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Abstract 

In this study, we revisit the oil–stock nexus by accounting for the role of macroeconomic variables 

and testing their in-sample and out-of-sample predictive powers. We follow the approaches of 

Lewellen (2004) and Westerlund and Narayan (2015), which were formulated into a linear multi-

predictive form by Makin et al. (2014) and Salisu et al. (2018) and a nonlinear multi-predictive 

model by Salisu and Isah (2018). Thereafter, we extend the multi-predictive model to account for 

structural breaks and asymmetries. Our analyses are conducted on aggregate and sectoral stock 

price indexes for the US stock market. Our proposed predictive model, which accounts for 

macroeconomic variables, outperforms the oil-based single-factor variant in forecasting aggregate 

and sectoral US stocks for both in-sample and out-of-sample forecasts. We find that it is important 

to account for structural breaks in our proposed predictive model, although asymmetries do not 

seem to improve predictability. In addition, we show that it is important to pre-test the predictors 

for persistence, endogeneity, and conditional heteroscedasticity, particularly when modeling with 

high-frequency series. Our results are robust to different forecast measures and forecast horizons. 
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Improving the predictability of the oil–US stock nexus: the role of 

macroeconomic variables 

1 Introduction 

The incentive to link stock returns to oil price is partly derived from the pioneering work 

of Hamilton (1983), which shows that energy price increases may account for much of 

macroeconomic performance. Hamilton’s (1983) work formed the basis of an ample literature on 

the relationships between energy and financial markets (Arouri and Rault, 2010; Ciner, 2013; Kang 

et al, 2014; Sadorsky, 2014; Narayan and Gupta, 2015; Bondia, 2016; Reboredo et al.; 2017; 

Swaray and Salisu, 2018). Notwithstanding the vastness of the empirical literature and the data on 

the oil–stock relationship or the sophistication of methodological approaches (for a review of the 

literature on the oil–stock nexus, see Salisu and Oloko, 2015; Salisu and Isah, 2017; Smyth and 

Narayan, 2018), gaps remain. For example, Smyth and Narayan (2018) highlight some notable 

gaps in previous studies that directly relate oil to the stock market, eschewing macroeconomic 

fundamentals. The few exceptions include studies that control for one or more macro variables 

(Basher et al., 2012; Conrad et al. 2014; Liu et al., 2015; Chiang and Hughen, 2017; Roubaud and 

Arouri, 2018). 

The works of Narayan and Sharma (2014), Narayan and Gupta (2015), and Phan et al. 

(2015) are notable for evaluating both in-sample and out-of-sample forecasts for oil–stock 

predictability, albeit with the exclusion of macroeconomic variables. Thus, there is a dearth of 

studies that allow for the role of macroeconomic variables in predictive models for oil–stock 

relationships, particularly for out-of-sample predictability. The traditional determinants of stock 

returns—including, but not restricted to, dividend/price ratio, dividend payout ratio, earning price 

ratio, short-term interest rate variable (such as the three-month Treasury Bill Rate) and long-term 

yield—are often used in the modeling framework (see Liu et al., 2015; Wu and Lee, 2015). The 

consideration of macroeconomic variables in oil–stock relationships in this paper is motivated 

from perspectives of theory, investment, economics and policy, and methodology.  

From a theoretical standpoint, arbitrage pricing theory (APT) assumes that financial assets, 

particularly financial securities such as stocks, can be influenced by macroeconomic factors such 

as inflation, real level of economic activity, interest rate, and exchange rate. These macro variables 

are seen as sources of systematic risk that affect the entire stock market, unlike the unsystematic 

risks that are stock-specific. The work of Huang et al. (1996) and Jones and Kaul (1996), with 
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further contributions from Faff and Brailsford (1999) and Sadorsky (1999), established that oil 

prices can affect stock prices directly, by impacting on future cash flows, or indirectly, through 

impact on the interest rate used to discount future cash flows (see Basher et al., 2012). Since the 

pass-through is through the interest rate, which is also susceptible to inflationary pressure, it 

becomes necessary to control for interest rates and related macro variables in the analysis of the 

oil–stock link. In addition, for a large, open economy such as the US, the stock market cannot be 

immune from the influence of macroeconomic dynamics; limiting the predictability of its stock 

returns to oil price may therefore produce undesirable results.  

From the investment perspective, information about the influence of macroeconomic 

variables on stock returns is useful for portfolio diversification purposes and therefore allows 

investors to be better informed when making investment decisions. For instance, during a period 

of high inflation, investors may invest in inflation-resistant economic sectors. Given high interest 

rates, investors may disinvest from stocks into newly issued bonds. However, exchange rate 

depreciation enhances trade competitiveness, boosting production and profits and, by extension, 

stock returns (Salisu and Oloko, 2015). From the economic and policy perspective, knowledge of 

the impact of macroeconomic variables on the oil–stock relationship helps policymakers 

understand the resilience of the economy to oil price shock and its spillover effects on the stock 

market. This helps to identify appropriate policy actions to take within the domestic economy in 

the event of exogenous shocks, particularly those due to oil price. In other words, adequate 

monitoring of the response of macroeconomic indicators to oil price movements is important for 

effective policy decision-making and for achieving superior macroeconomic outcomes. This is one 

of the justifications for meetings of the monetary policy committees of central banks, who play a 

primary role in tracking how macroeconomic indicators respond to internal and external shocks.  

From the methodological perspective, allowing for macroeconomic dynamics when 

modeling the oil–stock nexus will enhance forecast performance only when the appropriate 

methodology is employed (see also Phan et al., 2015). Some studies hold the view that predictive 

regression models for stock returns that consider a wide range of macroeconomic predictors will 

perform more poorly than the historical average forecast, particularly when the analysis is 

extended to out-of-sample forecasts (see Bossaerts and Hillion, 1999; Goyal and Welch, 2003; 

Brennan and Xia, 2005; Butler et al., 2005; Ang and Bekaert, 2007; Welch and Goyal, 2008). 

However, recent studies, both those that are not oil-based (see Bannigidadmath and Narayan, 2015; 



4 

 

Narayan and Bannigidadmath, 2015; Devpura et al., 2018) and those that are oil-based (see 

Narayan and Gupta, 2015; Phan et al., 2015) upturned the results of earlier studies by using the 

approach of Lewellen (2004), which was later extended by Westerlund and Narayan (2012, 2015) 

(hereafter, the WN approach). The underlying theoretical framework for the implementation of 

this approach is presented in the Appendix. The WN approach accounts for the salient features of 

predictors, such as endogeneity, conditional heteroscedasticity, and persistence effects. However, 

the WN approach is single-factor based, and since our study allows for macroeconomic 

information in the predictive model for the oil–stock connection, the multi-factor framework is 

employed (Makin et al., 2014; Salisu and Isah, 2018; Salisu et al., 2018). 

This study will be the first to formulate such a multi-predictive model to evaluate in-sample 

and out-of-sample predictability for stock returns; it is evident that multi-predictive models 

proposed by Makin et al. (2014), Salisu and Isah (2018), and Salisu et al. (2018) are not suitable 

for forecasting stock returns. Moreover, we extend the multi-predictive model to account for 

nonlinearities (see also Kilian and Park, 2009; Filis et al., 2011; Asteriou and Bashmakova, 2013; 

Jouini, 2013; Soucek and Todorova, 2013; Salisu and Oloko, 2015; Bouri et al., 2016; Kang et al., 

2016; Li et al., 2017; Salisu and Isah, 2017) and structural breaks (see also Salisu and Fasanya, 

2013; Salisu and Oloko, 2015; Salisu et al., 2017), which tend to influence the oil–stock nexus. 

Thus, our analyses are conducted in the following distinct ways. First, we examine the in-

sample predictability of oil price and macroeconomic indicators, namely real economic activity 

(Kilian 2009; Kilian and Park, 2009; Salisu et al., 2017), inflation (Devpura et al., 2018), and 

interest rate (Devpura et al., 2018). We are careful not to have too many predictors in the model, 

something that will likely lead to in-sample over-fitting problems (Liu et al., 2015). Thus, the 

choice of macro variables is motivated by the evidence in the literature with regard to the US, 

which is the focus of this study. Second, in order to test for the need to account for macro variables, 

we compare the forecast performance (both the in-sample and out-of-sample forecasts) of the 

single-factor oil-based predictive model for stock returns with the multi-factor variant that allows 

for the same. Third, we allow for oil price asymmetries in the multi-factor predictive model, and 

we test whether their inclusion will offer better in-sample and out-of-sample forecast results than 

the multi-factor model that ignores them. Fourth, we allow for structural breaks in the multi-factor 

predictive model, and we test whether such adjustment to the model will matter for the 

predictability of stock returns. Fifth, all the analyses are conducted for both aggregate and sectoral 
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stock price indexes for the US stock market. This offers a comprehensive assessment as regards 

the extent to which the information contained in oil and macroeconomic variables can be exploited 

to produce accurate forecast for US stock returns, both at the aggregate and sectoral levels. Finally, 

in order to test the significance of our economic models (i.e., the predictive models that account 

for the role of macroeconomic variables), we compare their forecast performance with time series 

models such as the fractionally integrated autoregressive moving average (ARFIMA) model. For 

the purpose of testing robustness, we consider alternative oil price proxies, multiple data samples, 

and multiple forecast horizons. Our results show impressive performance of macroeconomic 

variables (output, inflation, and interest rate) in predicting aggregate and sector-level stocks in the 

US. 

The remainder of this paper is structured as follows. Section 2 provides the theoretical 

background for further justification of the newly introduced variables. Section 3 provides the 

model set-up, including the forecast performance measures. Section 4 deals with data and 

preliminary analysis, while empirical results are presented in Section 5. In Section 6, we offer 

some policy implications of the findings, and Section 7 concludes the paper. 

2 Theoretical basis for the predictive model of the stock market  

The literature involving macroeconomic analysis of stock returns has relied on APT, which 

incorporates the role of macroeconomic risks (also described as systematic risks) in stock returns. 

Other asset pricing models include, but are not limited to, the capital asset pricing model (CAPM) 

and its variants, particularly those developed by Fama and French (1993, 1995, 1996, 2015, 2017). 

However, our choice of APT is justified by its ability to estimate the effect of various 

macroeconomic and financial risks on the stock market; this contrasts with the CAPM, which only 

recognizes market risk, and with Fama and French, who deal with firm-specific characteristics.  

This study introduces three macroeconomic variables—namely inflation, a measure of real 

economic activity, and interest rate—into the oil-based predictive model for stock returns. 

Theoretically, economic agents tend to increase investment when they expect a higher inflation 

rate. This implies that when investors expect higher inflation, demand for investment increases, 

leading to a rise in prices of stocks. The implication of this transmission channel is that inflation 

expectations can help in predicting current levels of stock prices. Moreover, it has been shown 

empirically that, among other macroeconomic variables, the inflation rate tends to have the highest 

predictive power in the forecast model for the stock market (see Liu et al., 2015). The second 
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macro variable introduced into our oil-based model for stock returns is a measure of real economic 

activity, with the industrial production index as a proxy. The theoretical relationship between the 

stock market and real economic activity can be explained by demand-side shock, which assumes 

that a positive productivity shock caused by positive demand shock, for instance, leads to higher 

revenues and profits, which in turn causes an increase in dividends and, therefore, in stock prices 

(see Tsagkanos and Siriopoulos, 2015). Hence, real economic activity may be expected to predict 

the stock market. The third macro variable considered is interest rate, with short-term interest rate 

as a proxy. An increase in interest rates, perhaps occasioned by the need to control money supply 

and, by extension, inflation, may cause earnings to fall and stock prices to drop, while a fall in 

interest rates may encourage increased spending and cause stock prices to rise. 

3 The model and estimation procedure 

3.1 Augmented linear and nonlinear covariate models 

Following the literature, the conventional bivariate single predictive regression model in 

equation (1) postulates oil price as the main predictor of the US stock market:  

1t t tr p             (1) 

where tr  and tp are logs of stock prices and oil price, using the West Texas Intermediate (WTI) 

crude oil price, and t  is the zero-mean idiosyncratic error term on stock returns. The coefficient 

  essentially indicates factor loading on oil prices (Chen et al., 1986; Shanken and Weinstein, 

2006). The underlying null hypothesis of no predictability is that 0  . This specification is in 

line with the approaches of Narayan and Gupta (2015) and Phan et al. (2015) for predicting the 

US stock market. Note that equation (1) is a linear version of the single-factor predictive model. 

The underlying estimation procedure that allows for endogeneity, persistence, and conditional 

heteroscedasticity effects is discussed in the Appendix. 

The proliferation of evidence for the influence of the macroeconomic environment on stock 

price dynamics justifies the inclusion of the three additional macro predictors in our forecast 

model. Thus, we hypothesize that the inclusion of the macroeconomic factors in equation (1) is 

likely to enhance the predictability of oil price for stock returns. Therefore, equation (1) is extended 

to include interest rate, inflation, and the industrial production index. The resulting equation (2) is 

expressed as follows: 
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                                   1 1't t t tr p Z                                                                              (2) 

where  t t tZ y i   and ty  is the log of the US industrial production index, ti  is the log of the 

interest rate, and   is the log of the consumer price index; 0   is the null hypothesis of no 

predictability in the relevant variables. However, some of the extant literature on the oil–stock 

relationship (including Kilian and Park, 2009; Lee and Chiou, 2011; Chang and Yu, 2013; Huang 

et al., 2017) has pointed out that a linear specification of the relationship may not be reasonable, 

since the response of the stock market to changes in oil price can be either positive or negative 

depending on whether the changes are driven by demand- or supply-side shocks. Hence, it is 

imperative to accommodate this type of nonlinearity in a predictive regression framework. 

Consequently, we follow the approach of Shin et al. (2014) to disaggregate the oil price into 

positive and negative price components, as defined in equations (3) and (4): 

 
1 1

max ,0
t t

t j j

j j

p p p 

 

           (3) 

 
1 1

min ,0
t t

t j j

j j

p p p 

 

           (4) 

where p
 and p

are defined as positive and negative partial sum decompositions of oil price 

changes. Relying on the assumption that the multi-factor predictive model in equation (2) will 

outperform the single-factor model in equation (1), we further examine whether oil price predicts 

the US stock market more accurately when the former model is formulated in nonlinear form, as 

in equation (5):  

                     
1 1 1' ;t t t t tr p p Z       

                                                              (5). 

Equation (5) is the nonlinear variant of equation (2). The null hypotheses of no predictability for 

tp  and 
tp imply that 0  and 0  , respectively.  

In addition, rather than capturing any possible shift in stock returns using the approach of 

Shin et al. (2014), we allow for two significant structural breaks in equation (2). The breaks are 

determined by following the GARCH-based unit root test of Narayan and Liu (2015), which allows 

for two structural breaks. As highlighted in the data section, the choice of the GARCH-based unit 

root test is underscored by the high-frequency data used, which is known to be susceptible to a 

conditional heteroscedasticity effect. Thus, in the presence of the GARCH effect, the test is 
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considered to be more suitable than the conventional unit root tests, such as those of the ADF type. 

Thus, like equation (3), equation (2) is extended, in equation (6), to account for the structural 

breaks: 

                           1 1' 't t t t tr p Z D                                                               (6) 

where the inclusion of structural shift in the model is denoted by tD ;  1 2t t tD D D  and 1itD   

if t   the break date and zero otherwise, where 1,2i  . A related study by Salisu and Oloko (2015) 

showed that ignoring structural breaks has implications on hedging effectiveness, even if the 

analysis is restricted to in-sample estimation. Theoretically, detecting and accounting for structural 

breaks if they exist may matter for both in-sample and out-of-sample forecasts, particularly for 

high-frequency series (for example, Paye and Timmermann, 2006; Rapach and Wohar, 2006, 

2008; Pesaran and Timmermann, 2007; Giacomini and Rossi, 2009). Recent developments suggest 

that accounting for a structural break if it exists, even when modeling with time-varying parameter 

regressions, makes forecasts more precise (Pesaran and Timmermann, 2007; Pesaran et al. 2013). 

To verify whether the inclusion of the breaks is valid, we compare the forecast performance of 

equation (6) with equation (2) for both the in-sample and out-of-sample forecasts. 

3.2 Estimation procedure and measures of forecast performance 

We begin the analysis by testing for the presence of endogeneity, persistence, and 

conditional heteroscedasticity effects in the predictors, as these effects are found to have 

implications for the forecast performance (Westerlund and Narayan, 2015). In the Appendix, we 

offer theoretical expositions for the implementation of the WN estimator for both single-factor and 

multi-factor model set-up. Thus, in the presence of any of these effects, the WN estimator is 

considered appropriate. This evidence has been empirically validated in the works of Westerlund 

and Narayan (2012, 2015), Narayan and Gupta (2015), Phan et al. (2015), Salisu and Isah (2017), 

and Salisu et al. (2018), among others. We employ the recursive window approach to generate the 

forecasts; this approach is preferred to the fixed parameter method, as it also accounts for the time-

varying nature of the estimates. This is particularly important when dealing with long time series 

that may have witnessed structural changes. The recursive window approach is an expanded 

window approach that adds new observation(s) to the sample and re-estimates thereafter. This 

process is followed continuously until the end of the forecast period is reached. 
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For forecast evaluation, two forecast measures are used: the Campbell and Thompson 

(2008) test (hereafter, C-T test) and the Clark and West (2007) test (hereafter, C-W test). The C-T 

test, described as the out-of-sample  2 _R OOS R statistic, is computed as

 1 0_ 1 /OOS R MSE MSE  , where 
1MSE  and 

0MSE  are the mean square error (MSE) of the 

out-of-sample prediction from the unrestricted and restricted models, respectively. Hence, in the 

context of this study, the restricted model consists of the single-factor variants, while the 

unrestricted version consists of the multiple-factor models. A positive value of the statistic (i.e., 

_ 0OOS R  ) suggests that the unrestricted model outperforms the restricted model; otherwise, it 

does not. The C-W test, which compares the predictive accuracy of two competing models, is also 

employed. Unlike the C-T test, the C-W test is able to determine whether the difference between 

the forecast errors of the two models is statistically significant or different from zero. The 

underlying procedure for the C-W test involves calculating equation (7): 

     
2 2 2

1 , 2 , 1 , 2 ,
ˆ ˆ ˆ ˆ ˆ
t k t k t t k t k t t k t t k t t kf r r r r r r      

      
 

   (7) 

where k  is the forecast period,  
2

1 ,
ˆ

t k t t kr r   is the squared error for the restricted model (i.e., 

model 1),  
2

2 ,
ˆ

t k t t kr r   is the squared error for the unrestricted model (model 2), and 

 
2

1 , 2 ,
ˆ ˆ

t t k t t kr r   is the adjusted squared error introduced by the C-W test to correct for any noise 

associated with the larger model’s forecast. Thus, the sample average of ˆ
t kf 

 can be expressed as 

 1 2 adj.MSE MSE   , and each term is computed as 

   
21

1 1 ,
ˆ

t k t t kMSE P r r

   , 

  
21

2 2 ,
ˆ

t k t t kMSE P r r

   , and  

   
21

1 , 2 ,
ˆ ˆadj.= t t k t t kP r r

  , 

where P  is the number of predictions used in computing these averages. To test for equality of 

forecast performance between models 1 and 2, the ˆ
t kf 

 is regressed on a constant, and the resulting 

t-statistic for a zero coefficient is used to draw the inference. Since the null hypothesis tests for 

equality of MSEs, the alternative hypothesis implies otherwise. The null hypothesis is rejected if 
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the test statistic is greater than +1.282 (for a one-sided 0.10 test) or +1.645 (for a one-sided 0.05 

test).  

As part of our model validation procedure, the forecast results of all the economic models 

considered as previously described are compared with the ARFIMA model, which seems to be 

representative of univariate time series models and the historical average model that is a popular 

benchmark in the forecasting literature. The validation is carried out for both in-sample and out-

of-sample forecasts. For robustness, we consider multiple sample periods, multiple forecast 

horizons, and multiple forecast measures. For the multiple sample periods, we consider 50% and 

75% of total observations, and the analyses are carried out singly for these data samples. The use 

of multiple in-sample periods has become standard practice for evaluating the forecast 

performance of predictive regression models. The out-of-sample forecast performance is evaluated 

on the basis of three forecast horizons: 10, 20, and 30 months ahead. Two benchmark crude oil 

prices, WTI and Brent, are used as alternative oil price proxies, the former for the main analyses 

and the latter for robustness checks. 

4 Data and preliminary analyses 

4.1 Data issues 

To make a baseline case of the single-factor predictive model proposed by Narayan and 

Gupta (2015), the US S&P 500 index and WTI oil price are used. The Shin et al. (2014) method 

is used to decompose the oil price into positive and negative oil price. Hence, this study makes use 

of monthly data for WTI oil price and US S&P 500 index (large cap stocks).5 As we extend our 

model to analyze sectoral stock predictability, the stock performance of 10 sectors with high stock 

market turnovers are considered. The relevant sectors are: consumer discretionary, consumer 

staples, energy, finance, health care, industries, information technology, materials, 

telecommunication services, and utilities. The macroeconomic variables, whose predictive powers 

on the aggregate and sectoral stocks are examined, are output (represented by IPI, the US Industrial 

Production Index), inflation rate (proxied by CPI, the US Consumer Price Index), and interest rate 

(with the three-month Treasury Bill Rate as proxy).   

                                                           
5 We are being specific about the categorization of stocks used, as large cap and stock cap stocks are not necessarily 

expected to react in a similar way to oil price shocks (see Salisu et al., 2017).   
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Table 1 

Data coverage. 

 

 

 

 

Items 

  
In-sample period Out-of-sample period 

Start date:  

End date 

Obs 50% 

End date: 

Obs 

75% 

End date: 

Obs 

50% 

End date: Obs 

75%  

End date: Obs 

    h = 1 
h = 3 

h = 6 
h = 1 h = 3 

h = 6 

Aggregate 1947M01:2017M03 843 1982M02:422 1999M09:633 1982M03:423 1982M05:425 1982M08:428 1999M10:634 1999M12:636 
2000M03:639 

 

SECTORS 

Cons_disc 

1990M01:2017M03 
327 2003M08:164 2010M05:245 2003M09:165 2003M12:167 2004M03:170 2010M06:246 2010M08:248 2010M11:251 

Cons_staples 
1990M01:2017M03 327 2003M08:164 2010M05:245 2003M09:165 2003M12:167 2004M03:170 2010M06:246 2010M08:248 2010M11:251 

Energy 1990M01:2017M03 327 2003M08:164 
2010M05:245 

2003M09:165 2003M12:167 2004M03:170 2010M06:246 2010M08:248 2010M11:251 

Finance 1990M01:2017M03 327 
2003M08:164 

2010M05:245 2003M09:165 2003M12:167 2004M03:170 2010M06:246 2010M08:248 2010M11:251 

Health 1990M01:2017M03 327 2003M08:164 2010M05:245 2003M09:165 2003M12:167 2004M03:170 2010M06:246 2010M08:248 2010M11:251 

Industries 1990M01:2017M03 327 2003M08:164 2010M05:245 2003M09:165 2003M12:167 2004M03:170 2010M06:246 2010M08:248 2010M11:251 

Info_tech 

1990M01:2017M03 
327 2003M08:164 2010M05:245 2003M09:165 2003M12:167 2004M03:170 2010M06:246 2010M08:248 2010M11:251 

Materials 
1990M01:2017M03 327 2003M08:164 2010M05:245 2003M09:165 2003M12:167 2004M03:170 2010M06:246 2010M08:248 2010M11:251 

Telecom 1990M01:2017M03 327 2003M08:164 
2010M05:245 

2003M09:165 2003M12:167 2004M03:170 2010M06:246 2010M08:248 2010M11:251 

Utility 1990M01:2017M03 327 
2003M08:164 

2010M05:245 2003M09:165 2003M12:167 2004M03:170 2010M06:246 2010M08:248 2010M11:251 
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The data for the aggregate stock (US S&P 500) and the sectoral stocks were obtained from the 

Bloomberg Terminal, and the data for WTI oil price were sourced from the Federal Reserve Bank 

of St. Louis (FRED). The periods of analysis for the aggregate and sectoral stocks differ, owing to 

differences in historical availability of aggregate and sectoral data for US stocks. Specifically, the 

analysis for aggregate stocks covers the period January 1947 to March 2017, while that of the 

sectoral stocks covers January 1990 to March 2017. Thus, we have 843 and 327 observations for 

aggregate and sectoral stocks, respectively, each of which is large enough to allow reasonable 

inferences to be drawn.  

Meanwhile, as the main objective of this study is to determine an appropriate model for 

predicting US stock returns, we follow the standard approach for predictive model analysis by 

dividing our full sample period into 50% and 75% for in-sample analyses (see also Westerlund 

and Narayan, 2014). For out-of-sample analysis, however, we consider forecasts at one month 

(h = 1), three months (h = 3) and six months (h = 6) ahead. The three-interval forecast horizons were 

chosen to test the long-term persistence of the out-of-sample predictive capacity of the model. The 

summary of data coverage for aggregate and sectoral stocks under full sample, in-sample, and out-

of-sample forecast analysis is presented in Table 1. 

Figure A1 (in the Appendix) gives a graphical representation of the data employed in the 

analysis. The 11 rows and four columns detail the trend in the relationship between US stock prices 

and the four predictors. The first row of the figure presents the graphs for the aggregate stock 

market in relation to oil price and other predictor variables, while the subsequent 10 rows are the 

corresponding graphs for each sector. The relationship between stocks and WTI oil price, 

economic output (IPI), inflation rate (CPI), and interest rate (INT) are presented in the first, second, 

third, and fourth columns, respectively. For asymmetric analysis, oil price was decomposed into 

positive and negative changes, following the approach of Shin et al. (2014). 

Figure A1 indicates inconsistency in the relationship between aggregate US stock and oil 

price; it is sometimes positive and sometimes negative. Relevant analysis of the periods of positive 

and negative oil–US stock trends can be found in Salisu and Oloko (2015). The inconsistency in 

the relationship may be due to the dual nature of oil as import and export commodity in the US 

economy, which gives oil shocks the potential to affect aggregate demand and supply. For instance, 

an increase in shale oil production coupled with a reduction in US imports of crude oil has been 

proposed as one of the main causes of the 2014 oil price crash (Baffes et al., 2015). Therefore, the 
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relationship may be positive when a booming US economy causes increased demand for oil, 

leading to higher oil prices; it may be negative if high oil prices depress the US economy through 

high production costs. In particular, the issue of endogeneity in the oil–US stock relationship has 

been recognized and addressed using appropriate methodology. 

While oil price shows an inconsistent trend in relation to stock prices, output level and 

inflation rate show a clear positive trend relationship, suggesting that they are closely related with 

stock prices and may improve the forecast performance of stock market predictive model. The 

positive relationship is not unexpected, as the stock market is a good indicator of economic 

productivity (Solnik, 1987), and the inflation rate increases general price levels, including stock 

prices. The relationship between oil price and sectoral stock prices is inconsistent, but some sectors 

appear to exhibit stronger associations than others. For instance, the positive association of oil 

price with energy, finance, and materials stocks (rows 4, 5, and 9 of Figure A1) appears stronger 

than the association of oil price with stocks of any other sector. This may partially confirm the 

findings of Yu et al. (2018) that energy sector stocks are the most responsive to oil price changes 

and the most prone to oil price risk.       

The nature of the trend association of output and inflation rate with stock prices at sectoral 

level appears to be sector-specific. Specifically, while the stock prices of almost all sectors move 

on average in the same direction as stock prices (column 2 of Figure A1), the stock prices of some 

sectors do not seem to respond significantly to the rising trend in price level. Relevant examples 

include the finance, information technology, telecommunications, and utility sectors (rows 5, 8, 

10, and 11). The relationship between interest rate and stock prices (the last column) appears 

negative both on aggregate and at the sectoral level. The negative trend in the relation between 

stock prices and interest rate (three-month Treasury Bill Rate) can be explained by US investors 

using the two investment types more as substitutes than as complements. However, as trends do 

not ordinarily explain causality, the real relationship between stocks and macroeconomic variables 

in-sample and out-of-sample is analyzed in the subsequent sections. 

4.2 Descriptive statistics  

We conduct descriptive statistics to describe the moments and statistical features of our 

data. Usually, for high-frequency time series, stylized facts suggest the inherent presence of 

conditional heteroscedasticity, or high volatility, and fat-tailedness, or nonnormality (see Enders, 

2014). In addition, Westerlund and Narayan (2015) show that predictability models of oil–US 
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stock relationships suffer from the problem of endogeneity. The essence of the current section and 

the preliminary analysis section that follows is to confirm some of these features in our data. Table 

2 presents descriptive statistics of selected variables used in our aggregate and sectoral predictive 

models.   

 

Table 2 

Descriptive statistics. 

  Mean Max. Min. Std. Dev. Jarque–Bera CV 

US STOCK  

Aggregate (S&P 500) 494.29 2363.64 14.00 592.91 210.81*** 119.95 

Cons_disc 258.48 700.24 53.75 154.57 71.71*** 59.80 

Cons_staples 246.90 565.79 55.44 127.22 29.82*** 51.53 

Energy 312.90 727.63 83.35 185.96 30.27*** 59.43 

Finance 154.63 266.70 87.41 43.32 18.19*** 28.02 

Health 350.63 884.71 65.86 205.85 40.35*** 58.71 

Industries 252.04 563.99 61.03 120.79 11.08*** 47.92 

Info_tech 349.96 916.71 56.96 213.16 20.59*** 60.91 

Materials 172.00 328.73 59.50 70.79 23.71*** 41.16 

Telecom 143.03 330.62 77.28 51.81 247.95*** 36.22 

Utility 154.63 266.70 87.41 43.32 18.19*** 28.02 

 

West Texas Intermediate (WTI) oil price  

 

Aggregate 24.31 139.96 1.62 27.52 508.67*** 113.20 

Sectors 46.91 139.96 11.37 30.59 39.09*** 65.21 

 

US Industrial Production Index (IPI)  

 

Aggregate 57.33 106.61 13.63 29.71 65.52*** 51.82 

Sectors 89.83 106.61 62.43 13.51 40.38 15.04 

 

US Consumer Price Index (CPI)  

 

Aggregate 104.57 243.80 21.50 73.94 83.53*** 70.71 

Sectors 187.72 243.80 127.40 34.67 23.87*** 18.47 

 

US three-month Treasury Bill Rate (INT)  

 

Aggregate 4.13 16.30 0.01 3.10 161.28*** 75.06 

Sectors 2.80 7.90 0.01 2.30 24.73*** 82.14 
Note: CV denotes coefficient of variation. *** indicates significance at the 1% level. 
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The figures for the Jarque–Bera statistic in Table 2 show that the aggregate and sectoral indexes 

are nonnormal, with the exception of industrial production. The nonnormality observed in these 

series is typical of long, high-frequency financial and economic time series. The results show the 

average value of the S&P 500 to be 494.29 basis points, with a standard deviation of 592.91 and 

the highest variability (shown by coefficient of variation (CV) of 119.95) in the period under 

consideration. The figures in the last column show that the second highest variability (after the 

S&P 500 aggregate index) was in WTI oil price, and the three-month interest rate was third highest. 

At the sectoral level, the stocks for the IT sector (CV = 60.91) show the highest variability, 

followed by consumer discretionary (CV = 59.80) and consumer staples (CV = 59.43). 

With the exception of a few sectors, such as finance, energy, and telecommunications, most 

sectors performed at their historical best, as shown in the last month of the analysis (see Figure 

A1). Evidently, virtually all the series are nonnormal, as expected for most high-frequency 

financial and economic series. Thus, in the determination of the weight used in transforming the 

original predictive model, we consider a nonnormal error distribution that mimics the distribution 

of the regression error in order to produce more precise and accurate forecasts. 

4.3 Preliminary analyses 

We carry out preliminary tests for the presence of significant autocorrelation, 

heteroscedasticity, persistence, and endogeneity effects in the predictors of aggregate and sectoral 

US stocks. All variables are expressed in natural logarithms for ease of interpretation, and oil price 

is decomposed into negative and positive oil price to account for nonlinearity in oil price effects 

(Westerlund and Narayan, 2015). The formulation for decomposing oil price changes is specified 

in equations (3) and (4), following Shin et al. (2014). The results of the test for ARCH effect, 

(autocorrelation, persistence, and unit root) are presented in Table 3, and the results for 

endogeneity tests are presented in Table 4.  
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Table 3 

Results for ARCH effect, autocorrelation, persistence, and unit root tests. 

Items ARCH(5) ARCH(10) LB(5) LB(10) Persistence 

 

Unit root 

 

LSTOCK 
Aggregate 6.1961*** 4.0209*** 10.495* 14.475  -5.136***b 

Cons_disc 5.8369*** 3.5589*** 4.5633 6.9213  -5.247***b 

Cons_staples 2.6634** 1.2435 5.4828 9.5401   -4.007**b 

Energy 2.1271* 1.9126** 1.7402 4.0312  -4.161**b 

Finance 8.1820*** 4.7795*** 3.3963 11.840  -4.005**b 

Health 2.6930** 1.4275 9.8384* 23.363***  -4.302**b 

Industries 10.985*** 5.8853*** 3.6549 13.197  -4.125**b 

Info_tech 20.846*** 12.375*** 4.3115 8.3679  -3.965**b 

Materials 8.4071*** 4.9705*** 0.9079 10.680  -6.515***b 

Telecom 9.7046*** 8.1588*** 5.2236 14.208  -4.873***b 

Utility 8.1820*** 4.7795*** 3.3963 11.840  -4.604***b 

 

LWTI 
Aggregate 2.7995*** 1.5322 23.275*** 29.413*** 0.9973*** -7.933***b 

Sectors 6.7582*** 3.2698*** 20.072*** 25.893*** 0.9888*** -5.155***b 

 

LIPI 
Aggregate 25.165*** 12.565*** 231.17*** 237.27*** 0.9983*** -4.356***a 

 

Sectors 14.670*** 8.0593*** 117.66*** 139.84*** 0.9943*** -4.565***a 

 

LCPI 
Aggregate 40.807*** 28.060*** 450.87*** 702.68*** 0.9997*** 7.544***b 

Sectors 18.488*** 9.3231*** 92.483*** 130.74*** 0.9972*** -3.869***b 

 

LINT 
Aggregate 64.298*** 32.692*** 23.275*** 29.413*** 0.9912*** -8.0353***a 

Sectors 11.237*** 22.846*** 27.089*** 29.583*** 0.9873*** -4.122***a 

Note: The values reported are the F-statistics for the ARCH effect test and Ljung–Box Q statistics for the 

autocorrelation test. We consider two different lag lengths (k) of 5 and 10 for robustness. The null hypothesis for the 

autocorrelation test is that there is no serial correlation, while the null for the ARCH test is that there is no conditional 

heteroscedasticity. The persistence effect is captured by the coefficient of the first-order autoregressive process for the 

predictors. Asterisks ***, **, and * indicate rejection of the null hypothesis at significance levels of 1%, 5%, and 

10%, respectively. The unit root test follows the GARCH-based unit root test developed by Narayan and Liu (2015) 

with the underlying test equation 0 1 1

1

;
k

t t i it t

i

y t y D B   



      , where ty denotes the series under 

consideration, t  is a time trend, 1itB  if 
iBt T , and 0itB   otherwise. The null hypothesis of unit root given as 

0 :  =0H   is tested against the alternative hypothesis of stationarity denoted as 1 :  0H   . Superscript letters a 

and b denote I(0) and I(1), respectively. 
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Table 3 reveals that virtually all the predictors suffer an ARCH effect and autocorrelation. 

The null hypothesis of no ARCH effect is strongly rejected at conventional levels of significance 

for oil price and macroeconomic variable predictors of aggregate and sectoral US stocks. Similarly, 

the null hypothesis of no serial correlation by Ljung–Box statistics is strongly rejected at 

conventional levels of significance. This suggests that accounting for ARCH effect and 

autocorrelation in modeling the relationship between aggregate and sectoral stock prices and 

macroeconomic variables is important for the avoidance of biased results. Hence, it is important 

to choose an estimator consistent with autocorrelation and conditional heteroscedasticity.     

For the unit root test, we employ the GARCH-based unit test of Narayan and Liu (2015), 

which is more appropriate for the series we are dealing with. One of the shortcomings of the 

conventional unit root tests, particularly the ADF type, is their inability to exploit the information 

contained in conditional heteroscedasticity in the test equation. This is one of the advantages of 

the GARCH-based unit root tests; they allow the error from the test equation to follow a GARCH 

process and are thus able to account for conditional heteroscedasticity in the estimation process. 

There are different versions of this type of unit root test, such as those developed by Cook (2008), 

Narayan and Liu (2011, 2013, 2015), and Narayan et al. (2016). However, Narayan and Liu’s 2015 

version is preferred to the others, as it allows for both structural breaks and time trend in the test 

equation. While Cook (2008) ignores both features, the tests of Narayan and Liu (2011, 2013) and 

Narayan et al. (2016) allow for structural breaks only.6 A similar test with structural breaks and 

time trend was proposed by Narayan and Popp (2010); however, it ignores conditional 

heteroscedasticity and may not be suitable for high-frequency series such as those used in our 

paper.  

The results of the GARCH-based unit root test are presented in Table 3. With the exception 

of interest rate and output, which can be described as I(0), all the other series are I(1). This outcome 

further validates the need to perform a separate test for persistence effect. One may conclude from 

the unit root test that interest rate and output do not suffer severe persistence effects; however, in 

terms of magnitudes based on the first-order autoregressive regression, the effects are not as small 

as suggested by the unit root test. In other words, a series being I(0) does not imply zero persistence 

effect, and an additional test is required to determine the extent of the effect.  

 

                                                           
6 See Salisu and Adeleke (2016) and Salisu et al. (2016) for recent applications of the GARCH-based unit root tests.  
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Table 4 

Results for endogeneity test. 

LSTOCK LWTI LWTI_P LWTI_N LIPI LCPI LINT 

Aggregate 0.4058 1.0239*** −1.8539*** 4.0519*** −21.6388*** −0.3732 

Cons_disc 0.3607 0.1827 0.1566 6.9861*** 3.2684 0.0323 

Cons_staples 0.2108 −0.0054 −0.0970 3.0935* −2.1514 −0.0482 

Energy 0.5805*** 0.3931** 0.1413 −2.2348 11.050*** −0.1459 

Finance 0.0250 −0.0617 −0.1744 −1.3375 2.4352 −0.0140 

Health 0.3046 0.3888 −0.2611 1.5418 0.1487 −0.0294 

Industries 0.3702 0.2763 0.1038 4.7742*** 4.4695 −0.0132 

Info_tech 0.5698 0.9320** −0.0052 8.0793*** 5.2637 0.0183 

Materials 0.3537** −0.0021 0.3733** 5.1958*** 6.9918*** −0.0191 

Telecom 0.1337 0.4415 −0.0326 5.1807** 0.3473 0.0194 

Utility 0.0250 −0.0617 −0.1743 −1.3375 2.4352 −0.0140 

Note: The endogeneity test follows a three-step procedure. First, we run the following predictive regression model:

1 ,t t r tr x     , where tr represents stock returns, and 1tx  is the predictor variable, such as oil price and its 

asymmetry, output, inflation, and interest rate. In the second step, we follow Westerlund and Narayan (2015) and 

model the predictor variable as follows:
1 , .(1 )t t tx x        . In the final step, the relationship between the 

error terms is examined using the following regression:
, ,r t x t t    . The reported values are the coefficients of 

 . If this is found to be statistically significant and different from zero at any of the conventional levels of 

significance, the predictor is endogenous. Asterisks ***, **, and * denote significance at the 1%, 5%, and 10% levels, 

respectively. 

 

The results of the persistence test in Table 3 show that the predictors have high persistence, 

as they are very close to unity. Table 4 makes it clear that there are endogeneity issues, with few 

predictors that need to be captured in the model. For the predictors of US stocks at aggregate level, 

negative and positive oil price, output, and inflation are endogenous. This indicates the possibility 

of reverse causality between stock prices and these predictors. Interest rate is not endogenous to 

US stock prices at aggregate or sectoral levels. However, endogeneity is evidence for oil price and 

asymmetric oil price with stocks of energy and material sectors. Output is endogenous with stocks 

for six out of the 10 sectors, and inflation is endogenous with stocks for the energy and materials 

sectors. 

This suggests that an estimator consistent with endogeneity must be chosen to avoid 

endogeneity bias in the empirical results. The competing estimators are Lewellen (2004) and 



19 
 

Westerlund and Narayan (2012); however, to further account for heteroscedasticity in the series as 

noted previously, Westerlund and Narayan (2012) is favored.  

5 Discussion of results 

Following our preliminary analyses, which confirm the presence of persistence and 

conditional heteroscedasticity in the US aggregate and sectoral stock returns and, to some extent, 

endogeneity between these stock returns and the proposed predictors, we favor the use of the WN 

estimator. As stated earlier, this estimator is better that the Lewellen (2004) alternative, which does 

not capture the presence of ARCH effects (Westerlund and Narayan, 2015). Basically, we estimate 

seven different models: five for the empirical analysis and two others for model validation and 

robustness. The first model (denoted as Sk ) is the oil price-based single-factor predictive model. 

This has been identified as a very good model for predicting US stock returns, albeit at the 

aggregate level (see Westerlund and Narayan, 2015).  

As this study examines the ability of macroeconomic factors to predict US stock returns 

using the single-factor predictive model as a base, it would empirically validate whether 

accounting for the role of macroeconomic variables in an oil price-based single-factor predictive 

model would improve the forecast performance of the model or lead to its over-fitness. Hence, the 

second model, which is the main concern of this study, is the multiple-factor predictive model 

(denoted as Mk ). This is compared with the first model ( Sk ) to examine whether accounting for 

macroeconomic factors improves or degrades the predictability of an oil price-based single-factor 

predictive model for US aggregate and sectoral stock returns. 

The third model ( Bk ) investigates whether the forecast performance of our multiple-factor 

predictive model could be improved when structural break is accounted for in the model. This 

involves introducing additional variables in the form of dummy variables to capture the effect of 

structural breaks. The presence and significance of structural breaks in the aggregate and the 

sectoral US stock returns was determined using the Bai and Perron (2003) multiple breakpoints 

test. This model will be compared with Mk  to determine the significance of structural breaks in a 

multiple predictive model for US stock returns.   

The fourth and fifth models, like the third model, seek to examine probable improvement 

in the predictability of our multiple-factor model by accounting for some special data properties. 

Specifically, the fourth and fifth models examine the potential for obtaining a better multi-factor 
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predictive model by accounting for the role of oil price asymmetry. According to Westerlund and 

Narayan (2015), in their single-factor predictive model, oil price was found to predict US stock 

returns asymmetrically, with negative changes in oil price predicting better than positive changes. 

In the context of this study, the fourth model ( Pk ) examines the predictability of positive oil price 

changes, while the fifth model ( Nk ) investigates the predictability of negative oil price changes. 

Both would be compared with the multiple-factor model to examine the relevance of accounting 

for oil price asymmetry in predicting US stock returns. The two other models for model validation 

and robustness are the statistical model following ARFIMA ( ARFk ) and the historical average 

model ( AVRk ).  

For all the models, the in-sample analyses are performed with 50% and 75% of the data 

sample, and out-of-sample analyses are performed with forecasts one month, three months, and 

six months ahead. The Root Mean Square Error (RMSE), which is the usual means of evaluating 

the forecast performance of predictive models, was employed. However, as this method is 

incapable of assessing the significance of the difference between two competing predictive models, 

an alternative forecast evaluation method proposed by Clark and West (2007), the C-W test, is 

employed. This method is most appropriate for dealing with nested models (as in this study), 

particularly as it adjusts for the noise associated with the forecasts of larger models, unlike the 

alternative test proposed by Diebold and Mariano (2002).  

Thus, the presentation and discussion of the results of this study begins with the analysis 

of the in-sample forecast performance of our empirical models. This is followed by the analysis of 

the out-of-sample forecast performance and then the analyses of model validation and robustness.    

5.1 In-sample forecast evaluation for aggregate and sectoral US stock returns 

For the in-sample forecast performance evaluation of our empirical predictive models, we 

present the RMSE of the respective models in Table 5. Evidently, the RMSE explains the deviation 

of the forecast series from the actual. Zero RMSE will imply a perfect forecast; hence, the closer 

the RMSE to zero, the better. This presupposes that a model with lower RMSE is better than a 

model with higher RMSE. The results show that the RMSE for aggregate stock returns in the 

single-factor predictive model ( Sk ) is higher than that of the multiple-factor model ( Mk ) and its 

extensions under the 50% sample size. This indicates that the multiple-factor model is better, even 

if the extension of the multiple-factor model to account for structural break and asymmetry does 
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not seem to improve its forecast performance. A similar conclusion can be drawn from the 75% 

sample size. The RMSE for Sk  is higher than that for Mk , which indicates that Mk  is better than 

Sk . However, the extended multiple-factor models produced a higher RMSE than that of the 

parsimonious multiple-factor model, implying that structural breaks and asymmetry constitute 

noise to the multiple predictive model.  

      

Table 5 

In-sample RMSE for predictive models. 

Stock returns 50% sample size 75% sample size 

Sk  Mk  Bk  Pk  Nk  Sk  Mk  Bk  Pk  Nk  

Aggregate 0.8274 0.2526 0.2547 0.2381 0.3841 0.5148 0.3960 0.5368 0.5021 0.5474 

 

SECTORS 

Cons_disc 0.1747 0.1531 0.1892 0.2158 0.3182 0.3002 0.4836 0.4253 0.3537 0.4857 

Cons_staples 0.2344 0.2950 0.2951 0.1699 0.1005 0.3697 0.2771 0.2710 0.2463 0.2386 

Energy 0.1512 0.1543 0.1543 0.2376 0.2082 0.1666 0.3016 0.2999 0.2231 0.2920 

Finance 0.1845 0.2051 0.1021 0.1766 0.1693 0.3893 0.4274 0.3738 0.5299 0.5406 

Health 0.3576 0.1951 0.1951 0.2075 0.1999 0.7098 0.3572 0.5065 0.3394 0.3316 

Industries 0.1830 0.1914 0.1677 0.2244 0.2752 0.3617 0.6829 0.5508 0.5998 0.6364 

Info_tech 0.4536 0.4153 0.2608 0.4827 0.5217 0.6044 0.6538 0.6538 0.5086 0.4602 

Materials 0.1635 0.1445 0.1445 0.1259 0.1383 0.3656 0.4280 0.3899 0.3344 0.3035 

Telecom 0.3395 0.3056 0.2161 0.3291 0.3415 0.4277 0.7390 0.2174 0.7035 0.6773 

Utility 0.1845 0.2051 0.1021 0.1766 0.1693 0.3893 0.4274 0.3738 0.5299 0.5406 

Note: The reported values are for RMSE from single-factor predictive model kS, multiple-factor predictive model kM, multiple-

factor model with structural break kB, multiple-factor model with positive oil price changes kP, and multiple-factor model with 

negative oil price changes kN. Zero RMSE indicates perfect predictability; hence, the closer the RMSE to zero, the better.  

 

On the sectoral stock returns, the RMSE results for the 50% sample size suggest that the 

multiple-factor predictive model outperforms the single-factor model when predicting stock 

returns in the consumer discretionary, health, information technology, materials, and 

telecommunication sectors; for the other sectors—consumer staples, energy, finance, industries, 

and utilities—the single-factor predictive model appears to perform better. However, as the 75% 

sample size extends the data coverage to 2010, it appears that the ability of macroeconomic factors 

to predict sectoral US stock returns was undermined by the occurrence of the global financial 

crisis. This is indicated, as the stock returns for the consumer discretionary, information 
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technology, and telecommunication sectors, which were better predicted with the multiple-factor 

model and the 50% sample size, are now better predicted with the single-factor model and the 75% 

sample size.      

However, as no cognizance is given to the noise usually associated with the larger model’s 

forecast when evaluating the performance of predictive models with RMSE, the conclusion from 

RMSE may not be totally correct. This prompts the use of the C-W test, which adjusts for the noise 

associated with the larger model’s forecast and assesses the significance of the difference in the 

forecasting accuracy of two competing models, the parsimonious and the extended or larger model. 

Based on the initial proposition to determine the better predictive model between single-factor 

(model 1) and multiple-factor (model 2), between multiple-factor (model 2) and multiple-factor 

with structural break (model 3), and between multiple-factor (model 2) and multiple-factor with 

asymmetry (models 4 and 5), identification of the parsimonious and larger models is necessary.  

Four cases of model comparison emerged. The first is the case of model 1 vs. model 2 

(denoted as :M Sk k ). Here, the model for the single-factor case ( Sk ) is the parsimonious model, 

having been found to be a good predictive model for US stock returns by Westerlund and Narayan 

(2015), while the model for the multiple-factor case ( Mk ) is the larger model. Hence, the multiple-

factor model is preferred when the C-W test is positive and significant; otherwise, the single-factor 

model is preferred. Under the second case, model 3 is compared with model 2 ( :M Bk k ) to assess 

the relevance of accounting for structural breaks in the multiple-factor model. In this case, Mk  is 

the parsimonious model, and Bk  is the extended model. Thus, if the C-W test is positive and 

significant, accounting for structural breaks improves the predictability of the particular stock 

returns; otherwise, accounting for structural breaks is irrelevant in the multiple-factor predictive 

model.  

The third and fourth cases assess the significance of accounting for oil price asymmetry, 

as they compare the multiple-factor model (with symmetric oil price) with the multiple-factor 

model with positive oil price changes ( :P Mk k ) and negative oil price changes ( :N Mk k ), 

respectively. In these two cases, our proposed multiple-factor model (with symmetric oil price) is 

the larger model, as it contains both positive and negative oil price changes; the multiple-factor 

model with positive oil price changes and the multiple-factor model with negative oil price changes 

are regarded as the parsimonious models. For asymmetry to improve the forecast performance of 
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our multi-factor predictive asymmetric model, the positive or negative model or both must perform 

better than our symmetric multiple-factor model. This presupposes that the C-W test is expected 

to be negative and significant under either or both cases, :P Mk k  and :N Mk k , for asymmetry to 

matter; otherwise, our proposed multiple-factor model (with symmetric oil price) is preferred. 

Table 6 

In-sample results for the Clark and West test. 

Note: 𝑘𝑆: 𝑘𝑀, 𝑘𝑀: 𝑘𝐵, 𝑘𝑃: 𝑘𝑀, and 𝑘𝑁: 𝑘𝑀 represent the four different cases earlier discussed. A positive and significant C-W 

statistic indicates that the multiple-factor model is preferred to the single-factor model in the first case, and the multiple-factor 

model with structural breaks is preferred to the multiple-factor model without structural breaks in the second case. A positive and 

significant C-W statistic in the third and fourth cases indicates that the multiple-factor model is better than the multiple-factor 

model with structural breaks. The reverse holds if the C-W statistic is negative and significant. Asterisks ***, **, and * indicate 

significance at the 1%, 5%, and 10% levels, respectively. 

  

Table 6 presents the results of the test for in-sample forecast performance of the competing 

models under different cases. In the first case ( :S Mk k ), the C-W statistic is positive and strongly 

significant for the aggregate and for 80% of sectoral US stock returns. This holds particularly for 

the 50% sample size. As also suggested by the RMSE results, the ability of macroeconomic factors 

Stock 

returnstock 

returns 

50% sample size 75% sample size 

:S Mk k  :M Bk k  :P Mk k  :N Mk k  :S Mk k  :M Bk k  :P Mk k  :N Mk k  

Aggregate 1.6558*** 0.0032** 
−0.0069*** 

0.1149*** 0.6481*** 
−0.1056*** 

0.1122*** 0.1710*** 

 

SECTORS 

Cons_disc 0.0282*** 2.38E-05 0.0416*** 0.1340*** 0.0830*** 0.0641*** 
−0.0822*** 

0.0087* 

Cons_staples 0.1534*** - 
−0.0182*** −0.0053 

0.3345*** 0.0033*** 
−0.0142*** −0.0171*** 

Energy 0.0103*** - 0.0507*** 0.0270*** 
−0.0118** 

0.0010*** 0.0589*** 
−0.0001 

Finance 0.0032 0.0541*** 
−0.0074*** −0.0066*** −0.0240*** 

0.0541*** 0.1129*** 0.1294*** 

Health 0.2156*** - 0.0054*** 0.0053*** 1.3040*** 
−0.0874*** −0.0112*** −0.0156*** 

Industries 0.0062** 0.0262*** 0.0164*** 0.0521*** 
−0.1389*** 

0.1938*** 
−0.0990*** −0.0557*** 

Info_tech 0.1042*** 0.1822*** 0.0700*** 0.1174*** 0.6172*** - 
−0.1166*** −0.1063*** 

Materials 0.0288*** - 0.0025 0.0080*** 
−0.0388*** 

0.0363*** 
−0.0556*** −0.0596*** 

Telecom 0.0440*** 0.0706*** 0.0398*** 0.0389*** 
−0.1481*** 

0.8892*** 
−0.0509*** −0.0832*** 

Utility 0.0032 0.0541*** −0.0074*** 
−0.0066*** −0.0240*** 

0.0541*** 0.1129*** 0.1294*** 
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to predict sectoral US stock returns appears to have been undermined by the occurrence of the 

global financial crisis, since the number of sectors rejecting the multiple-factor model increased 

from two under the 50% sample to six under the 75% sample.  

As our predictive model follows the global financial crisis, we would be constrained to 

draw our conclusions from the results for the 75% sample size whenever the results from the 50% 

and 75% sample sizes are inconsistent. Hence, on the basis of the C-W test, we conclude from our 

in-sample analysis that the stock returns for the consumer discretionary, consumer staples, health, 

and information technology sectors are better predicted using multiple-factor predictive models, 

whereas stock returns for other sectors—finance, energy, industries, materials telecommunication, 

and utilities—are better predicted with an oil price-based single-factor predictive model. However, 

for aggregate stock returns (that is, returns on the S&P 500), the C-W statistic remains positive 

and significant under the 75% sample, as it is under the 50% sample, indicating that the multiple-

factor predictive model outperforms the single-factor predictive model overall. 

We now consider the second case, which examines whether accounting for structural 

breaks in a multiple-factor predictive model will improve its predictive ability. Since stock returns 

of some sectors are better predicted with a single-factor model, the question of whether accounting 

for structural breaks in macroeconomic variables augments the predictive model will only apply 

to the stock returns of the aggregate and the relevant four sectors. The in-sample C-W results in 

Table 6 show that, for three of the four sectors supporting a multiple-factor predictive model, 

accounting for structural breaks would improve their forecast performance under both the 50% 

and 75% samples. Specifically, the predictability of stock returns for the consumer discretionary, 

consumer staples, and information technology sectors improves when structural breaks are 

accounted for in their respective multiple-factor predictive models. However, for aggregate stock 

returns and the health sector, accounting for structural breaks in the multiple-factor model tends to 

generate noise in the model, as it reduces its fitness. 

The relevance of accounting for oil price asymmetry in a multiple-factor predictive model 

was examined by comparing the multiple-factor model with positive and negative oil price changes 

with our proposed symmetric multiple-factor model. As in the third and fourth cases, the relevant 

stock returns are those that perform well in the multiple-factor model; that is, the aggregate (S&P 

500) and the consumer discretionary, consumer staples, health, and information technology 

sectors. As discussed earlier, a positive and significant C-W value implies that asymmetry is not 
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relevant, while a negative and significant C-W statistic for either or both cases implies that 

asymmetry matters.  

The in-sample results presented in Table 6 show that the C-W statistics for the relevant 

sectoral stock returns are negative and significant over the longer sample size but show a positive 

and significant C-W statistic for aggregate stock returns. This indicates that while the stock returns 

of the four relevant sectors could be adequately predicted with a multiple-factor model augmented 

with macroeconomic variables, the forecast performance of the stock returns could be improved 

by capturing the asymmetric effect of oil price changes in the model. For the aggregate stock 

returns, it suggests that accounting for oil price asymmetric matter in an oil-based single-factor 

model, as analyzed by Westerlund and Narayan (2015), does not automatically imply that it will 

matter when using a macroeconomic variable-augmented multiple-factor model. This may mean 

that accounting for asymmetry in a multiple-factor model results in over-fitness of the model 

(Salisu and Isah, 2018). 

Overall, our in-sample results revealed that macroeconomic variables (output, inflation, 

and interest rate) play a significant role in improving the predictability of the US aggregate (S&P 

500) stock returns and the stock returns of some sectors. In addition, in-sample results show that 

the predictability of US aggregate stock returns can be improved by accounting for structural 

breaks and oil price asymmetry. However, the forecast performance of stock returns for the 

consumer discretionary, consumer staples, and information technology sectors can be improved 

by accounting for both structural breaks and oil price asymmetry, whereas accounting for oil price 

asymmetry only is important for improving forecast performance for health sector stock returns.  

5.2 Out-of-sample forecast performance 

Since a better in-sample forecast does not automatically guarantee a better out-of-sample 

forecast, we now consider the out-of-sample forecast performance of the models. As for the in-

sample analysis, we compare the forecast performance of the single-factor oil price–US stock 

predictive model by Narayan and Gupta (2015) with our proposed multiple-factor predictive 

model. In addition, we examine whether accounting for structural breaks and oil price asymmetry 

leads to a significant improvement in the forecast performance out-of-sample of our proposed 

multiple-factor model. The decision criteria for the out-of-sample C-W tests remain as discussed 

under the in-sample analysis. The models are again compared under four cases, namely; model 1 

vs. model 2 ( :M Sk k ), model 2 vs. model 3 ( :M Bk k ), model 4 vs. model 2 ( :P Mk k ), and model 5 
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vs. model 2 ( :N Mk k ). We use the rolling window approach to conduct forecasts. Additionally, for 

robustness, we forecast using 50% and 75% of the available data and for forecast horizons one 

month (h = 1), three months (h = 3), six months (h = 6), and 12 months (h = 12) ahead. This 

approach is used to evaluate the forecast performance of different predictive models. The analyses 

of the out-of-sample assessment of the forecast performance of the predictive models are presented 

in the following sub-sections. 

5.2.1 Single-predictor vs. strictly multiple-predictor out-of-sample forecast  

Under the in-sample analyses, we find that the multiple-factor predictive model overly 

outperforms the single-factor predictive model for aggregate (S&P 500) stock returns and for stock 

returns of four notable sectors: consumer discretionary, consumer staples, health, and information 

technology. This result needs to be confirmed out-of-sample, as the main motive of prediction is 

to make out-of-sample forecasts. Table 7 presents the C-W statistics for the four cases of model 

comparison under 50% and 75% sample sizes, respectively. The performance of the competing 

models is compared over forecasts one month, three months, six months, and 12 months ahead.  

The C-W statistic is positive and strongly significant for the aggregate and for eight of the 

10 sectoral US stocks considered under the 50% sample size. However, as with the in-sample 

analysis, this result is not consistent for all sectors through the 75% sample size. Given this 

inconsistency, we cannot emphatically conclude that the multiple-factor predictive model will 

always predict stock returns for the energy, industries, materials, or telecommunication sectors 

better than the oil price-based single-factor predictive model. Because the C-W statistics of the 

aggregate stock returns and the stock returns for the consumer discretionary, consumer staples, 

health, and information technology sectors remained consistently positive and significant over all 

the forecast horizons considered, we may confirm that the supremacy of the multiple-factor 

predictive model over the single-factor predictive model in the in-sample also applies out-of-

sample.  

Hence, we conclude that the role of macroeconomic variables is important and should be 

considered when setting up a predictive model for S&P 500 (aggregate) stock returns and for stock 

returns of certain sectors, namely consumer discretionary, consumer staples, health, and 

information technology. In contrast, the forecast performance of the stock returns of the finance 

and utility sectors worsened with the introduction of macroeconomic variables, implying that the 



27 
 

oil price-based single-factor predictive model is sufficient for predicting stock returns for these 

sectors. In other words, accounting for the role of macroeconomic variables constitutes noise in 

the oil price-based single-factor predictive model and reduce its fitness for forecasting.   

Table 7 

Clark and West out-of-sample results for single-factor vs. multiple-factor model ( :S Mk k ). 

Note: 𝑘𝑆: 𝑘𝑀 represents case I, where the single-factor predictive model is compared with the multiple-factor predictive model. A 

positive and significant C-W statistic indicates that the multiple-factor model preferred to the single-factor model. The reverse 

holds if the C-W statistic is negative and significant. Asterisks ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 

respectively. Bold typeface indicates where the multiple-factor predictive model outperforms the single-factor predictive model 

consistently under the 50% and 75% data samples. 

This result has serious implications for stock market hedging and portfolio management, 

as it provides relevant information to stock market investors about the future performance of the 

S&P 500 and sectoral stock returns. It shows that the role of macroeconomic variables should not 

be neglected in a predictive model for S&P 500 stock returns and for the stock returns of the 

consumer discretionary, consumer staples, health, and information technology sectors; however, 

it is unimportant in a predictive model for stock returns for the finance and utility sectors. An 

Stock returns 
50% sample size 75% sample size 

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 

Aggregate 1.6532*** 1.6479*** 1.6395*** 1.6252*** 0.6469*** 0.6448*** 0.6415*** 0.6347*** 

 

SECTORS 

Cons_disc 0.0287*** 0.0295*** 0.0308*** 0.0360*** 0.0798*** 0.0739*** 0.0670*** 0.0565*** 

Cons_staples 0.1520*** 0.1494*** 0.1460*** 0.1408*** 0.3326*** 0.3290*** 0.3240*** 0.3152*** 

Energy 0.0102*** 0.0103*** 0.0103*** 0.0108*** 
−0.0126** −0.0139** −0.0154*** −0.0164*** 

Finance 0.0028 0.0022 0.0016 0.0018 
−0.0237*** −0.0230*** −0.0215*** −0.0171*** 

Health 0.2143*** 0.2117*** 0.2077*** 0.1991*** 1.3006*** 1.2938*** 1.2847*** 1.2671*** 

Industries 0.0064** 0.0068** 0.0077*** 0.0130*** 
−0.1429*** −0.1504*** −0.1605*** −0.1758*** 

Info_tech 0.1022*** 0.0991*** 0.0956*** 0.0931*** 0.6131*** 0.6052*** 0.5951*** 0.5780*** 

Materials 0.0292*** 0.0296*** 0.0298*** 0.0315*** 
−0.0395*** −0.0409*** −0.0426*** −0.044*** 

Telecom 0.0437*** 0.0433*** 0.0438*** 0.0525*** 
−0.1510*** −0.1560*** −0.1621*** −0.1705*** 

Utility 0.0028 0.0022 0.0016 0.0018 
−0.0237*** −0.0230*** −0.0215*** 

−0.0171*** 



28 
 

increase in macroeconomic uncertainty would significantly affect stock returns for the consumer 

discretionary, consumer staples, health, and information technology sectors, but it would have no 

significant effect on stock returns for the finance and utility sectors.  

This suggests that equity investment in the finance and utility sectors is less risky than 

equity investment in the consumer discretionary, consumer staples, health, and information 

technology sectors. Hence, to hedge unsystematic risk from macroeconomic uncertainty, it would 

benefit a risk-averse investor to hold more stocks for sectors in which returns are not significantly 

predicted by macroeconomic variables, such as the finance and utility sectors.   

5.2.2 Multiple-predictor model vs. multiple-predictor model with structural breaks  

In the in-sample analysis, it was found that the predictability of stock returns for the 

consumer discretionary, consumer staples, and information technology sectors improves when 

structural breaks are accounted for in their respective multiple-factor predictive models. However, 

accounting for structural breaks reduces the fitness of multiple-factor models for aggregate stock 

returns and for the health sector. This sub-section seeks to confirm these results out-of-sample. 

The structural breaks were determined using the multiple breakpoints test by Barron and Perron 

(2003), which determines breakpoints ranging from zero to two.7 It should be recalled that the 

objective is to examine whether accounting for structural breaks improves the forecast 

performance of our proposed multiple-factor predictive model; thus, the focus is on the aggregate 

stock returns and the stock returns of the relevant four sectors where the multiple-factor predictive 

model is already established as a parsimonious model.  

The Clark and West out-of-sample results presented in Table 8 reveal that the C-W 

statistics for aggregate stock returns are positive and significant under the 50% sample but negative 

and significant under the 75% sample. Thus, the significance of structural breaks in the multiple-

factor predictive model for aggregate stock returns is inconsistent, which is in line with the in-

sample results. For the health sector, both the multiple-factor predictive model and the multiple-

factor model with structural breaks are equal, as the Bai and Perron (2003) test shows that no 

significant structural break exists under the 50% sample. Under the 75% sample, the C-W test is 

negative and significant over the forecast horizons from one month to 12 months. This indicates 

                                                           
7 The results for our structural break test are presented in Table A1 (in the Appendix).    
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that accounting for structural breaks is unnecessary, as it reduces the fitness of the multiple-factor 

model, which is consistent with the conclusion from the in-sample analysis.    
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Table 8  

Clark and West out-of-sample results for multiple vs. multiple with structural breaks ( :M Bk k ). 

Note: 𝑘𝑀: 𝑘𝐵 represents case II, where the multiple-factor predictive model is compared with the multiple-factor model with 

structural breaks. A positive and significant C-W statistic indicates that the multiple-factor model with structural breaks is preferred 

to the parsimonious multiple-factor model (without structural breaks). The reverse holds if the C-W statistic is negative and 

significant. Asterisks ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. The dashes (-) in the table 

indicate that no structural break exists (see Table A1 in Appendix for details of structural break results). Bold typeface indicates 

where the multiple-factor model with structural breaks outperforms the parsimonious multiple-factor model.  

 

As indicated in bold typeface in Table 8, the consumer discretionary, consumer staples, 

and information technology sectors remained supportive of structural breaks, with positive and 

significant C-W statistics. Notably, the relevance of structural breaks in the out-of-sample forecast 

for stock returns of the consumer discretionary sector increased over time under the 50% sample , 

manifest after six months. It is, however, consistently beneficial under the 75% sample. This 

suggests that the in-sample conclusion that accounting for structural breaks improves the 

performance of multiple-factor predictive model in forecasting stock returns for the consumer 

discretionary, consumer staples, and information technology sectors continues to hold out-of-

sample.    

Stock returns 
50% sample size 75% sample size 

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 

Aggregate 0.0031** 0.0032** 0.0032** 0.0032** 
−0.1055*** −0.1054*** −0.1052*** −0.1049*** 

 

SECTORS 

Cons_disc 
−0.0003 −0.0006 −0.0004 

0.0007 0.0669*** 0.0726*** 0.0807*** 0.0962*** 

Cons_staples - - - - 0.0034*** 0.0034*** 0.0035*** 0.0037*** 

Energy - - - - 0.0010*** 0.0010*** 0.0010*** 0.0009*** 

Finance 0.0560*** 0.0599*** 0.0640*** 0.06840*** 0.0543*** 0.0547*** 0.0548*** 0.0536*** 

Health - - - - 
−0.0884*** −0.0903*** −0.0923*** 

−0.0934*** 

Industries 0.0264*** 0.0266*** 0.0265*** 0.0256*** 0.1959*** 0.2002*** 0.2064*** 0.2177*** 

Info_tech 0.1865*** 0.1937*** 0.2024*** 0.2186*** - - - - 

Materials - - - - 0.0377*** 0.0403*** 0.0442*** 0.0511*** 

Telecom 0.0725*** 0.0757*** 0.0788*** 0.0809*** 0.8954*** 0.9065*** 0.9209*** 0.9442*** 

Utility 0.0560*** 0.0599*** 0.0640*** 0.0684*** 0.0543*** 0.0547*** 0.0548*** 0.0536*** 
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5.2.3 Multiple-predictor model vs. multiple-predictor model with asymmetry 

In the single-factor predictive model of Westerlund and Narayan (2015), accounting for oil 

price asymmetry was found to improve the forecast performance of the model, with negative oil 

price changes predicting US stock returns better than positive oil price changes. However, for 

efficient model parsimony, this may not be automatically assumed for the multiple-factor 

predictive model. This sub-section assesses the significance of accounting for oil price asymmetry 

out-of-sample to confirm the in-sample result. Notably, cases III and IV are observed mainly for 

aggregate stock returns and the stock returns of the four sectors accepting the multiple-factor 

predictive model. Case III compares the strictly multiple-factor predictive model with the multiple-

factor model (with positive oil price changes), while case IV compares the strictly multiple-factor 

predictive model with the multiple-factor model (with negative oil price changes). The C-W 

statistics for the two cases are presented in Tables 9 and 10. 

 

Table 9  

Clark and West out-of-sample results for multiple with positive asymmetry vs. strict multiple  

( :P Mk k ). 

Note: 𝑘𝑃: 𝑘𝑀 represents case III, where the multiple-factor predictive model (with symmetric oil price) is compared with the 

multiple-factor model (with positive oil price changes). A positive and significant C-W statistic indicates that the multiple-factor 

model is preferred to the single-factor model. The reverse holds if the C-W statistic is negative and significant. Asterisks ***, **, 

and * indicate significance at the 1%, 5%, and 10% levels, respectively. Bold typeface indicates where the multiple-factor predictive 

model with asymmetric positive oil price asymmetry outperforms the proposed multiple-factor predictive model (with symmetric 

oil price) consistently under the 50% and 75% data samples. 

Stock returns 50% sample size 75% sample size 

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 

Aggregate −0.0069*** −0.0069*** −0.0069*** −0.0068*** 0.1120*** 0.1117*** 0.1112*** 0.1100*** 

 

SECTORS 

Cons_disc 0.0430*** 0.0456*** 0.0493*** 0.0554*** −0.0839*** −0.0873*** −0.0916*** −0.0983*** 

Cons_staples −0.0186*** −0.0191*** −0.0195*** −0.0190*** −0.0145*** −0.0150*** −0.0156*** −0.0164*** 

Energy 0.0503*** 0.0496*** 0.0487*** 0.0470*** 0.0580*** 0.0568*** 0.0563*** 0.0615*** 

Finance −0.0077*** −0.0083*** −0.0088*** −0.0073*** 0.1130*** 0.1131*** 0.1131*** 0.1126*** 

Health 0.0054*** 0.0053*** 0.0050*** 0.0039*** −0.0115*** −0.0119*** −0.0123*** −0.0123*** 

Industries 0.0166*** 0.0170*** 0.0176*** 0.0183*** −0.1003*** −0.1027*** −0.1061*** −0.1113*** 

Info_tech 0.0724*** 0.0772*** 0.0854*** 0.1090*** −0.1177*** −0.1196*** −0.1217*** −0.1241*** 

Materials 0.0024 0.0023 0.0022 0.0021 −0.0559*** −0.0563*** −0.0567*** −0.0569*** 

Telecom 0.0397*** 0.0397*** 0.0397*** 0.0389*** −0.0509*** −0.0509*** −0.0509*** −0.0505*** 

Utility −0.0077*** −0.0083*** −0.0088*** −0.0073*** 0.1130*** 0.1131*** 0.1131*** 0.1126*** 
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In the in-sample analysis, the results show that the asymmetric effect of oil price improves 

the forecast performance of the multiple-factor model for predicting the stock returns of the four 

relevant sectors (consumer discretionary, consumer staples, health, and information technology) 

over a relatively big sample (75%) but reduces the fitness of the parsimonious multiple-factor 

predictive model for aggregate stock returns. This sub-section seeks to confirm this result out-of-

sample. The results in Table 9 show that, for stock returns for the consumer staples sector, the 

multiple-factor model with positive oil price asymmetry consistently outperforms the symmetric 

multiple-factor predictive model. The C-W values for consumer staples are negative and 

significant over the 50% and 75% samples and over the one-month through 12-month forecast 

horizons. The in-sample significance for the relevant sectoral stock returns became apparent over 

the bigger sample, and this was also the case out-of-sample; the C-W statistics for the consumer 

discretionary, health, and information technology sectors only become negative and significant 

under the 75% sample. 

As with the in-sample analysis, the multiple-factor predictive model for aggregate stock 

returns does not appear to improve after accounting for structural breaks. Although the positive 

asymmetric multi-factor model shows significance under 50%, this does not hold over the bigger 

sample (see Table 9). The consistent superiority of the symmetric multiple-factor model over the 

multiple-factor model with negative oil price asymmetry is shown in Table 10; accounting for oil 

price asymmetries does not improve the forecast performance of the multiple-factor predictive 

model.       

 

Table 10 

Clark and West out-of-sample results for multiple with negative asymmetry vs. strict multiple  

( :N Mk k ). 

Stock returns 

 

50% sample size 75% sample size 

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 

Aggregate 0.1146*** 0.1140*** 0.1133*** 0.1119*** 0.1710*** 0.1709*** 0.1707*** 0.1703*** 

 

SECTORS 

Cons_disc 0.1378*** 0.1446*** 0.1546*** 0.1730*** 0.0095** 0.0110** 0.0131*** 0.0173*** 
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Note: 𝑘𝑁: 𝑘𝑀 represents case IV, where the multiple-factor predictive model (with symmetric oil price) is compared with the 

multiple-factor model (with negative oil price changes). A positive and significant C-W statistic indicates that the multiple-factor 

model is preferred to single-factor model. The reverse holds if the C-W statistic is negative and significant. Asterisks ***, **, and 

* indicate significance at the 1%, 5%, and 10% levels, respectively. Bold typeface indicates where the multiple-factor predictive 

model with asymmetric positive oil price asymmetry outperforms the proposed multiple-factor predictive model (with symmetric 

oil price) consistently under the 50% and 75% data samples. 

 

5.2.4 Multiple-factor predictive model vs. historical average model  

The historical average model is the usual benchmark for predictive models. Hence, as our 

multiple-factor predictive model is shown to outperform the oil-based single-factor predictive 

model in forecasting US aggregate (S&P 500) stock returns and the returns of some sectors, it is 

pertinent for robustness purposes to examine whether our proposed multiple-factor predictive 

model also outperforms the historical average model. The C-W test was again used to compare the 

forecast performance of the two models. In this case, the historical average model is considered as 

the parsimonious model, while the proposed multiple-factor model is the larger model. Thus, our 

proposed multiple-factor model outperforms the historical average model if the C-W statistic is 

positive and significant. The reverse holds if the C-W statistic is negative and significant. 

 

Table 11   

Clark and West in-sample and out-of-sample forecast evaluation for historical average vs. 

multiple-factor model ( :AVR Mk k ). 

Cons_staples 
−0.0048 −0.0032 

0.0009 0.0144** 
−0.0172*** −0.0172*** −0.0173*** −0.0171*** 

Energy 0.0273*** 0.0280*** 0.0284*** 0.0276*** 
−0.0005 

-0.0013 
−0.0024 −0.0035* 

Finance 
−0.0070*** −0.0076*** −0.0080*** −0.0060*** 

0.1292*** 0.1286*** 0.1277*** 0.1258*** 

Health 0.0053*** 0.0053*** 0.0057*** 0.0067*** 
−0.0156*** −0.0158*** −0.0158*** −0.0157*** 

Industries 0.0530*** 0.0545*** 0.0564*** 0.0591*** 
−0.0558*** −0.0559*** −0.0557*** −0.0546*** 

Info_tech 0.1222*** 0.1319*** 0.1480*** 0.1918*** 
−0.1077*** −0.1102*** −0.1130*** −0.1161*** 

Materials 0.0079*** 0.0077*** 0.0076*** 0.0073*** 
−0.0600*** −0.0604*** −0.0609*** −0.0611*** 

Telecom 0.0398*** 0.0418*** 0.0448*** 0.0501*** −0.0836*** 
−0.0843*** −0.0851*** −0.0858*** 

Utility 
−0.0070*** −0.0076*** −0.0080*** −0.0060*** 

0.1292*** 0.1286*** 0.1277*** 0.1258*** 

Stock returns 
50% sample size 75% sample size 

In-sample  h = 1 h = 3 h = 6 In-sample h = 1 h = 3 h = 6 
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Note: 𝑘𝐴𝑉𝑅 : 𝑘𝑀 represents case V, where the multiple-factor predictive model is compared with the historical average model. A 

positive and significant C-W statistic indicates that the multiple-factor model is preferred to the historical average model. The 

reverse holds if the C-W statistic is negative and significant. Asterisks ***, **, and * indicate significance at the 1%, 5%, and 10% 

levels, respectively. Bold typeface indicates where the proposed multiple-factor predictive model outperforms the historical average 

models consistently under the 50% and 75% data samples. 

 

Table 11 shows the Clark and West test results for the comparison of the performance of 

the historical average and multiple-factor models in-sample and out-of-sample. The focus remains 

on the aggregate stock returns and on the stock returns of the consumer discretionary, consumer 

staples, health, and information technology sectors, which accept the multiple-factor predictive 

model as parsimonious, ahead of the single-factor predictive model. The C-W statistics are positive 

and significant for the aggregate stock returns and for the stock returns of the other four relevant 

sectors, in-sample, out-of-sample, and over forecast horizons from one month through six months. 

This implies that, in respect of aggregate stock returns and the stock returns of the consumer 

discretionary, consumer staples, health, and information technology sectors, the multiple-factor 

model not only outperforms the single-factor predictive model, it also outperforms the historical 

average model. This further confirms the superiority of the multiple-factor over oil-based single-

factor predictive models in modeling the forecast performance of US aggregate stock returns and 

the stock returns of selected sectors.             

Aggregate 0.4543*** 0.4532*** 0.4511*** 0.4478*** 2.5613*** 2.5821*** 2.6247*** 2.6884*** 

 

SECTORS 

Cons_disc 0.1133*** 0.1125*** 0.1112*** 0.1092*** 0.5834*** 0.5873*** 0.5979*** 0.6269*** 

Cons_staples 0.3084*** 0.3064*** 0.3030*** 0.2981*** 0.5000*** 0.5014*** 0.5049*** 0.5264*** 

Energy 0.0375*** 0.0372*** 0.0367*** 0.0365*** 0.7229*** 0.7268*** 0.7357*** 0.7528*** 

Finance 0.1036*** 0.1032*** 0.1024*** 0.1022*** 0.1308*** 0.1307*** 0.1318*** 0.1340*** 

Health 0.1773*** 0.1762*** 0.1741*** 0.1707*** 0.7460*** 0.7454*** 0.7442*** 0.7436*** 

Industries 0.1222*** 0.1213*** 0.1199*** 0.1185*** 0.5279*** 0.5248*** 0.5198*** 0.5154*** 

Info_tech 0.3845*** 0.3820*** 0.3783*** 0.3732*** 1.0272*** 1.0277*** 1.0293*** 1.0354*** 

Materials 0.0716*** 0.0710*** 0.0703*** 0.0698*** 0.1448*** 0.1436*** 0.1427*** 0.1438*** 

Telecom 0.4160*** 0.4131*** 0.4081*** 0.4027*** 0.5902*** 0.5878*** 0.5848*** 0.5831*** 

Utility 0.1036*** 0.1032*** 0.1024*** 0.1022*** 0.1308*** 0.1307*** 0.1318*** 0.1340*** 
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6 Policy implications of the findings 

The ability of a stock market investor to accumulate excess returns from equity investment 

depends on his or her ability to predict the market efficiently. This study carries out empirical 

analysis to identify the best predictive model for US stock market returns. It identified an oil price-

based single-factor predictive model by Westerlund and Narayan (2015) as a base model and 

investigated whether US macroeconomic conditions have a significant effect on future stock 

returns by augmenting the oil price-based single-factor predictive model with macroeconomic 

variables. Our empirical results generate insight and have serious economic implications for fund 

managers, brokers, and investment analysts in the US stock market. They also have implications 

for international portfolio investment, as the US economy is regarded as a linchpin of the global 

economy.  

One of the main findings of this study is that the role of macroeconomic variables cannot 

be underestimated in a predictive model for S&P 500 stock returns and stock returns for the 

consumer discretionary, consumer staples, health, and information technology sectors. It may, 

however, be disregarded in a predictive model of stock returns for the finance and utility sectors, 

among others. This implies that an increase in macroeconomic uncertainty would significantly 

affect stock returns for the consumer discretionary, consumer staples, health, and information 

technology sectors but would have no significant effect on stock returns for the finance and utility 

sectors. This suggests that equity investment in the finance and utility sectors is less risky than 

equity investment in the consumer discretionary, consumer staples, health, and information 

technology sectors. Hence, to hedge unsystematic risk due to macroeconomic uncertainty, 

portfolio investment risk could be minimized by holding more stocks for sectors, such as finance 

and utilities, in which returns are not significantly predicted by macroeconomic variables.   

For the US government, this study shows that macroeconomic factors are important 

determinants predictors of US stock market performance; hence, any disturbance in 

macroeconomic fundamentals such as inflation, output, and interest rate will have persistent effects 

on the US stock market. Therefore, it is recommended that any outbreak of serious economic 

challenge, such as high inflation, output volatility, or money market uncertainty, should be 

addressed exigently to forestall its transmission to the US stock market. The collapse of the US 

sub-prime market and the consequent transmission to the US stock market in 2008 underscores the 

seriousness of this possibility. 
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7 Summary and concluding remarks  

This study revisits the oil–stock nexus and proposes a predictive model whereby oil price 

is combined with selected domestic macroeconomic indicators, such as inflation, interest rate, and 

the level of real economic activities. It contributes to the extant literature on the predictability of 

US stock market in three ways. First, extending the single-factor oil-based predictive model for 

the US stock market developed by Narayan and Gupta (2015), we formulate a multi-predictive oil-

based predictive model for the US stock market by examining the role of macroeconomic 

variables. The underlying estimation procedure follows the approach of Lewellen (2004) and 

Westerlund and Narayan (2015), which accounts for the inherent characteristics of the predictors. 

While there are multi-predictive models that employ the same approach in the literature, such as 

Makin et al. (2014), Salisu and Isah (2018), and Salisu et al. (2018), they are not suitable for 

forecasting stock returns. Second, the study examines whether accounting for asymmetry or 

structural breaks would improve the forecast performance of the multiple-factor model. Third, it 

investigates the predictability of the US stock market at both aggregate and sectoral levels. For 

robustness checks, the analyses were conducted for multiple sample periods and multiple forecast 

horizons.  

For our empirical analyses of in-sample and out-of-sample forecast evaluation, we rely 

mainly on the test proposed by Clark and West (2007), which adjusts for forecast bias in larger 

models. Our results reveal that aggregate (S&P 500) US stock returns and stock returns for selected 

sectors (consumer discretionary, consumer staples, health, and information technology) are better 

predicted in a multiple-factor model that accounts for macroeconomic variables comprising oil 

price, inflation, level of real economic activities, and interest rate. This finding is explained by the 

fact that multiple-factor predictive models outperform single-factor variants resoundingly for 

aggregate stocks and for the identified sectoral stocks. This finding is robust, as it is consistent in-

sample, out-of-sample, and over different forecast periods.   

Furthermore, we examine whether the forecast performance of our multiple-factor model 

could be improved by extending the model to account for structural breaks. Our results show that 

the predictability of stock returns for the consumer discretionary, consumer staples, and 

information technology sectors improves when structural breaks are accounted for in the respective 

multiple-factor predictive models. However, for aggregate stock returns and the health sector, 
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accounting for structural breaks in the relevant multiple-factor model tends to generate noise in 

the model, as it reduces the fitness of the model.  

As regards whether accounting for oil price asymmetry improves the forecast performance 

of our proposed multiple-factor predictive model, our results show that accounting for oil price 

asymmetry does not contribute significantly to improving the predictability of US stock returns. 

This is because the multiple-factor predictive model outperforms the asymmetric multiple-factor 

predictive model for aggregate stock returns, and inconsistent results were observed for relevant 

sectors such as consumer discretionary, health, and information technology. The multiple-factor 

model with positive oil price changes outperforms the symmetric multiple-factor predictive model 

consistently only in the predictive model for stock returns of the consumer staples sector, alone 

among other sectors accepting the multiple-factor model, such as consumer discretionary, health, 

and information technology. This implies that accounting for oil price asymmetry in the 

macroeconomic variable-augmented multiple-factor predictive model will mostly lead to over-

fitness of the multiple-factor predictive model for US stock returns.   

In summary, our empirical analyses established that the predictability of the oil–US stock 

predictive model could be improved by capturing the effects of certain domestic macroeconomic 

factors, such as inflation, interest rate, and economic activity. For aggregate (S&P 500) stock 

returns, it is not necessary to account for either structural breaks or oil price asymmetry in the 

multiple-factor model. In the multiple-factor predictive model for stock returns for the consumer 

discretionary, health, and information technology sectors, accounting for structural breaks is 

important, but accounting for oil price asymmetry is irrelevant. In the multiple-factor predictive 

model for stock returns for the consumer staples sector, accounting for both structural break and 

oil price asymmetry would improve the forecast performance. Conversely, the single-factor 

predictive model is sufficient for predicting stock returns for the finance and utility sectors, as the 

multiple-factor predictive model is less efficient in predicting stock returns for these sectors. Our 

results are robust in-sample and out-of-sample, under 50% and 75% sample sizes, and under short- 

to medium-term forecast horizons (that is, from one month through six months to 12 months 

ahead). The fact that our multiple-factor predictive model also outperforms the historical average 

model further confirms the robustness of our results. However, it may be necessary to pre-test the 

predictors for persistence, endogeneity, and conditional heteroscedasticity, particularly when 

modeling with high-frequency series.  
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Appendix 

Dealing with endogeneity, persistence, and conditional heteroscedasticity in the 

predictive model for stock returns 

To test for endogeneity and persistence and to determine an estimable predictive regression 

model that accounts for these features, we follow the procedure as detailed in Lewellen (2004) and 

Westerlund and Narayan (2012, 2015). Let us assume predictive model 1A for the stock price, as 

previously specified: 

   2

1 ;       0,  t t t tr x N              (1A) 

where tr  is as previously defined, and tx  is a potential predictor variable of stock price restricted 

to oil price, output, and inflation. We can also assume an AR(1) process for tx  (as in 2A) (see also 

Stambaugh, 1986, 1999; Mankiw and Shapiro, 1986; Nelson and Kim, 1993; Lewellen, 2004; 

Narayan and Gupta, 2014): 

 
,

2

1 , ,;       0,
x tt t x t x tx x N             (2A) 

Both 
, and t x t   are expected to be correlated for endogeneity bias to pose any serious 

concern on the outcome of the forecast and ˆ 1  , an assumption that is required for stationarity. 

The null hypothesis of no predictability is given as 0
ˆ: 0H   . However, in the presence of 

persistence and endogeneity, Lewellen (2004) shows that ̂  exhibits a bias that can be expressed 

as    ˆ ˆE        . The direction of bias (i.e., upward or downward) is determined by  and 

̂ . If, for instance,   is positive (based on the nature of relationship between , and t x t  ), a 

downward bias in ̂  causes a downward bias in ̂ . Since tx  is expected to be stationary for any 

meaningful forecast to be conducted, the bias in ̂  is at most  ˆ 1   . In the absence of 

persistence, the bias disappears (although there is still potential correlation between the two errors 

because of endogeneity bias). However, if there is persistence, ˆ 0  and any predictive model that 

ignores the information in ̂  tends to understate the predictive power of the predictor(s). As 
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demonstrated in the literature, any predictive regression model that accounts for the information 

in ̂  significantly strengthens its forecasting accuracy (for a review, see Lewellen, 2004).  

 

To test for the degree of persistence with the null hypothesis of 0
ˆ: 1H   , we estimate 2A with 

the OLS estimator, and the first lag autoregressive coefficient is used to determine the extent of 

persistence. The closer this coefficient is to 1, the higher the degree of persistence. To test and 

capture the endogeneity effects, we follow the approach of Westerlund and Narayan (2012, 2015), 

which establishes the relationship between the two errors  , and t x t  as in 3A: 

   
,t x t t                       (3A) 

where t and 
2

3

4

5

6

7

8

0 

1 

2 

3 

4 

5 

50 55 60 65 70 75 80 85 90 95 00 05 10 15

Log of Macroeconomic Series

Log of Stock Series

A
g

g
r
e
g

a
te

2

3

4

5

6

7

8

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

50 55 60 65 70 75 80 85 90 95 00 05 10 15

Output

2

3

4

5

6

7

8

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

50 55 60 65 70 75 80 85 90 95 00 05 10 15

Inflation

2

3

4

5

6

7

8

-6 

-4 

-2 

0 

2 

4 

50 55 60 65 70 75 80 85 90 95 00 05 10 15

Interest Rate

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

4.8 

5.0 

5.2 

5.4 

5.6 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

-6 

-4 

-2 

0 

2 

4 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

3.5

4.0

4.5

5.0

5.5

6.0

6.5

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

3.5

4.0

4.5

5.0

5.5

6.0

6.5

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

3.5

4.0

4.5

5.0

5.5

6.0

6.5

4.8 

5.0 

5.2 

5.4 

5.6 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

3.5

4.0

4.5

5.0

5.5

6.0

6.5

-6 

-4 

-2 

0 

2 

4 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

Oil Price

C
o

n
s
u

m
e
r
 S

ta
p

le
s

C
o

n
s
u

m
e
r
 D

is
c
r
e
ti

o
n

a
r
y  are defined as before, 

4.4

4.8

5.2

5.6

6.0

6.4

6.8

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

Log of Macroeconomic Series

Log of Sector Stock Series

E
n

e
r
g

y

4.4

4.8

5.2

5.6

6.0

6.4

6.8

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.4

4.8

5.2

5.6

6.0

6.4

6.8

4.8 

5.0 

5.2 

5.4 

5.6 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.4

4.8

5.2

5.6

6.0

6.4

6.8

-6 

-4 

-2 

0 

2 

4 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.4

4.6

4.8

5.0

5.2

5.4

5.6

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

F
in

a
n

c
e

4.4

4.6

4.8

5.0

5.2

5.4

5.6

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.4

4.6

4.8

5.0

5.2

5.4

5.6

4.8 

5.0 

5.2 

5.4 

5.6 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.4

4.6

4.8

5.0

5.2

5.4

5.6

-6 

-4 

-2 

0 

2 

4 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

6.5

7.0

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

H
e
a

lt
h

4.0

4.5

5.0

5.5

6.0

6.5

7.0

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

6.5

7.0

4.8 

5.0 

5.2 

5.4 

5.6 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

6.5

7.0

-6 

-4 

-2 

0 

2 

4 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

6.5

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

I
n

d
u

s
t
r
ie

s

4.0

4.5

5.0

5.5

6.0

6.5

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

6.5

4.8 

5.0 

5.2 

5.4 

5.6 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

6.5

-6 

-4 

-2 

0 

2 

4 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

Oil Price  InflationOutput Interest Rate

has a zero mean and variance 
4.0

4.5

5.0

5.5

6.0

6.5

7.0

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

Log of Macroeconomic Series

Log of Sector Stock Series

I
n

f
o

r
m

a
t
io

n
 T

e
c
h

n
o

lo
g

y

4.0

4.5

5.0

5.5

6.0

6.5

7.0

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

6.5

7.0

4.8 

5.0 

5.2 

5.4 

5.6 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

6.5

7.0

-6 

-4 

-2 

0 

2 

4 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

M
a

t
e
r
ia

ls

4.0

4.5

5.0

5.5

6.0

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

4.8 

5.0 

5.2 

5.4 

5.6 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.5

5.0

5.5

6.0

-6 

-4 

-2 

0 

2 

4 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.4

4.8

5.2

5.6

6.0

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

T
e
le

c
o

m
m

u
n

ic
a

t
io

n
s

4.0

4.4

4.8

5.2

5.6

6.0

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.4

4.8

5.2

5.6

6.0

4.8 

5.0 

5.2 

5.4 

5.6 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.0

4.4

4.8

5.2

5.6

6.0

-6 

-4 

-2 

0 

2 

4 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.4

4.6

4.8

5.0

5.2

5.4

5.6

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

U
t
il

it
ie

s

4.4

4.6

4.8

5.0

5.2

5.4

5.6

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.4

4.6

4.8

5.0

5.2

5.4

5.6

4.8 

5.0 

5.2 

5.4 

5.6 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

4.4

4.6

4.8

5.0

5.2

5.4

5.6

-6 

-4 

-2 

0 

2 

4 

90 92 94 96 98 00 02 04 06 08 10 12 14 16

Oil Price
Output

 Infation Interest Rate

, and  , 0x t tE    . 

In other words, t  is the remainder error of t  after controlling for 
,x t , and therefore, by construct, 

,x t and t  are not expected to be correlated. The null hypothesis of no endogeneity bias is given 

as 0 : 0H   , which can be tested by replacing the error terms in 3A by their corresponding 

residuals obtained from the estimation of 1A and 2A. By way of substitution and re-arrangement, 

we can rewrite equation 11 as in 4A: 

   1 1t t t t tr x x x               (4A) 

where     . In order to correct for the inherent bias in  , Lewellen (2004) suggests bias-

adjusted OLS estimator of  , which is described in 5A. 

   ˆ ˆ ˆ
adj               (5A) 

Since   is unknown, Lewellen (2004) suggests we can put a lower bound on  ̂  by assuming 

that 1   (in line with the null hypothesis for testing for unit root), while ̂  is determined from 

2A. We follow the same approach in this paper to estimate ˆ
adj . Note that, in the absence of 

persistence and endogeneity effects, ˆ ˆ
adj  , since  ˆ 0     and, by implication,

 1 0t tx x    . Therefore, in the absence of persistence and endogeneity effects, 4A reduces to 
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2A, and the standard OLS is valid for estimation in that instance. The case is similar if there is no 

evidence of endogeneity but the predictor variable still exhibits persistence; provided the order of 

integration for the predictor does not exceed I(1), 1A is a valid predictive regression model. 

However, if there is no evidence of persistence but endogeneity bias is evident, 4A becomes as in 

6A: 

 

  1t t t tr x x             (6A) 

where ˆ 0  and, as a consequence, bias-adjusted OLS estimator of   in 5A adjusts to 

ˆ ˆ
adj    , and where 1  , ˆ ˆ

adj    . In this case, the adjustment in ˆ
adj  is determined by 

the sign on  . For instance, a negative correlation between the two errors captured by   implies 

that ̂  adjusts upwards when ˆ 0  .  

In addition to endogeneity and persistence effects, dealing with conditional 

heteroscedasticity becomes necessary for financial markets, such as stock markets, that are 

susceptible to shocks and volatility. We follow the approach proposed by Westerlund and Narayan 

(2012, 2015) to account for conditional heteroscedasticity in the model. Westerlund and Narayan 

(2012) propose a FQGLS estimator, which exploits the information contained in the conditional 

heteroscedastic variance of the regression residuals in order to generate more precise estimates. 

Their estimator assumes the regression error, that is t , follows an autoregressive conditional 

heteroscedastic (ARCH) structure 2 2

,

1

ˆˆ
q

t i t i

i

   



  , and the resulting 
2

,
ˆ

t  can be used as a 

weight in the predictive model. The estimation of the weighted predictive model by OLS is 

described as the FQGLS estimator. Essentially, the GLS-based t-statistic for testing 0  is given 

in 7A: 

 

2

12

2
2

12

m

m

T d d

t t tt q

FQGLS
T d

t tt q

x r
t

x





 

 





       (7A) 

where ,1t t  is used in weighting all the data in the predictive model, and 
2

Td

t t ts
x x x T


  . 

 

In the case of two predictors, for example, we express the model as in 8A-A: 

   1 1, 1 2 2, 1t t t tr x x             (8A-A) 
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where 1x  and 2x  are two potential predictors of stock price. The error term t  has a mean of zero 

and variance of 2

 . As in the previous analyses, we can assume a first-order autoregressive model 

for 1x and 2x  as in 8A-B and 8A-C: 

   
11 1 1 1, 1 ,t t x tx x           (8A-B)  

22 2 2 2, 1 ,t t x tx x          (8A-C) 

where
1 ,x t  and 

2 ,x t  are assumed to have zero mean values and 
1

2

x
 and

2

2

x
  as their respective 

variances. The null hypothesis of perfect persistence, 0 : 1H   , is tested against the alternative of

1 : 1H   . To capture endogeneity effects, we assume correlation 9A between t  and 
1 ,x t and

2 ,x t : 

1 21 , 2 ,t x t x t t             (9A) 

Since t  is the remainder error of 
,r t  after accounting for 

1 ,x t and 
2 ,x t , it is important to assume 

that    
1 2, , 0x t t x t tE E     . To implement 9A, it is also important to assume the absence of 

correlation between 
1 ,x t  and 

2 ,x t  which can easily be verified by expressing one against the 

other (say, 
1 2, ,x t x t tv   ) and testing for the significance of the relevant parameter  . The null 

hypothesis of no endogeneity in 9A, 0 1 2: , 0H    , is tested against the alternative of 

1 1 2: , 0H    .  

By substitution and further simplification of equation 9A, we can rewrite equation 7A as 

in 10A: 

   1 1, 1 2 2, 1 1 1 1 1, 1 2 2 2 2, 1t t t t t t t tx x x x x x                      (10A) 

where 1 1 2 2        , and the corresponding equation for the bias-corrected OLS estimates 

for the  s is given in 11A:  

   1, 1, 1 2, 2, 1 1 1 1 1, 1 2 2 2 2, 1t adj t adj t t t t t tx x x x x x                     (11A) 

where  1, 1 1 1
ˆ ˆ ˆ ˆ 1adj      , and  2, 2 2 2

ˆ ˆ ˆ ˆ 1adj      . It is easy to verify that 11A reduces to 

1A in the absence of persistence and endogeneity effects. 
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Figure A1. Graphical representation of trends in stock market performance and macroeconomic variables. 
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Table A1 

Structural breaks in the multiple-factor model using the Bai–Perron (2003) test. 

 

Stock returns 

50% sample 75% sample 

D1 D2 Z1 Z2 

Aggregate 264 - 264 437 

Cons_disc 140 - 210 - 

Cons_staples - - 125 - 

Energy - - 182 - 

Finance 138 - 133 - 

Health - - 126 - 

Industries 100 - 210 - 

Info_tech 129 - - - 

Materials - - 210 - 

Telecom 100 - 115 154 

Utility 138 - 133 - 

 


