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Abstract:  

The southern Levant is a Mediterranean climate zone of complex variability in which 

uncertainty remains in regional palaeoclimate reconstruction. In spite of the proven value of 

diatoms in circum-Mediterranean palaeoenvironmental research, their potential remains 

largely unexplored in the southern Levant region. In this study, we generate a new, high-

resolution multi-proxy record for the last ca 9,000 cal yrs BP, supported by diatom data and 

key biological, mineralogical and geochemical indicators preserved in a 17.8 m long sediment 

sequence recovered from Lake Kinneret (the Sea of Galilee), Israel.  

During the Holocene, well-correlated shifts in the diatom, minero-geochemical and 

palynological data indicate marked lake-level variation over time as well as changes in the 

trophic state of Lake Kinneret. Our results are particularly important in improving the 

reconstruction of Holocene lake-level variation, and thus past moisture availability. Diatom-

inferred lake-level oscillations correlate well with the output from climatic models from the 

Levantine region and clarify previous uncertainty concerning regional variation in moisture 

availability. The Early Holocene (from ca. 9,000 cal yrs BP to 7,400 cal yrs BP) was 

characterized by lake-level shifts due to fluctuating dry-wet climate conditions. During the 

mid-Holocene (from 7,400 to 2,200 cal yrs BP), a stable, deep lake-level phase persisted due 

to high humidity. The lake level of modern Lake Kinneret fluctuates seasonally with available 

moisture, but has also been influenced for ca. 2,000 years by the impacts of water abstraction 

for human consumption and agriculture. 

Over the last 9,000 cal yrs BP, the trophic state of Lake Kinneret has changed from an 

oligotrophic to a meso- to eutrophic environment, mainly triggered by increased human 

impact from around 2,200 cal yrs BP onwards. The lake’s ecosystem status was not strongly 

affected by the documented major changes in human occupation patterns during the mid-

Holocene, when a relatively stable environment persisted.  
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Introduction: 

The Eastern Mediterranean is a key region for palaeoclimate research due to its considerable 

sensitivity to climate change because of its location between the North Atlantic pressure 

systems, the monsoons of East Africa and India and the continental climate of Europe 

(Lionello et al., 2006). This complexity translates itself into considerable complexity in 

palaeoenvironmental archive data, with climate change manifesting itself in the combined 

influence of precipitation and temperature change on lake levels and limnological processes, 

which may be mediated to a greater or lesser extent by other factors including catchment 

processes and human activities, to name but a few. In spite of expansion of Holocene circum-

Mediterranean research in recent decades (Robinson et al., 2006, Finné et al., 2011), our 

understanding of past environmental variability and its possible drivers is still limited.  

The Levantine region, located in the transition zone between the Saharo-Arabian desert belt 

and the subtropical Mediterranean, on the western end of the Fertile Crescent, has a long 

history of human occupation and therefore represents an ideal area for investigating the 

complex relationships between climatic, environmental and societal changes (Issar and Zohar, 

2004, Frumkin et al., 2011, Richter et al., 2012). The Early Holocene is reported as the wettest 

phase in the past 25, 000 years across the Levant and eastern Mediterranean (Robinson et al., 

2006), whereas a trend towards more aridity with punctual short-term climate shifts, having  a 

notable impact on human occupation patterns, is assumed for the mid- to Late Holocene 

(Rambeau and Black, 2011). A series of reviews have recently been compiled which consider 

the palaeoenvironmental evidence derived from proxies such as pollen analyses, stable 

isotopes (e.g. from speleothems, lake sediments or snails), from geomorphological indicators 

(such as palaeo-shorelines), and from the archaeological record for the Southern Levant 

during the Holocene (e.g. Issar, 2003, Robinson et al., 2006, Finné et al., 2011, Rambeau and 

Black, 2011, Bar-Matthews et al., 2017, Litt and Ohlwein, 2017, Rosen and Rosen, 2017, 
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Torfstein and Enzel, 2017). Establishing a coherent linkage between different sources of data 

in the southern Levant (e.g. lacustrine and marine sediment records, speleothem data) can be 

challenging, e.g. due to distinctive gradients in topography and moisture availability. It is not 

understood whether apparent discrepancies are a result of real spatial variability in climate 

response (Rambeau, 2010), that of differences in response thresholds between 

palaeoenvironmental archives, or are a function of data quality. The uncertainty is probably 

due in part to the rarity in the southern Levant of well-dated, continuous multi-proxy records 

spanning the entire Holocene. With several lakes in the region, palaeolimnology offers the 

potential to reduce uncertainty surrounding continental variability.  

Lake-level reconstructions from the past Lake Lisan, the Dead Sea (Torfstein et al., 2013, 

Kushnir and Stein, 2010) and the northern freshwater body of Lake Kinneret (Hazan et al., 

2004, Hazan et al., 2005) have been achieved, but uncertainties remain. Current understanding 

of Dead Sea lake-level variability during the Holocene is reviewed by Kushnir and Stein 

(2010). A lake-level reconstruction from Lake Kinneret based on sedimentological 

identification of radiocarbon-dated palaeo-shorelines (Hazan et al., 2004, Hazan et al., 2005) 

offers a fragmentary Holocene reconstruction. Lake Kinneret is thought to have stood at ~ 212 

m below sea level (mbsl) during most of the Holocene, i.e. similar to the modern lake, yet 

there were periods when the lake level declined and the shallower southern sediments were 

exposed (Hazan et al., 2005, Stein, 2014). There is no existing evidence for full desiccation of 

the lake during the past 10,000 years (Langgut et al., 2015). Several authors emphasize the 

still incomplete picture of Holocene lake-level evolution, and thus the uncertain character of 

local changes in moisture availability (Hazan et al., 2004, Hazan et al., 2005, Stein, 2014, 

Schiebel and Litt, 2017).  

To date, palaeolimnological reconstructions based on diatoms (single-celled siliceous algae; 

Bacillariophyceae) have been limited in the southern Levant, in spite of their high sensitivity 

to a wide range of limnological variables (van Dam et al., 1994) and proven potential in 



6 
 

palaeoclimate research in Mediterranean climate zones (Battarbee et al., 2001, Cvetkoska et 

al., 2014, Zhang et al., 2014). Previous diatom-based palaeolimnological studies at Lake 

Kinneret comprise a low-resolution analysis of the changing character of planktonic diatoms 

in the southern part of the lake over the last 5,000 years (Pollingher et al., 1984), and a 

palaeoecological assessment of recent environmental change in the diatom flora of five short 

cores (Ehrlich, 1985). A detailed mineral and geochemical investigation based on sediments 

from Lake Kinneret covering the entire Holocene was also lacking. 

In this study, we present the results of high-resolution diatom analysis combined with minero-

geochemical analysis of a 17.8 m long Holocene sediment sequence from Lake Kinneret. Our 

results are compared to previously-published palynological data from the same core (Langgut 

et al., 2013, 2015, 2016, Schiebel, 2013, Schiebel and Litt, 2017), the longest and most 

continuous Holocene sequence yet retrieved from the lake. This study aims to exploit the 

value of diatoms as palaeolimnological proxy indicator for lake-level variation, and thus local 

changes in moisture availability. We assess critically evidence for confounding factors of 

additional ecological change such as shifts in lake productivity (Wilson et al., 2008) or human 

impact since Neolithic times (e.g. Rollefson and Köhler-Rollefson, 1992, Maher et al., 2011), 

which may affect interpretation. Our results are set in the context of known regional records, 

considering short-term climate events, to test whether there is coherency in regional patterns 

of climate change during the Holocene.  

 

 

Site description and limnology of Lake Kinneret 

Lake Kinneret (from the Hebrew word kinnṓr = ‘harp’, reflecting the shape of the lake) is also 

known as the Sea of Galilee or Lake Tiberias and, with a surface elevation of 210 mbsl, is the 

lowest-lying freshwater lake on Earth. The lake is located in the north of Israel in the northern 
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part of the Jordan Rift Valley (32°48’08.12’’ N, 35°35’20.62’’ E; figure 1), which is filled 

with alluvial and lacustrine sediments of Neogene and Pleistocene age. The lake is situated, 

together with the Dead Sea Basin, on the tectonically-active Dead Sea Transform Fault 

(DSTF), which currently forms a more than 1000 km long fault system connecting the 

divergent plate boundary along the Red Sea with the Eastern Anatolian Fault (EAF) in Turkey 

(Hurwitz et al., 2002). The modern and Holocene Sea of Galilee has evolved from ancient 

water bodies that filled the Kinneret tectonic depression during the Late Pleistocene, such as 

the former Lake Lisan (Hazan et al., 2005). The lake catchment is mainly composed of 

Cretaceous to Eocene carbonate rocks with extensive karst. Neogene and Pleistocene basalt is 

also common, especially in the Golan Heights on the eastern shore, forming escarpments of 

up to 500 m in height around the lake (Sneh et al., 1998).  

The Kinneret region is currently characterized by a typical semi-arid Mediterranean climate 

(Baruch, 1986), with an average annual precipitation of 400 mm and a mean annual 

temperature of 21 °C (figure 1). Northern Israel receives most of its precipitation from mid-

latitude Cyprus lows, which generate westerlies and transport moist air from the 

Mediterranean Sea into the region (Ziv et al., 2014). The mean annual precipitation and 

temperature vary considerably from northern to southern Israel, partly as a function of 

topography. Maximum precipitation occurs further north, on Mt. Hermon (Golan Heights), 

with an average of 1600 mm/year. In the Jordan Valley precipitation varies from 700 mm/year 

in the Hula basin to 300 mm in the Beth-Shean region (Langgut et al., 2016). There is a sharp 

transition to a fully arid climate in the south. Annual temperatures increase approximately 

linearly with decreasing precipitation.  

The lake is the largest natural freshwater body in Israel (22 x 12 km; 167 km2) and by water 

abstraction is a major source of drinking and irrigation water. A bathymetric map is provided 

in figure 1. The catchment area (2730 km2) extends to parts of the Upper Galilee in NE Israel, 

the Golan Heights, the Hermon range (with the peak of Mt. Hermon at 2814 m above sea 
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level (masl)) and the southern Anti-Lebanon mountains (Baruch, 1986). The Jordan River 

flows into and out of the lake and is its main freshwater input (434 x 106 m3/year), draining 

southwards to the Dead Sea. The lake is also fed by several saline springs, which influence its 

salinity and geochemical composition (Stiller et al., 2009, Stein, 2014, Kolodny et al., 1999, 

Nishri et al., 1999), such that the water is slightly oligosaline (table 1, total dissolved solids 

ca. 600 mg L-1, Nishri et al., 1999, Katz and Nishri, 2013). Analysis of the modern diatom 

flora (Vossel unpublished) shows the presence of halophilous diatom taxa close to the saline 

springs, along the western shore, confirming that these, rather than evaporative concentration, 

are the main cause of the subtle increase in salinity.  

[insert table 1] 

Total annual water inflow is about 629 x 106 m3 comprising the inflow of the Jordan River, 

direct catchment runoff, saline springs, direct precipitation and other water sources (Rimmer 

and Givati, 2014a). Modern lake level can fluctuate by up to 4 m a year depending on 

precipitation, evaporation (230 x 106 m3/year) and water use for human consumption and 

agriculture (National Water Carrier, 2012). 

Lake Kinneret is warm monomictic, being stratified with an anoxic hypolimnion from May to 

December and fully mixed from December to April (Gophen, 2003, Katz and Nishri, 2013). 

The mixing cycle of the water column is closely linked to the bio-geochemical signature 

imprinted in the sediments, and directly affects the fluxes of calcite precipitated from the 

water column towards the bottom of the lake (Katz and Nishri, 2013). Biologically-induced 

calcite precipitation occurs in spring and early summer (Katz and Nishri, 2013). 

The modern phytoplankton flora of Lake Kinneret is dominated by dinoflagellates, with a low 

proportion of diatoms, cyanobacteria and chlorophytes. As diatoms are a minor component of 

the phytoplankton biomass (Pollingher et al., 1984), they have not previously been a focus for 

ecological research, although, with more than 200 reported species (Round, 1978), they are an 

important component of the benthic flora. The most common planktonic taxa are Cyclotella 
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spp., Stephanodiscus spp., Aulacoseira granulata, which are often accompanied by the 

periphytic Brachysira spp. The most common benthic taxa are Amphora pediculus, 

Achnanthes sensu lato spp., Navicula spp., Synedra ulna and Rhoicosphenia curvata. A 

detailed species list is provided in Zohary et al. (2014). 

[insert figure 1] 

 

Material and Methods 

Sediment cores, sedimentology and chronology 

In March 2010, two parallel sediment cores (core KI_10_I and KI_10_II) were recovered 

from a water depth of 38.8 m at the central, deepest part of the lake basin (32°49’13.8’’N, 

35°35’19.7’’E; figure 1). Cores were retrieved from a UWITEC Universal Sampling Platform 

(http://www.uwitec.at), using a piston corer for successive two-meter sections. Sediment 

cores were offset by 0.5 m to allow construction of a continuous composite profile (Schiebel, 

2013). Sediment cores are stored in a cooling chamber at 4°C at the University of Bonn. The 

recovered sediment cores consist of homogenous greyish to brown silt and clay deposits 

(figure 5); only the upper 25 cm of sediments show lamination, possibly due to the 

construction of the Degania Dam in 1932 (A. Nishri, personal communication). Only one 

notable sediment disturbance is apparent at 4.64 to 4.57 m depth (figure 7) and there is 

otherwise no variation in colour or texture of the sediments (Schiebel and Litt, 2017). 

As this sediment sequence shows no evidence for full desiccation (e.g. desiccation cracks or 

crusts) of the lake during the past 10,000 years (Langgut et al., 2015), it can be assumed that 

sedimentation is continuous in the deepest parts of the Kinneret basin. The 17.8 m composite 

sequence covers approximately the last 9,000 cal yrs BP (figure 2, Schiebel and Litt, 2017). 

The age-depth model, which is presented in full detail in Schiebel and Litt (2017), relies on 

radiocarbon determinations on bulk organic material (n=21), and selective encountered 
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terrestrial macrofossils (n=10). Age determinations on both materials at the same stratigraphic 

depth show that bulk organic ages are subject to a reservoir offset ranging from ca. 800 to ca. 

1,600 years. The linear age-depth model (figure 2) assumes a constant sedimentation rate of 

1.9 mm/year for the Holocene and a gradual decrease of the reservoir offset from the 

beginning of the Holocene until present day, at a rate of ca. 70 years offset per 500 years (or 

0.14 per year). 

[insert figure 2] 

 

Diatom and other micropalaeontological analyses 

For diatom analysis 165 samples were taken at 10 cm intervals, corresponding to a resolution 

of ca. 50 years. Sample resolution was increased to 2 cm (10 yrs) or 5 cm (25 yrs) in two 

sections: 17.8-14.8 m and 4.6-3.5 m, intervals in which the diatom concentration was low or a 

complete turnover of the diatom community was recognized. All samples were prepared using 

standard techniques (Battarbee, 1986): 0.2 g of wet sediment was treated with H2O2 (30 %) 

and heated on a hotplate for several hours to oxidize organic matter. Afterwards a few drops 

of concentrated HCl (35 %) were added to the hot sample residual to remove carbonates. 

Samples were washed with distilled water and centrifuged several times (1200 rpm for 7 min) 

to eliminate the acid residual and avoid dissolution during storage. Known quantities of 

microspheres were added to allow the calculation of diatom concentrations (valves/g) for each 

sample. Subsamples from the cleaned, organic-free material were mounted in Naphrax™. 

Where diatoms were well preserved, more than 500 valves were counted using a Zeiss Axio 

Lab.A1 or an Olympus BX51 light microscope (LM) at x1000 magnification. In some 

samples, counts were lower (up to 200 valves) due to preservation problems or the complete 

lack of diatoms. Phytoliths were counted at a similar sample resolution in relative abundance 

to diatom counting. Diatom taxonomy and nomenclature follow Krammer and Lange-Bertalot 

(1986, 1988, 1991a, 1991b), Lange-Bertalot (2013) and the Diatom Flora of Israel (Ehrlich, 
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1995). Following several authors (Cruces et al., 2010, Hobbs et al., 2011, Zhang et al., 2014) 

Stephanodiscus minutulus (KÜTZING) CLEVE & MÖLLER and S. parvus STOERMER & 

HÅKANSSON are merged into S. minutulus/parvus. Current changes in nomenclature are 

applied following the Catalogue of Diatom Names (Fourtanier and Kociolek, 2009). Diatom 

counts were converted to percentage data and displayed stratigraphically using Tilia, version 

1.7.16 (©1991-2011 Eric C. Grimm). Stratigraphically constrained cluster analysis using 

square root transformation was applied using CONISS (Grimm, 1987) to define zone 

boundaries, based on taxa present at > 5 % abundance.  

Palynological data from pollen analysis of 73 samples (parallel sampling depth to diatom 

samples) at a resolution of 25 cm (150/yrs) is published in detail in Schiebel (2013, Schiebel 

and Litt, 2017).  

The application of a transfer function to reconstruct lake-water nutrient concentrations from 

the taxonomic composition of diatom communities was not appropriate. The dominant taxon 

Cyclotella ocellata, has an extremely broad tolerance for nutrient availability (Fritz et al., 

1993, van Dam et al., 1994, Kiss et al., 1996, Schlegel and Scheffler, 1999, Cremer and 

Wagner, 2003, Houk et al., 2010), and another common taxon, C. paleo-ocellata, is newly 

described (Vossel et al., 2015) and without a modern  analogue. 

 

Diatom-based lake-level reconstruction 

Diatom-based lake-level reconstruction is based on the assumption that the variability in the 

ratio of planktonic to benthic (P/B) diatom taxa can be interpreted as a response to varying 

basin morphology as lake level fluctuates (Jones et al., 2013).  As a lake shallows, benthic 

habitats may increasingly disperse into regions that were previously inhabited by planktonic 

diatoms living in a deeper water column, thereby changing the P/B-ratio. Effectively, 

decreasing lake level shortens the transport distance from littoral habitats to the deepest region 
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of the lake (the favoured coring site), coupled with a reduction in area suitably deep for 

planktonic diatoms (Stone and Fritz, 2004). The plankton/benthos-ratio may also be affected 

by shifts in productivity. Therefore supporting evidence for lake-level change, coupled with 

regional shifts in moisture availability, is sought from the comparison with known 

palynological datasets and climate models as well as speleothem data from other study sites. 

Known trophic preferences of diatom taxa and the geochemistry data can help to disentangle 

if changes in the diatom assemblage reflect fluctuating lake-level conditions or are the result 

of productivity shifts. 

The ratio of planktonic to benthic diatoms was calculated using the following formula 

provided by Wang et al. (2013): 

𝑃

𝐵
=

∑(planktonic taxa)

∑(planktonic + benthic taxa)
 

 

Following the allocation of Pollingher et al. (1984), facultative planktonic taxa such as 

Pseudostaurosira brevistriata, Staurosira venter and Staurosirella pinnata and epiphytic 

species such as Cocconeis spp. were assigned as benthic (i.e. littoral) taxa in this calculation.  

 

Geochemistry and Mineralogy 

Geochemistry was determined by non-destructive high resolution (1cm) XRF core scanning 

(Itrax, Cox Analytical Systems, Sweden) at the University of Cologne, equipped with a Cr X-

ray source, operated under the following conditions: voltage (kV): 30, current (mA): 30 and 

exposure time (s): 10. 

For mineral analysis 50 samples were taken from various depths (approx. intervals of 20-30 

cm) in parallel with palaeoecological samples. Mineralogy was obtained from the powdered 

bulk fraction measured with a Siemens D5000, equipped with a CuKα1, 2 target tube. 
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Operation conditions were: voltage (kV): 40, current (mA): 30, scan range (°2Theta):4-70, 

step-size (°2Theta): 0.02, counting time (s):1, divergence slit (°): 1, anti-scatter slit (°): 1, 

mask (mm):15. Mineral assemblage was identified using the software, MacDiff (Petschick et 

al., 1996) and X’Pert High Score Plus (PANanlytical B.V.). The Rietveld refinement was 

applied using Profex v. 3.10.2 (Döbelin and Kleeberg, 2015) with additional structure files 

from the American Mineralogist Crystal Structure Database (Angel et al., 1990, Bailey, 1969, 

Maslen et al., 1995). Compositional data analysis was applied to the geochemical data 

(Aitchison, 2003, Comas-Cufí and Thió-Henestrosa, 2011) and gives further insights to the 

inter-element and possible source relationship (Aitchison and Greenacre, 2002). Biplots of 

complex data-sets can be used as a simple tool to investigate the structure of these data-sets 

(Greenacre, 2010). 

 

Results 

Diatom analysis 

A total of 143 diatom taxa were identified within the subfossil sediment sequence of Lake 

Kinneret, most of which can be classified as oligohalobous-indifferent, requiring alkaline 

water for optimal growth (Krammer and Lange-Bertalot, 1986, 1988, 1991a, 1991b, Ehrlich, 

1995, Lange-Bertalot, 2013). The summary diagram (figure 3) shows that diatoms were well 

preserved in most samples. They were rare (valves dissolving and fragmented) in two 

intervals (17.8-16.9 m; 15.4-14.8 m depth) and absent in one sample (4.57 m depth). 

Planktonic taxa from the genera Cyclotella, Stephanodiscus and Aulacoseira dominate the 

sequence. Small, facultative planktonic fragilarioid taxa (e.g. Pseudostaurosira brevistriata, 

Staurosira venter, Staurosirella pinnata) are also common. Salt-tolerant diatom species such 

as Amphora coffeaeformis are present sporadically at low abundance. 
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Four major diatom assemblage zones (DAZ-1-4) could be recognized from the results of 

CONISS (Grimm, 1987). Adopting the opposite of stratigraphic convention, zones in this 

study are numbered from the top down (DAZ-1 representing the recent past) to allow coherent 

sequencing of zone numbers in future studies of a longer sequence. A detailed description of 

each DAZ, its species composition and criteria for defining the lower zone boundaries are 

given in table 2. Although anthropogenic influences might have caused a shift in the modern 

diatom composition compared to the fossil one, the modern flora still contains many of the 

taxa present in the fossil record. 

The P/B-ratio (given in figure 3, 5 and 6) shows some significant variations within the record, 

being particularly low within DAZ-4 and DAZ-2, which also exhibit low diatom 

concentration and high counts of phytoliths and high potassium values. 

[insert table 2, insert figure 3] 

 

Sediment minero-geochemistry and compositional data analysis 

The major mineral assemblage of Lake Kinneret sediments is composed of calcite [CaCO3], 

dolomite [CaMg(CO3)2], quartz [SiO2], muscovite/illite 

[(K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] - probably in the fine fraction, and feldspars 

(plagioclase and alkali feldspar). In the diffractograms the feldspars were best explained by 

anorthite [CaAl2Si2O8] and microcline [KAlSi3O8]. The structure that best resolved the 

phylossilicates was that of a muscovite, 2M1. The major mineral assemblage remained 

qualitatively constant throughout the sediment sequence and changes in abundance of the 

major minerals correlate well with diatom assemblage zone boundaries (table 3). Minerals in 

trace amounts occurred at specific depth, e.g. pyrite. Some of the diffractograms also show a 

carbonate mineral that was best defined by a rhodocrosite structure. Pyrite concentrations 

larger than 1% occurred particularly in DAZ-1, reaching up to 2.25 w%. The rhodochrosite-
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like carbonate occurs sporadically in the profile at depths of 4.62 m (5.4 w%), 11.65 m (1.1 

w%), 12.44 m (7.4 w%), 12.99 m (3.1 w%), 13.70 m (2.7 w%) and throughout DAZ-4 in 

concentrations of ca. 1.5 w%. 

From XRF-scanning, the elements Si, S, Cl, K, Ca, Ti, Fe and Sr were present at detectable 

concentrations, with reduced scattering throughout the profile; apart from sulphur and 

chlorine, these elements were also identified by mineralogy. In compositional data analysis, 

the biplot representation of the centered log ratio of the compositional data (clr-biplot) is the 

result of a single value decomposition under the consideration of composition nature of the 

data, and has properties relating to the pairs of variables, or geochemical elements (Aitchison 

and Greenacre, 2002). First observations from the clr-biplot show, that the defined diatom 

assemblage zones (DAZ) also have distinct geochemical fingerprints (figure 4). 

For geochemical elements, the pair [Ca, Sr] shows relatively small variance, as do the 

elements [Fe, Ti, K, Si] between each other. Hence, Ca and Sr represent the carbonate 

accumulation; and Ti, K, Fe and Si, represent the detrital fraction. The high variance between 

any pair of variables from these two groups of variables arises from the fact that Ca and Sr in 

the Kinneret sediments are reflecting lake internal carbonate precipitation, whereas a detrital 

source for the carbonate input is of secondary order. The elements Cl and S show large 

variance compared to the other elements. The S/Ti ratio plotted versus depth shows 

covariance with the Ca/Ti ratio. Plotted against depth, the chlorine counts have the typical 

shape of a diffusion profile, but inverted compared to that usually observed in marine cores 

(K. Tachikawa, personal communication). This is an effect of a saline gradient from the 

relatively fresh lake water towards shallow brines known from the subsurface of Lake 

Kinneret (Katz and Nishri, 2013, Rimmer and Givati, 2014b). For following interpretations, 

one representative element was chosen for each group identified from the clr-biplot (e.g. Ca 

representing carbonate accumulation; K represents detrital input). 

[insert table 3; insert figure 4] 
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Sediment geochemistry and implications for palaeoenvironmental reconstruction 

In the sediments of Lake Kinneret, Ca is retained in the lattices of plagioclase, dolomite and 

calcite. The positive correlation between Ca/Ti-ratio and calcite/quartz (figure 5) indicates 

that the calcium accumulation in Lake Kinneret is mainly driven by calcite. Pelagic bed 

sediments from Lake Kinneret consist with up to 60 % of calcite (table 1, Serruya, 1978, 

Dubowski et al., 2003), that is mostly of autochthonous origin (Katz and Nishri, 2013). This 

chemical precipitation of calcite in the water column is a major process in the lake, favored by 

the waters’ alkalinity and is associated to the lake mixing cycle (Katz and Nishri, 2013). The 

carbonate precipitation is strongly biogenic induced, as maximum calcite accumulation in the 

lake occurs between February and March due to intensive photosynthesis, occurring 

concomitant with bloom periods of the dinoflagellate Peridinium gatunense (Koren and 

Klein, 2000). The necessary carbonate and calcium ions are fed to the lake system in 

dissolved form from the catchment (Nishri and Stiller, 2014, Leng and Marshall, 2004) and 

picoplankton seems to serve as nuclei for calcite crystal growth (Nishri and Stiller, 2014). 

Thus, the primary carbonate accumulation is a potential indicator for lake productivity, given 

that carbonate precipitation from the water column of alkaline lakes is usually triggered by 

algal production and consequent changes in the carbonate equilibria (Ohlendorf and Sturm, 

2001, Matter et al., 2010, Roeser et al., 2016).  

Lake Kinneret data (figure 5) show good correspondence between the diatom concentration, 

the carbonate accumulation (Ca/Ti) and the sulphur accumulation (S/Ti). Additionally, the 

clr-biplot (figure 4) indicates that detrital sources of Ca are only of secondary importance. 

Lacustrine processes participating in sulphur cycling are largely biogeochemical such that 

sulphur is added to the sediments (a) as organic compounds or (b) dissolved sulphate that 

might be reduced to sulphides (Berner, 1971, Mackereth, 1966). Thus sulphur might indicate 
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primary organic production or diagenetic processes. In summary, the correlation between the 

four parameters diatom concentration, Ca/Ti, calcite/quartz and S/Ti suggests that they mainly 

reflect internal lake processes and together are indicative of lake productivity. 

The detrital (clastic) input from the catchment is well reflected in the clr-biplot from the low 

variation between the elements Si, K, Fe, Ti. From these elements, variations in potassium (K) 

counts are positively correlated to the sum of minerals representing the clastic fraction 

(quartz+feldspars+clays) and the phytolith counts (see figure 5). The detrital input can 

increase: (a) with enhanced humidity/rainfall, (b) with a lower lake level due to:(1) a 

reduction in lake water volume also reduces internal biomass and calcium production, which 

can cause a relative increase in detrital material, and (2) because a shallow lake exposes 

sediment surfaces in shallower littoral zones; (c) with open vegetation cover on the 

surrounding landscape, which increases sediment and nutrient input to the lake system, 

whereas a dense vegetation cover stabilizes the soil. 

[insert figure 5] 

 

Discussion: 

In the following sections we discuss major palaeolimnological and environmental changes 

inferred from diatom analysis and minero-geochemistry data of a 17.8 m long sediment 

sequence of Lake Kinneret. The study spans the last 9,000 cal yrs BP and emphasis is given to 

disentangling climate-driven lake-level variation from shifts in trophic status and the impact 

of past human activities. A summary multi-proxy diagram is provided in figure 5 for a 

comparison of key limnological indicators and selected previously-published palynological 

data (Schiebel, 2013, Schiebel and Litt, 2017, Langgut et al., 2013, 2015, 2016). For 

interpretation of regional trends in moisture availability, a comparison of existing Holocene 

lake-level reconstructions from the Dead Sea (Kushnir and Stein, 2010) and Lake Kinneret 
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(Hazan et al., 2005) are given in figure 6. The sparse occurance of obligate halophilous 

diatom taxa (e.g. Amphora coffeaeformis) indicates an essentially freshwater lake and a 

hydrologically open lacustrine system throughout the Holocene. Palaeolimnological 

interpretation and implications for palaeoclimate reconstruction are discussed according to 

diatom assemblage zone boundaries below. Calibrated ages are provided (according to the 

age-depth model given in figure 2; Schiebel and Litt, 2017), with associated archaeological 

periods for comparison with the wider literature. 

[insert figure 6] 

 

Holocene history of Lake Kinneret – a multi-proxy interpretation: 

From 9,000 – 7,400 cal yrs BP (DAZ-4, Pottery Neolithic Period)  

At the base of the sequence, diatom assemblage zone (DAZ) 4 is characterized by very low 

diatom concentration or even an absence of diatoms (figure 3), in subzones DAZ-4c and 

DAZ-4a in particular. The low diatom concentration may (1) result from poor preservation 

rather than being a reliable indicator of lake productivity (Battarbee et al., 2001), as many 

valves were broken or showed early signs of dissolution and/or (2) reflect an increased 

sediment accumulation rate in a phase of shallowing and sediment in-wash. 

Where diatoms were identifiable, the diatom community of subzone DAZ-4c (9.1-8.6 cal yrs 

BP; table 2) includes only few planktonic Aulacoseira ambigua and Cyclotella spp., and is 

dominated by the robust facultative planktonic species, Pseudostaurosira brevistriata, 

Staurosira venter and Staurosirella pinnata, and fragmented valves of benthic genera such as 

Cocconeis (which often grow on submerged water plants growing in the littoral zone), 

Navicula and Nitzschia. As fragilarioid species are associated with environmental stress and 

physical disturbance (Schmidt et al., 2004), the high proportion of benthic and facultative 

planktonic taxa, can be linked with an expansion of the littoral zone, i.e. are a strong indicator 
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for relatively shallow waters (Barker et al., 1994). The occurrence of Aulacoseira spp. in 

these subzones, and low abundance of Cyclotella ocellata, can be indicative of turbulent 

mixing of the water column and a temporary breakdown of stratification (Owen and Crossley, 

1992, Anderson, 2000), since Aulacoseira have highly silicified valves and require a turbulent 

water column to stay within the photic zone. A combination of low lake level and high wind 

exposure can provide the turbulent, high nutrient condition favoured by this genus (Wolin and 

Stone, 2010). Shallow and turbulent water conditions can often enhance dissolution of diatom 

valves (Flower, 1993), which is here well reflected in the low diatom concentration. 

Mineralogical and geochemical data indicate a phase of long-lasting and high detrital input, 

supported by palynological data: The poorest diatom preservation (DAZ-4c and DAZ-4a) 

occurs in phases of maximum inferred detrital input (increased potassium (K) counts, 

phytolith counts and detrital mineral concentrations with values up to 50 w% 

(clays+feldspars+quartz), and the unique presence of anorthite and microcline only in this 

sediment unit. DAZ-4 as a whole shows maximum abundance of steppic pollen taxa, 

indicating an natural open vegetation cover (not influenced by human activities) and arid 

climate conditions in the catchment area (figure 5, Schiebel and Litt, 2017). The open steppe 

vegetation would also favour soil erosion processes (Zuazo and Pleguezuelo, 2008) and 

increase the sediment discharge, serving to dilute the diatom concentration. A high sediment 

discharge into the lake likely causes a turbid water column, limiting the light availability for 

the photosynthetic processes necessary for diatom growth, especially for species with a 

planktonic life habit. In addition, Barker et al. (1994) stated that planktonic diatom taxa can 

be restricted by turbidity during phases of enhanced catchment erosion. Tychoplanktonic 

fragilarioid species, which here occur at their peak abundance (table 2; figure 3), would be 

favoured by a turbid, sediment-loaded water column. The inferred phase of shallow lake 

levels for Lake Kinneret until ca. 8,600 cal yrs BP is consistent with pollen-climate model 
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reconstructions from the Dead Sea (Litt et al., 2012), which document an arid (precipitation 

values < 350 mm/a) and warm period.  

 

In subzone DAZ-4b, the shift towards dominance of the planktonic Cyclotella ocellata-

complex (45-75 %, table 2), i.e. Cyclotella ocellata and C. paleo-ocellata, suggests a slight 

increase in lake levels around 8,600 cal yrs BP lasting till 7,900 cal yrs BP. Total diatom 

concentration and the Ca/Ti-ratio remains low in spite of better diatom preservation, 

indicating reduced lacustrine productivity. As Cyclotella ocellata is known for its extremely 

broad tolerance for nutrient availability (Fritz et al., 1993, van Dam et al., 1994, Kiss et al., 

1996, Schlegel and Scheffler, 1999, Cremer and Wagner, 2003, Houk et al., 2010), the co-

occurrence of C. ocellata with C. paleo-ocellata is interpreted in this record as an indicator of 

oligotrophic conditions in a deeper open-lake system (Vossel et al., 2015, and references 

therein). Notably, the peak in the S/Ti-ratio at the beginning of DAZ-4b (~ 8.6 cal yrs BP) 

differs from the Ca/Ti signature, possibly indicating changes in lacustrine mixing related to a 

deeper water column. This can result as a transient state after a rapid lake-level increase, as 

known for other east Mediterranean lakes (e.g. Lake Van, Turkey; (Kaden et al., 2010)). 

An excursion towards more humid climate conditions with higher precipitation values is 

recognized between 8,600 to 7,900 cal yrs BP from speleothem records of the nearby Soreq 

cave, Israel (Bar-Matthews et al., 2000) and Jeita cave, Lebanon (Verheyden et al., 2008) with 

reconstructed precipitation values up to 550-700 mm/a. These shifts in moisture availability 

also affected the Eastern Mediterranean basin, as seen by the formation of sapropel (Kallel et 

al., 1997, De Rijk et al., 1999).  Our data are strongly in accord with the hypothesis of a 

humid early Holocene in the southern Levant, clarifying the uncertainty generated previously 

by low lake levels reported in the Dead Sea (Kushnir and Stein, 2010). A slight rise in Dead 

Sea lake level does occur at this time (figure 6), reflecting a subdued response or local 

variation in climate. 
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As noted above, conditions in subzone DAZ-4a (7,900 – 7,400 cal yrs BP) return to a 

relatively arid state with a low lake-level similar to that reported for DAZ-4c, even though 

diatom communities show higher relative abundance of fragilarioid and Cocconeis spp. rather 

than a diversity of benthic taxa, indicative of an unstable, fluctuating environment (table 2). 

Although later, according to the age-depth model (figure 2), it is within the error range (a 

reservoir effect of nearly 1,000 years; Schiebel and Litt, 2017) to argue that this subzone 

represents the Early to mid-Holocene boundary, coinciding with the so-called 8.2 k yrs abrupt 

climate event (Walker et al., 2012). The 8.2 k yrs cold (arid) event is the most prominent rapid 

climate change (RCC) at northern high latitudes during the Holocene (Johnsen et al., 2001, 

Pross et al., 2009) and its influence on terrestrial records in the Eastern Mediterranean is 

strongly debated (Robinson et al., 2006). The observed strong diatom response also occurs in 

some other Mediterranean sites (e.g. Cvetkoska et al., 2014, Ariztegui et al., 2001); here, 

other proxy data also show a peak, e.g. K – indicative for enhanced erosion, but no marked 

shift in palynological evidence for its impact on catchment vegetation is recognizable. Bar-

Matthews et al. (1999) reported a sudden cooling and decrease in precipitation around 8.2 k 

cal yrs BP for the Soreq cave (Israel). Moreover, geomorphological lake-level reconstructions 

from Lake Kinneret (Hazan et al., 2005, and this study) and the Dead Sea (Kushnir and Stein, 

2010, Litt et al., 2012) show low lake-level stands between 8,000-7,500 cal yrs BP (figure 6), 

indicating a region-wide response to shifts in moisture towards more arid climate conditions. 

Kushnir and Stein (2010) conclude that marked Holocene arid events, which are expressed as 

abrupt and relatively large drops in the Dead Sea lake level (10 m or more), correlate with 

pronounced cooling episodes recorded in Eastern Mediterranean winter sea surface 

temperatures (SST, reconstructed from planktonic foraminifera in marine sediment cores) and 

with cold events in northern latitudes. 
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From 7,400 – 2,200 cal yrs BP (DAZ-3, Transition Neolithic/Chalcolithic Period – Bronze 

Age–Iron Age) 

DAZ-3 is characterized by the consistently high abundance of planktonic diatom taxa (> 80%) 

mainly belonging to the Cyclotella ocellata-complex (table 2), indicating stable, high lake 

levels and an oligo-mesotrophic state throughout this subzone (Vossel et al., 2015, and 

references therein). The marked transition to plankton dominance represents strong evidence 

for a rapid increase in lake level around 7,400 cal yrs BP, which is also observed in the 

diatom data from Lake Prespa, further north (Cvetkoska et al., 2014). 

From a geochemical perspective, in phase primary carbonate accumulation (Ca/Ti-ratio) and 

diatom concentration indicate long-lasting increased productivity phases between 6,000 and 

5,000 cal yrs BP and between 4,000 and 2,200 cal yrs BP (figure 4). In general, DAZ-3 is a 

phase of moderate detrital input. Abrupt, marked excursions of potassium also occur, 

indicating pulses of terrigenous input, which might be caused by flood events or other 

external triggers. Most of the punctual increases in detrital input have no influence on the 

diatom flora.  

The interpretation of enhanced humidity is supported by palynological evidence for an 

increase of summer-green oak (Quercus ithaburensis-type), especially in subzone DAZ-3a 

and a slight decrease in steppic vegetation, which seems to be natural and not 

anthropogenically induced  (Schiebel and Litt, 2017). The pollen evidence alone was not 

definitive since the climate signal is strongly overprinted by human activities from the 

Chalcolithic period onwards. Fluctuating human settlement size and activities around Lake 

Kinneret during this time period (Langgut et al., 2013, 2015) seem not to have a remarkable 

effect on the lake’s ecosystem and trophic state, as interpreted from the high-resolution 

diatom record.  

In summary, all analysed proxies indicate a stable, oligo-mesotrophic lake system for the mid-

Holocene with a maximum lake-level high-stand lasting from 7,500 till 2,200 yrs cal BP. This 
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is in accord with climate models based on palynological data, providing evidence for an 

extended humid phase with precipitation values up to 650 mm/a for the Levantine region (Litt 

et al., 2012). Additionally, our dataset is in accord with other diatom records in the Eastern 

Mediterranean, which also exhibit an inferred mid-Holocene phase of maximum lake levels 

(e.g. Lake Ioannina; (Jones et al., 2013); Lake Prespa (Cvetkoska et al., 2014) and Lake 

Dojran (Zhang et al., 2014)). A mid-humid Holocene is also documented by increasing lake 

levels in Lake Iznik based on high resolution grain size analysis and carbonate accumulation 

(Roeser et al., 2016). Many localities in the Levant support the hypothesis of a humid climate 

optimum, e.g. speleothem records from Soreq cave, Israel (Bar-Matthews and Ayalon, 2011) 

and Jeita cave, Lebanon (Verheyden et al., 2008) and a new, high-resolution pollen record 

from Lake Kinneret (Langgut et al., 2016). 

Previous lake-level reconstructions for Lake Kinneret (Hazan et al., 2005) and the Dead Sea 

(Kushnir and Stein, 2010) (figure 6) had shown inconsistencies, which were thought to reflect 

differences in patterns of evaporation and local differences in freshwater supply (Stein, 2014). 

From our results, the stability of the Kinneret high stand accentuates the apparent discrepancy 

further, standing in stark contrast to the major fluctuations in lake level inferred for the Dead 

Sea. Although our results are more closely in accord with other records of the region, it is 

possible that, as a closed-lake basin, the Dead Sea exhibits far higher sensitivity to changing 

moisture availability. Furthermore, our results support the hypothesis that the strong north to 

south climate gradient of today (see also site description section) operated through most of the 

Holocene, which might explain independent changes in the limnological behaviour of the two 

lake systems. These observations support the analysis of Enzel et al. (2008), who argued that 

the present north-south climatic gradients between arid and Mediterranean zones were already 

established during the Late Pleistocene.  
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The diatom record of Lake Kinneret shows, in contrast to the 8.2 event, no evidence for the 

so-called 4.2 cal kyr BP drought event appearing across the Northern Hemisphere between 

4.2-3.8 k cal yrs BP (Mayewski et al., 2004). The lack of response might be caused by the fact 

that the lake was a deep, stable ecosystem during this time. A similar lack of diatom response 

was observed in Lake Prespa (Cvetkoska et al., 2014). Nevertheless, there is subtle evidence 

in the pollen record (Schiebel and Litt, 2017) comprising decreased arboreal pollen 

percentages around 4,000 cal yrs BP (figure 4). 

During the late Bronze Age (around 3,200 cal yrs BP) a subsequent pronounced dry episode 

has been identified from palynological analysis of Lake Kinneret (Langgut et al., 2013, 2015, 

Schiebel and Litt, 2017). This event lasted probably slightly more than a century and is 

represented by a reduction in arboreal pollen percentages (low Quercus spp. in figure 5), 

clearly not induced by human deforestation as settlement activity was low in many areas 

during that time. Again, the stable, deep lake-level state in Kinneret during this phase might 

cause a buffering effect on the diatom response, possibly similar to observations made in Lake 

Eski Acigöl, Turkey (Roberts et al., 2001). A remarkable drop in lake levels does appear to 

occur in the Dead Sea at this time (Kushnir and Stein, 2010, Stein et al., 2010), however. 

 

Sediment disturbance at 2.3 k cal yrs BP 

In the rather homogenous Holocene sediment sequence of Lake Kinneret, a major shift in 

palaeolimnological proxy data at 4.64 to 4.57 m depth (ca. 2.3 cal k yrs BP; figure 7), 

indicates the occurrence of an event layer. This 4 cm thick sediment sequence shows abrupt 

lithologic and mineralogical boundaries, and grain size shows inverse grading, which is 

indicative of a rapid depositional event. Concentrations of microcline, detrital dolomite and 

quartz are the highest of the profile and potassium and phytolith counts exhibit clear peaks. 

This distal deposit of a turbidity current/gravity flow might have originated from two distinct 

natural triggers (a) seismic activity or (b) climate, as a result of a flash flood event. Terrestrial 



25 
 

deposits of paleo-earthquakes with Holocene age are encountered at the south-eastern margin 

of Lake Kinneret (e.g. Klinger et al., 2015, Reches and Hoexter, 1981). Given the lake’s 

location on the active Dead Sea transform fault system, it is conceivable that the observed 

event layer originated from a seismic event. On the other hand, deposits of flood events are 

known from Lake Kinneret, however appearing closer to the shore and under direct influence 

of river discharge. For example, Williams (2016) recently recorded two flood deposits in a 

short sediment core (143 cm; 4,000 years) from the western shore of Lake Kinneret, providing 

strong evidence for fluctuating dry-wet conditions of the Roman-Byzantine periods due to 

climate instability.  

Another possible human-induced explanation for the sediment disturbance could be the start 

of olive tree cultivation and the previous clearance of the natural vegetation visible in the 

gradual decrease of Quercus spp. in the pollen data (Schiebel and Litt, 2017) at the top of 

DAZ-3a. Natural vegetation clearance and heavy rain could cause a rapid in-wash of soils and 

nutrients from the catchment (Cohen, 2003, Zuazo and Pleguezuelo, 2008), which also would 

explain high amounts of K and detrital minerals, low lake productivity (i.e. low diatom 

concentration and Ca/Ti ratio), as well as the sample devoid of diatoms. Further research is 

necessary to identify the causal mechanism, but the event is followed shortly afterwards by a 

complete compositional change of the diatom community towards a more eutrophic 

assemblage. [insert figure 7] 

 

From 2,200 -1,600 cal yrs BP (DAZ-2, Hellenistic & Roman/Byzantine Period) 

The onset of DAZ-2 (corresponding to the Hellenistic Period; around 2,200 cal yrs BP) is 

marked by a major reduction in the P/B-ratio and diatom concentration. A floral shift towards 

planktonic taxa such as Aulacoseira granulata, Cyclotella polymorpha and small 

Stephanodiscus  (S. minutulus/parvus and S. hantzschii) strongly indicate a higher trophic 
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state of the lake (Krammer and Lange-Bertalot, 1986, 1991a, 1988, 1991b, Stiller et al., 1984) 

and a possible reduction of lake level. Cyclotella paleo-ocellata and S. galileensis disappear 

completely from the record probably due to the increase in nutrient availability. Pollingher et 

al. (1984) made similar observations in diatom analysis of the sediment core KIND-4, taken 

close to station D in the southern part of Lake Kinneret at 23 m water depth, and inferred 

nutrient enrichment correlated to more dense human settlement and intensive agricultural 

activity around the lake during the Hellenistic-Roman period. The increase and diversification 

of Pediastrum spp. in this DAZ also supports an increase in trophic state (Pollingher, 1986). 

The surprisingly low diatom concentration in DAZ-2 may be explained by the competitive 

advantage of green algae over diatoms (Stiller et al., 1984).  

This interpretation is supported by the replacement of oak woodland by olive plantations 

(Olea europaea) in the catchment (Schiebel and Litt, 2017) and an inferred increase in 

terrigenous input indicated by mineralogy and phytolith data. Neumann et al. (2007) 

recognized deforestation activities during the same period in nearby Birkat Ram, a small maar 

lake in the northern Golan Heights. Rising population density, bigger urban societies and 

continuous agriculture activities are also well documented archaeologically in the Hellenistic 

and Roman/Byzantine time periods (Anderson, 1995, Dar, 1993, Chancey and Porter, 2001). 

The clearance of the surrounding natural vegetation would enhance erosion of nutrients and 

terrestrial input to the lake, indicating that the shift from an oligotrophic to a more meso- to 

eutrophic lake system was induced by human activities rather than climate change.  

Deforestation and intensive farming has led to marked changes in the nutrient balance of 

many lake systems during the mid to late Holocene, which is well reflected in many 

palaeolimnological records based on diatoms around the Mediterranean (e.g. Cvetkoska et al., 

2014, Zhang et al., 2014). 

The evidence for lake-level shallowing in the proxy data (slightly comparable to DAZ-4a/c) 

may be climatically induced, since this has also been recognised as a more arid, warmer phase 
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by other researchers (Finné et al., 2011), but standing in contrast to colder and humid climate 

conditions reported for this region (Issar, 2003). A climate-induced shallower lake-level phase 

in Lake Kinneret is therefore unlikely and also stands in contrast to a high lake-level stand 

reported from the Dead Sea (figure 6, Kushnir and Stein, 2010). Woodbridge and Roberts 

(2011) have demonstrated in a palaeoclimate record from Nar Lake (Turkey) that 

anthropogenic changes in land use can lead to long-term shifts in the diatom response to 

climate variability through time and therefore highlight that diatom-inferred climate 

interpretations on Late Quaternary timescales should be considered with caution. 

An alternative, non-climatically induced explanation for a lake-level reduction of Lake 

Kinneret could be human water abstraction associated with catchment vegetation management 

and irrigation. Major irrigation systems were introduced to this region in Hellenistic times and 

become common in the Roman era to ensure water-supply of bigger urban centres (Lemche, 

2015), such as Tiberias, which were founded in the Roman period. 

Overall, it can be concluded that human activities are strongly overprinting the climate signal 

of the multi-proxy record after the onset of the Hellenistic/Roman period. Shifts in the diatom 

assemblage or varying P/B-ratios in the following sections therefore reflect changes in the 

trophic state of the lake and its productivity, rather than being a reliable indicator for 

fluctuating lake levels.  

 

From 1,600 – 900 cal yrs BP (DAZ-1c/-1b, Late Byzantine & Islamic Period) 

In DAZ-1c/-1b the recovery to an oligo-mesotrophic lake system is indicated by a decrease of 

initial dominance of C. polymorpha (DAZ-1c; mesotrophic) and the subsequent renewed 

dominance of C. ocellata (< 80 %; oligo-mesotrophic) in this subzone. The low abundance of 

Aulacoseira and Stephanodiscus taxa also support a shift to more oligo-mesotrophic 

conditions. This is not reflected in the geochemical data. Carbonate accumulation and S/Ti 
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both increase, whereas detrital minerals are at their lowest values (< 15%). The consistent 

increase of pyrite concentration is indicative of an at least seasonally anoxic sediment surface, 

likely allowing sin-depositional pyrite concentration. This is a typical feature in eutrophic 

lakes, when increases in TOC production, and especially consumption, lead to anoxic 

conditions in the lower water column, resulting in a stratified system.Schiebel and Litt (2017, 

Schiebel, 2013) report a period of woodland regeneration with the re-occupation of 

abandoned olive groves by evergreen oaks and pistachios in the palynological record of Lake 

Kinneret in this period. The recovery of the diatom flora as well as the regeneration of natural 

woodland can be reflecting a decrease in settlement activities and in economic structures as 

well as a decline of agriculture and population density reported in the Southern Levant during 

the Islamic Period (Safrai, 1994). 

From 900 cal yrs BP – present (DAZ-1a, Crusader Period till today) 

DAZ-1a incorporates the species composition of the modern diatom flora of Lake Kinneret, 

which is now strongly influenced by the economic revival in this area, especially the 

development of industry and tourism. The subzone DAZ-1a is dominated by strongly 

eutrophic diatom taxa, which are also tolerant of general water pollution, including 

Aulacoseira granulata, Cyclotella meneghiniana and large Fragilaria capucina (Krammer 

and Lange-Bertalot, 1986, 1988, 1991a, 1991b, Ehrlich, 1995, Lange-Bertalot, 2013). As 

noted above, the low diatom concentration in the modern flora is probably due to a marked 

increase in dominance of dinoflagellates and green algae (Pyrrhophyta-Chlorophyta 

assemblages) in the phytoplankton (Pollingher et al., 1984). The geochemical data exhibit an 

increase in detrital values and maximum pyrite values. The lack of shifts in other indicators 

compared to DAZ-1b suggest, that it was only recently that the annual pattern of lake mixing 

was established. This is also supported by the laminated sediment deposits only occurring in 

the upper most 25 cm of the sediment sequence.  
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Lake levels fluctuated markedly from 1,600 cal yrs BP until present, as indicated by shifts 

both in diatom concentration and the P/B-ratio. As noted above, lake levels can fluctuate by 

up to 4 m per year depending on precipitation/evaporation, but mostly on human water 

management control. Human-induced impacts (e.g. water abstraction, industry and 

agriculture) on the lake ecosystem and its watershed are well documented over the last > 40 

years by the Lake Kinneret monitoring program (Sukenik et al., 2014). 

 

Conclusions: 

 Our study has greatly improved our understanding of Holocene climate variability in the 

Lake Kinneret area and across the southern Levant as a whole. The diatom data in particular 

provide a robust signal of lake-level response to shifts in moisture availability, although partly 

obscured in the later record by the impact of human activities. In the context of understanding 

palaeoclimate variability our major conclusions are: 

1. Apart from lithological evidence for a possible disturbance event around 2,300 cal yrs 

BP, the Lake Kinneret sediment record provides an important continuous high-

resolution Holocene sequence for the southern Levant. 

2. Major shifts in the diatom community and especially in the P/B-ratio, during the Early 

and mid-Holocene are driven by changes in lake level and moisture availability rather 

than lake productivity or changes in trophic status.  

3. During the Late Holocene, after 2,200 cal yrs BP, the climatic signal is overprinted by 

accelerated nutrient enrichment linked to intensification of human activities in the 

catchment area.  

4. The new detailed lake-level reconstruction for Lake Kinneret based on the P/B-ratio of 

diatoms in combination with minero-geochemical analysis allows for the first time a 

detailed comparison between the two contrasting lake systems of the Dead Sea and 

Lake Kinneret. Following a phase of lake-level fluctuations in the Early Holocene 
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linked to alternation between an arid and more humid climate in Lake Kinneret, 

diatoms indicate a prolonged stable deep lake phase throughout the mid-Holocene and 

the onset of the late Holocene due to long-lasting humid climate conditions. 

Independent changes in the limnlogical behaviour of Lake Kinneret and the Dead Sea 

probably reflect the long-term existence of the strong north (humid) to south (arid) 

climate gradient which operates today, coupled with the higher sensitivity to changing 

evaporation/precipitation conditions of the Dead Sea, as a closed basin system.  

5. The presented diatom record shows similarities to palaeoclimate records studied 

around the Mediterranean. Lake ecosystems of these moderately deep, alkaline lakes 

seem to react in similar ways to larger scale climatic events during the Holocene such 

as the 8.2 event and the mid-Holocene humid period. 
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