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Abstract

Pulmonary fibrosis (PF) is the devastating consequence of various inflammatory diseases of

the lung. PF leads to a reduction of lung function, respiratory failure and death. Several

molecular pathways are involved in PF, such as inflammatory cytokines including TNFα,

TNFβ1, IL-6 and IL-4, reactive oxygen species, matrix metalloproteases and transforming

growth factor-beta (TGF-β). Targeting these processes involved in the progression of PF is

essential for the treatment of this disease. Natural products, including plant extracts and

active compound that directly target the processes involved in PF, could be suitable

therapeutic options with less adverse effects. In the present study, we reviewed the

protective effects and the therapeutic role of various bioactive compounds from plants in PF

management.
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1. Introduction

Various inflammatory pulmonary diseases result in the development of pulmonary fibrosis

(PF). PF is defined as an increase in collagen, accumulation of extracellular matrix (ECM), and

infiltration of inflammatory cells. PF progressively reduces gas exchange and lung function

leading to respiratory failure (1). Any injuries to the lungs, such as infections or inhalation of

toxic particles, result in the damage of epithelial and endothelial cells. Injured cells release

various inflammatory mediators and cytokines as well as activate the cascade of

anti-fibrinolytic coagulation (2). PF also contributes to vasodilation, an increase in

permeability of vasculature and production of matrix metalloproteases (MMP) that can

destroy the basement membrane. This process results in the infiltration of inflammatory

cells to lung parenchyma (3). Damaged cells, including endothelial, epithelial and

inflammatory cells, produce reactive oxygen species (ROS) and inflammatory cytokines,

resulting in oxidative stress. TGF-β is the crucial cytokine involved that helps in the activation

of fibroblasts and inflammatory cells, thereby sustaining ECM production and inflammation,

as well as fibroblast differentiation (4). IL-4 is another cytokine involved in the development

of PF (5). It is a profibrotic cytokine that causes the macrophages activation and Th2 cells

differentiation resulting in the production of TGF-α, IL-13, and MMPs. Another cytokine is

IL-13 that stimulates the production of TGF-α and contributes to the differentiation of

myofibroblasts from fibroblasts (6).

There are many types of fibrotic pulmonary diseases in humans, such as idiopathic

pulmonary fibrosis (IPF), diffuse parenchymal lung disorders (DPLDs) and idiopathic

interstitial pneumonia (IIPs) (7). There are three major processes involved in the PF

physiopathology: (i) genetically and environmental induced alveolar epithelial lesions, (ii)

vascular diseases with neo-vascularization of the non-fibrotic tissues and (iii) ROS induced

oxidative stress.

Chronic inflammation is currently considered to be the fundamental contributing factor to

induce PF (8). Many PF therapies that target growth factors and cytokines for fibroblast

proliferation, activation, and differentiation are currently in the testing phase. Approved PF

therapeutic drugs by the US Food and Drug Administration (FDA) are pirfenidone and

nintedanib. These drugs reduce PF-related deaths via targeting molecular processes involved

in PF progression, but their cost remains expensive (9, 10).

The use of phytochemicals for the management of PF was started in China for several years

(11). Various studies with phytochemicals are being carried out to find their exact molecular

mechanisms and better treatment for PF. In this review, we have summarized some of the

plant extracts that may have beneficial effects in PF management (12).

2. Molecular mechanisms and signaling pathways of pulmonary fibrosis

The pathological processes in pulmonary fibrosis (uncontrolled extracellular matrix (ECM)

accumulation and pulmonary architecture remodeling) result from disruptions in two

physiologically balanced ways that include apoptosis and proliferation of fibroblasts, as well

as ECM aggregation and dissociation. When the natural balance between ECM turnover and

deposition is tilted towards deposition, the ECM accumulates. While the balance between



apoptosis and fibroblast proliferation is tilted towards slowed apoptosis or accelerated

proliferation of fibroblasts, the ECM accumulates, thereby resulting in fibrosis (13, 14).

There are two routes for progression of diffuse pulmonary fibrosis: a) the inflammatory

pathway that is represented by non-IPF interstitial lung diseases, where there is a primary,

clearly distinguishable alveolitis stage, and a late fibrotic stage, and b) the epithelial pathway

represented by idiopathic pulmonary fibrosis (15, 16).

Various mechanistic studies have centered on the crosstalk, between damaged lung

mesenchymal cells and epithelial cells. This mesenchymal-epithelial interaction supports the

development of PF in which altered mesenchymal cells combined with alveolar epithelial cell

injury result in the aggregation ECM and pulmonary architecture remodeling (17).

Furthermore, evidence suggests that activated myofibroblasts by synthesizing ECM proteins

play a fundamental part in the pulmonary fibrosis pathogenesis. Myofibroblasts are derived

from different cells, including 1) alveolar type II epithelial cells, 2) bone marrow-derived

“fibrocytes,” and 3) resident stromal fibroblasts, which undergoes epithelial-mesenchymal

transition (EMT). During EMT, epithelial cells lose apical-basal polarity, cell to cell contact

and attachment to the basement membrane. They acquire mesenchymal properties such as

increased migratory conduct, cytoskeletal rearrangements, and migrating to the pulmonary

interstitium to produce more ECM. (18). TGF-β1 is the crucial intermediator in pulmonary

fibrosis which stimulates both the fibroblast proliferation and differentiation into

myofibroblasts (19). During the healing process, inflammation is resolved, and

alveolar-capillary permeability is restored.

Inflammation is an important event which precedes the development of PF. It has been

shown that inflammation has a vital role in the pro-fibrotic process (20). Based on the

observations of chemokines, cytokines, inflammatory cells, and cell surface molecules, the

inflammation pathway hypothesis has dominated the field of PF. Most authorities tend to

classify IPF as a chronic inflammatory disorder in the pulmonary parenchyma (21-23).

Furthermore, macrophage inflammatory protein (MIP)-1 alpha and monocyte

chemoattractant protein-1 (MCP-1) are upregulated in animal models of PF which are

chemotactic for eosinophils, basophils, macrophages, and subsets of T-lymphocytes.

Neutralization of these proteins significantly reduce inflammatory cell aggregation. Levels of

these chemokines have also been found to be raised considerably in patients with systemic

sclerosis in addition to patients with PF (24, 25). Moreover, other studies have shown that

spatiotemporally restricted but closely orchestrated interference with aberrantly activated

developmental signaling pathways (e.g., Wnt, Notch, and SHH) may affect differentiation and

repair of lung architecture (26).

Finally, over several years of studies into the mechanism of PF, various studies have

described considerable alterations in inflammatory and oxidative stress pathway. A diversity

of inflammatory factors, growth factors, and oxidative factors to foster and develop fibrotic

process, and in some instances, inhibition of these factors were associated with

improvement of lung fibrosis (17). Therefore, the natural components with anti-fibrotic

potential such as phytochemicals that can affect different pathologic mechanisms involved in

PF could be potentially useful in managing PF.



3. The potential effect of phytochemicals in the management of pulmonary fibrosis

3.1. Polyphenols and flavonoids

Natural phenolic compounds have received a growing interest in the management of various

conditions. Studies revealed that polyphenols possess anti-fibrotic and anti-inflammatory

effects. Several studies have shown some beneficial effects of these compounds in PF. For

example, a Chinese herb, hedysari radix, contains flavonoids that inhibit some of the

processes of PF. Polyphenols have antioxidant activities by reducing various processes,

including NF-kBp65 translocation, down-regulating cyclo-oxygenase-2 (cox-2), and TGF-β1

(27, 28). Such investigations suggest that polyphenolic phytochemicals could have a

potential role in the prevention and management of PF.

3.1.1. Curcumin

Curcumin is a turmeric component from the plant, Curcuma longa, and is used as a food

flavoring agent. For many years curcumin has been used in traditional Indian medicine and

traditional Chinese medicine as a therapeutic agent for many diseases including arthritis,

anorexia, hepatic disorders (29).

Curcumin is a bioactive phytochemical with acceptable safety and multitude of salutary

effects (30-38). The potential role of curcumin in several conditions, including inflammatory

bowel disease, psoriasis and rheumatoid arthritis has been determined in the last decades

(39). Curcumin also has an effect in respiratory diseases including chronic obstructive

pulmonary disease (COPD) (40), asthma (41), PF (1), and acute lung injury (ALI) (42, 43), that

are mainly identified by abnormal chronic inflammatory responses.

Currently, there are no clinical studies to determine the efficacy of curcumin in patients with

PF. Nevertheless, research studies utilise animal models, in which fibrosis has been induced

by chemotherapeutic agents and radiations (44-46) or viruses (47). The effect of curcumin

on PF is due to several mechanisms. For example, in asthma, curcumin inhibits NF-кB and,

thus, impacts PF by causing a reduction of TNF-α, COX-2 (46) and TGF-β1 levels (47). A

reduction in TGF-β1 has anti-fibrotic effects. Besides, curcumin inhibits AP-1, contributing to

blocking the TGF-β1 production and myofibroblast differentiation (4). Curcumin contributes

to caspase-independent apoptosis pathways by downregulation of TGF-β1and upregulation

of cathepsins K and L, collagenases, and elastases (48), with consequent antifibrotic effect.

Curcumin inhibits TGF-β receptor phosphorylation and leads to a reduction of TGF-β levels

in fibroblast (49). Moreover, it reduces oxidative stress in pulmonary fibrosis models by

decreasing the ROS NOS, iNOS levels, and increasing the levels of heme oxygenase-1 (HO-1)

(50, 51).

Hu et al. revealed that the inhalable form of curcumin-loaded poly(lactic-co-glycolic) acid

(PLGA) large porous microparticles (LPMPs) had higher antifibrotic activity in comparison

with powders of curcumin powders. Hence, curcumin LPMPs could be a promising inhalable

option for managing idiopathic pulmonary fibrosis (52).

3.1.2. Resveratrol



Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenolic substance present plant

species such as peanuts and grapes. Takaoka first defined this compound in roots of plant

Veratrum grandiflorum (53). Resveratrol has demonstrated antifibrotic activities in several

tissues and organs such as the liver, kidney, and blood vessels in animal studies (54-56).

Therefore, it can manage various conditions of the respiratory system resulting from

oxidation, apoptosis and inflammation. Resveratrol has shown to have a protective effect on

lung fibrosis in BLM-induced animals. Anti-fibrotic effects of resveratrol in lungs are mostly

associated with inhibition of EMT- associated molecular pathways, activation of SIRT1 and

Nrf2 pathway, and decreased differentiation of myofibroblast and expression of extracellular

matrix (57).

3.1.3. Quercetin

Quercetin is member of a plant flavonoids. The plant, Camellia sinensis is rich in quercetin

(58). Many fruits and vegetables, including red onions and kale, are other quercetin sources

(59). Quercetin exerts many biological effects, including anti-inflammatory (60), antioxidant

(61) and immune-regulatory actions (62). Quercetin also has been demonstrated to

decrease fibrosis in injured organs. Quercetin has been demonstrated to have beneficial

effects in cell culture and animal studies for several lung diseases, including lung cancer (63),

COPD (64) and asthma (65). Quercetin ameliorated PF in bleomycin-treated mice through

inhibiting pro-fibrotic factors such as COL-1, COL-3, LC3, IL-8, VEGF, TNF-α, TGF-β1, NF-κB

and SphK1/S1P signaling (66). Several studies use animal models of PF to investigate the

anti-fibrotic mechanisms of polyphenols in lung fibrosis (Table 1).



Table 1 . Polyphenols and flavonoids potential effects in the treatment of pulmonary fibrosis

Polyphenols Source Mechanism IC50/dose Model Ref

Curcumin Curcuma longa TGF-β1 and collagen content � 200 mg/kg Paraquat (PQ)-treated rats (67)

Curcumin Curcuma longa

IL-1β, LT-C4, histamine, total protein levels �

NAG activity, MDA, hydroxyproline and elastin �

GSH levels �

200 mg/kg

Cyclophosphamide (CP)

-induced lung fibrosis

Wistar rats

(45)

Curcumin Curcuma longa
NF-κB and COX-2, TNFR1, TNF-α, TGF-β1 �

CTGF expression, and collagen accumulation �
200 mg/kg

Radiation-induced

inflammation and fibrosis

rats

(46)

Curcumin Curcuma longa
HO-1  �

ROS, TNF-α and hydroxyproline content �

5% curcumin

by

weight/weight

in dietary and

5, 10, 25 50 or

100 μM in cell

culture

Radiation-induced lung

fibrosis C57BL/6 mice
(44)

Curcumin Curcuma longa

IFN-γ, IL-6, IL-10, MCP-1, levels �

Phosphorylated form of NF-κB p65 and TGF-ß Receptor II �

Expression of α-SMA and Tenascin-C �

50 mg/kg Viral-induced ARDS mice (47)

Curcumin Curcuma longa
hydroxyproline contents, collagen I �

MMP9, NF-κB, TNF-α, p65, TGF-β1, �

6 mg with

inhalable

curcumin-

LPMPs and 1

mg with

curcumin

powders

BLM-treated

Sprague-Dawley rats
(68)

Curcumin Curcuma longa Artery blood PaCO2, serum Smad4, Smurf2 and IL-4 � 200 mg/kg PQ-treated Wistar rats (69)

Curcumin Curcuma longa
Myofibroblast activation and proliferation-associated genes such as COL1A1 �

and PCNA, oxidative stress and activating an apoptotic cascade �

20 μM to

40 μM

Primary epithelial cells and

fibroblasts isolated from

IPF patients

(70)



Curcumin Curcuma longa MMP-9 activities α-SMA, TIMP-1, eotaxin, and collagen deposition �
5 mg/kg

(intranasal)

Ovalbumin-treated BALB/c

mice
(71)

Curcumin Curcuma longa expression levels of Ki67 and EGFR � BLM-treated mice (72)

Curcumin Curcuma longa α-SMA, CCN2, Col IV, and vimentin, phosphorylated MAPK and PERK � 30 mg/kg BLM-treated mice (73)

Curcumin Curcuma longa
TGF-β1-dependent differentiation of lung fibroblasts via PPARγ-driven �

Cathepsins B and L �
0–50 µM

CCD-19Lu human lung cell

line
(74)

Curcumin Curcuma longa IL-17A mediated p53-PAI-1 expression � 20 µM BLM-treated A549 cells (75)

Curcumin Curcuma longa α-SMA, MMP-9, TGF-β and EMT � 30 μΜ PQ-treated A549 cells (76)

Resveratrol Vitis vinifera SirT 1 and EMT transition � 50 mg/kg BLM-treated mice (77)

Resveratrol Vitis vinifera
PARP activation, COX-2, ERK activation, IκB-α degradation �

NF-κB and NF-κBp65 nuclear translocation and neutrophil migration �
50 mg/kg BLM-treated mice (28)

Resveratrol Vitis vinifera

MDA levels �

Lung tissue plasma total antioxidant capacity �

Number of neutrophils in BAL fluids �

10 mg/kg BLM-treated Wistar rat (78)

Resveratrol Vitis vinifera TNFα, TNFβ1, IL-6 and Nrf2 � 10 µM
PQ-Induced fibrosis in

BEAS-2B cells
(79)

Resveratrol Vitis vinifera SIRT3 � and TGFβ1 � BLM-treated mice (80)

Resveratrol Vitis vinifera
mir-21, TGFβ1 and p-Smad2/3, c-Jun, and c-Fos levels �

phosphorylation levels of p38, JNK, ERK  �
60 mg/kg

BLM-treated Sprague

Dawley rats
(81)

Resveratrol Vitis vinifera Autophagic process, NLRP3 inflammasome activation and IL-1β �
50 and 100

mg/kg.bw
PM2.5- treated mice (82)

Resveratrol Vitis vinifera

TAK1 �

IL-1β, MMPs, TGF-β and TNF-α �

p-p38, p-JNKp-TAK1, p-Smad3 and n-p65 �

Collagen subtypes �

10 and 20

mg/kg for in

vivo

10, 25 and

50 μm for in

vitro

silica-exposed rats

and silica-exposed cultured

alveolar macrophage

NR8383 cells

(83)

Resveratrol
Vitis amurensis

Rupr
Autophagy markers and TGF-IL-17, TNF-α, IL-6, β � 50 mg/kg

Cigarette Smoke-treated

mice
(84)

Resveratrol Vitis vinifera
NF-κB mediated inflammatory response (TNF-α, IL-1β, IL-6, iNOS, MMP-9 and

COX-2) �
2 and 4 mg/kg

Cigarette Smoke-treated

mice
(85)



TGF-β1, Nrf2 ubiquitylation, and ROS �

Nrf2 and GSH levels �

Resveratrol Vitis vinifera

TGF-β-induced phosphorylation of both ERK1/2 and the serine/threonine kinase,

Akt, TGF-β-induced decrease in PTEN expression levels, TGF-β–induced α-SMA

expression and collagen deposition �

1–20 µM
Primary cell lines of human

lung fibroblasts
(86)

Quercetin
Fruits and

vegetables

PARP activation, COX-2, ERK activation, IκB-α degradation �

NF-κB and NF-κBp65 nuclear translocation and neutrophil migration �
10 mg/kg BLM-treated mice (28)

Quercetin
Fruits and

vegetables
TGF-β and SphK1/S1P signaling �

25, 50, 100

mg/kg
BLM-treated mice (66)

Quercetin
Fruits and

vegetables

Regulates caveolin-1 and Fas expression and modulates AKT activation �

Apoptosis and expression of senescent cell markers such as p2, p19-ARF, MCP1,

MMP12, and IL6 �

50 μM in cell

culture and 30

mg/kg in mice

Human primary pulmonary

fibroblasts and

BLM-treated mice

(87)

Quercetin
Fruits and

vegetables
Hydroxyproline content and increased catalase and GSH-Px activity � 50 mg/kg Silicon dust-treated mice (88)

liposomal Quercetin
Fruits and

vegetables

TNF-α, IL-1beta, and IL-6 in bronchoalveolar lavage fluid �

Collagen deposition, and TGF-β1 �
5 mg/kg BLM-treated mice (89)

Quercetin
Fruits and

vegetables

COL-1, COL-3, IL-6, IL-8, LC3, VEGF, TGF-β �

mTOR and AKT, and ATG5 �

5 μM, 10 μM,

20 μM, 40 μM,

100 μM, and

200 μM in cell

culture and

120

mg/kg/day in

rabbits

LPS-induced WI-38 and

trauma-induced rabbit

tracheal stenosis model

(90)

Mangiferin Mangifera indica
PARP activation, COX-2, ERK activation, IκB-α degradation �

NF-κB and NF-κBp65 nuclear translocation and neutrophil migration �
10 mg/kg BLM-treated mice (28)

Mangiferin Mangifera indica

Hydroxyproline content, TGF-b1, SMA levels, inflammatory cytokine �

TLR4 and phosphorylation of p65, phosphorylation of Smad2/3 �

MMP-9 expression, EMT and ROS �

40 mg/kg BLM-treated mice (91)

Dihydroquercetin
Fruits and

vegetables

PARP activation, COX-2, ERK activation, IκB-α degradation �

NF-κB and NF-κBp65 nuclear translocation and neutrophil migration �
10 mg/kg BLM-treated mice (28)



Isorhamnetin
Hippophae

rhamnoides L

Collagen deposition, type I collagen and α-SMA expression �

EMT, ERS, and PERK signaling �

10 and 30

mg/kg
BLM-treated mice (92)

Epicatechin Spondias mombin
GSH, catalase, SOD and GPX activity �

Tissue levels of MDA, HP, TGF-β �

25, 50 and 100

mg/kg
BLM-treated mice (93)

Kaempferol
many fruits and

vegetables

Silica induced inflammation, collagen deposition, autophagy activity, mTOR �

MMP-2 and MMP-9 �

Restores silica-induced LC3 lipidation without increasing the p62 levels

150 mg/kg silicosis mouse models (94)

Astilbin astilbe thunbergill
pathological score and collagen deposition �

α -SMA, hedgehog signaling pathway and Snail, E-cadherin TGF-β1 and SP-C �

20 and

40 mg/kg

Mouse type II alveolar

epithelial cell and mouse

lung fibroblast cell lines

and BLM-treated mice

(95)

Juglanin
Polygonum

aviculare

α- α-SMA, collagen type I, collagen type III �

TGF-β1, inflammatory cytokine secretion �

Phosphorylated NF-κB expression, IKKα/IκBα signaling pathway �

10 and 20

mg/kg
LPS-treated mice (96)

Neohesperidin Citrus aurantium TGF-β1/Smad3 signaling, ECM production, and fibroblast migration �

20 μM in cell

culture and

20 mg/kg in

mice

The mouse embryonic

fibroblast NIH-3T3, mouse

lung fibroblast MLg, human

alveolar epithelial cell

(AEC) A549 lines and

BLM-treated mice

(97)

Puerarin Radix puerariae
CD31 expressions and VE-cadherin �

Inhibits vimentin, α-SMA, and fibronectin �
20 mg·kg Rat model of hypoxia (98)

Hydroxysafflor yellow

A (HSYA)

Carthamus

tinctorius L.

Fibrosis and collagen deposition, PaCO2, TGF-β1, α-SMA �

Increases PaO2 �

35.6, 53.3, and

80.0

mg/kg/day

BLM-treated rats (99)

Hydroxysafflor yellow

A (HSYA)

Carthamus

tinctorius L.

The lung consolidation area and collagen deposition �

α-SMA expression, Smad3 phosphorylation �

the morphological changes in lung tissue, Smad3 phosphorylation �

collagen I, and EMT induced by TGF-β1 �

60 mg/kg/day BLM-treated mice
(100

)

Naringenin
Lycopersicum

esculentum

TGF-β, MP-induced autophagy relative protein LC3 �

MP-induced P62, Beclin-1 expression, IL-6, IL-1β,, TNF-α,  �

25, 50, 100,

and 250 μM in

Peripheral blood samples

of 60 patients with

(101

)



collagen I, collagen III, α-SMA,  � cell culture

and 100 mg/kg

in mice

Mycoplasma pneumoniae

pneumonia (MPP), human

lung epithelial BEAS-2B cell

line and MPP-infected mice

Gossypol Gossypium spp.
Collagen accumulation and TGF-β1 �

Lactate dehydrogenase-A �

5, 10, or 20

mg/kg
BLM-treated mice

(102

)



3.2. Alkaloids

Alkaloids are a subclass of phytochemicals found in many plants. The term alkaloid generally

refers to basic substances, usually a cyclic system that include one or more nitrogens. They

are water-soluble in the protonated form due to their primary character at low pH, but at

high pH, they found in the lipophilic neutral form. This feature makes them ideal agents

because of their solubility in the water they can pass through membranes. The therapeutic

effect of alkaloids in PF was first explored by Xiao et al. showing that seed embryo of

Nelumbo nucifera Gaertn contains bisbenzylisoquinoline alkaloid named Isoliensinine, that

can reduce the elevated levels of hydroxyproline, MDA, TNFa and TGFb and increase SOD

level in BLM induced mouse models of lung fibrosis (103).  (Table 2)

Table 2 Alkaloids potential effects in the treatment of pulmonary fibrosis

Alkaloid Source Mechanism IC50/dose Model Ref

Isoliensinine
Nelumbo

nucifera Gaertn

Hydroxyproline, MDA, TNF-α and TGF-β�
SOD level �

40 mg/kg

BW

BLM-tre

ated

murine

models

(103)

Matrine Sophora plant JAK-STAT pathway �
25 mg/kg

BW

BLM-tre

ated

rats

(104)

Aloperine
Sophora

alopecuroides

Fibroblast proliferation and differentiation�

TGF-β/Smad  and PI3K/AKT/mTOR signaling

�

40 mg/kg

BLM-tre

ated

mice

(105)

β-Carboline
Arenaria

kansuensis

NF-kb/p65 pathway �

EMT, vimentin, α-SMA, E-cadherin �

50, 100

and 150

mg/kg

BLM-tre

ated

mice

(106)

Berberine

European

barberry,

goldenseal,

goldthread,

Oregon grape,

phellodendron,

and tree

turmeric

PPAR-γ, HGF secretion in colonic fibroblasts

and HGF �
200 mg/kg

BLM-tre

ated

mice

(107)

Berberine

European

barberry,

goldenseal,

goldthread,

Oregon grape,

phellodendron,

and tree

turmeric

Smad 2/3 and FAK-dependent

PI3K/Akt-mTOR signaling cascades �

fibronectin, α-SMA, collagens I and III �

Beclin-1, LC3-II levels with enhanced

autophagosome �

200

mg/kg/i.p.

/day

BLM-tre

ated

rats

(108)

Neotuberoste

monine

Stemona

tuberosa Lour

Collagen, α-SMA, MMP-2, TGF-β1, TIMP1

and iNOS �

MMP-9 �

40 mg/kg

BLM-tre

ated

mice

(109)



Neotuberoste

monine

Stemona

tuberosa Lour
HIF-1α, TGF-β, FGF2 and α-SMA �

30

mg/kg/d

BLM-tre

ated

mice

(110)

Rutaecarpine Euodia ruticarpa

Notch1/eukaryotic initiation factor 3a

(eIF3a) signaling pathway �

EMT process, collagen I, vimentin and

α-SMA �

100, 300

mg/kg

BLM-tre

ated

rats

(111)

β-Carboline
Arenaria

kansuensis

MCP-1IL-1β, IL-6, TNF-α deposition of

collagen, TGF-β1, α-SMA, NF-kb/p65 �

Phosphorylation, and EMT process.

E-cadherin �

50, 100

and 150

mg/kg

BLM-tre

ated

mice

(106)

3.3. Terpenoids

Terpenoids are a very diverse category of natural products with broad applications.

Terpenoids serve a part of the plant's defense system. They can be divided into

monoterpenes, sesquiterpenes, diterpenes, and triterpenes (112). Krishna et al. studied the

effect of plant triterpene in the treatment of PF for the first time. They showed that

PG-490-88, a water-soluble triptolide derivative, can represent the antifibrotic effect in a

mouse model of BML induced mouse model of PF (113). Recently various studies have been

conducted to illustrate more anti-fibrotic effects of terpenoids (Table 3) such as reduced

inflammatory cytokines and TGF-β1, deposition of collagen and other substitutes of the ECM

and inhibition of Smad2/3/TGF-β1 signaling pathway.



Figure 1 Therapeutic potential effects of phytochemicals in the inhibition of pulmonary fibrosis pathogenesis



Table 3 Terpenoids potential effects in the treatment of pulmonary fibrosis

Terpenoid Source Mechanism IC50/dose Model Ref

PG-490-88
Tripterygium wilfordii

hook.f (Celastraceae)
TGF-β and NF-κB-mediated cytokine production by immune cells � 0.25 mg/kg

BLM treated murine

models
(113)

Triterpene acid
Eriobotrya japonica

(Thunb.)
TNF-a, TGF-β1 and macrophage �

50, 150 and 450

mg/kg
BLM-treated rats (114)

Baccatin III yew tree Inflammatory infiltration, TGF-β1, collagen deposition, ECM �

α-SMA, fibronectin and Smad2/3/TGF-β1 signaling pathway �

5 and 10 mg/kg BLM-treated mice (115)

Madecassoside Centella asiatica
ECM deposition, inflammation, oxidative stress and

TGF-β1 �

10, 20 or

40 mg/kg
BLM-treated rats (116)

Parthenolide
Tanacetum

parthenium

NF-κB/Snail signaling pathway, migration of lung fibroblasts, Col1�

α-SMA and EMT-related protein expression (Col-1 and MMP1) �

2.5, 5, 10 and 20

μM in cell culture

and 12.5, 25 and

50 mg/kg in mice

Serum-starved primary

lung fibroblasts and HFL1

cell and BLM-treated mice

(117)

Costunolide
Saussurea lappa

Clarke
TGF-β 1/Smad 2/Nrf 2-NOX 4 Signaling Pathways and NF-kB � 10, 20 and mg/kg BLM-treated mice (118)

Dihydroartemisi

nin
Artemisia annua

Collagen, α-SMA, Nrf2, HO-1, and MDA �

SOD, GSH, E-cadherin �
50 mg/kg/day BLM-treated rats (119)

Dihydroartemisi

nin
Artemisia annua

Hydroxyproline content of collagen �

TGF-β1, α-SMA, TNF-α, NF-κB expression �

25 mg/kg, 50

mg/kg, 100

mg/kg

BLM-treated rats (120)

Oridonin Rabdosia rubesecens

Pathological changes, including alveolar space collapse, emphysema �

Infiltration of inflammatory cells, COL1A1 and α-SMA and the

phosphorylation of Smad2/3 �

10 and 20 mg/kg BLM-treated mice (121)

Andrographolid

e

Andrographis

paniculata

N-cadherin, α-SMA, vimentin, and EMT �

E-cadherin �
3 and 10 mg/kg

Silica-Induced Pulmonary

Fibrosis mice
(52)



Asiatic acid Centella asiatica

TGF-β expression, Collagen I, Collagen III �

matrix metalloproteinase (TIMP)-1, α-SMA, Smads �

ERK1/2 inactivation, NOD-like receptor pyrin domain containing-3

(NLRP3) inflammasome �

10 and 20 mg/kg BLM-treated mice (122)

Triptolide Tripterygium wilfordii Hydroxyproline, IL-1β, TGF- β1, IL-13 � 0.25 mg/kg i.v
radiation-induced lung

fibrosis C57BL/6 mice
(123)

Triptolide Tripterygium wilfordii

The infiltrated alveolar macrophages in IR-lung tissues �

NOX2 and NOX4 in alveolar macrophages �

Alveolar macrophages-NOXes-ROS-myofibroblasts axis �

i.v. 0.25 mg/kg
Radiation-induced lung

fibrosis C57BL/6 mice
(124)

Glaucocalyxin A
Rabdosia japonica

var

Collagen deposition and hydroxyproline content �

Infiltration of macrophages and neutrophils in lungs �

Pro-inflammatory cytokines in lung tissue and bronchoalveolar lavage

fluid, and NF-κB �

10 mg/kg BLM-treated mice (125)

ginkgolides

meglumine
Ginkgo biloba

MDA level and Akt-Nrf-2 pathway �

SOD level, the lung to body weight ratio, IL-6, IL-1β, and TNF- α levels

�

1.25, 2.5, 50

mg/kg, i.p
PQ-treated rats (126)

Tanshinone IIA
Salvia miltiorrhiza

Bunge

Collagen deposition, macrophage infiltration �

α-SMA, fibronectin, and vimentin �

TGF-β1, EMT, phosphorylated Smad-2/3 �

15 mg/kg BLM-treated rats (127)

Nimbolide Azadirachta indica

TGF-β1, cell migration, EMT �

Infiltration of lymphocytes, monocytes, leukocytes and neutrophils �

Lactate dehydrogenase, NF-κB p65 IL-1β, GSH, TGF-β1/Smad Signaling,

Beclin 1 and Bcl-2 �

100-300 μg/kg BLM-treated rats (128)

Aucubin Aucuba japonica,

Plantago

asiatica and

Eucommia

ulmoides

Collagen disposition and inflammation �

TGF-β, α-SMA, Ki67 and prPCNA induced by TGF-β1 and cell

proliferation �

1, 10, and 100

μmol/L

BLM-treated mice

(129)



3.4. Glycosides

Glycosides are natural compounds found in abundance in plants with various therapeutic

applications. Glycosides maybe alcohol, phenol, or sulfur substances. They are defined by

sugar parts connected by a special bond to one or more non-sugar parts. Glucose is the most

commonly found sugar in glycosides. They exert several biological activities, including

anti-inflammatory effects (130). Recently, they have shown to have an impact on PF (Table

4). Fenugreek seed extract that contains glycosides has been shown to has an anti-fibrotic

effect through overexpression of Nrf2, which in turn downregulates IL-1b, IL-6, IL-8 and

TNF-α and inhibit collagen-1, TGF-β, NF-kB, VEGF, Smad-3, for treatment of rats lung fibrosis

induced by BLM (131).

Table 4 Glycosides potential effects in the treatment of pulmonary fibrosis

Glycoside Source Mechanism IC50/dose Model Ref

Total glucosides fenugreek

Nrf2 induction �

IL-1b, IL-6 and IL-8, TNF-a, TGF-b �

Collagen-1, NF-kB, VEGF, and Smad-3 �

20 and 40

mg/kg

BLM-treated

rats
(131)

Total glucosides
Danggui

Buxue Tang

α-SMA, TGF-β, Type

I collagen, hydroxyproline, and NOX4 �

MDA and SOD �

4,8,16 mg/k

g

BLM-treated

rats
(132)

Lettuce

glycoside B

Pterocypsela

laciniata

SOD and other antioxidant enzymes �

IL-6, TNF-a and TGF-b1 �

200 and 400

mg/kg

Radiation-ind

uced lung

fibrosis rats

(133)

Gentiopicroside
Gentiana

lutea L.

IL-1β  and TNF-α, TGF-β1, CTGF,

hydroxyproline �

2.5 and

10 mg/kg

BLM-treated

mice and

A549 cells

(134)

Ginsenoside
Panax

ginseng

MMP-2, MMP-9, Smad2, Smad3, TGF-β1�

Smad7, tissue inhibitor of

metalloproteinase-1 �

40, 80, and

160 mg/kg/d

BLM-treated

mice
(135)

Ginsenoside
Panax

ginseng

α-SMA, collagen I, and MMP 9 �

maintained the ratio of MMP to tissue

inhibitor of metalloproteinase 1.

phospho-Smad2, phospho-Smad3, TGF-β
receptor I  �

20 mg/kg/d

Cigarette

Smoke-Induce

d Airway

Fibrosis

(136)

Ginsenoside
Panax

ginseng

α-SMA and hydroxyproline, and TGF-β1 �

Caveolin-1 �

18, 36 and

72 mg/kg

BLM-treated

mice
(137)





3.5. Plant extracts

The utilization of plant extracts for the management of pulmonary fibrosis started in China

several years ago. Numerous literature has been reported on plant extract's beneficial

effects on PF therapy (Table 5) and related processes. Plant extracts have shown to modulate

various fibrotic biomarkers (NF-kB, hydroxyproline, MMP-9, TIMPs, collagen-I, FGF-2, PDGF

and VEGF) and inflammatory biomarkers (TNF-α, TGF-β, IFN-γ, interleukins and

endothelin-1). They also modulate activities of antioxidant enzymes such as SOD, GPx and

catalase. They stimulate the activation of various signaling pathways, including JAK-STAT,

Smad, Keap1 and Nrf2, resulting in the suppression of pulmonary fibrosis (16).

Plant extracts can activate various signaling molecules. For example, numerous plant

extracts can prevent only inflammatory lesions caused by an inflammatory agent. In

contrast, others can prevent only oxidative stress caused by ROS formation, collagen

deposition, and angiogenesis. Many researchers attribute the beneficial effect of plant

extracts to the presence of the bioactive phenolic mixtures (17).



Table 5 plant extract potential effects in the treatment of pulmonary fibrosis

Plant extract Active ingredients Mechanism IC50/dose Model Ref

Rosemary leaves
Fibrosis score �

Restored the activities of antioxidant enzymes and Thiol group content
Malondialdehyde concentration �

75 mg / kg/day Rat (138)

Yupingfeng Polysaccharide
Collagen-I synthesis and deposition �

TGF-β 1 level �
350 mg/kg Rat (139)

Cissampelos
Owariensis

Methanol Leaf
Antioxidants �

Ameliorated total protein, LPO levels, ALP activity,
200 or 400

mg/kg
Rat (140)

Ginkgo biloba
Flavonoids

Ginkgolide B Ginkgolide C
Activities of catalase, glutathione peroxidase, superoxide dismutase �

Malondialdehyde and Nitrite level �
100 mg/kg Rat (141)

Grapeseed Proanthocyanidins

IL-1 and IL-6 �
Activation of TGF-β1 and MMP-9 �

Collagen Type I alpha 1 and fibronectin 1 �
E-cadherin �

50 or 100
mg/kg

Mice (142)

Curcuma longa
Turmeric

And Non-Cyclic Peptide
Endogenous antioxidant activity �

Lipid Peroxidation and scavenging of nitric oxide �
40 mg/ml Mice (143)

Trigonellafoenum
graceum

Glycosides (Vicenin-1,
Trigoneoside)

IL-1β, IL-6, IL-8, HO-1, TNF-α �
Fibrogenic molecules �

200 mg/kg Rat (144)

Rosmarinus
Officinalis

Polyphenol
Normalizing pro-oxidant parameters,
Activities of antioxidant enzymes � 75 mg/kg Rat (145)

Green tea

Epigallocatechin-3 Gallate
(EGCG), Epicatechin-3 Gallate

(ECG), Epigallocatechin
(EGC), Epicatechin (EC), and

Caffeine

Oxidative stress, ET-1 expression � 10 mg/kg Rat (146)

Chrysanthemum
indicum

Glycosides
Flavonoids

TNF-α and IL-6 �
Activities of myeloperoxidase, and malondialdehyde �

240 and 360
and 480 mg/kg Mice (147)

Paenial lactiflora Paeoniflorin
Type I collagen synthesis �

Activation of TGF-β/SMAD pathway �
50 mg/kg

Mice (148)



IFN-γ expression �

Rhodiola rosea
Flavonoids
Polyphenols

HYP � , GSH and T-SOD contents �
α-smooth muscle actin, MMP-9 �

TGF-β1 and TIMP-1 �

125 and 250
and 500 mg/kg

Rat
(149)

Houttuynia cordata Aristolactam Indoles
Superoxide dismutase, malondialdehyde, hydroxyproline, interferon-gamma,

and TNF α �
1 g/kg Rat

(150)

Eclipta prostrate Wedelolactone

pro-inflammatory factors expression, Inflammatory cells infiltration,
collagen deposition �

Collagen I, α-SMA �, E-cadherin �
Regulating RAF-MAPKS Signaling Pathway and Activating AMPK

2 or 10 mg/kg
Mice

(151)

Radix astragalus Astragaloside α-SMA, TGF-β1, Jagged1 and Notch1 � 8 mg/kg
Rat (152)

Passiflora edulis Intraperitoneal Anti-inflammatory and antioxidant activities
100 mg/kg

Mice (153)

Yupingfeng extract Glucosides
Hydroxyproline and collagen-I �

Over-expression of TGF- β 1 and α -SMA �
12 mg/kg Rat (154)

Glycyrrhiza glabra
Methyl-Prednisolone and

Methanolic
Pulmonary inflammatory and fibrotic indices � 500 mg/kg Rat (154)

Citrus reticulata
Alkaloids, Flavonoids, Phenolic

Acids, Anthocyanins,
Carotenoids, Tannins (Amine

Hydrochloride 1)

Lung TGF-β1 protein expression � 5 and 10 and 20
mg/kg

Rat (155)

Silybum marianum
Thymoquinone Ellagic Acid

Flavonoid
Lung lipid peroxidation � and glutathione �

TNF-α and IL-6 �

50 and 100
mg/kg Mice (156)

Feitai The inflammatory response, lipid peroxidation � 3 g/kg Rat (157)

Rikkunshito

The amelioration of neutrophil alveolar infiltration, pulmonary vascular
permeability,

Induction of proinflammatory cytokines, apoptosis of alveolar epithelial
cells, activation of the NF-κb

1000 mg/kg mice (158)

Juglans regia Ellagic Acid Glutathione reductase, catalase � 100 mg/kg Rat
(159)



Nigella sativa Alkaloids Inflammatory index, fibrosis score and TGF-β1 distribution � 1mg/kg Rat (160)



4. Clinical research with phytochemicals for treatment of pulmonary fibrosis

There are several clinical studies using phytochemicals for the management of PF. IPF is
identified by a disrupted pulmonary redox balance linked to inflammation. To restore this
balance, antioxidants and anti-inflammatory components such as phytochemicals are
frequently suggested as therapy for IPF (161) and many preclinical studies have shown
promising results for PF therapy.
In the study by Rodriguez et al., primary epithelial cells and fibroblasts isolated from IPF
patients were treated with a combination of N-acetylcysteine and curcumin. They
demonstrated that curcumin alone does have anti-fibrotic potential, but that effect is
accompanied by increasing the apoptosis in oxidative stress. Their results suggest a novel
application for curcumin in IPF and encourage further research of this potential therapeutic
strategy (162).
Veith et al. evaluated the protective effect of quercetin on inflammatory and oxidative
markers in 11 patients with IPF. They showed that endogenous antioxidant defense in IPF
patients was significantly decreased, demonstrated by a reduced total antioxidant capacity
and reduced glutathione and uric acid levels compared to controls. Furthermore, they
showed exvivo incubation with quercetin in the blood of both patients with IPF, and healthy
controls diminish LPS-induced production of the pro-inflammatory cytokines. So, their
results suggest that IPF patients may potentially benefit from the use of quercetin to return
the disturbed redox balance and decrease inflammation (163).
Justice et al. in a pilot study on 14 participants with IPF (ClinicalTrials.gov identifier:
NCT02874989) analyzed the effect of senolytics in idiopathic pulmonary fibrosis. Physical
function was significantly improved. But pulmonary function, frailty index (FI-LAB), and
reported health did not change significantly. The effect of dasatinib plus quercetin (DQ) on
circulating senescence-associated secretory phenotype (SASP) factors were inconclusive;
however, correlations were seen between alteration in function and change microRNAs,
SASP-related matrix-remodeling proteins, and pro-inflammatory cytokines. Their first study
in humans supports the feasibility of senolytics in the treatment of IPF (164).

5. Conclusion

Various histopathologic patterns of pulmonary fibrosis have been known in association with

several patterns of risk factors. It remains unclear what mechanisms are shared across

different forms of pulmonary fibrosis and their outcomes (165). PF is a chronic lung

condition with characteristic clinical, pathologic, physiologic, and radiographic findings.

Today, no proven effective therapies exist for the management of pulmonary fibrosis with

minimal side effects. There are broad areas that may be responsible for PF development,

including a combination of excessive accumulation of ECM, loss of alveolar epithelial cells,

and altered lung fibroblasts (17).

Conventional therapy for PF has been steroids and immunosuppressive agents. But only a

minority of patients respond to this type of treatment (166). So, considering the limitations

and problems of current treatment for pulmonary fibrosis, we need novel therapeutic

options such as the use of attractive therapeutic potentials of phytochemicals. Scientific

studies over the last decade have demonstrated the ability of these compounds to modulate



multiple cellular targets. Thus, they have preventive and therapeutic value against a wide

variety of conditions (167).

These phytochemicals have multiple effects to improve PF, such as inhibitory activity against

serum elevation TGF-β, TNF-α, and interleukins. They also inhibit an increase in fibrotic

markers such as NF-κB, MMP-9, and HYP. Furthermore, they can reduce the severity of

alveolitis and prevent pulmonary fibrocyte growth by decreasing abnormal JAK-STAT

expression and Jagged1/Notch1 signaling pathways. They can also restore the catalase and

glutathione-S-transferase activities in the lung tissues (168).

The results of this review demonstrated that these components could attenuate PF by

enhancing the activities of antioxidant enzymes, modulating inflammatory agent, and other

mechanisms related to pulmonary fibrosis (Figure 1). Thus, the phytochemicals are a

promising source of treatment agents for PF. Today, many preclinical studies show the

positive anti-fibrotic effect of phytochemicals for the treatment of this disease. However, we

need to conduct more clinical trials to confirm these compounds' therapeutic effect against

lung fibrosis.
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