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This study presents a scroll expander modelling methodology for small scale power 

generation systems by combining scroll geometry and semi-empirical model. Although the 

semi-empirical model is quite popular, its dependence on several experimentally-determined 

scroll geometrical and operational parameters makes this approach inflexible for different 

capacities and operating conditions. Some studies have sought to improve its flexibility in 

terms of using different working fluids and more accurate empirical parameters, however, 

those improved models still depend on a considerable number of experimentally-obtained 

scroll parameters. Therefore, in this study, a practical methodology for a simpler semi-

empirical model combined with the operational flexibility of the scroll geometry is presented. 

Firstly, the flow rates of mainstream and leakage flows are analysed, where a correlation 

between scroll clearance and pressure ratio is determined. Secondly, a simpler approach to 

the semi-empirical model of scroll expander is proposed, whereby dependent parameters have 

been reduced to two parameters by using scroll geometrical calculations. The model is further 

improved to predict the rotational speed and electricity output by considering the overall 

friction coefficient of the coupled expander-generator unit. The findings are then compared 

with the results of an experimental study. The results show that the effective clearance values 

between scrolls vary according to pressure ratios, increasing from       to      . Mass 

flow rate can be predicted within 10% deviation from the experimental results for the same 

inlet conditions and rotational speed at a transient state. Additionally, considering steady state 

conditions, modelling results show that the rotational speed and electricity output can also be 

predicted within 8% and 7.5% of deviation, respectively. 
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1. Introduction 

Heat recovery usage and renewable solutions for power generation have increased 

dramatically in the past few decades. The organic Rankine cycle (ORC) system is the most 

widely examined option among the low temperature power generation solutions. Its main 

advantage is the simplicity and availability of its components. In this kind of systems, an 

organic fluid is used as a working fluid which is better adapted than water to low temperature 

heat sources [1]. ORC systems can therefore be used effectively in low temperature heat 

sources, especially for small scale applications. They are suitable for various low temperature 

applications such as solar heat, geothermal energy and waste heat recovery. Given the nature 

of these heat sources, the useful heat fluctuates during operation, so the ORC system 

components must adapt to its operating regime to ensure optimal system operation [2]. 

Alternatively, components may be operated in off-design conditions with a considerable 

performance reduction. 

The key component of the ORC system is the expansion device which produces work in 

expense of pressure reduction. The isentropic efficiency and mass flow rate of an expansion 

device are key factors in the overall performance of ORC system. For small-scale systems, an 

efficient and cost effective expansion device must be chosen. It is known that scroll machines 

produce low noise, little vibration and are of high efficiency, therefore scroll compressors 

have been used for years in many applications. Therefore, scroll expanders are quite popular 

choice for small-scale ORC applications. Moreover, tolerance of the off-design operation 

makes this type of expander the best option for fluctuating heat source applications such as 

solar ORC systems [3], to provide heat and power generation [4] or power generation with 

cooling in buildings [5].  

In order to simulate scroll expanders, three types of modelling have been presented and 

discussed in a review paper prepared by Song et al. [6]. They state that empirical and semi-

empirical models are more stable and time-saving in computations, while a geometric model 

can reflect the dynamic behaviour of a scroll expander during the whole working process; 

however, the geometric model is more time-consuming in computation. Dickens et al.[2] 

compared three different modelling methods of ORC in their experimentally validated study, 

namely, a constant efficiency method, a polynomial-based method and a semi-empirical 

method. They presented that semi-empirical models are the most reliable for off-design 

operation of the ORC. The expander semi-empirical model was proposed by Lemort et al. [7] 

and has more recently been the most preferable model as it describes the most influential 

component in an ORC system. In this model, several stages are included in the whole 

thermodynamic process. It offers a satisfactory simulation speed, modelling accuracy and 

extrapolation capabilities [8]. In their study, the model results were compared with the 

experimental results with an open-drive scroll expander. The maximum deviation was found 

to be 5%, which means that this model has a very good accuracy [6]. Moreover, this semi-

empirical model can be adapted to screw expanders [9], [10], reciprocating piston expanders 

[11] and a roots expander [12] by using the same formulations. 

Although this semi-empirical model is quite popular, its dependence on several 

experimentally-determined expander geometrical and operational parameters under a certain 

condition make this approach inflexible for different capacities and operating conditions of 

scroll expander in ORC systems. Some papers have investigated how to improve the model 
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by upgrading parameters. Giuffrida [13] looked at improving the flexibility of the model for 

use with a wider range of working fluids. He suggested an approach of modifying the heat 

transfer coefficients by including the physical properties of a working fluid [7], while other 

parameters remain the same because they are not dependent on the physical properties of a 

working fluid. Lemort et al. [14] experimentally showed that the effective leakage area can 

vary according to inlet pressure and thus presented another empirical equation for the area 

calculation under different conditions. Similarly, Mendoza et al. [15] presented an empirical 

equation for leakage area for ammonia as a working fluid. Giuffrida [16] used a load 

dependent leakage area equation and Ziviani et al. [17] proposed a modification of the 

leakage area using some constant values, pressure difference and rotational speed, however, 

parameters would still need to be determined via an experiment. 

Gao et al. [18] experimentally tested two scroll expanders with different displacement 

volumes. They reported that the isentropic efficiencies of the two expanders were different 

even under the same operating conditions. When a different capacity or brand of expander is 

used, the researchers would have to test their own machine and determine the machine’s 

parameters first before they can build a model for parametric studies. Twomey et al.[19] 

successfully adopted such approach to simulate a solar ORC system. Ayachi et al.[20] 

developed and characterized a semi-empirical model for high pressure operations using 

R245fa. Miao et al. [21] enhanced its expander model by scroll geometry and defined a 

leakage area and other parameters from the experiment. Recently, Muye et al.[22] 

characterized and modelled the scroll expander using R134a refrigerant as a working fluid.  

As described above, many studies have tried to improve the semi-empirical modelling or 

adapt this approach to different scroll expanders, however, those modelling studies always 

chose a rotational speed to predict the shaft power. But, the rotational speed of a scroll 

expander should be synchronized with the torque balance of the coupled expander-generator 

unit rather than being chosen. Therefore, this study aims to advance the semi-empirical model 

to predict the rotational speed and electricity output of the coupled expander-generator unit. 

The main objective of the study is to reduce the number of dependent parameters of the semi-

empirical model to two empirical parameters by using scroll geometry.  

The proposed methodology is outlined in the following sections in two parts. Firstly, flow 

rates of mainstream and leakage flows are considered, given that leakage flow is responsible 

for lower volumetric efficiency and has an influence on expander performance. Evaluation of 

the validity of the empirical clearance model is conducted to predict flow rates. Leakage area 

of the scroll is calculated by scroll geometrical methodology, in which clearance between the 

scrolls are discussed and determined by experimental analysis to draw a conclusion. 

Secondly, the semi-empirical model is adapted to predict the rotational speed of a scroll 

expander by coupling with an electromechanical model. An experimental data fitting is used 

to determine two key parameters of the electromechanical model. By applying these models, 

electricity output can be predicted. 

 

2. Methodology 

The semi-empirical model is the most preferred scroll expander model with good accuracy. 

The model consists of several hypothetical stages to explain the working principle of the 
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scroll expander. A schematic of the model with all stages is shown in Fig. 1 and equations 

can be found from the related reference. Subscript    indicates supply conditions which 

define expander inlet pressure and temperature. From state    to     , the working fluid is 

assumed to have a pressure drop adiabatically and then reject heat to the expander shell, 

reaching state     . From this point, leakage flow leaves from the mainstream and the rest of 

the working fluid is expanded according to the built-in volumetric ratio of expander, followed 

by a pressure change at constant volume to count under or over-expansion. Afterwards, the 

mainstream working fluid is mixed with leakage flow and finally exhaust heat transfer 

happens. Subscripts   ,     ,    and    indicate internal, leakage, adapted and exhaust, 

respectively. 

 

Fig. 1. Semi-empirical model for an open-drive scroll expander by Lemort et al.[7] 

For the semi-empirical model, nine parameters as listed in Table 1 are required. In the study 

by Lemort et al. [7], these parameters were determined and validated by an experimental 

work. These parameters are therefore valid only for the specific tested expander, meaning 

that researchers cannot flexibly use this for different expander capacities. Obviously, 

dependency on empirically-determined parameters makes this model limited. By using a 

scroll geometry, some of these parameters can be calculated and used in the semi-empirical 

model, thus, creating a more general model. 

Table 1. Required parameters for the semi-empirical modelling [7] 

No Dependency Parameter 

1 Geometry Swept volume, (   ) 

2 Geometry Built-in volumetric ratio, (BVR) 

3 Geometry, Operating condition Leakage area, (     ) 

4 Geometry Supply port cross sectional area, (   ) 

5 Geometry, Operating condition Nominal mass flow rate, (   ) 

6 Geometry, Operating condition 
Heat transfer coefficient and related area for the 

outside of the shell, (     ) 

7 Geometry, Operating condition 
Heat transfer coefficient and related area for the 

supply stage, (      ) 

8 
Geometry, Operating condition 

Heat transfer coefficient and related area for the 

exhaust stage, (      ) 
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9 
Geometry, expander 

components 
Mechanical loss torque, (     ) 

Our proposed approach aims to avoid the dependency on empirically-determined geometric 

parameters, but to use scroll geometry equations instead to empirically determine them, so 

that the semi-empirical model can be more flexible for design and modelling applications. 

Calculations of leakage area, heat transfer area, heat transfer coefficients, etc. using 

geometric parameters and operating conditions are given in following sections.  

3. Calculation of leakage area from scroll geometry 

Scroll geometry is one of the main factors affecting the scroll compressor and expander 

performances. A reliable and simplified model is necessary to merge with a thermodynamic 

model. Compared to scroll expanders, studies on scroll compressors are more prolific and 

provide significant knowledge which can be applied to the design of the scroll expanders 

[23]. The scroll geometry consists of equations to identify scroll profiles and calculates 

volumes of the chambers and leakage areas according to the orbiting angle. To build an 

accurate and flexible mathematical model, some of the geometric features need to be 

determined.  

3.1. Scroll geometry equations 

The shape of the scroll is an involute of circle and a scroll is defined by two involutes, 

namely, an inner and outer involute. These profiles are established according to a differential 

equation given in Eq. (1) [23].  

      

   
    (1) 

where L indicates tangential distance,   represents involute angle, and    is the base circle 

radius. For inner and outer involutes equations are given as: 

             (2) 

             (3) 

The thickness of the scroll is determined by: 

                     (4) 

By fixing the origin of the coordinate system at the centre of the base circle, the individual 

coordinate points x and y on the involute can be determined by Eq. (5) and Eq. (6)[24]. 

                      (5) 

                      (6) 

Another important geometric feature is ending angle   . The ending angle is generally the 

same for both inner and outer involutes. When the base circle radius, initial and ending angle 

are determined, it is possible to form a scroll by using the given equations.  

 

The fixed scroll works with another scroll known as the moving or orbiting scroll, which are 

assembled together in scroll machines. These two scrolls are in conjugacy; the orbiting scroll 
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is then offset by a fixed amount away from the base circle centre of the fixed one. The 

orbiting scroll orbits (not rotates) around the centre point of the base circle of the fixed scroll. 

There is a conjugacy between the fixed and orbiting scrolls, which means the two scrolls 

make contact with each other perfectly at certain conjugate angles. The orbiting radius can be 

calculated by Eq. (7): 

                         (7) 

 

Other relevant parameters, also given in equations, such as pitch and ending angle are 

provided by Ma et al.[25].  

         (8) 

              (9) 

All other specifications about scroll geometry can be found in the paper written by Bell et al. 

[26]. 

3.2. Leakages 

Normally, the fixed scroll and orbiting scroll should mesh perfectly during the operation to 

obtain higher volumetric efficiency and performance, however, internal leakages can occur 

inside the expander. It has been reported that there are two kinds of leakages in scroll 

machines, namely, flank leakage and radial leakage. Flank leakage appears through the 

clearance between the side surfaces of fixed and orbiting scrolls. Radial leakage occurs 

through the clearance between the tip wall and base plate of the scrolls. These two kinds of 

leakages are schematically shown in Figure 2. 

 

Fig. 2. Two kinds of leakages in a scroll expander [27] 

Different clearance values have been used by several studies to calculate the leakage area. 

Some studies have used variable clearance according to operation pressure, some have used a 

constant value for flank and another constant for radial clearance, however, some authors 

have preferred to use fixed values for both clearances. A summary of clearance values is 

given in Table 2.     and    indicate radial and flank clearances, respectively. Ma et al. [25] 

and Wu et al. [28] used convenient equations for the calculation of the leakage areas. As 

flank leakage occurs on both sizes, the length of the gap is the scroll height; the total flank 

leakage area is therefore: 
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                (10) 

 

For the radial leakage, the area changes with the orbiting angle as the chambers are enlarging 

and shrinking during operation.  

                             (11) 

 

As seen from the equation, the radial leakage area depends on the orbiting angle. To find the 

overall effective leakage area       of a whole scroll, an angularly maximum radial leakage 

value is added to the flank leakage area. 

 

Table 2. Clearance values for scroll machines 

Reference Information       

[27] Scroll compressor           
    

    
                        

    

    
               

[29] Scroll compressor         
          

    

                     
          

    
           

[30] 
Vapor injection scroll 

compressor 
         

    

    
                      

    

    
               

[31] Air scroll expander 60    (5-100    60    (5-100    

[32] Air scroll expander 40    40    

[33] ORC scroll expander 40    40    

[28] ORC scroll expander 40    40    

[34] Air scroll expander 15    10    

[35] Air scroll expander 15    10    

[25] Air scroll expander 10    10    

 

4. Thermodynamic Model 

The thermodynamic model consists of mass flow rate calculation and energy conservation 

equations of the working fluid. Heat transfer to the ambient from the expander shell needs to 

be calculated and motion analysis need to be conducted to predict electricity output. 

4.1. Mass flow rate 

The semi-empirical model uses a given suction port area to calculate the mass flow rate using 

the adiabatic pressure drop approach. This study adopts a different approach considering the 

rotation of scroll, i.e., the expander intake chamber is filled with supplied working fluid and 

its volume changes with the orbiting angle; the cumulated mass in the chamber reaches the 

maximum at the end of one full rotation and all collected working fluid is then transferred 

into the first expansion chamber. During this operation, the pressure in the intake chamber 

remains same with the supply pressure. However, the used equations after this point are the 

same as those in the semi-empirical modelling approach. 

The theoretical mass flow rate can be calculated by using inlet conditions and swept volume; 

however, leakage flow rates need to be included to find the total mass flow rate coming into 

the expander. The general mass flow rate equation is given in Eq. (12) [36]: 
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        (12) 

The leakage mass flow rate can be calculated by assuming it is the isentropic flow through a 

simple convergent nozzle of throat area as      . 

                               (13) 

To calculate leakage enthalpy and density, the pressure at the throat of nozzle is used. The 

throat pressure corresponds to the maximum value between critical pressure and exhaust 

pressure. The critical pressure in the throat is found assuming the vapor is ideal gas.  

               
 

   
 

 
   

 (14) 

  is the ratio of specific heat at constant pressure relative to that at constant volume. As 

indicated above, a clearance value needs to be determined experimentally to calculate       

value for each operating condition. A flow chart of the calculation procedure is shown in Fig. 

3. The procedure is started with calculation of the theoretical mass flow rate (    ) by using 

the experimentally obtained rotational speed, inlet pressure and temperature. Leakage flow 

rate (        is found by subtracting the theoretical flow rate from the experimentally 

recorded total flow rate (       ). Once        is known, using leakage area (       which can 

be found from scroll geometry as a function of the clearance, the empirical clearance 

equation is obtained. 

 

 

Fig. 3. Method to obtain an empirical equation of clearance 

 

4.2. Heat transfer equations 

During operation of the expander, heat is transferred from working fluid to the base plate and 

to other chambers by scrolls. To determine the heat transfer rate, firstly heat transfer 

coefficient of the working fluid needs to be found. Jang and Jeong [37] presented an 

empirical heat transfer equation for the heat transfer in a rectangular duct with a fixed heating 

wall and an oscillating wall. The equation is given in Eq. (15): 
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(

15) 

 

where    is hydraulic diameter of the flow duct,    represents the mean diameter of the 

scroll curvature, a related equation is given in Eq. (16): 

                
(

16) 

 

   is Strouhal number, which is used for correcting the oscillating movement, can be given 

by: 

   
      

  
 (17) 

where    is oscillating frequency,      indicates oscillating amplitude,    

is the mean velocity of the fluid, which are given by: 

   
 

  
 

(18) 

 

         (19) 

 

   
       
     

 (20) 

  

The mean hydraulic diameter is calculated from Eq. (21): 

   
      

      
 (21) 

Dittus-Boelter convection heat transfer correlation can be used for     . 

                     (22) 

 

The heat transfer area between the chamber and base plate is: 

      
      

  
 (23) 

 

For the last chamber: 

             (24) 
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    is shell radius and its equation is given in Eq.(26) [25]: 

                          (25) 

 

 

 

5. Motion equations 

Rotational speed is an independent parameter in the base semi-empirical approach but its 

effect on flow rate, leakages and friction losses cannot be ignored. Pressure difference 

between chambers in the expander generates forces in different directions such as tangential, 

axial and radial. Of these forces, tangential force drives the rotation of the orbiting scroll. 

Every point on the orbiting scroll rotates along a circle with the same diameter but with a 

different circular centre and a torque is generated. This torque called tangential torque   . 

This torque drives the rotation, but counter torques must be eliminated. Mechanical friction 

torque     and electromechanical torque     generate counter torque against rotation. The 

expander–generator rotation torque balance is given in Eq. (26) [38]: 

                    
   

  

  
             

             (26) 

 

where   represents the inertia moment of the rotating parts, subscripts   , a,     and     are 

for orbiting scroll, armature, shaft and Oldham ring, respectively. 

Friction torque is not easy to define as the expander comprises many parts. Ma et al. [25] 

recommended Eq. (27) for summing the frictions in the expander and generator. 

         (27) 

where     is the overall dynamic friction coefficient and needs to be determined by fitting the 

experimental data. 

Regarding the electromechanical torque, Eq. (28) can be used [39]: 

         (28) 

where    and    are current and torque constant, respectively. Generated current and angular 

speed are correlated in Eq. (29)  [39]: 

                   

   
  

 (29) 

where    is back electromotive force constant and its value is taken as 0.12 NmA
-1

.    and 

       are resistances and    is armature inductance. 

To obtain empirical equations for the overall dynamic friction coefficient and generator 

specifications, a flow chart in Fig 4 is given. In order to find torque balance for steady state 

operation,    ,     and    are required.     is calculated with utilizing experimentally 

measured values, namely  ,   and  .       is calculated from semi-empirical model [7] by 

using    ,       ,     and   from the experimental data and heat transfer areas that are 

calculated from the scroll geometry correlations for given scroll geometry parameters. Then, 
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       is converted to the torque by using rotational speed and     is found. After applying 

balance equation,     is found. This procedure is repeated for all experimental data then 

overall dynamical friction coefficient correlation is obtained. 

 

 

Fig. 4. A procedure to obtain empirical friction coefficient. 

 

6. Results and discussion 

 

6.1. Experimental rig and expander model implementations 

In order to validate the proposed model with an experiment, the same experiment setup has 

been used as presented in another study by Li et al.[40]. A test rig was set in the University of 

Science and Technology of China. In this experimental setup, an ORC unit was tested using 

an oil free semi hermetic scroll expander produced by Air Squared, Inc. [41]. Fig. 5 shows a 

diagram of the ORC system. The system has three loops. First, the oil cycle; the oil is heated 

to the desired temperature by the controller then heat is transferred into working fluid by the 

evaporator. Second, ORC cycle; R123 is used as a working fluid which is evaporated via an 

evaporator by transferred heat from the oil. Working fluid enters the scroll expander and 

drives it to rotate. The generator is magnetically connected to the expander’s rotating shaft 

and generates electricity. Thereafter, the condenser rejects heat from the R123 refrigerant and 

changes its state to liquid. The final cycle is the cooling water cycle; cooling water absorbs 

heat from the working fluid at the condenser. This heat is then carried away to a cooling 

tower.  
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Fig. 5. Diagram of the ORC system 

 

The measured parameters include temperature and pressure, denoted by T and P next to the 

lines. R123 mass flow rate and electricity output were measured by the flow meter and digital 

power meter, respectively. In order to give accurate and reliable results, evaluation of the 

uncertainties of the experimental setup is very important. Copper-constantan thermocouples 

are used for measuring the temperatures with an accuracy of ±0.5 °C. To measure pressure, 

three types of ceramic pressure transmitters produced by Huba Control Co. were utilized. The 

pressure ranges were −1 to 9 bar (scroll expander outlet, condenser outlet and organic fluid 

pump outlet), 0–25 bar (scroll expander inlet) and 0–30 bar (organic fluid pump inlet and 

evaporator outlet). Their accuracies were ±1.0%. The R123 mass flow rate was measured by 

the flow meter (MFM2081K-60P/DN25) fabricated by KROHNE Group. The zero-point 

stability was ±0.012 kg/min, and accuracy was ±0.15%MV + Cz. The output voltage, current, 

electricity and frequency of the generator were measured by the digital power meter 

(8716C1T-RS) provided by Qingdao Qingzhi Company, and the accuracies were ±0.5%, 

±0.5%, ±0.5%, and ±0.1%, respectively, given in the reference [40]. An uncertainty analysis 

has been conducted according to the method by Holman [42], and it is found that the 

uncertainty in the obtained power is ±0.7%.  

The oil-free scroll expander E15H022A-A03 has been used for tests. The expander’s 

maximum output power, speed, inlet temperature and pressure are 1 kW, 3600 rpm, 175   

and 13.8 bar, respectively. The coupled generator (AB30L) is a single-phase generator 

produced by Wanco, Inc. It is connected to the expander via a magnetic coupler in the 

housing. The rated volts, amps, hertz and speed are 240 V, 10 A, 50 and 3000 rpm. 

According to datasheet of the expander given by the company, the built-in volume ratio is 3.5 

and displacement volume is 14.5 cm
3
, which can be also calculated from the scroll geometry. 

Thankfully, Ma et al. [25] used the same expander in their work, measuring and presenting 

the geometric parameters of the scrolls. Thus, by using the given scroll geometry parameters, 
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the scroll profile is obtained. The geometric parameters of the scroll expander are given in 

Table 3. Three parameters, namely, scroll thickness, scroll height and scroll pitch values were 

directly measured by the authors by using a digital caliper. Rest of the parameters were 

calculated by the scroll profile equations. As the geometric parameters of the expander 

clearly affect the experimental results and the proposed model, it is important to give the 

accuracy of measurements. A vernier caliper is a precise measuring instrument generally with 

an accuracy of 0.05 mm [43], while a digital caliper is much more precise with an accuracy 

up to 0.01 mm [44]. If the abovementioned three parameters contained a measurement error 

of 0.05 mm, the error in radius of the base circle, start angle of the involute and swept volume 

would be 0.0079 mm, 0.57  and 0.3 cm
3
, respectively. This can also indicate the extent of 

effect to which the geometry measurement errors have on other geometrical parameters and 

hence the experimental and modelling data. 

 

Table 3. Geometric parameters of the tested scroll expander [25] 

Parameter Symbol Value 

Height of scroll     22.4 mm 

Radius of the base circle    2.37 mm 

Thickness of the scroll    4.08 mm 

Number of chambers Nc 4 

Pitch of the scroll blade     14.91 mm 

Start angle of the 

involute 
   49.25  

Swept volume      14.5 cm
3
 

Built-in volume ratio     3.5 

 

By using given parameters, the scroll profile has been formed and scroll positions of given 

orbiting angles are given in Fig. 6.  
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Fig. 6. Scroll position for orbiting angle: a)    , b)       , c)     , d)        

 

The inlet and outlet pressures, rotational speed and inlet and outlet temperatures of the 

expander from the experiment have been used for the analysis. Fig. 7 shows experimental 

data. In this experiment, pump frequency has been increased gradually so that inlet pressure 

is increased, however, temperatures and pressure outlet are changed slightly. Time step was 5 

seconds, thus, the system can be considered as in transient state. By using experimental data, 

the effective clearance value of the scroll is determined first. Later, the effect of the pressure 

ratio on rotational speed and efficiencies are discussed. 

d) 

a) b) 

c) 
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Fig. 7. Experimental data in transient state. 

 

6.2. Scroll clearance 

In order to find leakage area, Eqs. (10)-(11) can be used but these equations require clearance 

values between the scrolls. As seen from Table 2, there is no agreement about the clearances 

among different studies. For the scroll compressors, the manufacturer gave some equations to 

calculate them, however, it is not possible to use the same equations for the expander 

applications because the given expander operates oil free and reverse operation makes a 

decrease in the sealing effectiveness likely, hence, the authors used higher clearance values 

for the expanders. In order to determine the real clearance value, experimental data have been 

used for solving Eqs. (12)-(14) but the leakage area must be determined first. By using the 

geometrical parameters given in Table 3 of the Air Squared expander’s leakage areas have 

been calculated.  

Larger clearances result in larger leakage areas. By using the area equation with experimental 

mass flow rates, real clearance can be determined. Fig. 8 shows clearance variation based on 

experimental mass flow rate. Data from three set of experiments’ data have been used and 

effect of pressure ratio on clearance value is obtained. Clearance starts around 20    and 

increases with the pressure ratio. Increment of the clearance by pressure ratio looks 

reasonable as scroll pairs consist of one fixed and one orbiting scroll and it is possible to have 

a larger effective gap at higher pressure ratio. The fitted curve is a logarithmic function given 

in Eq. (30) which reaches 34.85    towards infinitely large pressure ratio. It is also 

reasonable to have a maximum value given that scrolls are rigid materials and also rotation is 

restricted by friction, therefore an effective gap increment is limited. 
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Fig.8. Scroll clearance variation with pressure ratio 

 

                          
          (30) 

 

The figure shows that taking 30    of clearance can be useful for operations between 4 and 

5.5 pressure ratios. However, many applications such as solar ORC and waste heat 

applications, the system operates at off-design conditions. Therefore, taking a constant 

clearance value causes calculation errors for predicting leakage flow rate. 

By using experimentally-obtained clearance data, Fig. 9 has been plotted to compare 

measured and calculated mass flow rates. Since pressure is increased during the experiment, 

the system cannot reach steady operation but the difference between calculated and measured 

value still indicates a satisfactory compatibility. The average deviation is less than 10%. 

  

Fig. 9. Measured and calculated flow rates 
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6.3. Volumetric efficiency 

Volumetric efficiency is the ratio of the theoretical flow rate which does not count internal 

leakage and the actual total flow rate which includes internal leakage inside the expander. 

The volumetric efficiency is an important parameter as it is one of the indicators of leakages 

which is also responsible for causing a low performance of the expander. To analyse the 

volumetric efficiency, Fig. 10 shows the variation of the theoretical and leakage flow rates 

with the pressure ratio. The theoretical flow rate increases with the inlet pressure as it 

depends on the inlet density, rotational speed and swept volume of the expander as seen in 

Eq. (12). Since the expander output pressure is almost constant during this experiment, the 

pressure ratio increases with inlet pressure, so the theoretical mass flow rate increases with 

the pressure ratio. However, the trend of theoretical flow rate is more dependent on the 

variation of rotational speed with the pressure ratio. It is obvious that the rotational speed 

increases with the pressure ratio. Therefore, the theoretical flow rate has a fairly shaper trend 

of increase because of the combined effect of increased inlet pressure and rotational speed. 

The leakage flow rate also increases with the pressure ratio but with a flatter trend. As seen in 

Eq. (13), the leakage flow rate is related to the inlet condition, the effective leakage area and 

also the maximum value between the outlet pressure and the critical throat pressure. The 

pressure ratios in the experiment is already larger than the critical pressure ratio given by Eq. 

(14), so the critical pressure is actually used in calculation of leakage flow rate, but it is given 

by the inlet pressure and ratio of specific heat. Therefore, the trend of leakage flow rate 

would more depend on the effective leakage area. Referring back to Fig. 8, the clearance 

between scrolls changes with the pressure ratio, so the effective leakage area changes with 

pressure ratio according to Eqs. (10)-(11). For this reason, the leakage flow rate would 

increase faster when the pressure ratio is about 3.5 and then has a smaller increment with the 

pressure ratio. 

 

Fig.10. Theoretical, leakage and measured total flow rates and calculated leakage and total 

flow rates 

Based on calculation of the flow rates as shown in Fig.10, Fig. 11 shows the variation of 

volumetric efficiency with pressure ratio. Usually, the volumetric efficiency is expected to 

have a simple increasing trend with the pressure ratio because a higher rotational speed 
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generally results in a better volumetric efficiency. However, the variation of leakage flow rate 

with the pressure ratio can have an influence on this trend. Because the theoretical flow rate 

and leakage flow rate show different trends of increase as shown in Fig. 10, the volumetric 

efficiency curve shows a valley around the pressure ratio of 3-4. 

 

Fig.11. Variation of volumetric efficiency with pressure ratio 

 

6.4. Prediction of rotational speed and electricity output 

The rotational speed is one of the important parameters as it affects the mass flow rate and 

electrical current in the coupled expander-generator unit. To determine the rotational speed of 

the expander, a torque balance should be considered. For the steady state operation, Eq. (26) 

is deduced as Eq. (31) to eliminate inertia and acceleration effects of the components.  

             (31) 

 

In order to compare the simulation results with the experiment, forty steady state points have 

been considered from five sets of conditions. In each set, the evaporator temperature is kept 

almost constant and supply pressure is increased gradually. Variations of the inlet supply 

pressure, outlet exhaust pressure and rotational speed recorded in the experiment are given in 

Fig. 12. 

 

Fig.12. Operating conditions for five sets of tests 
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Before analysing the data, the factors affecting the rotational speed are to be clarified. As 

recommended by Ma et al. [25], Eq. (28) presents a simple relationship between the 

electromechanical torque and current. However, in order to make the study more reliable, 

other literature has been reviewed and hence Eq. (28) has been modified to Eq. (32), which 

includes a new parameter called as flux per pole [45]: 

           
(

32) 

 

Since the flux depends on the current in the generator, the variation is obtained from the 

experiment by following the procedure in Fig. 4. Results are given in Fig. 13a. The friction 

torque is quite complicated to determine, given that the expander has components and 

frictions occurring between them, and the generator also has friction between its components. 

An overall dynamic friction coefficient (   ) is therefore used to find the friction torque, as 

given in Eq. (27).     can be determined by fitting of experimental data with respect to the 

rotational speed of the expander, as shown in Fig. 13b. 

 

 

Fig. 13. Experimentally-obtained generator characteristic (a) and overall friction coefficient 

of the system (b) 

After obtaining the empirical equations, simulation for predicting the rotational speed and 

electricity output can be conducted. In order to compare simulation results with the 

experimental data, the same operating parameters are selected. Fig. 14 shows the followed 

flow chart. The procedure is started with assumption of the current and rotational speed. The 

semi-empirical model uses scroll geometry to calculate expander areas to find heat transfer 

rates (H.T.) and then shaft power is found. The shaft power is converted into driving torque 

and voltages are compared, one from the torque balance and the other from the assumed 

current. Then, the rotational speed is updated, and shaft power is recalculated using a new 

rotational speed. Error  and Error    indicate difference between assumed and calculated 

parameters. This procedure continues until the difference satisfies the condition. The 

convergence condition for heat balance is used to update the scroll expander shell 

temperature and we have evaluated that its effect on shaft power is quite limited. By keeping 

this value lower, the results can be slightly more accurate, but it increases computational 

time. To show its effect on shaft power output, different convergence conditions have been 

a) b) 
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studied from 10 W to 0.01 W. The results show that the shell temperature reduces from 73.2 

  to 72.51   and the shaft power changes by only 0.1 W. As effect on the shaft power is 

negligible, 10 W convergence condition is chosen, and hence the computational time is 

reduced. Similar analyses have been also done for voltage and current convergence 

conditions and it is found that the chosen 0.05 Volt and 0.05 A can ensure a sufficient 

accuracy in iteration. 

 

 

Fig. 14. A procedure for predicting the rotational speed and electricity output 

 

Fig. 15 shows the comparison of the calculated and experimental results of the rotational 

speed. Deviation is small for low inlet pressure operations but increases with higher inlet 

pressure. However, rotational speed also increases with pressure, thus, maximum deviation 

reaches 8%. The deviation can be reduced by decreasing the convergence criteria of 

conditions, though computational time increases in this case. 
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Fig. 15. Comparison between the experimental and simulated results of the rotational speed  

 

Fig. 16 shows a comparison of simulated and experimental results of electricity output. 

Prediction of electricity output values are in good agreement with the test results, especially 

under low pressure operations. Accuracy of the model can be improved when high 

computational execution time is considered; however, the results prove that the given 

methodology can predict the rotational speed of the expander and electricity output in an 

acceptable deviation. The proposed methodology reduces the empirical parameters of the 

semi-empirical approach to only two parameters which are friction loss coefficient and 

clearance value. Furthermore, the proposed approach can predict rotational speed and 

generator output. These parameters make this analysis more applicable for system design and 

performance evaluation for various applications. 

 

Fig. 16. Comparison between the experimental and simulated results of electricity output  
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7. Conclusions 

In this study, a methodology for modelling of the scroll expander has been given. As a semi-

empirical approach is used by many researchers, given its simplicity and accuracy under 

varying operating conditions, the main objective of this study was to improve the semi-

empirical modelling. Since the most preferred semi-empirical model has several empirically 

dependent parameters, this study aimed to reduce the number of empirical parameters by 

using scroll geometry to enhance the flexibility of this approach. Those parameters only 

related to scroll geometry can be found by using the presented scroll profile equations. A 

simulation model has been built and validated by experimental results. Particularly, the study 

has presented a procedure to determine the leakage area and friction torque. Two empirical 

correlations for the clearance between scrolls and the overall friction coefficient have been 

determined according to the experimental data. Some important conclusions are drawn as 

follows: 

 

 The effective leakage area in the semi-empirical modelling can be found using scroll 

geometry equations and empirical clearance equation. Mass flow rate was predicted 

with a maximum deviation of 10% under transient conditions. 

 The effective clearance between scrolls change with the pressure ratio. The clearance 

value starts with around       and increase with pressure. Experimentally-obtained 

logarithmic function shows that       is the maximum clearance when the pressure 

ratio becomes really large. 

 The overall dynamic friction coefficient of the coupled expander-generator unit has 

been determined experimentally using a semi-empirical approach. It varied from 

            to             with rotational speed for a      scroll expander-

generator unit. 

 Heat transfer areas were calculated from scroll geometry while heat transfer 

coefficients were determined from some empirical heat transfer correlations. 

 The model predicted the rotational speed of the coupled expander-generator unit with 

less than 8% deviation and electricity output with an average 7.5% deviation. 
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Nomenclature 

  Area, m
2
 Subscripts 

   Heat transfer coefficient-heat transferring 

area, W K
-1

 

a Armature 

BVR Built-in volumetric ratio, – ad Adapted 
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    Overall dynamic friction coefficient of scroll 

and generator, N m s 

amb Ambient 

   Scroll height, m b Base 

   Current, A c Chamber 

J Moment of inertia, kg m
2
 crit Critical 

   Constant of back electromotive force,  

V s rad
-1 

 

DB Dittus Boelter 

   Torque constant, N m A
-1

 dis Discharge 

  Tangential distance, m e End 

   Armature inductance, H em Electromechanical 

   Mass flow rate, kg s
-1

 ex Exhaust 

N Rotational speed, RPM f Flank 

   Number of chambers, - fr Friction 

Nu Nusselt number, – i Inner 

P Pressure, Pa i0 Inner initial 

Pit Scroll pitch, m (i) Number of chambers 

Pr Prandtl number, – h hydraulic 

  Resistance,    leak Leakage 

Re Reynolds number, – m Mean 

   Heat transfer rate, W n Nominal 

   Basic circle radius, m o Outer 

St Strouhal number, – o0 Outer initial 

T Torque, N m old Oldham 

Temp Temperature,   or Orbiting 

  thickness, m p plate 

   Mean flow velocity, m s
-1

 r Radial 

  Volume, m
3
 s scroll 

   Power, W sh Shell 

Greek letters  sha 

  Isentropic exponent, -    Supply 

  leakage clearance size, m     Suction 

  orbiting angle, rad    Swept 

  Density, kg m
-3

 t Tangential 

  Involute angle, rad w Wall (expander shell) 

  Angular velocity, rad s
-1

 0 initial 
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