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We have solved the long-standing problems of stability and hysteresis, and we are able to obtain the homogeneous 
uniform lying helix structure in polymer-free cholesteric liquid crystals. This is instrumental for the present work to 
demonstrate the analog modulation at high speed and high precision. The device is configured for the transverse field 
switching wherein the substrate surface is flat. In addition to the response time of 10 micro-seconds at room 
temperature, we have obtained the R-squared and the adjusted R-squared as a measure of true sine-wave for the 
sinusoidal responding transmission from 1 Hz to 100 kHz that are all greater than 0.9993. In Michelson interferometer, 
the phase shift at wavelength 633 nm after two passes has been measured equal to about π/9 at 4.6 V/μm for the chiral-
doped nematic mixtures E7. © 2019 Optical Society of America 

 
1. Introduction 
 
Liquid crystal modulator that can operate in analog mode 
at high speed and high precision is always a broad interest 
particularly for the spectroscopic polarimetry applications. 
Because the resonance frequency shift and vibration 
intensity instability in association with the photo-elastic 
modulator are still problems to be solved. One of the high 
speed liquid crystal devices was first invented by James L. 
Fergason in 1984 (US Patent No: 4,436,376). It was based 
on nematic liquid crystal mixtures to modulate and 
demodulate the light beam in a communication system. 
There was a signal linearity problem that made the 
proposal impractical. It had been found that the 
demodulated light beam had the same frequency as the 
input sawtooth wave but it exhibited many sub-harmonic 
components of the input sawtooth wave. To mitigate this 
problem, one of the challenges was to fabricate two 
identical liquid crystal devices to produce a signal of the 
type wherein the sawtooth linearity of the output signal 
became apparent. In 1987, Doane et al developed so called 
a polymer dispersed liquid crystal (PDLC) device [1]. The 
response time to the electric field was less than 0.3 milli-
seconds whereas the time required for the film to relax 
back to the scattering state was about 3 milli-seconds. In an 
independent study by Basile et al, the total phase shift 
induced by PDLC was reported difficult to control [2]. It 
depends on the polarization and propagation direction of 
incident light, the liquid crystal orientation inside the 
droplet and the droplet orientation with respect to the 
electric field. These limit the use of PDLC devices. Early 
research in ferroelectric liquid crystal materials was found 
in the work of Heilmeier and his co-worker in 1966 [3] and 
in an often cited paper by Meyer in 1975 [4]. In 1980, 
Clark et al disclosed a liquid crystal device that allowed 
the molecular directors to rotate between two stable 
orientations in the micro-second regime [5]. In this device, 

the substrates are put sufficiently close together so that the 
intrinsic helical configuration which is present in the bulk 
will be suppressed. It is referred to as the surface stabilized 
ferroelectric liquid crystal (SSFLC) device. The switching 
is very fast but it is restricted to the bistable operation. In 
1994, Sharp et al reported the analog modulation in 25 μs 
response time by the electroclinic effect [6]. Smectic liquid 
crystal materials were used and the device was operated 
near the C* to A* transition. The phase shift limited by the 
electroclinic effect was less than 35 degree in a single pass. 
Large tilt angle exceeding 45 degree and high transmission 
in red green and blue of the visible spectrum were obtained 
by Fünfschilling et al in 1996 although two deformed helix 
ferroelectric devices were required for the optimal 
performance [7]. There is however a change in the 
birefringence of liquid crystal material intrinsic to the 
deformed helix ferroelectric effect [8]. This has been 
reported problematic for the control of polarization state. In 
2009, Castles et al worked on the transmission effects of 
flexoelectro-optic director deformation in a Grandjean 
texture (also known as the uniform standing helix 
structure) [9]. The authors showed that this effect enabled 
fast switching in about 17 μs response time and it had low 
chromatic dispersion over the visible spectrum. By using 
Berreman method, it was further predicted that the contrast 
ratio at normal incidence was 1500 to 1 at a switch-on tilt 
angle of 41.5 degree when an in-plane electric field 19.8 
V/μm was applied. The major problem was the 
requirement of special IC driver that can provide high 
operation voltage with a sufficient bandwidth. 
In 1990, Meyer et al discussed in their patent (US Patent 
No: 4,917,475) that the only proposal of the flexoelectric 
effect in cholesteric liquid crystal materials was first found 
in Durand et al in 1986. Since early 2000, liquid crystal 
dimers having large flexoelectric coefficients for the full 
wave modulation have also been synthesized although 
most of them have high melting point [10]. Nevertheless, it 
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substitute K1 accordingly. In a cross-polarizers setup, the 
transmitted intensity and its relative change in term of the 
incident intensity I0 are respectively given by ܫ = ݀݊∆ߨଶሺ݊݅ݏሻߚଶሺ2݊݅ݏܫ ⁄ߣ ሻ    (5a) ∆ܫ ⁄ܫ2 = ሺ4∅ሻ݊݅ݏ ⁄ሻߚሺ2݊ܽݐ    (5b) 

where β is the angle of optic axis relative to the polarizer 
axis in the absence of electric field. The effective 
birefringence, thickness of liquid crystal layer and centre 
wavelength of incident light are denoted by Δn, d and λ0 
respectively. At β=22.5 degree, the relative change in 
transmitted intensity obtained by Eq. (2) and Eq. (5b) 
becomes approximately 4 times the electric field. Because 
the tangent angle becomes comparable to the sine angle in 
small rotation approximation. To measure the phase shift, 
the Michelson interferometer setup is used and the beam 
splitter shown in Fig. 4 (a) divides the light beam into two 
halves in which the light beam in the sample arm passes 
the FlexoLC modulator twice. So, the intensity at the 
detection plane where two light beams interfere is given by ܫ = ଵܫ + ଶܫ + 2ඥܫଵܫଶܿݏሺߜሻ    (6a) 

where I1 and I2 are the intensity of light beam in the 
reference and sample arms respectively. The intensity of 
interference fringe is represented by the square root of I1 
and I2 and it is often referred to as half of the visibility. The 
phase difference between the light beams in the reference 
and sample arms is denoted by ߜ. In view of Eq. (2) under 
the small rotation approximation, the Jones matrix for the 
FlexoLC modulator can be reduced to a rotation of optic 
axis when the half-wave condition is met. This compares 
with the smectic liquid crystal modulator [18]. Therefore, 
the rotation of optic axis as a result of change in tilt angle 
that gives rise to the phase shift is given by the following 
expression.  ܿݏሺߜሻ = ݀݊∆ߨଶሺݏܿ ⁄ߣ ሻ − ݀݊∆ߨଶሺ݊݅ݏ ⁄ߣ ሻܿݏሺ4∅ሻ  
(6b) 

This equation holds for the incident light of linear or 
circular polarization. The plane of incidence representing 
the x-axis and the right-hand rule are assumed. 
Incidentally, this notation is sometimes different from that 
used by the liquid crystal researchers. For the unified 
derivation and the reciprocal treatment, the book authored 
by Chipman et al [19] is suggested. 
 
3. Experiments 
 

The FlexoLC modulator comprising the pixel electrodes in 
transverse field switching configuration was fabricated 
using the indium tin oxide (ITO) film. Then the metal 
electrodes that were in contact with the pixels were 
fabricated using the chromium film. Negative photoresist 
AZ nLOF 2020 from MicroChemicals was spin-coated at 
4000 rpm for 30 seconds before it was baked at 100 ⁰C for 
1 min. It was then exposed to UV light and it was post 
baked at 110 ⁰C for 1 min before it was developed in AZ 
726 MIF for 90 seconds. The layer of chromium was 
deposited by sputtering. Lift-off in 1-Methyl-2-pyrrolidon 
(NMP) and resist stripping by oxygen plasma were 
followed. Azo-dye film was spin-coated on top of the 
electrode and it was baked at 80 ⁰C for 15 min. The azo-
dye material, characterization and device fabrication can be 
found in the report by Yip et al [12, 20]. It was exposed in 
proximity to a linearly polarized UV light at 5 J/cm2. A 
quartz photo-mask was used to transfer the image to the 
illuminated region. A polymer-free cholesteric liquid 
crystal mixture comprising E7 and R5011 from Merck was 
disposed between the first and second substrates. Both 
substrates were made of glass material in this case and the 
perimeter was sealed with Norland NOA 68 UV adhesives. 
In a microscopic view, small domains were observed 
growing as the liquid crystal was cooling from the isotropic 
phase in the presence of an electric field. The electric field 
was homogeneous and substantially normal to the substrate 
surface. These small domains coalesced and became large 
domains having a structure of long thin stripes. These large 
domains further grew to form a ULH structure comprising 
aligned domains of splay and bend deformation. The ULH 
structure was aligned in a preferred orientation induced by 
the alignment layer. The ULH structure comprising these 
aligned domains were found having stable and reversible 
characteristics in addition to a good homogeneity. The 
equipment we used in the measurements were Olympus 
optical microscope BX 60, Hewlett Packard UV-visible 
spectroscopy system 8453, Agilent Technologies digital 
storage oscilloscope DSO 5034A, Thurlby Thandar 
Instruments synthesized arbitrary waveform generator TG 
1230, Linkam hot stage LTS 350 with controller TMS 94, 
Thorlabs photo-detector PDA 36A, Canon digital camera 
EOS 550D and a calibrated high-voltage amplifier. It was 
noted that the measurements and the photo were taken at 
22⁰C unless it was mentioned otherwise. 
 
4. Results and Discussion 
 
The FlexoLC modulator device 1 and device 2 were 
fabricated for the modulation of amplitude and phase 
respectively and they were made according to the same 
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