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Abstract 
The Wenchuan earthquake causes rapid and gradual changes to the local           

geomorphology in the earthquake stricken areas. Extreme rainfalls can have strong           

impacts on the local geomorphic evolution and alter the risk of the sub-sequent             

geohazards and flooding. However, there still lacks of understanding of long-term           

geomorphic and fluvial evolution in face of changing future climate. In this paper, with              

spatial (tailoring process) and statistic temporal downscaling methods, we used the           

NEX-GDDP data to predict future extreme rainfall coupled with the CAESAR-Lisflood           

model to simulate the landscape evolution in response to climate change. The results             

show that the geological and geomorphological environment of the basin continues to            

have a dynamic change after the earthquake and sediment mainly accumulates in the             

river channels and floodplains, while mountain slopes and gullies show persistent erosion            

tendency. The extreme rainfalls have greater effects on the areas with more landslides             

and the topographic change in the landslides zone becomes the dominant control on             

topographic variation of the basin over time. It still needs nearly 20 years (~2035) before               

the geomorphology of the basin becomes stable, and by then the yearly yield keeps at a                

level of average rate 1*10^4 m³. This paper presents a new approach to apply the               

NEX-GDDP dataset at local scale and conduct future landscape evolution analysis. It            

explores how the mountainous areas respond and recover under changing future climate            

post-earthquake, which can provide important information on future geohazards         

prediction and measures taken. 
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1 Introduction 
The Wenchuan earthquake (M 8.0) occurred on May 12, 2008 in Sichuan, China,             

triggering thousands of geohazards including rock avalanches, landslides,        

landslide-dammed lakes (“earthquake lakes”) and debris flows [1]. Subsequently, the          

earthquake-stricken areas still experience frequent landslides, debris flows and flash          

floods [2] that reflect continuing rapid and gradual changes in the geological and             

geomorphological environment – resulting in ongoing geohazards [3, 4]. Therefore, it is            

important to understand how the geological and geomorphological environment will          

continue to evolve post-earthquake in order to predict and mitigate for future geohazards.  

By calculating the difference of elevation data (derived from multi-source Digital           

Elevation Model (DEM) data) in the years following the earthquake, changes in erosion             

and deposition patterns in the earthquake-stricken area can be analyzed, furthering our            

understanding of the driving mechanisms of post-earthquake hazards [5, 6]. Dynamic           

topographic changes in mountainous areas impacted by major earthquakes can have a            

strong linkage to the development and occurrence of secondary disasters such as new             

landslides, debris flows and mountain flooding [5, 7, 8]. However, predicting how            

landscapes affected by earthquakes will respond and recover in the future has received             

little attention, and this issue is especially important given how future climate change may              

well alter how the landscapes behave.  

One approach to address how earth surface dynamics respond in post-earthquake           

affected environments is to use numerical modelling. Xie et al. [9] were the first              

researchers to use the CAESAR-Lisflood model to model landform evolution and           

sediment migration in a post-earthquake area. Their results showed that the           

CAESAR-Lisflood model could be used to simulate how landslides interacted with the            

river channel changing local erosion and deposition patterns as well as predicting basin             

sediment yields. CAESAR-Lisflood [10] is a landscape evolution model that integrates the            

Lisflood-FP 2D hydrodynamic model [11] with the CAESAR (Cellular Automaton          

Evolutionary Slope And River) model [12], which can be used to simulate the landscape              

evolution subject to fluvial and diffusive erosion and mass movement processes. It            

contains a distributed version of the hydrological model TOPMODEL [13] enabling it to             

use rainfall inputs to drive river discharges that then erode and deposit sediment over a               

range of grainsizes [14-18]. CAESAR-Lisflood can also calculate the mass movement           

and also allows different distributions of grainsize to be added into the fluvial network              

representing landslide material [9].  

Extreme rainfall has been shown to have strong effects to the evolution of the              

geological and geomorphological environment [5, 9] and erosion and deposition patterns           

forecast by the CAESAR-Lisflood model are sensitive to the rainfall information,           

especially magnitude [19]. Previous applications of CAESAR-Lisflood [20] have used          



synthetic rainfall products driven by downscaled GCM data and more recently using            

synthetic rainfall derived from local records [21]. There are existing rainfall products            

available, including the ‘NASA Earth Exchange Global Daily Downscaled Projections          

(NEX-GDDP)’ data-set that can provide the future rainfall information. The NEX-GDDP           

can successfully reproduce the spatial patterns of precipitation extremes over China, and            

showed higher accuracy results compared with observations than the Global Climate           

Models (GCMs) [22]. However, at local scale, when compared with the station            

observations, the uncertainty of the future precipitation data is relatively high with low             

simulation efficiency [23, 24]. 

In this study, we explore how the geomorphology of drainage basins affected by the              

Wenchuan earthquake changes under future rainfall predictions. This firstly involves          

generating future rainfall predictions at local scales for different climate emission           

scenarios, and then applying these rainfall predictions to the CAESAR-Lisflood model to            

explore how the post-earthquake landscape evolves.  

2 Study area, data and methods 
2.1 Study area 

The study area (Fig. 1 (c)) is located at the lower part of the Hongxi River watershed,                 

in the eastern Pingwu county of Sichuan province, China [5, 7]. The area experienced              

Modified Mercalli Intensity (MMI) scale X and XI shakes during the Wenchuan            

earthquake on May 12, 2008, that triggered tens of thousands of landslides and             

produced large volumes of loose material (Yang et al., 2015). For this study the basin               

was divided into two parts (upstream zone and downstream zone) to match outputs of              

the Regional Climate Model (RCM) data with a spatial resolution 0.25° (Fig. 1 (a, b)).               

Nearly 75% of the total landslides area (2013) were distributed in the downstream area,              

with the biggest landslide (Maanshi landslide) located in the upstream area [25]. Since             

the geomorphology of the area outlined in black in Fig. 1 was heavily affected by the                

earthquake and most of the buildings are located here, the small basin is the area we are                 

mainly focused on, and the results section only shows the landscape evolution            

characteristics of this small basin. The annual average precipitation is about 700mm and             

nearly 70% of the rainfall occurs from May to September [26]. Over the past eleven years                

following the earthquake, the area has experienced persistent landslides, debris flows           

and flash floods triggered by high rainfall.  

 



 

Fig. 1 Spatial boundary of the NEX-GDDP data (0.25°) over China (a); the whole basin was 

divided into two parts named upstream area and downstream area in this study (b); Land-use 

information of the basin (Highlighted in black is the lower basin area (c). 
2.2 Data and pre-processing 

The datasets used are summarized in Table 1 and include the high spatial resolution              

remote sensing images from 2013, the DEM from 2010, daily precipitation records, daily             

rain gauge data and the NEX-GDDP dataset (RCMs). 

Table 1 Datasets used in this research 

Dataset Time Spatial resolution Data source 

NEX-GDDP 

dataset (Daily 

Precipitation) 

Historical run 1950-2005 

0.25° GDDP-NEX RCP4.5 runs 2006-2100 

RCP8.5 runs 2006-2100 

High spatial resolution remote 

sensing image 
2013 4 m IKONOS 

DEM 2010 10 m (horizontal) GlobalDEM 

Meteorological station data (Daily) 1951-2008  

Pingwu 

meteorologica

l station 

Rain gauge data (Hourly) 2015-2018  Hongxi river 

 

NEX-GDDP high-resolution daily downscaled data was used to provide the future           

climate information of the study area and in this study only precipitation data were used.               



  

The bias-correction spatial disaggregation (BCSD) method was used to generate the           

NEX-GDDP data-set on the basis of 21 CMIP5 model simulations [27]. The global spatial              

resolution of the dataset is 0.25 degrees (~25 km x 25 km). The precipitation data               

resolution was daily for the period 1950–2005 (historical run) and 2006–2100 (RCP4.5            

and RCP8.5 runs). More information can be found at:         

https://nex.nasa.gov/nex/projects/1356/.  

The high spatial resolution remote sensing images were used to build the land-use             

classification results with Fig. 1 showing how the land-use information of the basin was              

categorized with four different types: landslides, farmland, river-channel and the others           

(mainly forests). 

2.3 Methods 
The goal of this research is to detect the response of the basin to the future climate                 

change, such as the erosion and deposition patterns after high rainfall events as well as               

considering the low (RCP4.5) and high (RCP8.5) emission scenario effects for the next             

10y, 20y and 50y. Before the Caesar-Lisflood model simulation process (based on the             

DEM in 2010), the spin up process is needed, in this paper, the time length of the spin up                   

process was settled 3-year under the field-measured rainfall scenario, then the start time             

to analyze the response to future climate change is 2013. Fig. 2 details a flowchart of the                 

methods used in this research: Future rainfall prediction and the basin response to this              

rainfall that consists of two main parts.  

For the first component, Table 2 showed the temporal line information in the future              

extreme rainfall prediction process. Such as, in order to get the extreme rainfall in              

2006-2025 (next decade after 2013), the history dataset with time line 1986-2005 of the              

station record and the NEX-GDDP historical runs, together with the future dataset with             

time line 2006-2025 of the NEX-GDDP future runs were used in the prediction model              

showed in section 2.3.1. And for each scenario, 50 repeat data sets were generated. 

For the second part simulations using the Landscape Evolution Model (LEM)           

Caesar-Lisflood model were used to examine the basin response to the future climate             

change reflected in changes in rainfall in part one. For this process, 300 model runs were                

conducted with different future temporal-scales and different emission scenarios (Table          

2). These two parts are described more in the following sections.  

 

Table 2 Temporal-scale information in the station future extreme rainfall prediction 

process 

Caesar-Lisflood model 

input rainfall information 
Input value temporal-scale 

Predicted station future 

rainfall 

Temporal-sc

ale 

Emission 

scenario 

Station 

record 

NEX-GDDP tempora

l-scale 

Number of 

random tests Historical Future 

https://nex.nasa.gov/nex/projects/1356/


runs runs 

2013 -2025  

(10y) 

RCP4.5 
1986-2005 2006-2025 

50 

RCP8.5 50 

2013-2035 

 (20y) 

RCP4.5 
1976-2005 2006-2035 

50 

RCP8.5 50 

2013-2065  

(50y) 

RCP4.5 
1951-2005 2006-2065 

50 

RCP8.5 50 

 

 

Fig. 2 Flow chart describing the generation of future rainfall and its input into the 

CAESAR-Lisflood model 

2.3.1 Extreme rainfall prediction and downscaling process 

As large rainfall events can have great effects on the landscape evolution process it              

is important that they are captured within simulated rainfall [5, 28-33]. Using the daily              

precipitation data of the Pingwu station and assuming that the extreme rainfall obeys the              

Generalized Extreme Value (GEV) distribution, the station extreme rainfall return period           

results are shown in Fig. 3. However, when calculating the number of the extreme rainfall               

(5-year return period events: 97 mm/day (Fig. 3)) of the 21 CMIP5 models in NEX-GDDP               

dataset, the NEX-GDDP data shows lower predictions of extreme rainfall compared to            

the station record and therefore cannot be applied. 



 

Fig. 3 Return period of the extreme rainfall based on Pingwu station record (1952-2008) 

To rectify this, using methods of [34] the distribution statistical results ( ) of the           Dk    

extreme rainfall predicted model can be calculated with formula (1), the optimal of the            Dk    

station future data occurs when the difference between the relationship between           

and and and of the 21 CMIP5CMfutureR  CMhistoricalR   tationfutureS   tationhistoricalS      

model is the smallest. Then the future station precipitation data can be predicted using              

this optimal random extreme distribution model. 

 Dk = ( M g

M obs
− MRCMfuture

MRCMhistorical)
2

+ ( CV g

CV obs
− CV RCMfuture

CV RCMpresent)
2

+ ( Sg
Sobs

− SRCMfuture

SRCMpresent)
2

+ ( ρ1g

ρ1obs
− ρ1RCMfuture

ρ1RCMpresent)
2

 

(1) 

Where M refers to Mean value, CV refers to the coefficient of variability, S is               

skewness, is the first order autocorrelation coefficient of the daily precipitation time ρ1             

series data, g refers to the future time series data and obs is the station observation data.                 

The index parameters, such as M, CV, S and in equation (1) can be replaced by other         ρ          

index parameters. In this study, the index parameters included: mean value, coefficient of             

variability, skewness, kurtosis, 80% quantile, 90% quantile, 95% quantile and 99%           

quantile of station history data, NEX-GDDP historical runs data and future runs data.             

Three time-lines (2006-2025, 2006-2035 and 2006-2065) were simulated and four typical           

extreme distribution model (Gamma, Extreme value, Generalized Extreme value, and          

Generalized Pareto distribution) were selected to simulate the future optimal distribution           

function of the extreme rainfall. 

To best capture hydrological events in catchments of this size using           

CAESAR-Lisflood the temporal resolution of the rainfall needs to be sub daily – ideally              

hourly. Since the temporal resolution of the station data and the NEX-GDDP data is daily,               

in this research, a stochastic temporal downscaling model based on a genetic algorithm             

(GA) [35] was used to temporally downscale the daily time series to hourly time series.               

To carry out this downscaling we divided the daily rainfall into 4 levels: >100mm;              

50-100mm; 20-50mm and 0-20mm and conducted the downscaling process individually.          

The first step is to estimate the distances between the target daily precipitation Yt and the               



  

observed daily precipitation , i=1, 2, ……n,  is the hourly observationsyi = ∑
24

h=1
xi,h xi,h  

                                                           (2)Di = (Y )t − yi
2  

where t=1, 2, ……T, T is the length of the target daily precipitation, n is the record                 

length and h indicates the hth hour. 

Then the results from equation 2 were arranged in ascending order, provided the             

number of nearest neighbors, k, a known value (in this research, k=sqrt(num), where             

num is the number of the hourly observation in each rainfall level), and selected the               

smallest k values and reserve the time indices. Then one of the k time indices was                

randomly selected with a weighting probability as per equation 3: 

, m=1,……k.                           (3)wm=
1/m

/j∑
k

j=1
1

 

Here it is assumed that the selected time indices is p, then the selected time index is                 

.h  Xp = x[ p,h]  ∈ {1, 4}2  

Then the GA mixing process was used, with the reproduction, crossover and            

mutation method, then repeat tested until the required data were generated. The            

adjusted process to make everyday rainfall equal the target precipitation and the gradual             

variation in precipitation events are also considered in this downscaling process. 

The GA mixing process followed: 

Reproduction: select another time index , and obtain the corresponding hourly     p*       

Precipitation: h  Xp* = x[ p ,h* ]  ∈ {1, 4}2  

Crossover: replace element with when < , where is a uniformly   xp,h   xp ,h*   ε   P c   ε     

distributed random number between 0 and 1. In this research,  equals to 0.1.P c  

Mutation: replace element with , where is selected from   xp,h   xξ,h   xξ,h     

with equal probability for i=1,……,n when < . In this research,i  x[ i,h]  ∈ {1, }n        ε   Pm     P c  

equals to 0.01. 

2.3.2 Caesar-Lisflood model 

CAESAR-Lisflood model [10] is a raster-based landscape evolution model with four           

main modules: hydrological module that calculates streamflow from rainfall rates using a            

spatially distributed version of TOPMODEL, a hydrodynamic flow routing module based           

on the Lisflood-FP method [11], erosion and deposition over 9 different grainsizes as well              

as lateral erosion, and a slope processes module simulating landslides and soil creep. In              

the model simulation process, the basin is divided into a mesh of grid cells, each cell                

contains its elevation, grainsize, and hydrological parameters (e.g., discharge, water          

depth, etc.) and these cell values are updated according to process based rules for              

erosion/deposition, hydrology and slope processes. 



As the run time of CAESAR-Lisflood simulations increases with the number of grid             

cells (translating directly into the number of calculations), in this study, we resampled the              

spatial resolution of all the input data to 20m. These input parameters include elevation,              

grainsize, bed rock DEM (BedDEM), M-value, landuse and rainfall (as shown in Fig. 2).              

Output data recorded included the changed DEM, waterdepth, daily sediment, discharge,           

and grainsize information. More information on the model parameters can be found on             

the model website: https://sourceforge.net/p/caesar-lisflood/wiki/Instructions/. The     

BedDEM was built based on the surface DEM minus 3m. Grainsize information are             

derived from field surveys. Different land use areas were modeled by altering M-value in              

the hydrological model which controls the peak and duration of a flood hydrograph for a               

given storm event [12]. Different land-use type refers to different M-value. In this study              

the M-value for forest, farmland, landslide and river channel were set as 0.02, 0.008,              

0.003 and 0.002, respectively as per[9].  

3 Results 
3.1 Predicted extreme rainfall distributions 

Fig. 4 and Table 3 show the optimal prediction distribution function of station future              

extreme rainfall (top 20 each year), varying with the different temporal scale and             

emission scenarios as well as the difference of the upstream and downstream area. This              

distribution function is then used to predict the station future extreme rainfall. Since the              

rainfall generation is stochastic 50 repeat data sets were generated in each temporal             

period (2013-2025; 2013-2035; 2013-2065) and emission scenarios (RCP4.5 and         

RCP8.5) (Table 2).  

 

Fig. 4 Future extreme rainfall prediction distribution function in 2013-2025 (a); 2013-2035 (b) 

and 2013-2065 (c). 

Table 3  information of the Future extreme rainfall prediction distribution function inDk  

2013-2025 (10y); 2013-2035 (20y) and 2013-2065 (50y) 

Time 
RCP4.5 RCP8.5 

upstream downstream upstream downstream 
k σ μ k σ μ k σ μ k σ μ 

10 
year 0.22 6.87 14.5

6 0.21 7.01 14.7
2 0.21 6.50 14.8

7 0.21 7.16 15.6
4 

20 
year 0.20 7.45 15.9

8 0.20 7.30 16.1
5 0.20 7.30 16.6

4 0.20 8.08 16.6
4 

50 
year 0.20 7.95 16.6

5 0.20 7.71 16.8
2 0.20 7.54 16.4

9 0.20 7.71 16.1
5 

https://sourceforge.net/p/caesar-lisflood/wiki/Instructions/


 

*k is shape parameter, σ is the scale parameter and μ is the location parameter. All the                 

functions obey the GEV model. 

 

For the predicted future extreme rainfall, more extreme rainfall events (10-year           

return period events) occurred under the RCP4.5 emission scenario, especially in the            

upstream area (Fig. 5). We also calculated the frequency of the daily rainfall exceeded              

20mm for more than three consecutive days (Fig. 6) and the result also showed that               

more extreme rainfall occurred under the RCP4.5 emission scenario of our basin. 

 

 

Fig. 5 The frequency of the extreme rainfall with return period higher than 10y in all 50 tests                  

((a), (b) and (c) are the results in 2013-2025, 2013-2035, and 2013-2065, respectively.) 

 

Fig. 6 The frequency of the daily rainfall exceeding 20mm for more than three consecutive 

days in the upstream (a) and downstream (b) area 
 
3.2 Sediment variation characteristics in different temporal scale 

We calculated the relationship (Table 3) between the total volume of the sediment             

and the cumulative rainfall and the relationship between the maximum sediment each            

year and the maximum rainfall of that day or the day before it. All the results showed high                  

R-value between the sediment and the upstream rainfall information. The results indicate            

that in our study area, the upstream rainfall is the dominant control on the sediment yield                

of the basin. 

 



Table 3 The relationship (R: correlation coefficient) between the sediment and the rainfall 

 Total volume of the 

sediment and the 

cumulative rainfall 

 

 

 

 

 

 

Maximum sediment each 

year and the rainfall of that 

day 

Temporal scale Temporal scale 

10y 20y 50y 10y 20y 50y 

RCP4.

5 

Upstream 0.69 0.78 0.74 0.78 0.89 0.86 
Downstream 0.26 0.40 0 0.14 0.11 -0.21 

RCP8.

5 

Upstream 0.60 0.64 0.47 0.57 0.71 0.80 

Downstream 0.33 0.26 0.32 0.09 -0.17 -0.20 

Fig. 7 presents time series of the sediment yields as well as the cumulative sediment               

yield from the 50 tests for each scenario. The erosion intensity is stronger under the               

RCP4.5 emission scenario and there is a clear relationship between the extreme rainfall             

events and spikes in sediment yield, although the steady rise of the cumulative curve              

shows the contribution of smaller events too.  

 

Fig. 7 Time series and cumulative sediment of the 50 tests in the 10y (a, d), 20y (b, e) and                    

50y (c, f) landscape evolution process (a, b, and c are the results under the RCP4.5 emission                 

scenario and d, e, and f are the results under the RCP8.5 emission scenario). （Different               

colored lines represent different tests. Note different Y axis scaling）.  



 

Fig. 8 Box and whisker plots of annual mean sediment yields (for all 50 simulations) from 

2013-2065 with the RCP4.5 and RCP8.5 scenarios.  

Fig. 8 shows the mean annual sediment yields from the simulations showing a             

decrease during the period 2013-2065 under the RCP4.5 and RCP8.5 emission           

scenarios, with fluctuations due to the nonlinear behavior of the basin geomorphology.  

3.3 Topographic variation after the earthquake 
3.3.1 Mean elevation change 

Fig. 9 shows the mean elevation changes of the 50 simulations in the next 50 years                

based by averaging changes for each pixel from the 50 simulations. Overall there are              

clear patterns of aggradation and sediment accumulation in the river channels and            

floodplains and erosion on mountain slopes and gullies.  

 

Fig. 9 Mean elevation change in the next 50 years after 2013 under the RCP4.5 (a) and 

RCP8.5 (b) emission scenario 



As simulations progress sediment is moved downstream towards the the outlet as            

illustrated in the channel profile change charts of Fig. 10 where the closer to the outlet,                

the bigger increase the elevation change over time. 

 

Fig. 10 Elevation change along the channel from top to the outlet (Maanshi direction; the 

number 1-6 refers to the points with elevation change (erosion and deposition) higher than 

3m, also showed in Fig. 9) 

 
Fig. 11 Photos taken at in points 1-4 in Figures 9 and 10 (the geomorphology 

environment of point 5 and 6 are very like point 4, while without too many landslides) 

 

Points 1-4 identified in Figures 9 and 10 show locations where deposition is greater              

than 3m by 2065 and pictures of these locations are provided in Fig. 11. The simulated                

elevation changes during the period 2013-2025 at point 1, 2, 3 and 4 are consistent with                

our observations in 2018. Point 1 refers to the area very near the outlet, under the river                 

transportation process, loose materials move to the outlet, raising the river bed and in              

Fig. 11 (the photo taken in 2018) the river bed is now full of loose material with a higher                   



 

elevation than the road, posing a threat to the villages downstream. Point 2 and 3 are all                 

located downstream of Maanshi landslide (point 4), with very wide and flat river bed. The               

photos taken in 2018 show that the deposition materials widen and raise the river bed               

increasing the flooding intensity and the inundated area. The factory built in 2017 were              

destroyed by the 2018 flooding (point 2), and only one and a half stories left in a                 

three-story building (point3). Point 4 is located just below the main body of Maanshi              

landslide, where rainfall has caused a large volume of landslide material to move to the               

river channel which again aggrades/raises the river bed. The mountains located in the             

upstream (point 5 and 6) and downstream (not very far) of Maanshi landslides are all with                

high cliffs and deep gullies, which forms a steep and narrow V-like channel. Here, the               

vertical incision of the river is stronger than its lateral erosion, and lateral erosion can               

trigger local landslides to dam the river threatening downstream.  

  

3.3.2 Mass balance of the lower basin area after 2013 
Focusing on the lower basin area outlined in Fig. 1, we compared the mass change               

after 2013 in the next 50 years with 35 tests under the RCP4.5 emission scenario. Here                

positive values in Fig. 12 reflect the net addition of sediment to this area from upstream                

sources and negative values an overall loss. Fig. 12(a) showed the comparison results             

between the whole basin material volume and the material volume in 2013 year after              

year, the results showed that the whole basin material volume will be lesser than that in                

2013 after 2035, and the whole basin material volume change tendency varied from             

deposition to erosion. Fig. 12(b) showed the material volume change compared with the             

material volume between the consecutive two years, the sediment yield rate tends to be              

stable after nearly 20 years, with the yearly average sediment yield rate nearly equals to               

 m³.1 0* 1 4   

 

 

Fig. 12 Whole basin mass volume change (baseline: material volume in 2013) (a) and mass 

volume change year-after-year (b) 5 yearly changes in mass balance 



 

Over time, the ratio of volume change between the landslides zone (Lower basin,             

Fig. 1) and the non-landslides zone (upper basin, Fig. 1) became larger (Fig. 13), which               

indicates that over time the material volume change of the landslides zone increasingly             

becomes the dominant control on the basin.  

 

Fig. 13 The ratio between the mass volume change between the landslides zone and the 

non-landslides zone 

4 Discussion 
Due to the high uncertainty in climate change scenarios, we build a rainfall predicted              

model to provide the most robust and effective representative future climate change            

scenarios at local scale. The predicted model [34] have the advantage of being few in               

number as well as having a clear description of the seasonal variation of the climate               

signals and allowing easy interpretation of the implications of future changes. Since the             

predicted model is stochastic, 50 repeat data sets were generated in each temporal             

period. Compared with other researcher’s study, the extreme value (50-year return period            

events) in the future in the southwest China will be increased both under the RCP4.5 and                

the RCP8.5 emission scenario, and the increase tendency are bigger under the RCP8.5             

scenario [36]. In this study, the predicted rainfall results also support this conclusion, the              

possibility of the extreme rainfall (50-year return period events (142mm)) increased both            

under the RCP4.5 and the RCP8.5 emission scenarios, and very extreme rainfall            

(>>142mm) is more easily occurs under the RCP8.5 emission scenario (Fig. 16).  



  

 
Fig. 16 The frequency of the extreme rainfall in the upstream and downstream area 

((a)(d) are the results in 2013-2025; (b)(d) are the results in 2013-2035; (c)(f) are the 

results in 2013-2065.) 

In our previous study [5], which continuously detected the topographic changes of            

the basin, the results showed that the materials and deposits mainly accumulated on             

upper-middle portions of mountain slopes and gullies after the earthquake, and the            

normal rainfall continued to erode the high mountain and accumulated the loose            

materials on upper-middle portions of mountain slopes and gullies. Under the rainfall,            

especially the high rainfall effects, readily induced debris flows and swept the loose             

materials downward, a large volume of loose materials filled the river channels and             

elevated riverbeds. This study provided further thought on future long-term (50y)           

topographic evolution, particularly the simulated erosion and deposition characteristics of          

at both basin scale and specific locations. 

The high rainfall caused great erosion and deposition process to the basin, the             

whole volume of the basin fluctuated obviously [5], after a long time landscape evolution              

process, the sediment yield tends to be stable. From the prior study, the whole volume               

change of the basin is 4.87*10^8 m³ (derived from the DEM data of the spatial resolution                

10m) [5], in this study, by the time when the geomorphology of the basin becomes stable,                

the yearly sediment yield keeps at a level of average rate 1*10^4 m³ (with spatial               

resolution 20m), it takes 10 thousands of years before the volume balance of the basin               

returned to the pre-earthquake level, much longer than the return period of the             

earthquake 2000-3000y [37, 38]. 

For sediment yield, the total sediment yield under the high emission scenario is             

lower than the results under the low emission scenario, which showed an opposite result              

compared with the work done in [39], general increase in total sediment yield with higher               



emissions scenarios. This result infers that when applying the RCMs at local scale, the              

effects caused by the high and low emission scenarios need to be analyzed on a               

case-by-case basis.  

We also found that the geomorphology of the basin becomes stable after 20 years              

landscape evolution process (-2035), the results was supported by the study of other             

researchers [40-42], they believe that the active stage of the earthquake areas will be last               

for decades (~20y). But how long the stable period last still need further debate. 

5 Conclusions 
This paper chooses one earthquake-stricken area as an example to analyze the            

basin response to the future climate change. Since the extreme rainfall in the NEX-GDDP              

dataset is significantly underestimated at our basin, we firstly do the future extreme             

rainfall prediction and then analyze the landscape evolution variation under future climate            

change with the CAESAR-Lisflood model. Considering the effects caused by the different            

temporal lines and emission scenarios, the following conclusions are drawn from the            

results of the study: 

● The earthquake-stricken area still experience rapid and gradual changes in the           

geological and geomorphological environment. Under rainfall effects, loose materials         

triggered by the earthquake and landslides mainly accumulated in the river channels            

and floodplains and moves to the outlet over time which upper the river-bed, while              

mountain slopes and gullies showed persistent erosion tendency.  

● By analyzing the landscape evolution of earthquake-stricken area in response to           

future climate change, it is clear that the mass balance of the lower basin area               

changed from deposition to erosion over time compared with the mass volume in             

2013. 20 years are needed before the dramatic material transport and geomorphic            

changes of the basin been stable after 2013, and the yearly sediment yield rate              

decreased over time until nearly 2035 with an yearly average rate 1*10^4 m³. While              

for the whole basin mass balance, it still needs 10 thousands of years before the               

whole basin sediment returned back to the pre-earthquake level. 

● The extreme rainfalls have greater effects on the areas with more landslides, due to              

the more fragile geological and geomorphic environment, such as more accumulated           

loose materials and less vegetation coverage. Thus, the materials migration of the            

post-earthquake mountainous areas with more landslides becomes the dominant         

control on topographic variation of the earthquake-stricken area, which will form a            

higher risk of geological disasters and mountain flooding. 

● Cumulative sediment yields are not only determined by extreme rainfall but also the             

cumulative rainfall, extreme rainfall caused dramatic changes of the geographic          

environment and the sediment yield while cumulative rainfall continually effects the           

landscape evolution.  
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