed on deposition was replaced by just one triplet 

after annealing to 25 K, implying the loss of one unstable matrix site. Differential population 

of the two matrix sites was also observed for palladium atoms in argon when deposited at 10 

– 12 K and 20 – 25 K. A new weak feature at lower energy (37700 cm−1) due to Pd2 was also 

observed either after annealing or after deposition at higher temperatures.  

 

Grinter and Stern [12, 13] observed very similar absorption spectra for palladium atoms in 

argon to those of Klotzbücher and Ozin [2, 11]. When they recorded MCD spectra for Pd 

atoms with scanning from long to short wavelengths, no MCD signal was detected below 

40000 cm−1 (250 nm, 4.96 eV). However, if the instrument was returned rapidly to lower 

energy (ca. 26700 cm−1 (375 nm, 3.31 eV) and the MCD spectrum remeasured, a new very 

strong and rapidly decaying (half-life of the order of seconds) MCD signal was observed in 

the 27800 – 34500 cm−1 (360 – 290 nm, 3.44 – 4.28 eV) region. This process could be 

repeated, with only minor changes in the spectrum. The process was also observed after 

photolysis with other 40000 – 50000 cm−1 (250 – 200 nm, 4.96 – 6.20 eV) sources. As the 

process could be regenerated many times, it was interpreted to be due to a long-lived excited 

state of Pd, rather than a photochemically generated aggregate or complex. Attempts to 

identify absorption bands associated with the transient state were unsuccessful. The strength 

of the post photolysis MCD signal indicated that the species responsible for it was 

paramagnetic, and Grinter and Stern thought that the most likely state for the transient MCD 

signal was 3F4 (4d85s2) which lies ca. 25000 cm−1 (400 nm, 3.10 eV) above the 1S0 ground 

state in the gas phase [12, 13]. 
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Schrittenlacher et al. carried out absorption, emission and emission-yield experiments in the 

16000 – 80000 cm−1 (625 – 125 nm, 2 – 10 eV) energy range on Pd atoms isolated in Ne, Ar, 

Kr and Xe matrices [14]. The high energy experiments (32000 – 80000 cm−1 (313 nm – 

125nm, 4 – 10 eV)) made use of the BESSY synchrotron radiation source, whereas the lower 

energy (16000 – 32000 cm−1 (625 – 313 nm, 2 – 4 eV)) experiments were laboratory based. 

In Ne matrices, the absorption spectrum remained very similar on annealing up to 9 K, 

however in Ar matrices the simultaneous decrease of all of the lines at 15 K and 20 K, and 

their almost complete loss by 28 K, indicated that there was only one trapping site, which was 

in contradiction to the work of Klotzbücher and Ozin who had proposed two sites [2, 11]. The 

loss of the atomic signals on annealing was believed to be associated with the production of 

thermally induced aggregates, but no specific absorption bands were identified. Fluorescence 

and emission yield spectra were also investigated for Ne, Ar, Kr and Xe matrices. For Ne 

matrices, excitation was carried out at 40800 cm−1 (245 nm, 5.06 eV), 41700 cm−1 (240 nm, 

5.17 eV) and 47200 cm−1 (212 nm, 5.85 eV) with the same spectrum being observed for the 

last two. In Ne matrices strong, sharp emission lines at 27400 cm−1 (365 nm, 3.40 eV), 28600 

cm−1 (350 nm, 3.55 nm) and 30200 cm−1 (331 nm, 3.75 eV) were observed (the latter was 

very weak with 40800 cm−1 (245 nm, 5.06 eV) excitation), whereas in Ar, Kr and Xe only 

broad emission features around 20000 cm−1 were observed. When the absorption spectrum 

was recorded during irradiation at 40800 cm−1 (245 nm, 5.06 eV) at least five new lines were 

observed, which disappeared once the light source was turned off. From these experiments, it 

was concluded that the spectra were due to Pd atoms in uniform trapping sites. The large 

blue-shift (from gas to matrix) was taken to indicate a strong repulsive interaction between 

the matrix and the Pd excited states. As a result of extensive mixing of the states, all 12 of the 

transitions from the 4d10 ground state to the 4d95p1 levels become allowed by matrix 
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interactions, thus explaining the complexity of the spectra observed, and making assignments 

using the usual AMCOR (atom to matrix correlation) approach impossible. They interpreted 

the transient absorption features observed in Ne matrices as being due to a long lived excited 

state of the Pd atom, most likely to be 3D1 so the observed transitions are from 4d95s1 to the 

triplet levels of 4d95p1. On the basis of all of their results, and that the radius of Pd is only 

0.55 Å in its 1S0 ground state [15], they concluded that Pd atoms were located in interstitial 

octahedral sites in Ne, Ar and Kr and in interstitial tetrahedral sites in Xe. The interstitial 

locations explained the large blue-shifts due to the increased repulsion, as well as the 

unusually high thermal mobility of the atoms. 

 

Ozin and Garcia-Prieto subsequently published two papers [16, 17] which came to a radically 

different conclusion to that of Schrittenlacher et al. [14]. The absorption spectra of Ozin and 

Garcia-Prieto [16] were essentially the same as those observed in the previous studies [2, 11, 

12, 14], and as observed previously [14] annealing to 12 – 25 K resulted in significant 

reduction in the intensity of the peaks in the spectrum. Their emission spectra of Pd atoms in 

solid argon distinguished two sets of bands [16], one consisting of several relatively narrow 

lines in the 16700 – 33300 cm−1 (600 – 300 nm, 2.07 – 4.13 eV) region, and a second set 

consisting of only one broad band at 20600 cm−1 (486 nm, 2.55 eV). The excitation spectra 

[16] consisted of two regions, one from 37000 – 50000 cm−1 (270 – 200 nm, 4.60 – 6.20 eV), 

which corresponded to the absorption spectra, and a second one from 28600 – 34500 cm−1 

(350 – 290 nm, 3.55 – 4.28 eV), which did not have a counterpart in the absorption spectrum 

(apart from a very weak band around 33300 cm−1 (300 nm, 4.13 eV)). The excitation spectra 

associated with the 20600 cm−1 (486 nm, 2.55 eV) emission band was the only one which did 

not show excitation bands in the 28600 – 34500 cm−1 (350 – 290 nm, 3.55 – 4.28 eV) region. 

From these detailed investigations they concluded that the 38500 – 50000 cm−1 (260 – 200 
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nm, 4.77 – 6.20 eV) absorption spectrum of Pd atoms in an Ar matrix is the result of the 

superposition of the ΔJ allowed transitions from the 1S0 ground state found in the gas phase, 

together with a 3D3 metastable state with a relatively long lifetime that is populated during 

spectral acquisition. Luminescence data indicated the presence of at least two different Pd 

atom environments, with different deactivation pathways. One of these sites contains the 3D3 

metastable state generated indirectly by efficient photolysis of the 1S0 ground state. The other 

site contains Pd atoms with a broad 20600 cm−1 (486 nm) emission band. In addition, laser 

induced luminescence provided evidence for permanent 3D3 (4d95s1) atoms in a third site 

[16]. 

 

Garcia-Prieto and Novaro [18] then built on the earlier work of Ozin and Garcia-Prieto [16, 

17] which they summarised as inferring that the Pd atoms in solid argon matrices occupy 

three main trapping sites. Two of these contain Pd atoms with the same 1S0 (4d10) electronic 

ground state as gas-phase Pd atoms, and the third site contains Pd in a 3D3 (4d95s1) electronic 

state, that is 6564 cm−1 (0.8138 eV) above the 1S0 state in the gas phase. For one of the sites 

that contains 1S0 Pd, there was a very efficient deactivation process that yielded a 3D3 (4d95s1) 

metastable state with a 2.2 minute lifetime. Garcia-Prieto and Novaro [18] used the earlier Ar 

matrix work of Ozin and Garcia-Prieto [16, 17] and carried out complementary absorption, 

emission, excitation and laser induced luminescence experiments on Pd in Kr and Xe 

matrices. They concluded that there were three distinctive optical spectra implying three 

distinct trapping environments. Two of these have a 1S0 (4d10) ground state, and one a 3D3 

(4d95s1) ground state. They used the estimates of the radius of the 1S0 as 0.55 Å [15] and 3D3 

state as 1.35 Å [17], to imply the 1S0 states would be found in the interstitial tetrahedral (Xe) 

or interstitial octahedral (Ar, Kr) sites, and the 3D3 in either a less restricted octahedral site or 

a substitutional site. 
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Therefore, from the matrix electronic spectra there are two contradictory positions, one where 

the absorption peaks are due to a single octahedral interstitial site [14] and one where there 

are three different sites, with two different electronic configurations [16-18]. Many of these 

sites are not detected in absorption, but only observed in excitation and emission 

experiments. However, many of the reports indicate the presence of a photochemically 

accessible excited state, variously assigned as 3F4 [12, 13], 3D1 [14] or 3D3 [16-18]. 

 

Taketsugu et al. have carried out calculations on PdAr, PdAr2 and PdAr3 using CCSD(T) with 

counterpoise corrections and relativistic effects [19], which built on their previous work on 

PtAr and PtAr2 [20]. Their results are summarised in Table 1, and from these it is clear that 

the binding energies for the diargon linear compounds are much higher than for the 

monoargon compounds, and those for platinum are significantly higher than those for 

palladium. The bond lengths follow the trend of the binding energies so that those for the 

monoargon compounds are longer than the diargon compounds, and those for platinum are 

shorter than those for palladium. PdAr2 and PtAr2 were calculated to be linear, and PdAr3 

trigonal planar. The binding mechanism involves s-dσ hybridisation, which is most effective 

in linear geometries. In the case of Pt-Ar complexes they showed that the triplet potential 

energy curves were repulsive, but the singlet state was stabilised giving rise to 1Σ+ PtAr and 

1Σg
+ PtAr2, and that the triplet and singlet potential energy curves crossed at some Pt-Ar 

interatomic distance. No potential energy curve crossings of the singlet and triplet states were 

found for Pd-Ar complexes and therefore only the 1S0 state is stabilised by noble gas binding 

giving rise to 1Σ+ PdAr, 1Σg
+ PdAr2 and 1A1ʹ PdAr3. Pt with a 5d96s1 configuration has a 3D3 

ground state, with an 1S0 excited state 6140 cm−1 (0.7613 eV) above this [3]. In contrast, Pd 

has a 4d10 configuration with a 1S0 ground state.  
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Table 1. Summary of calculated interatomic distances re, binding energies BEe and IR active 

harmonic wavenumbers ω for palladium and platinum argon compounds [19, 20]. 

 PdAr PdAr2 PdAr3 PtAr PtAr2 

re / Å 2.797 2.544 2.901 2.383 2.352 

BEe / kJ mol−1 3.9 16.8 11.6 30.3 82.2 

ω / cm−1 53.9 154.0  184.7 233.2 

 

The previously reported experimental data have all used electronic absorption, emission, 

excitation and laser induced luminescence to investigate the electronic structure of Pd atoms 

in noble gas matrices. However, the geometrical structure has been implied. One of the few 

techniques that yields direct structural information from cryogenic matrices is X-ray 

absorption spectroscopy (XAS) [21]. This is usually divided into X-ray absorption fine 

structure (XAFS) which covers the whole spectrum, X-ray absorption near edge structure 

(XANES) which deals with the features around the edge, and extended X-ray absorption fine 

structure (EXAFS) which describes the oscillations after the edge. Therefore, given the 

contentious nature and interpretation of the Pd/Ar matrix electronic spectra, we decided to 

use matrix isolation X-ray absorption spectroscopy as a direct structural probe to investigate 

the location of Pt and Pd atoms within a solid argon matrix. As X-ray absorption 

spectroscopy is an averaging technique, it is important to produce only atomic species, rather 

than mixtures containing higher oligomers. We have shown previously [22, 23] that an Ar+ 

hollow cathode sputtering device is an excellent source of matrix isolated atoms with no 

appreciable dimer formation, and this was the approach used for the XAS study presented 

here. Thermal evaporation was used to check the consistency of the Pd UV-vis spectra.  
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Experimental 

The palladium atoms were generated via either thermal evaporation or sputtering. For thermal 

evaporation palladium wire (0.25 mm 99.99%, Goodfellow) was wound within and around a 

tantalum support wire (0.5 mm, 99.99% Goodfellow) and heated using ca. 40 A at 1 V. A 

copper disc with a 6 mm hole in it was placed between the filament and deposition window to 

reduce the heat load, and collimate the beam of atoms. The palladium and platinum atoms 

generated in a hollow-cathode sputtering device used a design based on that of Green and 

Reedy [24, 25], and is shown in Figure 1. 

 

 

Figure 1. Hollow cathode sputtering device. 

 

The hollow cathode consisted of a copper screw (Goodfellow, 99.95% OFHC) with a 2.5 mm 

hole machined through the centre and the whole assembly was mounted in a water cooled and 

electrically isolated metal flange to which the glass vacuum jacket containing the anode and 

gas inlet system was connected via a muff coupling. To convert this to a palladium or 

platinum hollow cathode, a tube of the appropriate metal was made by rolling a 25 mm x 25 

mm x 0.025 mm foil (Goodfellow, 99.99%) and inserting this inside the hollow copper screw. 

This resulted in a liner approximately 0.1 mm thick. The platinum anode (0.4 mm 
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Goodfellow, 99.99%) was mounted on an adjustable drive (Tap C) (modified Young's PTFE 

tap) and held centrally in the platinum cathode by a thin quartz tube. The flow rate of the 

discharge gas through the sputtering device was controlled by PTFE capillary (Young's) 

valves Tap A and B and the flow was sufficient for it to act as the matrix gas as well. The 

sputtering device was operated at ca. 600 – 700 V and 15 mA by an Ion-Tech DC power 

supply. With pressures in the vacuum chamber of the order 1 x 10−7 mbar, a gas flow 

producing a chamber pressure of around 2 x 10−5 mbar was found to be required to sustain 

the gas discharge. Deposition times were generally 2 – 5 minutes for the UV-Vis-NIR 

experiments. The relatively large volumes of gas required to sustain the discharge meant that 

for the UV-Vis-NIR experiments deposition times longer than around 10 minutes had a 

deleterious effect on the quality of the spectra with significant scattering at short 

wavelengths. For the XAFS experiments the deposition time was 10 – 15 min for Pt and 20 – 

25 min for Pd. 

 

The UV-Vis-NIR spectra were recorded using a Varian Cary 5E spectrometer with a vacuum 

shroud equipped with CaF2 windows and a APD DE204SL Displex closed cycle helium 

cryostat (base temperature of ca. 10 K) with a CaF2 deposition window. The X-ray absorption 

spectra were collected at the Daresbury Laboratory SRS operating at 2 GeV with circulating 

currents of ca. 200 mA using the same cryostat but with a vacuum chamber equipped with 

beryllium windows. The Pt L3-edge X-ray absorption spectra were collected in fluorescence 

mode (Canberra 13 element SSD detector) on station 9.2 using a Si(220) double crystal 

monochromator detuned by ca. 50 % to remove harmonic contamination. The Pd K-edge 

spectra were collected in fluorescence mode (Canberra 30 element SSD) on station 16.5 using 

a Si(311) double crystal monochromator, with harmonic rejection achieved by mirrors. 

Between eight and fourteen one hour spectra were collected for each matrix sample, averaged 
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and calibrated using the first maximum in the first derivative of the Pt L3-edge of Pt foil 

(11564.0 eV) or Pd K-edge of Pd foil (24350.0 eV) [26]. Background subtraction was carried 

out using PAXAS [27] by fitting the pre-edge region to a quadratic polynomial, subtracting 

this from the data and approximating the atomic component of the post-edge region with a 

high (typically sixth) order polynomial. This approximation was optimized in order to 

minimize the low-r features in the Fourier transforms by an iterative process, although it 

should be noted that atomic XAFS features may be expected in this part of the FT especially 

in the case of platinum [28]. Fitting of the experimental data was carried out with 

EXCURV98 [29] making use of single and multiple scattering curved wave theory, a von-

Barth ground state and a Hedin-Lundqvist exchange potential. 
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Results and Discussion 

Platinum atoms in solid argon 

The electronic absorption spectrum of the products of sputtering a platinum hollow cathode 

with argon, and trapped in solid argon is shown in Figure 2.  
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Figure 2. Electronic absorption spectrum of platinum atoms in solid argon produced by Ar+ 

sputtering of platinum hollow cathode. 

 

Other than the steeply rising baseline, which is a consequence of the amount of gas required 

to sustain the discharge in the sputtering device, this spectrum is essentially identical to that 

published for Pt atoms previously [1, 2] and shows no evidence for Pt2 [30]. The peak 

positions, and previous assignments are given in Table 2. Therefore, as noted previously, the 

hollow cathode sputtering source is an excellent source of platinum atoms [22]. 

 

Table 2. Peak positions (cm−1) and assignments for Pt atoms in an argon matrix. 

Pt atoms produced 
by sputtering(a) 

Pt atoms produced by 
thermally evaporation(b) 

Excited state configuration (based 
on a 5d9 6s1, 3D3 ground state)(b)(c) 

34610 34722 5d9 6p1 
36360 36496 5d9 6p1 
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37860 38022 5d8 6s1 6p1 
40300 (sh)   
40720 40983 5d9 6p1 
43610 43859 5d8 6s1 6p1 
49940 50251 5d9 6p1 
52290 52083 5d8 6s1 6p1 

(a) this work, (b) reference [2], (c) the terms and levels are not given for all of these 
states in the original atomic data compilation [3]. 

 

The Pt L3-edge EXAFS and FT of the products from the hollow cathode sputtering of 

platinum are shown in Figure 3(a). The data is noisy as it was only possible to run the 

discharge/deposition for 10 – 15 minutes, whereas in the conventional matrix EXAFS 

experiments deposition times of several hours are often required. As a result of this the data 

set is also relatively short. Despite these limitations, which give rise to relatively high R 

factors, it is clear from the FT that the data are dominated by an interaction at just under 4 Å, 

which is best fit by ca. 12 argon atoms at 3.78(4) Å (see Table 3 for refinement details). The 

2σ2 mean square displacement term in the Debye-Waller factor, which describes the extent of 

the thermal and static disorder, is relatively large (0.039 Å2) for this shell, but is similar to 

that observed for Kr in solid Ar [31], but slightly larger than for Hg atoms in solid Ar [32]. 

For solid argon the fcc lattice parameter of 5.3118 Å indicates an argon-argon interatomic 

distance of 3.756 Å with a radius of 1.878 Å[33]. The commonly quoted van der Waals 

radius values of Ar are 1.88 Å [34] or 1.89 Å [35]. The Pt-Ar distance of 3.78(4) Å 

determined in this work, combined with an occupation number of 12 is excellent evidence 

that the Pt atom is located in a substitutional site in the argon lattice. The Pt-Ar distance of 

3.78(4)Å is very similar to the Ar-Ar distance and assuming an argon radius of 1.878 Å, 

indicates a hard sphere radius of Pt atoms of ca. 1.90 Å, which is larger than the 1.5 Å 

normally quoted based on HF calculations [15] or the standard van der Waals radius value of 

1.72 or 1.75 Å [34]. The 1.72 Å value is based on a non-bonding platinum-platinum distance 
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of 3.44 Å in tetrahedral tetramethylplatinum [36], although a value of 3.73 Å for 

chloro(trimethyl)platinum is also reported in the same article. The value of 1.90 Å 

determined in this work is closer to this latter value (1.87 Å) and is therefore a potentially 

more accurate value of the van der Walls radius of Pt. Whilst there is some evidence in the 

FT in Figure 3(a) for the more distant Pt...Ar shells in the fcc lattice at √2r, √3r and √4r, the 

quality of the data means that it was not possible to fit them reliably. This may also be a 

result of the Pt-Ar distance being slightly greater than the ideal Ar-Ar distance indicating 

some distortion of the lattice. 
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Figure 3. (a) Pt L3-edge EXAFS (left) and FT (right) for Pt atoms produced by Ar+ sputtering 

of a platinum hollow cathode. (b) Pd K-edge EXAFS (left) and FT (right) for Pd atoms 

produced by Ar+ sputtering of a palladium hollow cathode. 
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Therefore, both the electronic absorption and the X-ray absorption data confirm that the Pt 

atoms are located within substitutional sites in solid argon. 
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Table 3. EXAFS refined parameters for sputtered Pt and Pd atoms in argon matrices 

Bond type 
(occupation number) 

r / Å(a)(b) 2σ2 / Å2 (c) Ef
(d) R(e) 

Pt-Ar (12) 3.778(20) 0.0385(31) −14.8(13) 61.5 
Pd-Ar (1.2) 2.529(12) 0.0099(32) -3.3(19) 51.2 
(a) Refinement standard deviation in parentheses; (b) estimated systematic errors in EXAFS 

bond lengths are  1.5% for well-defined co-ordination shells;(c)  2σ2 is the mean square 
displacement term in the Debye-Waller factor; (d) Ef is a single refined parameter to reflect 
differences in the theoretical and experimental Fermi levels;  

 (e) 
%10033 xdkkdkkR EET






  

 

 

Palladium atoms in solid argon 

The electronic absorption spectrum of palladium atoms in an argon matrix produced by Ar+ 

sputtering is shown in Figure 4 (a). During the deposition a blue/green emission was 

observed from the matrix, which persisted for a short time once deposition was complete. In 

order to confirm that the spectrum was representative of palladium atoms, the spectrum of 

thermally evaporated palladium atoms in an argon matrix was also recorded and this is shown 

in Figure 4(b), where no emission was observed. Apart from the rising background in the 

sputtered sample (as also observed for Pt atoms) the two spectra are very similar to each 

other, and to those published previously [2, 11, 12, 14, 16-18], with no evidence for Pd2 [11] 

or Pd(N2)n [2, 37]. The shoulders to high energy of the most intense peak at 45350 cm−1 are 

not so pronounced in our work as in some of the previous reports [2, 11, 14]. The position of 

the three bands at 40320 cm−1 (248.0 nm, 4.999 eV), 42110 cm−1 (237.5 nm, 5.221 eV) and 

45350 cm−1 (220.5 nm, 5.623 eV) in Figure 4(a) correspond to the Site B bands at 40300 

cm−1 (248 nm, 5.00 eV), 42400 cm−1 (236 nm, 5.26 eV) and 45500 cm−1 (220 nm, 5.64 eV) 

observed after deposition at 10 – 12 K in Klotzbücher and Ozin’s work [11]. After deposition 

at 20 – 25 K they observed a second triplet, labelled site A, at lower energies (39500 cm−1 
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(253 nm, 4.90 eV), 40800 cm−1 (245 nm, 5.06 eV) and 44100 cm−1 (227 nm, 5.47 eV). The 

three site B transitions have been assigned slightly differently between the two papers of 

Klotzbücher and Ozin [2, 11] and the ones from the later paper [11] are given in Table 4. 

Although there has been a significant amount of work subsequently, including the proposal of 

three different sites and two electronic states (1S0 and 3D3) for Pd atoms in Ar, none of the 

later papers provide an alternative definitive assignment of these features in Ar matrices, 

despite the stated presence of both 3D3 and 1S0 states. This is almost certainly due to the 

breakdown of the AMCOR approach as a result of the extensive mixing of the states. 
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Figure 4. Electronic absorption spectra of palladium atoms in argon matrices, (a) produced by 

Ar+ sputtering of Pd hollow cathode, (b) produced by thermal evaporation. 

 

Table 4. Electronic absorption data (cm−1) for palladium atoms in argon matrices. 

Ar+ sputtering(a) thermal 
evaporation(a) 

thermal 
evaporation(b) 

Assignment(b) 

40320 40220 40300 3P1  1S0 
42110 42450 42400 3D1  1S0 
45350 45340 45500 1P1  1S0 
 49650  

(a) this work, (b) reference [11]. 
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The Pd K-edge EXAFS and FT for sputtered Pd atoms in solid Ar are shown in Figure 3(b). 

From these it is immediately clear that palladium atoms and platinum atoms have very 

different structural characteristics in argon matrices. The frequency of the EXAFS 

oscillations is much lower in the Pd K-edge data (Figure 3(b)) compared to the Pt L3-edge 

data (Figure 3(a)). This indicates a shorter interatomic interaction in the case of Pd than Pt 

and as a result the first peak in the FT of the Pd K-edge data is at a much shorter distance (ca. 

2.5 Å) than the first peak at 3.78(4) Å in the FT of the Pt L3-edge data. The main peak in the 

FT of the Pd K-edge data is best fit by a Pd-Ar interaction of 2.53(3) Å, with a small 

coordination number of 1.2 (see Table 3). When Pd-Pd interactions were modelled, the fit 

was considerably worse both in terms of the R factor and also the match of the phase and 

intensity of the oscillations in the EXAFS, therefore confirming that this is a short Pd-Ar 

distance. There was no change in the ten spectra averaged over the data acquisition time of 10 

– 12 hours for the data in Fig 3(b). 

 

When the matrix was warmed to 25 K in the absence of X-rays and only in low level ambient 

light, a blue/green emission was observed similar to that on deposition, indicating that it is 

thermoluminescence rather than photon induced. On cooling to 10 K and after the emission 

had disappeared, there was a significant change in the X-ray absorption spectrum as shown in 

Figure 5. As in the case of the initial Pd K-edge data, there were no changes in the eight 

spectra collected over 8 – 9 hours and averaged together. Figure 5 shows the raw absorption 

data, and the lack of any significant change in the edge height (the spectra have been offset 

slightly for clarity) indicates that there is the same amount of palladium present in both 

spectra. However, there is a significant reduction in the intensity of the EXAFS oscillations 

after the edge following annealing to 25 K (Figure 5(b)) compared to deposition (Figure 
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5(a)). As a consequence of this there is little information content in the EXAFS region as 

there are effectively no oscillations to model once the data has been background subtracted. 
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Figure 5. Pd K-edge X-ray absorption spectra of Ar+ sputtered Pd atoms in solid Ar (a) on 

deposition at ca. 10 K, (b) after annealing to 25 K and recooling to 10 K. (Offset for clarity) 

 

It is clear from these data that the intensity of the oscillation associated with the 2.53(3) Å 

Pd-Ar shell has reduced significantly on annealing, to leave a spectrum that looks almost 

“atomic” in nature, such as that observed for gas or liquid phase Kr [21] with no well defined 

nearest neighbours. It is significant that after annealing to 25 K there is no evidence for 

palladium atom clustering, which would be indicated by clear oscillations. It was not possible 

to acquire UV-vis data at the same time as the XAFS data, therefore offline UV-vis 

experiments were carried out and indicated similar behaviour for the sputtered sample on 

annealing to that seen previously in the thermal evaporation experiments, where the UV 

signals all decrease in intensity on annealing [2, 11, 14, 16]. 

 

The blue/green emission observed both on deposition and annealing may correspond to that 

observed by Grinter and Stern [12, 13], Schrittenlacher et al. [14] and Ozin and Garcia-Prieto 

[16, 17] after irradiation at 40000 – 50000 cm−1 (250 – 200 nm, 4.96 – 6.20 eV).  
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What is clear from the Pd K-edge data is that on condensation of sputtered Pd atoms in solid 

argon, a short Pd-Ar interaction of 2.53(3) Å with a low occupation number is observed, and 

this is in stark contrast to the analogous Pt data. On annealing to 25 K, the 2.53(3) Å 

interaction reduces considerably. Taketsugu et al. [19] comment that a Pd-Ar van der Waals 

distance should be of the order of 3.51 Å, based on the van der Waals radii of 1.88 Å and 

1.63 Å for Ar and Pd, respectively. However, this analysis ignores the very small 0.55 Å 

radius of 1S0 Pd [15], which would bring the value down to 2.43 Å. In contrast a covalent 

interaction would be of the order of 2.33 Å, based on covalent radius values of 0.98 Å and 

1.353 Å for Ar and Pd, respectively [19].  

 

These intriguing observations can be interpreted in a number of ways including: the location 

of the palladium in the argon fcc lattice; the formation of excited state species such as 

exciplexes; or the formation of distinct palladium argon complexes. These will be considered 

in turn. 

 

The unit cell of fcc Ar is 5.3118 Å [33] and Table 5 displays the site diameters and distances 

from the site centre to the nearest argon atom for the substitutional and interstitial sites in 

solid argon. The diameter of the 1S0 state of Pd is reported as 1.1 Å [15], and that of the 3D3 

state has been estimated as 2.7 Å [17].  
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Table 5. Values of site diameters in solid argon and Pd-Ar distances for different sites 
assuming an argon lattice parameter of 5.3118 Å. 

 coordination 
number 

Site 
diameter / Å

distance from centre of site to nearest 

neighbour in Ar lattice / Å 

substitutional 
site 

12 3.756 
(d) 

3.756 
(d) 

octahedral 
interstitial site 

6 1.556 
(√2 – 1)d 

2.656 
(√1/2)d 

tetrahedral 
interstitial site 

4 0.844 
(√3/2 – 1)d 

2.300 
(√3/8)d 

 

Therefore, the 1S0 state with a 1.1 Å diameter can fit easily into an octahedral interstitial site, 

but would be constrained within a tetrahedral interstitial site, and would potentially rattle 

around, or be poorly defined in a substitutional site. The 3D3 state with a 2.7 Å diameter only 

fits comfortably into a substitutional site, being very constrained in an octahedral interstitial 

site. Using these data, it is possible to estimate that the nearest Pd-Ar distance for the 1S0 state 

is 2.43 Å, whilst that for the 3D3 state is 3.23 Å. Therefore, the Pd-Ar distance of 2.53(3) Å 

obtained from the Pd K-edge XAFS data is consistent with the 1S0 state in an octahedral 

interstitial site. Assuming an Ar van der Waals radius of 1.878 Å suggests a value of 0.65 Å 

for the radius of the 1S0 state of Pd atoms, in good agreement with the HF calculated value of 

0.55 Å [15]. The low coordination number is intriguing, as it would be expected to be six for 

an octahedral interstitial site, but it should be remembered that XAFS is an averaging 

technique.  

 

The X-ray absorption data after annealing to 25 K has lost most of the intensity of the 

oscillations due to the 2.53(3) Å Pd-Ar interaction, and this has been replaced by a largely 

featureless spectrum, much more reminiscent of the spectra obtained for atomic samples such 

as gas phase krypton, with no well defined nearest neighbours. If the palladium was 
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clustering this would be expected to give rise to observable oscillations in the EXAFS 

spectrum. As the amount of Pd remains the same before and after annealing, the best 

interpretation for the lack of EXAFS oscillations after annealing is that there are a large 

number of different Pd-Ar interactions present, which result in a spread of distances. This 

results in large Debye-Waller factors which effectively cancel or wash out various distances 

to yield what looks like an “atomic” spectrum with no well defined interactions. This also 

explains the relatively low occupation number in the as-deposited data, as there is a mixture 

of Pd atoms present, one set with a well defined Pd-Ar distance of 2.53(3) Å, and a second 

set with a wide range of Pd-Ar distances, and that on annealing the first is converted to the 

second, accompanied by the emission of blue/green light.  

 

As the 1S0 Pd atoms fit well into the octahedral site, this could be the source of the 2.53(3) Å 

interaction, and the “atomic” like signal which is present in both the as-deposited and after 

annealing spectra arises from 1S0 Pd atoms in the substitutional holes or other sites such as 

grain boundaries [38] where a large number of different, or rapidly changing, interactions are 

possible. In the context of the electronic spectra, Schrittenlacher et al. have commented that 

the small size of the Pd atom might result in it feeling very little of the matrix cage and hence 

gas phase like spectra should emerge [14]. In this model the change on annealing would arise 

from the 1S0 Pd atoms migrating from the octahedral interstitial sites to the substitutional sites 

or grain boundaries, but it is not clear why this should be associated with radiative emission. 

 

As the blue/green emission was observed during deposition, it is most likely that the Pd 

atoms are being pumped by the Ar+ discharge which has components throughout the visible 

and ultraviolet regions as well as the vacuum ultraviolet, and that there is further relaxation of 

the excited state on annealing. Grinter and Stern observed the effects of photolysis by 40000 
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– 50000 cm−1 (250 – 200 nm, 4.96 – 6.20 eV) in their MCD spectra and assigned the excited 

state as 3F4 [12, 13]. Schrittenlacher et al. observed broad emission in Ar at ca. 20000 cm−1 

(500 nm, 2.48 eV) and the better resolved emission in Ne matrices was assigned as 

originating from a 3D1 state [14]. Ozin and Garcia-Prieto [16, 17] and Garcia-Prieto and 

Novaro [18] have observed emission in the 17500 – 25000 cm−1 (570 – 400 nm, 2.18 – 3.10 

eV) range with excitation at 46500 cm−1 (215 nm, 5.77 eV), 42700 cm−1 (234 nm, 5.30 eV) 

and 40000 cm−1 (250 nm, 4.96 eV) and assigned the excited state as 3D3. They also 

commented that the photochemical population of this 3D3 state from the 1S0 ground state 

seemed to be very efficient. Therefore, the 2.53(3) Å Pd-Ar distance observed on deposition 

and which decays on annealing could arise from this excited state. However, the Pd-Ar 

distance is not consistent with a 3D3 state which has an estimated diameter of 2.7 Å [17], as 

this would result in a Pd-Ar interaction of the order of 3.2 – 3.3 Å. However, if the excited 

state is a palladium argon exciplex species, then a shorter Pd-Ar interaction would be 

expected. For example the calculated minimum in the Hg-Ar potential energy surface for the 

gas-phase HgAr2 van der Waals cluster reduced from 3.98 Å to 3.34 Å on going from the 1S0 

ground state to the A 3P1 excited state, but increased to 4.66 Å for the B excited state [39]. 

These potential energy data have subsequently been used to study mercury noble gas 

exciplexes in solid matrices using the Molecular Dynamics with Quantum Transitions 

(MDQT) methodology [40, 41]. For an Hg atom in a box of 499 Ar atoms the Hg-Ar bond 

length in the Ar-Hg*-Ar exciplex embedded in the solid argon was found to be 3.44 Å, and in 

the Ar-Hg*-Xe exciplex it was 3.55 Å, compared to 3.83 Å in the ground state. There was no 

evidence for complex formation with ground state 1S0 Hg for either Ar or Xe, and the 

interaction in the B excited state was much weaker, especially in the case of argon. These 

mercury noble gas exciplexes were of the form of linear triatomics, similar to ground state 

PdAr2 [19], although bent geometries with similar interatomic distances were also found for 
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Ar-Hg*-Xe and Xe-Hg*-Xe exciplexes in solid argon. Therefore, an alternative explanation 

is that on deposition there is a mixture of 1S0 Pd atoms in substitutional or other sites with 

high disorder such as grain boundaries giving rise to the “atomic” EXAFS spectrum, with a 

palladium exciplex species giving rise to the 2.53(3) Å Pd-Ar distance, and that on annealing 

the exciplex decays to 1S0 Pd in substitutional sites or grain boundaries, with blue/green 

emission. As a result of the mixture of species present it is not possible to identify the Pd-Ar 

coordination number in the proposed PdArn exciplex. 

 

If the Pd-Ar distance of 2.53(3) Å is not the result of an interaction between 1S0 Pd atoms and 

argon in an octahedral interstitial site, or the formation of an exciplex, then it could be due to 

the formation of a Pd-Ar bond in a ground state compound. The computational work of 

Taketsugu et al. [19] predicted a Pd-Ar bond length for linear PdAr2 of 2.554 Å which is very 

close to the Pd-Ar distance of 2.53(3) Å observed in these Pd K-edge experiments. PdAr2 was 

the most stable of PdAr, PdAr2 and PdAr3 (Table 1) and the bonding of the Pd and Ar atoms 

is due to s-dσ hybridisation due to the mixing of the 4d10 and 4d95s1 configurations. They also 

noted that it is only the 1S0 state that is stabilised by binding with the argon, and this may 

explain why the short distance and emission was only observed for Pd with a 1S0 ground term 

(4d10) and not Pt with a 3D3 ground term (5d96s1), even though the binding energy is much 

greater for PtAr2. Within this explanation, there is a mixture of 1S0 Pd atoms in substitutional 

sites (or grain boundaries) and PdAr2 on deposition, and that on annealing PdAr2 decays with 

blue/green emission and the formation of 1S0 Pd atoms in a substitutional site (or grain 

boundary). Direct experimental data on noble gas – metal distances are sparse, particularly 

for those involving argon, but Gerry and co-workers have reported gas phase Ar – Cu 

distances of 2.2 – 2.3 Å for ArCuX [42], Ar – Ag distances of 2.5 – 2.6 Å in ArAgX [43] and 
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Ar – Au distances of 2.4 – 2.5 Å for ArAuX [44, 45] (X = F, Cl, Br). The 2.53(3) Å Pd-Ar 

value determined in this work is consistent with these values.  

 

In all three of the possible explanations of the Pd K-edge data, the “atomic” like component 

is due to the presence of 1S0 Pd atoms in a substitutional site, or other sites such as grain 

boundaries with high disorder. As annealing to 25 K is accompanied by emission, this would 

indicate that the 2.53(3) Å Pd-Ar feature is due an excited or unstable state which decays on 

annealing, and that this could either be a PdArn exciplex or PdAr2. As similar emission has 

been observed for Pd/Ar systems before [12-14, 16-18], this favours the exciplex explanation. 

The lack of a short Pt-Ar distance in the Pt L3-edge data rules out the formation of PtAr2, 

which according to the calculations [19] has a binding energy almost five times that of PdAr2. 

Although it should be noted that there was no complex formation between the 3D3 ground 

state and Ar in the computational work, so that the Pt 1S0 excited state would need to be 

appreciably populated for it to form.  

 

Therefore, whilst the current data does not allow for an unambiguous assignment of the 

2.53(3) Å Pd-Ar interaction, and it would be attractive to assign it to PdAr2, we think the 

most likely explanation is that it is due to the formation of a PdArn exciplex species. Whether 

the Pd-Ar distance of 2.53(3) Å is due to Pd-Ar interactions with the matrix host, or the 

formation of exciplexes or more formal complexes, it should be noted that this appears to be 

the first report of a short palladium-argon distance, and is only ca. 0.2 Å longer than the Pd-

Cl bond length in [PdCl4]
2− [46-48]. 
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Conclusions 

The electronic absorption spectrum and Pt L3-edge XAFS data for Pt atoms in solid argon 

produced by sputtering are entirely consistent with Pt atoms being located in a substitutional 

site within the Ar fcc lattice, with a Pt-Ar distance of 3.78(4) Å and a coordination number of 

ca. 12. These data give an estimate of the van der Waals radius for Pt of 1.90 Å.  

 

The Pd K-edge data are radically different indicating a very different structural environment. 

The as-deposited data contains a short Pd-Ar distance of 2.53(3) Å, with a low coordination 

number, together with what appears to be an “atomic” EXAFS spectrum as a result of a lack 

of well defined nearest neighbours. On annealing to 25 K, the short distance disappears, 

indicating the instability of this species, and all that is left is the “atomic” like spectrum. In all 

three of the possible explanations the “atomic” spectrum before and after annealing is 

associated with the small 1S0 Pd atoms (1.1 Å diameter) in either substitutional sites in the 

argon fcc lattice (3.76 Å diameter), or in sites with high disorder such as grain boundaries. 

The Pd-Ar distance of 2.53(3) Å is remarkably short and is potentially consistent with: the 1S0 

state of Pd atoms trapped in an octahedral interstitial site in the argon fcc lattice; the presence 

of PdArn exciplexes with a short Pd-Ar interaction; or the formation of PdAr2 complexes. At 

the present time it is not possible to say with certainty which of these is correct, but we 

believe that the best explanation is either the formation of PdArn exciplexes or PdAr2 

complexes. Whilst it would be attractive to opt for PdAr2, we believe that the formation of 

PdArn exciplexes in the argon lattice caused by photolysis during the sputtering process is 

probably the best explanation for the short Pd-Ar distance. What is clear is that we have 

directly observed a short Pd-Ar interaction for the first time, albeit in a very unstable species. 
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