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Abstract: The reactions of the titanium alkoxide [Ti(OR)4] (R = Me, nPr, iPr, tBu) with the acids
2,2′-Ph2C(X)(CO2H), where X = OH and NH2, i.e., benzilic acid (2,2′-diphenylglycolic acid, L1H2),
and 2,2′-diphenylglycine (L2H3), have been investigated. The variation of the reaction stoichiometry
allows for the isolation of mono-, bi-, tri or tetra-metallic products, the structures of which have
been determined by X-ray crystallography. The ability of the resulting complexes to act as catalysts
for the ring opening polymerization (ROP) of ε-caprolactone (ε-CL) and r-lactide (r-LA) has been
investigated. In the case of ε-CL, all catalysts except that derived from [Ti(OnPr)4] and L2H3, i.e., 7,
exhibited an induction period of between 60 and 285 min, with 7 exhibiting the best performance
(>99% conversion within 6 min). The PCL products are moderate- to high-molecular weight polymers.
For r-LA, systems 1, 3, 4 and 7 afforded conversions of ca. 90% or more, with 4 exhibiting the fastest
kinetics. The molecular weights for the PLA are somewhat higher than those of the PCL, with both
cyclic and linear PLA products (end groups of OR/OH) identified. Comparative studies versus
the [Ti(OR)4] starting materials were conducted, and although high conversions were achieved, the
control was poor.

Keywords: titanium complexes; benzilic acid; 2,2′-diphenylglycine; molecular structures; ring opening
polymerization; ε-CL; r-LA

1. Introduction

The current issues associated with plastics and the environment are driving the search
for greener alternatives to petroleum-derived products. One option that has attracted
attention in recent years as a route to accessing biodegradable polymers is the ring open-
ing polymerization (ROP) of cyclic esters [1–11]. Notable successes include the polymers
polycaprolactone (PCL) and polylactide (PLA), and to a lesser extent polyvalerolactone
(PVL), which have seen widespread application, for example in the packaging and medical
industries [12–14]. As the demand grows for the more extensive use of such materials,
it will be important to have access to a wide range of polymers with combinations of
desirable properties, such as strength and biodegradability. To achieve this, one available
option is to develop new, efficient, metal-based initiators by manipulation of the coordi-
nation environment about the metal center. With this in mind, we note that the use of
chelating ligands with a variety of metals has proved particularly fruitful [15–18], whilst
the use of multi-metallic systems can also be beneficial [19–27]. One issue when using
multimetallic systems is their unambiguous characterization, and it is often necessary to
determine the molecular structure by single crystal X-ray diffraction. In turn, this requires
the use of highly crystalline catalysts, and with this in mind, we note that the Ph2C(X)
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motif promotes highly crystalline samples, as first recognized by Braun [28,29]. Taking
advantage of this, but also noting that the solubility should not be compromised to any
great degree, we have been investigating the use of chelate ligands derived from the acids
Ph2C(X)CO2H, where X = OH and NH2, and have isolated ROP catalysts based on Li, Al,
Zn, rare earth metals [30–33], and more recently Nb and Ta [34]; copper complexes proved
to be inactive [35]. However, the coordination chemistry of these acids is rather limited,
and transition metal examples are scant [30–42]. Herein, we report our investigations on
the use of titanium alkoxides when combined with these acids, and report some intriguing
multimetallic structural motifs (Scheme 1). These acid/alkoxide products have afforded
ROP catalyst systems exhibiting reasonable activities and low polydispersities (PDIs). We
note that the use of multidentate ligation in titanium in catalytic systems for biopolymer
synthesis has been reviewed [43], including a report on the use of amino acid-derived
ligation [44]. The coordination chemistry of α-hydroxycarboxylic acids has also attracted
interest [45].

Catalysts 2022, 12, x 2 of 23 
 

 

multimetallic systems is their unambiguous characterization, and it is often necessary to 

determine the molecular structure by single crystal X-ray diffraction. In turn, this requires 

the use of highly crystalline catalysts, and with this in mind, we note that the Ph2C(X) 

motif promotes highly crystalline samples, as first recognized by Braun [28,29]. Taking 

advantage of this, but also noting that the solubility should not be compromised to any 

great degree, we have been investigating the use of chelate ligands derived from the acids 

Ph2C(X)CO2H, where X = OH and NH2, and have isolated ROP catalysts based on Li, Al, 

Zn, rare earth metals [30–33], and more recently Nb and Ta [34]; copper complexes proved 

to be inactive [35]. However, the coordination chemistry of these acids is rather limited, 

and transition metal examples are scant [30–42]. Herein, we report our investigations on 

the use of titanium alkoxides when combined with these acids, and report some intriguing 

multimetallic structural motifs (Scheme 1). These acid/alkoxide products have afforded 

ROP catalyst systems exhibiting reasonable activities and low polydispersities (PDIs). We 

note that the use of multidentate ligation in titanium in catalytic systems for biopolymer 

synthesis has been reviewed [43], including a report on the use of amino acid-derived 

ligation [44]. The coordination chemistry of α-hydroxycarboxylic acids has also attracted 

interest [45]. 

 

Scheme 1. Titanium complexes bearing chelate ligands derived from benzilic acid (L1H2) (1–5), and 

2,2′-diphenylglycine (L2H3) (6–10). 

2. Results and Discussion 

2.1. Synthesis and Characterization of Ti Complexes 

2.1.1. Benzilic Acid (L1H2)-Derived Complexes 

Our initial studies have focused on the use of benzilic acid, given that it is available 

in bulk quantities and at relatively low costs [46]. The reactions of L1H2 with differing 

ratios (see Scheme 1) of the titanium tetraalkoxides [Ti(OR)4] (R = Me, nPr, iPr, tBu) have 

been studied, and we report here only the systems where the products obtained were 

suitable for characterization using single crystal X-ray crystallography. The compounds 

Scheme 1. Titanium complexes bearing chelate ligands derived from benzilic acid (L1H2) (1–5), and
2,2′-diphenylglycine (L2H3) (6–10).

2. Results and Discussion
2.1. Synthesis and Characterization of Ti Complexes

2.1.1. Benzilic Acid (L1H2)-Derived Complexes

Our initial studies have focused on the use of benzilic acid, given that it is available in
bulk quantities and at relatively low costs [46]. The reactions of L1H2 with differing ratios
(see Scheme 1) of the titanium tetraalkoxides [Ti(OR)4] (R = Me, nPr, iPr, tBu) have been
studied, and we report here only the systems where the products obtained were suitable for
characterization using single crystal X-ray crystallography. The compounds were also char-
acterized by 1H NMR and FTIR spectroscopy, mass spectrometry and elemental analysis.
All reactions were conducted in refluxing toluene, followed by workup (extraction) using
warm acetonitrile, and recrystallization upon standing (2–3 days) at ambient temperature,
unless stated otherwise.
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Complex 1 was synthesized by using a 1:2 mole ratio of L1H2 to [Ti(OMe)4] affording a
highly crystalline product 1 in reasonable isolated yield (ca. 50%). The molecular structure
of [Ti4(L1)2(OMe)12] (1) is shown in Figure 1, with selected bond lengths and angles given
in the caption. Complex 1 crystallizes as centrosymmetric clusters composed of four Ti
ions in octahedral coordination that are arranged in a diamond shape. These are bridged
by a pair of µ3–OMe above and below the plane of the four Ti ions. There are four further
µ2–OMe ligands that form the edges of the diamond. For a trans pair of Ti ions, the
coordination is completed by two further terminal OMe ligands. For the two other Ti ions,
the coordination is completed by one OMe and chelating benz2−; the benzilic acid plays no
part in linking titanium ions. For this structure and others herein, it is possible to classify the
coordination mode of the benzilate using the Harris notation [47], and there is further detail
in the Supporting Information (Figure S1). Here, the coordination of the benzilate can be
classified as [1.011]. The asymmetric unit (Figure 1) contains two independent half clusters.
For a further representation of this structure, see the Supporting Information (Figure S2).
There are no classical hydrogen bonds present, but there are C–H···O interactions between
the clusters.
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Figure 1. Asymmetric unit of 1 with atoms drawn as 50% probability ellipsoids. (Two symmetry-
independent half clusters are present). Selected bond lengths (Å) and bond angles (o): Ti(1)-O(4)
1.7660(17), Ti(1)-O(1) 1.8556(16), Ti(1)-O(5) 1.9750(18), Ti(1)-O(2) 1.9800(18), Ti(1)-O(7#1) 2.0173(16),
Ti(1)-O(9) 2.2140(15), Ti(2)-O(6) 1.7446(18), Ti(2)-O(8) 1.8031(16), Ti(2)-O(7) 1.9912(16), Ti(2)-O(5)
2.0125(16), Ti(2)-O(9) 2.1424(16), Ti(2)-O(9#1) 2.1847(15); O(4)-Ti(1)-O(1) 101.14(8), O(4)-Ti(1)-O(5)
99.31(8), O(1)-Ti(1)-O(5) 94.61(7), O(4)-Ti(1)-O(2) 100.41(8), O(1)-Ti(1)-O(2) 79.78(7), O(5)-Ti(1)-O(2)
160.19(7), O(4)-Ti(1)-O(7#1) 93.61(7), O(1)-Ti(1)-O(7#1) 162.32(7), O(5)-Ti(1)-O(7#1) 92.56(7), O(2)-Ti(1)-
O(7#1) 88.05(7), O(4)-Ti(1)-O(9) 165.98(7), O(1)-Ti(1)-O(9) 92.08(6), O(5)-Ti(1)-O(9) 74.74(6), O(2)-Ti(1)-
O(9) 86.41(7), O(6)-Ti(2)-O(8) 101.52(8), O(6)-Ti(2)-O(7) 97.57(8), O(8)-Ti(2)-O(7) 93.87(7), O(6)-Ti(2)-
O(5) 94.09(8), O(8)-Ti(2)-O(5) 96.89(7), O(7)-Ti(2)-O(5) 162.23(7), O(6)-Ti(2)-O(9) 163.42(8), O(8)-Ti(2)-
O(9) 92.73(7), O(7)-Ti(2)-O(9) 89.79(7), O(5)-Ti(2)-O(9) 75.64(6), O(6)-Ti(2)-O(9#1) 95.55(7), O(8)-Ti(2)-
O(9#1) 160.96(7).

Similar use of [Ti(OnPr)4] with L1H2 in a ratio of 1:2 led to the isolation of the salt
complex [Ti(L1H)3][Ti(L1H)(L1H)2]·MeCN (2·MeCN). Complex 2·MeCN crystallizes in the
monoclinic space group P21/c. The asymmetric unit (Figure 2) contains two independent
six-coordinate titanium ions, each of which is coordinated by three bidentate benzilate ions
in a fac arrangement. For the first titanium ion, Ti1, each benzilic acid is deprotonated only
at the alcohol so that it chelates through the alkoxide and the carbonyl of the carboxylic
acid, and formally, the coordination of each benzilate is [1.011]. The OH portion of each
carboxylic acid forms a hydrogen bond to the neighbouring cluster centered on Ti2. In this
way, there are hydrogen-bonded dimers.
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Figure 2. Asymmetric unit of 2 with atoms drawn as 50% probability ellipsoids. Dashed lines show
classical hydrogen bonds. Selected bond lengths (Å) and bond angles (o): Ti(1)-O(1) 2.0679(18), Ti(1)-
O(3) 1.8377(18), Ti(1)-O(4) 2.0880 (19), Ti(1)-O(6) 1.8550 (19), Ti(1)-O(7) 2.097(2), Ti(1)-O(9) 1.8438(19);
O(3)-Ti(1)-O(4) 161.49(8), O(3)-Ti(1)-O(6) 100.04(8), O(3)-Ti(1)-O(7) 96.16(8), O(3)-Ti(1)-O(9) 102.00(8),
O(4)-Ti(1)-O(7) 84.34(8), O(6)-Ti(1)-O(1) 95.44(8), O(6)-Ti(1)-O(4) 77.91(8), O(6)-Ti(1)-O(7) 162.15(8),
O(9)-Ti(1)-O(1) 158.84(8), O(9)-Ti(1)-O(4) 96.24(8), O(9)-Ti(1)-O(6) 105.17(9), O(9)-Ti(1)-O(7) 78.51(8).

The coordination about Ti2 is similar (See the Supporting Information, Figure S3); two
of the three benzilic acids are twice deprotonated, but the third is deprotonated only at
the carboxylic acid. All are chelating in [1.011] mode. The alcohol does bind to Ti2, but
also forms a hydrogen bond to an unbound molecule of acetonitrile. The X-ray scattering
data were good enough that it was possible to identify the positions of the hydrogen atoms
through difference Fourier methods.

In the case of [Ti(OiPr)4], varying the reaction stoichiometry led to the isolation of two
different products. When using a ratio of 1:2 (L1H2:Ti), the product isolated was found to
be [Ti4OL1

2(OiPr)10] (3). The clusters (Figure 3) in 3 contain four roughly octahedral Ti ions
that are linked by benzilate, each of which has a [3.1122313] coordination mode, and by
bridging isopropoxide; for an alternative view, see Supporting Information (Figure S4). The
cluster can be described by dividing it into two similar halves. Benzilate is chelated to Ti1,
but the carboxylate is also involved in bonding to Ti2 and Ti3. Ti1 and Ti2 are further linked
by two µ2-OiPr, and terminal OiPr ligands complete the coordination at Ti1 and Ti2. Ti4 are
Ti3 are akin to Ti1 and Ti2, and the two halves are linked by the two Ti–O carboxylate bonds
and an oxide bridge. The average Ti···Ti bond distance in the two halves of the cluster is
3.059(4) Å, which is similar to the value of 3.0459 (7) Å in the oxo-bridged tetranuclear
titanium compound reported by Kemmitt et al. [48], and is indicative of no Ti-Ti bonding.

On changing the ratio to 1:1, the product isolated was [Ti4O(L1)3(OiPr)8] (4), which
crystallizes in the triclinic system in the space group P-1 (Figure 4; an alternative view
is given in the Supporting Information, Figure S5). Complex 4 is very similar to 3, but
one terminal OiPr ligand and one bridging OiPr ligand on Ti1 are replaced by a chelating
benzilate, which also bridges to Ti2 in the coordination mode [2.021]. Each of the other two
benzilate anions have [3.1122313] coordination mode, being both chelating and bridging.
There is substantial disorder in the position and orientation of the ligand set, particularly
around Ti4. There is also evidence of a small amount of disordered solvent equating to one
acetonitrile per cluster. The Ti···Ti distances are 3.0682(10), 3.2583(12), and 3.3958(11) Å,
which are notably longer than observed in 3.
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disorder is not shown, and hydrogen atoms are not shown. Selected bond lengths (Å) and bond angles
(o): Ti(1)-O(1) 2.136(8), Ti(1)-O(3) 1.888(9), Ti(1)-O(7) 1.832(9), Ti(1)-O(8) 1.697(10), Ti(1)-O(9) 2.277(9),
Ti(1)-O(10) 2.022(8), Ti(2)-O(1) 2.260(7), Ti(2)-O(5) 2.075(8), Ti(2)-O(9) 1.963(9), Ti(2)-O(10) 2.028(8),
Ti(2)-O(11) 1.799(7), Ti(2)-O(17) 1.766(8); O(1)-Ti(1)-O(9) 72.1(3), O(3)-Ti(1)-O(1) 76.0(3), O(3)-Ti(1)-
O(10) 149.1(3), O(7)-Ti(1)-O(1) 163.5(3), O(7)-Ti(1)-O(10) 106.3(4), O(8)-Ti(1)-O(1) 94.9(4), O(8)-Ti(1)-
O(3) 99.6(4), O(8)-Ti(1)-O(7) 101.5(4), O(8)-Ti(1)-O(9) 160.2(4), O(8)-Ti(1)-O(10) 92.1(4), O(10)-Ti(1)-O(1)
74.6(3), O(10)-Ti(1)-O(9) 70.4(3), O(5)-Ti(2)-O(1) 84.7(3), O(9)-Ti(2)-O(1) 75.6(3), O(9)-Ti(2)-O(5) 156.4(3),
O(9)-Ti(2)-O(10) 77.1(3), O(10)-Ti(2)-O(1) 71.8(3), O(10)-Ti(2)-O(5) 84.5(3), O(11)-Ti(2)-O(9) 102.6(3),
O(11)-Ti(2)-O(10) 155.6(3), O(17)-Ti(2)-O(1) 175.3(3), O(17)-Ti(2)-O(5) 92.9(3), O(17)-Ti(2)-O(9) 105.8(4),
O(17)-Ti(2)-O(10) 104.0(3), O(17)-Ti(2)-O(11) 99.5(3).
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Figure 4. Asymmetric unit of 4 with atoms drawn as 50% probability ellipsoids. Disorder is
not illustrated. Selected bond lengths (Å) and bond angles (o): Ti(1)-O(5) 2.204(3), Ti(1)-O(3)
1.829(3), Ti(1)-O(2) 2.096(3), Ti(1)-O(6) 1.860(3), Ti(1)-O(10) 1.787(3), Ti(1)-O(12) 2.059(3), Ti(2)-O(5)
2.159(3), Ti(2)-O(7) 2.055(3), Ti(2)-O(2) 2.160(3), Ti(2)-O(12) 1.968(3), Ti(2)-O(18) 1.762(3), Ti(2)-O(11)
1.765(3), Ti(3)-O(4) 2.188(3), Ti(3)-O(18) 1.856(4), Ti(3)-O(8) 2.208(3), Ti(3)-O(14) 2.020(4), Ti(3)-
O(13) 1.765(3), Ti(3)-O(17) 1.840(5), Ti(3)-O(17A) 1.907(9), Ti(4)-O(8) 2.098(3), Ti(4)-O(9) 1.884(4),
Ti(4)-O(14) 1.957(4), Ti(4)-O(16) 1.757(4), Ti(4)-O(15) 1.830(5), Ti(4)-O(15A) 1.643(10), Ti(4)-O(17A)
2.458(9); O(3)-Ti(1)-O(5) 102.26(11), O(3)-Ti(1)-O(2) 77.55(11), O(3)-Ti(1)-O(6) 99.49(12), O(3)-Ti(1)-
O(12) 150.55(12), O(2)-Ti(1)-O(5) 70.52(10), O(6)-Ti(1)-O(5) 75.37(11), O(6)-Ti(1)-O(2) 144.11(12),
O(6)-Ti(1)-O(12) 106.64(12),O(10)-Ti(1)-O(5) 159.81(12), O(10)-Ti(1)-O(3) 97.89(13), O(10)-Ti(1)-O(2)
115.59(13), O(10)-Ti(1)-O(6) 100.28(13), O(10)-Ti(1)-O(12) 90.68(13), O(5)-Ti(2)-O(2) 70.24(10), O(7)-
Ti(2)-O(5) 84.82(11), O(7)-Ti(2)-O(2) 85.14(10), O(12)-Ti(2)-O(5) 74.96(11), O(12)-Ti(2)-O(7) 154.61(11),
O(12)-Ti(2)-O(2) 73.77(11), O(18)-Ti(2)-O(5) 87.37(12), O(18)-Ti(2)-O(7) 93.96(14), O(18)-Ti(2)-O(2)
157.59(13), O(18)-Ti(2)-O(12) 100.18(14), O(18)-Ti(2)-O(11) 103.86(15), O(11)-Ti(2)-O(5) 168.77(13),
O(11)-Ti(2)-O(7) 94.08(14), O(11)-Ti(2)-O(2) 98.54(13), O(9)-Ti(4)-O(8) 75.54(13), O(9)-Ti(4)-O(14)
143.93(16), O(14)-Ti(4)-O(8) 73.34(13).

Finally, we investigated the use of [Ti(OtBu)4], and found that the use of a 1:1 ratio resulted
in the formation of the asymmetric trinuclear titanium complex [Ti3(L1)4(OtBu)4·MeCN]·MeCN
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(5·MeCN) (Figure 5; an alternative view is given in the Supporting Information, Figure S6).
Complex 5 crystallizes in the triclinic system with the space group P-1. This features
a cluster composed of Ti ions bridged by benzilate and decorated by two monodentate
OtBu ligands as each of Ti2 and Ti3. At Ti1, there is chelating, but not bridging benzilate.
Here, there are four unique benzilate anions, and these feature three different coordination
modes. At Ti1, the alkoxide and carboxylic acid form a five-membered chelate (benzilate
coordination mode [2.011]); one further ion forms a similar chelate, but the second oxygen
of the carboxylate bonds to Ti2 (coordination mode [2.111212]); the third chelating anion
forms a similar five-membered chelate, but in addition to this the carboxylate forms an
unequal bidentate chelate to Ti3, such that one of the oxygen atoms (O4) bridges between
Ti1 and Ti3 in coordination mode [2.1121212]. The M−O bond lengths for the bidentate
chelating carboxylate are these: Ti3–O4 2.3458(8) Å and Ti3–O5 2.0624(8) Å. Ti2 and Ti3 are
joined by a “normal” chelating anion that also bridges through the second oxygen of the
carboxylate (coordination mode [2.111212]).
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97.48(4), O(16)-Ti(2)-O(3) 80.13(4), O(13)-Ti(3)-O(8) 131.22(4), O(9)-Ti(1)-O(6) 101.45(4), O(14)-Ti(2)-
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O(7)-Ti(2)-O(2) 79.18(4), O(1)-Ti(1)-O(2) 59.04(4), O(12)-Ti(3)-O(11) 105.13(5), N(5)-Ti(1)-O(2) 76.26(4),
O(16)-Ti(2)-O(14) 97.48(4), O(11)-Ti(3)-O(13) 115.14(5), O(16)-Ti(2)-O(15) 103.48(4), O(12)-Ti(3)-O(8)
96.65(4), O(11)-Ti(3)-O(8) 108.43(5), O(13)-Ti(3)-O(8) 131.22(4), O(12)-Ti(3)-O(5) 161.99(4), O(11)-Ti(3)-
O(5) 92.60(4), O(8)-Ti(3)-O(5) 80.33(4).

2.1.2. Infrared and 1H NMR Spectra of Benzilic-Derived Complexes

In the FT-IR spectra, for the parent L1H2, there is a sharp and intense peak at 3395 cm−1,
corresponding to the vO-H asymmetric stretching vibration. However, this O–H peak for
complexes 1–5 has disappeared, which verifies the participation of the hydroxyl group in
the reaction. The vC = O stretching vibration in L1H2 gives rise to a sharp band at 1716 cm−1,
whereas the C = O stretching shifts to 1680 cm−1, 1733 cm−1, 1729 cm−1, 1728 cm−1 and
1704 cm−1 for 1–5, respectively, indicative of bonding between the carboxyl and the titanium
center. A new band appeared for all the complexes in the range 429–466 cm−1, which we
assign to Ti-O bonding. The 1H NMR spectra suggest alkoxide exchange takes place in
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the solution for the L1H2-derived complexes containing bridging and terminal alkoxide
ligation. However, VT 1H NMR spectroscopic studies (in CD3CN) conducted between
−40 ◦C and +50 ◦C revealed little change; overall integrations were consistent with the
solid-state structures, e.g., the integral ratio of the multi-signals for the phenyl groups
(δ = 7.83–6.80), the septet for the isopropoxide methine (δ = 3.89–3.83 and 3.32) and the
doublet for the methyls (δ = 1.07 and 1.06) are 20:10:60 consistent with the structure of 3.
The structures of the complexes are also consistent with their elemental analysis and mass
spectrometry data.

2.1.3. Diphenylglycine (L2H3)-Derived Complexes

Having established suitable synthetic conditions for the synthesis and isolation of
titanium complexes derived from L1H2, we extended our studies to the somewhat more
expensive 2,2′-diphenylglycine, Ph2C(NH2)CO2H (L2H3) [49]. In every complex, this lig-
and is deprotonated by the acid and displays a simple five-membered chelate with Harris
notation [1.011]. In the case of [Ti(OMe)4], the use of a 2:1 ratio (L2H3:Ti) resulted in the
isolation of the complex [Ti(L2)3OMe]·2.5MeCN (6·2.5MeCN), which crystallizes in the
monoclinic space group I2/a. The asymmetric unit comprises a discrete seven-coordinate Ti
complex (Figure 6), where the Ti is surrounded by three chelating diphenylglycinate ligands
and one OMe ligand. Two chelating ligands and the NH2 from another lie approximately
in a plane with the carboxylate filling an axial position; the other axial position is filled
by methoxide. The ligands are arranged such that two N–H bonds from different bound
amines form hydrogen bonds to a carbonyl in an adjacent complex. These interactions gen-
erate a hydrogen-bonded chain that runs parallel to the crystallographic b-axis. Subsidiary
C–H···π interactions form along the direction of these chains and between them (See the
Supporting Information, Figure S7).
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Figure 6. Asymmetric unit of 6·2.5MeCN with atoms drawn as 50% probability ellipsoids. Se-
lected bond lengths (Å) and bond angles (o): Ti(1)-O(5) 1.984(2), Ti(1)-O(1) 2.019(2), Ti(1)-O(7)
1.772(2), Ti(1)-O(3) 2.042(2), Ti(1)-N(3) 2.245(3), Ti(1)-N(1) 2.262(3), Ti(1)-N(2) 2.237(3); O(5)-Ti(1)-O(1)
93.65(9), O(5)-Ti(1)-O(3) 88.84(10), O(5)-Ti(1)-N(3) 75.90(9), O(5)-Ti(1)-N(1) 85.75(10), O(5)-Ti(1)-N(2)
85.17(10), O(1)-Ti(1)-O(3) 141.47(9), O(1)-Ti(1)-N(3) 146.56(10), O(1)-Ti(1)-N(1) 72.62(9), O(1)-Ti(1)-N(2)
70.49(9), O(7)-Ti(1)-O(5) 168.79(10), O(7)-Ti(1)-O(1) 95.69(10), O(7)-Ti(1)-O(3) 87.71(10), O(7)-Ti(1)-
N(3) 92.89(10), O(7)-Ti(1)-N(1) 91.13(11), O(7)-Ti(1)-N(2) 103.79(11), O(3)-Ti(1)-N(3) 71.00(10), O(3)-
Ti(1)-N(1) 145.83(9), O(3)-Ti(1)-N(2) 71.43(9), N(3)-Ti(1)-N(1) 74.96(10), N(2)-Ti(1)-N(3) 137.96(10),
N(2)-Ti(1)-N(1) 141.26(10).

The use of [Ti(OnPr)4] in a 1:1 ratio afforded, following work-up, yellow crystals of
[Ti2(L2)2(OnPr)6] (7). The structure contains a distorted octahedral coordination of titanium;
each Ti has two OnPr ligands that bridge to another equivalent Ti to form centrosymmetric
dimers. Each Ti bears on chelating diphenylglycinate, two monodentate alkoxides and two
bridging alkoxides. The asymmetric unit contains two symmetrically unique halves of the
dimer, as shown below (Figure 7).
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Figure 7. Asymmetric unit of 7 with atoms drawn as 50% probability ellipsoids. For clarity, minor
disorder is not shown. Selected bond lengths (Å) and bond angles (o): Ti(1)-Ti(1i) 3.2815(5), Ti(1)-
O(1) 1.9868(13), Ti(1)-O(3) 1.8486(17), Ti(1)-O(4) 1.7717(12), Ti(1)-O(5) 2.048 (3), Ti(1)-N(1) 2.2829(14);
O(5)-Ti(1)-O(1) 152.78(8), O(5)-Ti(1)-O(4) 96.15(9), O(5)-Ti(1)-N(1) 84.55(8), O(5)-Ti(1)-O(3) 104.04(9),
O(4)-Ti(1)-O(1) 100.20(5), O(4)-Ti(1)-O(3) 100.42(7), O(4)-Ti(1)-N(1) 88.62(6), O(3)-Ti(1)-O(1) 94.27(6),
O(3)-Ti(1)-N(1) 166.64(7), O(1)-Ti(1)-N(1) 74.31(5), Ti(1)-O(5A)-Ti(1i) 114.10 (18).

The action of the inversion center generates a dimer from two Ti1 centres and a dimer
from two Ti2 centers. There are intramolecular N–H···O (alkoxide) hydrogen bonds that
help to stabilize the dimers and N–H···O(carbonyl) hydrogen bonds between adjacent com-
plexes that form 1-D chains that run parallel to the crystallographic [1,1,1] direction. Views
of the coordination about Ti1 and Ti2 are shown in the Supporting Information (Figure S8).

The similar use of [Ti(OiPr)4] also resulted in the formation of a dinuclear complex,
namely, [Ti2(L2)2(OiPr)6] (8). Although the crystal structure is somewhat different (Figure 8;
for an alternative view, see the Supporting Information, Figure S9), the basic cluster present
in 8 is essentially the same as in 7; two Ti ions are bridged by a pair of alkoxides, and the
coordination about each Ti ion is completed by terminal alkoxide ligands and bidentate
diphenylgylcinate. Intramolecular hydrogen bonding between NH2 and alkoxide is also
present, but there are no classical hydrogen bonds between the clusters, which is the
major difference between 7 and 8. The carbonyl of the carboxylic acid forms C–H···O
intermolecular interactions with two different complexes. These interactions extend in 3D
throughout the crystal structure.

Upon changing the ratio to 2:1 (L2H3:Ti), the use of [Ti(OiPr)4] led to the isolation
of the mononuclear complex [(L2H2)2Ti(OiPr)2] (9), the molecular structure of which is
shown in Figure 9 (an alternative view is given in the Supporting Information, Figure S10).
This features a rather distorted octahedral coordination about the Ti composed of two
cis diphenylglycinate ligands and two terminal isopropoxide ligands, such that there is
close to a local twofold axis at the metal center between the two Ti-N bonds. The two
nitrogen donor atoms are adjacent, but the two oxygen atoms of the chelates are trans at
the metal. The asymmetric unit has three symmetrically unique complexes that have the
same coordination but differ very slightly in the orientation of the methyl groups of the
isopropoxide. The three unique complexes are aligned along the crystallographic a-axis to
form an infinite rank of these complexes in the crystal structure. Between each and every
pair of adjacent complexes, there is a pseudo-centrosymmetric pair of N–H···O hydrogen
bonds. There is evidence of C–H···O and C–H···π interactions between these ranks.
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Figure 8. Asymmetric unit of 8 with atoms drawn as 50% probability ellipsoids. For clarity, minor
disorder is not shown. Selected bond lengths (Å) and bond angles (o): Ti(1)-Ti(1i) 3.2788(4), Ti(1)-
O(4) 1.9618(9), Ti(1)-O(4i) 2.1357(9), Ti(1)-O(1) 1.9945(10), Ti(1)-O(3) 1.7990(9), Ti(1)-O(5) 1.7884(9),
Ti(1)-N(1) 2.2901(10), Ti(1)-Ti(1i) 3.2788(4); O(4)-Ti(1)-O(4i) 73.78(4), O(4)-Ti(1)-O(1) 155.56(4), O(4i)-
Ti(1)-N(1) 81.69(4), O(4)-Ti(1)-N(1) 87.18(4), O(1)-Ti(1)-O(4i) 89.31(4), O(1)-Ti(1)-N(1) 72.73(4), O(3)-
Ti(1)-O(4i) 167.74(4), O(3)-Ti(1)-O(4) 98.25(4), O(3)-Ti(1)-O(1) 95.14(4), O(3)-Ti(1)-N(1) 88.71(4), O(5)-
Ti(1)-O(4i) 91.32(4), O(5)-Ti(1)-O(4) 104.07(4), O(5)-Ti(1)-O(1) 93.62(4), O(5)-Ti(1)-O(3) 99.77(5), O(5)-
Ti(1)-N(1) 164.63(4), Ti(1)-O(4)-Ti(1i) 106.22(4).
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Figure 9. Asymmetric unit of 9 with atoms drawn as 50% probability ellipsoids. For clarity, some
minor disorder is not shown. Selected bond lengths (Å) and bond angles (◦): Ti(1)-O(3) 1.7658(14),
Ti(1)-O(4) 1.7686(14), Ti(1)-O(2) 1.9786(14), Ti(1)-O(5) 1.9847(14), Ti(1)-N(2) 2.2508(16), Ti(1)-N(1)
2.3025(16); O(3)-Ti(1)-O(4) 103.37(7), O(3)-Ti(1)-O(2) 96.33(6), O(4)-Ti(1)-O(2) 98.45(6), O(3)-Ti(1)-O(5)
97.81(6), O(4)-Ti(1)-O(5) 102.24(6), O(2)-Ti(1)-O(5) 151.42(6), O(3)-Ti(1)-N(2) 167.16(7), O(4)-Ti(1)-N(2)
88.06(6), O(2)-Ti(1)-N(2) 87.59(6), O(5)-Ti(1)-N(2) 73.72(5), O(3)-Ti(1)-N(1) 86.36(6), O(4)-Ti(1)-N(1)
168.37(6), O(2)-Ti(1)-N(1) 73.83(6), O(5)-Ti(1)-N(1) 82.42(6), N(2)-Ti(1)-N(1) 83.00(6).

Interestingly, interaction of L2H3 with [Ti(OtBu)4] using a ratio of 1:1 resulted in
the formation of a similar mononuclear complex [(L2H2)Ti(OtBu)2]·2MeCN (10·2MeCN)
(as shown in Figure 10). The basic complex here is very similar to that in 9, but the
intermolecular interactions present are different, which perhaps reflects the inclusion
of solvent in the crystal structure. Each discrete complex contains a pair of chelating
diphenylglycinate ligands and two terminal OtBu ligands, but there is no local twofold
axis. The nitrogen donor atoms are adjacent at the metal center, but in contrast to 9, so are
the two oxygen atoms of the chelating ligand. This close approach of the two NH2 groups
means that each of them forms a hydrogen bond to the carboxylate of an adjacent complex,
and this forms hydrogen-bonded chains of complexes parallel to the crystallographic b
direction (see the Supporting Information, Figure S11).
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Ti(1)-O(5) 1.7747(18), Ti(1)-O(3) 1.9920(18), Ti(1)-O(1) 2.0497(19), Ti(1)-N(1) 2.202(2), Ti(1)-N(2) 2.260(2);
O(6)-Ti(1)-O(5) 101.20(9), O(6)-Ti(1)-O(3) 96.38(8), O(5)-Ti(1)-O(3) 105.03(8), O(6)-Ti(1)-O(1) 93.82(9),
O(5)-Ti(1)-O(1) 158.53(8), O(3)-Ti(1)-O(1) 88.26(8), O(6)-Ti(1)-N(1) 100.49(9), O(5)-Ti(1)-N(1) 88.48(8),
O(3)-Ti(1)-N(1) 155.91(9), O(1)-Ti(1)-N(1) 73.64(7), O(6)-Ti(1)-N(2) 169.12(8), O(5)-Ti(1)-N(2) 87.39(9),
O(3)-Ti(1)-N(2) 74.76(8), O(1)-Ti(1)-N(2) 79.81(8), N(1)-Ti(1)-N(2) 86.28(8).

2.1.4. Infrared and 1H NMR Spectra of the L2H3-Derived Complexes

The infrared spectrum of the parent L2H3 contains νN-H stretches at 3269 (sharp), 3180,
and 3052 cm−1. A shift (~90 cm−1) of the νN-H was observed for all the diphenylglycine-
derived complexes upon coordination with titanium. For example, the IR spectrum of
6·2.5MeCN contains νN-H at 3335, 3245 and 3055 cm−1, which indicates amine-type
bonding is retained in the titanium complexes. Several new peaks appeared for all the
complexes in the range of 413–465 cm−1, which is due to the formation of new Ti-O and
Ti-N bonds. The solid-state structures of the DpgH-derived complexes are consistent with
their 1H NMR spectra, elemental analysis and mass spectrometry data.

2.2. Ring Opening Polymerization Studies of ε-Caprolactone (ε-CL)

Initially, all the complexes were screened for their ability to act as catalysts for the
ROP of ε-CL with a monomer to Ti ratio of 250:1 at 100 ◦C under N2 (Table 1, entries 1
to 10). The complexes 2, 4 and 5, which all bear L1H2-derived ligand sets, were found
to be the most sluggish even after 24 h, allowing for monomer conversions of 20, 31
and 53%, respectively. The poor activity of 2 was tentatively attributed to the absence
of OR groups (other than those derived from L1), as well as to the two acidic protons
reducing the complex’s solubility in the reaction medium. Solubility issues could also
explain the rather low conversions achieved with 4 and 5. By contrast, complexes 1 and
3 allowed for complete monomer conversion within 195 min and 150 min, respectively.
The isopropoxide-containing complex 3 performed slightly better than the methoxide-
bearing 1. Most catalysts afforded polymers with Mn smaller than the calculated values,
except complexes 3 and 10, albeit with broad polydispersity, allegedly deriving from
intramolecular transesterification processes. All complexes bearing L2H2-derived ligands
(6–10) allowed for conversions ≥95% within 480 min. An in-situ kinetic study was carried
out (using a Youngs tap NMR tube in toluene-d8) at 100 ◦C using a monomer to Ti ratio of
250:1. Figure 11 shows that the ROP using 1, 3 and 6–10 proceed rapidly to full conversion,
but over differing time periods. For the L2H3-derived complexes, the n-propoxide complex
7 performed best, and its kobs is equal to 4743 × 10−4/min (Table 2, entry 7). The linearity
indicates that the polymerization was first-order in the monomer with rapid initiation and
without induction time, but only at 50 ◦C (Table 1, run 11) did the behavior approach a
living-type character. According to the kinetics of 1, 3, 6 and 8–10, the plot of ln(CL0/CLt)
versus time shows an upward curvature, which implies that polymerization rates increased
along with reaction time (Figure 11, left). This type of acceleration phenomenon for ROP
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of ε-CL has been reported by Basko [50]. If the basicity of the monomer is significantly
higher than the polymer unit, the ratio between the activated monomer concentration
and the monomer concentration increases as the monomer is consumed, resulting in an
apparent speed up of the polymerization. A similar acceleration of kinetics has also been
reported by Delcroix [51]. Herein, this was observed for complexes 1, 3, 6 and 8–10, and we
calculated kobs after the induction period in order to compare the activities of the different
complexes. By contrast, for complexes 2 and 4–5, there was an obvious induction period;
the results are listed in Table 2. For the L2H3-derived complexes 6–10, kobs follows the
sequence 7·MeCN > 8 > 9 > 10·2MeCN > 6·2.5MeCN. Cooperative effects between the two
Ti centers of complexes 7 and 8 could explain their superior activity over their monometallic
congeners 6, 9 and 10. By looking at 7 (OnPr) versus 8 (OiPr) with near identical structures,
OnPr has a remarkably positive effect on polymerization, and also facilitates the better
control of polymerization (Ð 1.49 versus 1.80); for 9 and 10, the performance of the OiPr
exceeds that of the OtBu. These differences can be explained in terms of steric hindrance
of the alkoxide groups. The lower value of kobs for complex 6 is thought to be due to its
poor solubility in toluene/ε-Cl. It is noticeable that for 6, the reaction mixture remains
cloudy at 100 ◦C, and this likely explains the longest observed induction period. Given
the better performance of system 7, it was selected for further screening. Remarkably, the
complex proved able to completely convert up to 2000 equiv. of monomer within minutes
at 100 ◦C (entries 7, 12–14, Table 1). In all cases, the polymers exhibited broad dispersities
(up to 2.35), and their Mn values were lower than the calculated values, suggesting the
occurrence of undesired intramolecular transesterification reactions. Upon varying the
temperature, using a CL:Ti ratio of 250:1, a high conversion was still achieved at 50 ◦C over
150 min., whilst at ambient temperature (25 ◦C), the conversion was only 14% after 24 h
(Table 1, runs 11 and 15, respectively). By conducting the ROP in the absence of the solvent,
complex 7 allowed for ≥99% monomer conversion within 6 min., affording a product with
a molecular weight of 10.5 kDa (Table 1, run 17). Finally, the catalyst was virtually inactive
when carrying out the reaction in air. To better understand the effect of the presence of the
chelate, the ROP behavior of the titanium alkoxide starting materials [Ti(OR)4] (R = Me, nPr,
iPr, tBu), i.e., ROP in the absence of L1H2- and L2H3-derived ligation, was investigated. The
results are presented in Table 1 entries 18–21, which reveal that [Ti(OnPr)4] allowed for 92%
conversion within 2 min, albeit with far less control compared to 1–10 (i.e., broader Ð). We
note that the complexes [Ti(OR)4] can adopt varied structures; for example, tetranuclear has
been reported for R = Me (X-ray diffraction [52]) whilst trimeric was observed for R = nPr
(cryoscopic measurements) [53]. Complex [Ti(OnPr)4] is still active for the ROP of ε-CL at
100 ◦C in air; however, the Mw distribution is very broad.

Table 1. ROP of ε-CL catalyzed by the Ti complexes 1–10 and [Ti(OR)4].

Run Catalyst L1/L2 OR
Group CL:Ti T (◦C) Time

(min)
Conv. a

(%)
Mn (calc.)

b

(kDa)
Mn (obs.)

c,d

(kDa)
Ð c

1 1

L1

OMe 250:1 100 195 99 28.3 7.2 1.87
2 2·MeCN - 250:1 100 1440 20 5.7 4.6 1.25
3 3 OiPr 250:1 100 150 99 28.3 30.0 1.93
4 4·MeCN OiPr 250:1 100 1440 31 8.9 6.0 1.53
5 5·MeCN OtBu 250:1 100 1440 53 15.2 4.1 1.25
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Table 1. Cont.

Run Catalyst L1/L2 OR
Group CL:Ti T (◦C) Time

(min)
Conv. a

(%)
Mn (calc.)

b

(kDa)
Mn (obs.)

c,d

(kDa)
Ð c

6 6·2.5MeCN

L2

OMe 250:1 100 480 95 27.1 6.0 1.22
7 7·MeCN OnPr 250:1 100 12 99 28.3 8.4 1.49
8 8 OiPr 250:1 100 210 99 28.3 6.7 1.80
9 9 OiPr 250:1 100 345 99 28.3 12.0 1.97

10 10·2MeCN OtBu 250:1 100 255 99 28.3 39.0 2.41
11 7·MeCN OnPr 250:1 50 150 99 28.3 4.8 1.20
12 7·MeCN OnPr 500:1 100 6 99 56.6 13.0 2.35
13 7·MeCN OnPr 1000:1 100 9 99 113 8.7 1.45
14 7·MeCN OnPr 2000:1 100 12 99 226 8.6 1.84
15 7·MeCN OnPr 250:1 25 1440 14 - - -

16 e 7·MeCN OnPr 250:1 100 1440 6 - - -
17 f 7·MeCN OnPr 250:1 100 6 98 28.0 10.5 1.29

18

[Ti(OR)4] -

OMe 250:1 100 195 3 0.9 1.0 1.22
19 OnPr 250:1 100 2 92 26.3 6.7 2.79
20 OiPr 250:1 100 195 94 26.8 7.8 3.01
21 OtBu 250:1 100 195 43 12.3 5.4 2.94

22 e OnPr 250:1 100 2 96 27.4 5.6 3.21

Reaction conditions: ε-CL 4.5 mmol, toluene 2 mL, N2 atmosphere. a Determined by 1H NMR spectroscopy on
the crude reaction mixture. b Calculated from [CL]/[Ti] × Conv. ×M(CL) + M(end group). c From GPC. d Values
corrected considering Mark–Houwink factor (0.56) from polystyrene standards in THF. e Reaction conducted in
air. f Conducted under solvent-free conditions.
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Table 2. Kinetics constants for the ROP of ε-CL catalyzed by 1–10 at 100 ◦C.

Run Complex kobs (×104) Induction Period (min)

1 1 302 (R2 = 0.992) 60
2 2·MeCN 2.15 (R2 = 0.999) 275
3 3 416 (R2 = 0.969) 60
4 4·MeCN 2.57 (R2 = 0.994) 215
5 5·MeCN 2.87 (R2 = 0.977) 300
6 6·2.5MeCN 159 (R2 = 0.977) 270
7 7·MeCN 4743 (R2 = 0.978) 0
8 8 358 (R2 = 0.968) 105
9 9 253 (R2 = 0.986) 210

10 10·2.5MeCN 246 (R2 = 0.981) 105
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End group analysis by 1H NMR spectroscopy indicated that the PCL possessed OR/OH
end groups (e.g., Figure 12). Furthermore, the MALDI-TOF mass spectra (e.g., Figure 13)
revealed the presence of both linear and cyclic products. For the 1H NMR spectra and
MALDI-TOF spectra of the PCL resulting from the use of 1–7, 9 and 10, see Figures S12–S29
in the Supporting Information.
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2.3. Ring Opening Polymerization Studies of Rac-Lactide (r-LA)

Complexes 1–10 were screened as initiators in the ROP of r-LA at 130 ◦C using a
monomer to Ti ratio of 250:1 (Table 3) under an N2 atmosphere, unless stated otherwise.
The L1H2-derived complexes 1–5 exhibited good activities (72–98% conversion over 24 h
at 130 ◦C; Table 3, entries 1–5). Indeed, even complex 2, which bears only chelate ligands,
exhibited a reasonable conversion at 78% (Table 3, entry 2). By contrast, the L2H3-derived
complexes 6 and 8–10 exhibited inferior conversions (28–65%; Table 3, entries 6, 8–10),
suggesting the presence of the L2H3-derived ligand set was less beneficial in terms of
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accessing a high activity system for the ROP of r-LA. That said, the L2H3-derived complex
7 proved to be the exception, and afforded a conversion of 98% (Table 3, entry 7). The
alkoxide group effect on the ROP of r-LA is best illustrated by looking at the pairs of
nearly identical structures, namely, 7 (OnPr) versus 8 (OiPr) and 9 (OiPr) versus 10 (OtBu)
(Table 3, entries 7–10). For 7 and 8, the use of OnPr appears to be far more favorable
than OiPr, with conversions of 98 and 52%, respectively; using 7 (OnPr) also afforded a
higher-molecular weight product (30 versus 14 kDa, respectively); 8 exhibited slightly better
control. For 9 and 10, the performance of the OiPr exceeded that of the OtBu derivative 10,
with 9 affording higher conversion (44 vs. 28%) and better control (1.15 vs. 1.37). These
results, particularly the induction periods, may well reflect the steric bulk of alkoxide
groups present, for example the bulkier OtBu group may hinder the coordination of r-LA
to the Ti metal center. Comparison of the complexes 3 and 4, which bear the same type
of alkoxide group, suggests that the number of L1H− ligands present may also be an
important factor (Table 3, entries 3–4). However, the wide variety of structures afforded
during these reactions makes further analysis of structure/activity relationships somewhat
problematic. With this in mind, we have again looked at the ROP behavior of the titanium
alkoxides [Ti(OR)4] (R = Me, nPr, iPr, tBu) in order to investigate the effect of the absence of
L1H2 and L2H3 derived ligands on titanium under the same ROP conditions as employed
for 1–10. After 24 h, the sequence of conversion for the [Ti(OR)4] complexes was found
to be [Ti(OnPr)4] ≈ [Ti(OMe)4] > [Ti(OtBu)4] > [Ti(OiPr)4]. Similar to the ROP results
for ε-CL, [Ti(OnPr)4] exhibited superior activity (vs. 1–10), but with less control over the
polymerization process (Table 3, entry 16). Interestingly, if the ROP of r-LA was conducted
for only 90 min at 130 ◦C, then the observed conversions yielded the order [Ti(OnPr)4]
(96%) > [Ti(OiPr)4] (80%) > [Ti(OtBu)4] (8%) > [Ti(OMe)4] (no conversion).

Table 3. ROP of r-LA catalyzed by Ti complexes 1–10 and [Ti(OR)4].

Run Catalyst L1/L2 OR
Group LA:Ti T (◦C) Conv. a

(%)
Mn (calc.)

b

(kDa)
Mn (obs.)

c,d

(kDa)
Ð c Pi e

1 1

L1

OMe 250:1 130 90 32.0 22.0 1.34 0.39
2 2·MeCN - 250:1 130 78 28.0 14.0 1.22 0.47
3 3 OiPr 250:1 130 92 33.0 13.0 1.15 0.46
4 4·MeCN OiPr 250:1 130 98 35.0 16.0 1.19 0.49
5 5·MeCN OtBu 250:1 130 72 26.0 13.0 1.72 0.48

6 6·2.5MeCN

L2

OMe 250:1 130 65 23.0 11.0 1.21 0.26
7 7·MeCN OnPr 250:1 130 98 35.0 30.0 1.29 0.49
8 8 OiPr 250:1 130 52 19.0 14.0 1.19 0.46
9 9 OiPr 250:1 130 44 16.0 8.0 1.15 0.51

10 10·2MeCN OtBu 250:1 130 28 10.0 12.0 1.37 0.16
11 f 4·MeCN OiPr 250:1 130 20 7.3 4.6 1.18 -
12 f 7·MeCN OnPr 250:1 130 16 5.8 3.6 1.10 -

15

[Ti(OR)4] -

OMe 250:1 130 99 35.7 0.5 1.24 -
16 OnPr 250:1 130 99 35.7 0.7 3.03 -
17 OiPr 250:1 130 86 31.0 0.5 2.75 -
18 OtBu 250:1 130 98 35.4 1.7 2.60 -

Reaction conditions: r-LA 4.5 mmol, toluene 2 mL, 24 h, N2 atmosphere. a Determined by 1H NMR spectroscopy
of the crude reaction mixture. b Calculated from [r-LA]/[Ti] × Conv. × Mw (LA) + Mw (end group).

c From GPC.
d Values corrected considering Mark–Houwink factor (0.58) from polystyrene standards in THF. e Pi = 1–2Iisi.
f Reaction conducted in air.

The air stability of complexes 4 and 7 was also examined; they were employed to
initiate the polymerization of r-LA at 130 ◦C with a [LA]:[Ti] ratio of 250:1 in air. Both
complexes proved to be less active in air, with dramatically decreased conversions (Table 3,
entries 11–12), and the Mn values were found to be lower than the calculated values.

The kinetics for the ROP of r-LA using 1–10 were investigated by in situ 1H NMR spec-
troscopy studies, based on the relative areas of the methine signals of PLA and r-LA (5.06
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and 4.18 ppm, respectively); see the Supporting Information, Figure S30 (displays results
using 7, Table 3, entry 7). The corresponding kinetics semi-logarithmic plots for 1–9 are
shown in Figure 14 (data for 10 could not be recorded due to the slow reactivity of the com-
plex). The apparent rate constant of 1–9 follows the trend 4 > 7 > 3 > 1 > 2 > 5 > 6 > 8 > 9.
The first order kinetic plot of r-LA polymerization using 6, 8 and 9 showed an induction
period of 300–400 min, suggesting the slow insertion of the LA unit because of the different
nucleophilicity of the alkoxide groups [54]. The linearity of the plots using 1–5 and 7 indi-
cates the absence of an induction period, and the ROP rate exhibits first order dependence
on monomer concentration.
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1H NMR spectroscopy analysis of the end groups of the PLA synthesized with com-
plex 10 indicated the presence of tert-butoxy and a hydroxyl chain terminus (Figure 15),
suggesting that polymer initiation occurs through the insertion of lactide into the Ti-O bond
via the coordination insertion mechanism. This is further supported by MALDI-TOF mass
spectra (e.g., Figure 16). The major set of peaks with a mass difference of m/z = 114 Da
corresponds to 144.15n + 72.11 + 1.01, and is attributed to (LA)n + tBuOH. A minor set of
peaks corresponds to cyclic polymers separated by 144 Da. For the 1H NMR spectra and
MALDI-TOF spectra of the PLA resulting from the use of 1–5 and 7–9, see Figures S31–S44
in the Supporting Information.

The stereochemical microstructure analysis of PDLLA was verified by the inspection of
the methine region of 13C NMR of the polymers (Figures S45–S49, Supporting Information).
The methine carbon signal in the repeat unit of PLA is sensitive to the tetrad. The degree
of stereoselectivity is defined by the parameter Pi, which is the probability of forming a
new i-dyad [55]. From Table 3, we see that Pi is mostly < 0.5, which indicates mostly the
formation of an isotactic product [56]. For 9, the data suggest the formation of an atactic
polymer (Pi = 0.51).
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3. Materials and Methods
3.1. General

All reactions were conducted under an inert atmosphere using standard Schlenk
techniques unless otherwise specified. Toluene was dried from sodium, acetonitrile was
distilled from calcium hydride, and all solvents were degassed prior to use. IR spectra
(nujol mulls, KBr windows) were recorded on a Nicolet Avatar 360 FTIR spectrometer;
NMR spectrometer 400.2 MHz on a JEOL ECZ 400S spectrometer, with TMS δH = 0 as
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the internal standard or residual protic solvent [CD3CN, δH =1.94]. Chemical shifts are
given in ppm (δ) and coupling constants (J) are given in Hertz (Hz). Elemental analyses
were performed by the elemental analysis service at the Department of Chemistry, the
University of Hull or OEA labs Ltd (UK). Matrix-Assisted Laser Desorption/Ionization
Time of Flight (MALDI-TOF) mass spectrometry was performed in a Bruker autoflex III
smart beam in linear mode, and the spectra were acquired by averaging at least 100 laser
shots. 2,5-Dihydroxybenzoic acid was used as the matrix and THF as solvent. Sodium
chloride was dissolved in methanol and used as the ionizing agent. Samples were prepared
by mixing 20 µL of matrix solution in THF (2 mg·mL−1) with 20 µL of matrix solution
(10 mg·mL−1) and 1 µL of a solution of ionizing agent (1 mg·mL−1). Then 1 mL of these
mixtures was deposited on a target plate and allowed to dry in air at ambient temperature.
The metal alkoxides [Ti(OR)4] (R = Me, nPr, iPr, tBu) and the acids 2,2′-Ph2C(X)(CO2H)
(X = OH, NH2) were purchased from Sigma-Aldrich. Molecular weights were calculated
from the experimental traces using the OmniSEC software.

3.2. Preparation of [Ti4(L1)2(OMe)12] (1)

In a 25 mL Schlenk tube under nitrogen, 2,2′-Ph2C(OH)(CO2H) (1.00 g, 4.38 mmol)
was dissolved in dry toluene (20 mL), and two equivalent of [Ti(OMe)4] (1.51 g, 8.76 mmol)
was added into the reaction solution. The system was refluxed for 12 h, and following the
removal of volatiles in vacuo, the residue was extracted in warm MeCN (12 mL), affording
on prolonged standing in the refrigerator (5 ◦C) small, white crystals. Yield 50% (1.11 g).
Anal. Calcd for C40H56O18Ti4 (1016.44 g/mol): C, 47.27; H, 5.55%; found: C, 47.07; H,
5.42%. HR-MS (EI): m/z 528.64 [Ti2L1(OMe)6 − 3H + Na]+. 1H NMR (400 MHz, Acetone-
D6) δ 7.76 (m, 8H, ArH), 7.30 (m, 4H, ArH), 7.18 (m, 6H, ArH), 7.09 (m, 2H, ArH), 4.65
(s, 6H, OMe), 4.52–4.48 (overlapping s, 6H OMe), 4.18 (s, 6H, OMe), 3.73 (m, 3H, OMe),
3.68 (s, 3H, OMe), 3.52 (overlapping s, 6H, OMe), 3.27 (s, 6H, OMe). IR (nujol mull, cm−1):
2955(s), 2923(s), 2854(s), 2727(w), 2357(w), 1682(s), 1564(s), 1557(s), 1488(m), 1463(s), 1377(s),
1313(w), 1260(m), 1118(s), 1027(s), 916(w), 817(w), 801(w), 758(w), 722(m), 696(m), 666(w),
606(m), 505(m), 455(w).

3.3. Preparation of [Ti(L1H)3][Ti(L1H)(L1H)2] MeCN (2·MeCN)

The synthesis of 2 was carried out according to the same procedure as for 1, but using
L1H2 (2.00 g, 8.76 mmol) and [Ti(OnPr)4] (1.21 mL, 4.38 mmol). Yield 70% (2.24 g). Anal.
Calcd for C86H67NO18Ti2 (1498.20 g/mol): C, 68.95; H, 4.51; N, 0.93%; found: C, 68.66; H,
4.75; N, 0.97%. HR-MS (EI): m/z 729.41 [Ti(L1H)3]+. 1H NMR (400 MHz, CD3CN, 25 ◦C):
δ 7.74 (m, 2H, ArH), 7.61 (m, 1H, ArH), 7,51 (m, 2H, ArH), 7.40–7.20 (overlapping m, 25H,
ArH); OH not observed. IR (nujol mull, cm−1): 2957(s), 2923(s), 2953(s), 2359(w), 2340(w),
1596(w), 1457(m), 1376(m), 1260(m), 1090(s), 1020(s), 914(w), 866(w), 799(s), 720(w), 692(w),
668(w), 638(w), 608(w), 552(w), 467(w).

3.4. Preparation of [Ti4O(L1)2(OiPr)10] (3)

The synthesis of 3 was carried out according to the same procedure as for 1, but using
L1H2 (2.00 g, 8.76 mmol) and [Ti(OiPr)4] (3.99 mL, 13.48 mmol). Yield 30% (1.26 g). Anal.
Calcd for C58H90O17Ti4 (1250.89 g/mol): C, 55.69; H, 7.25%; found: C, 56.10; H, 7.22%.
HR-MS (E/I): m/z 1256.84 [Ti4O(L1)2(OiPr)10 + 6H]+. 1H NMR (400 MHz, Acetone-D6
25 ◦C): δ 7.83–6.80 (bm, 20H, ArH), 3.86 (sept, J = 6.0 Hz, 10H, CHMe2), 1.07 (d, J = 6.0 Hz,
60H, CHMe2). IR (nujol mull, cm−1): 2956(s), 2923(s), 2853(s), 1729(m), 1634(s), 1597(s),
1460(s), 1377(s), 1261(s), 1212(m), 1165(s), 1113(s), 1089(m), 1055(s), 1019(s), 1006(m), 941(m),
914(w), 854(m), 803(s), 777 (m). 757(m), 738(w), 722(s), 694(m), 661(w), 623(s), 612(s), 550(m),
527(w), 484(w), 467(w), 430(w).

3.5. Preparation of [Ti4O(L1)3(OiPr)8] (4·MeCN)

The synthesis of 4 was carried out according to the same procedure as for 1, but using
L1H2 (2.00 g, 8.76 mmol) and [Ti(OiPr)4] (2.66 mL, 8.98 mmol). Yield 45% (1.42 g). Anal.
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Calcd for C66H86O18Ti4 (1358.94 g/mol): C, 58.34; H, 6.38%; found: C, 57.89; H, 6.16%. HR-
MS (EI): m/z 1272.71 [Ti2O(L1)3(OiPr)7–2(iPr)]+, 1256.80 [Ti2O(L1)3(OiPr)7–(OiPr)–(iPr)]+.
1H NMR (400 MHz, Acetone-D6, 25 ◦C): δ 7.83–6.67 (bm, 30H, ArH), 3.86 (sept, J = 6.4 Hz,
8H, CHMe2), 1.07 (d, J = 6.4 Hz, 48H, CHMe2). IR (KBr disc, cm−1): 2955(s), 2923(s), 2853(s),
1961(w), 1887(w), 1821(w), 1728(m), 1633(m), 1957(m), 1491(m), 1462(s), 1377(s), 1261(m),
1211(m), 1165(m), 1110(s), 1088(m), 1045(s), 1025(s), 1006(m), 941(w), 913(w), 854(m), 803(s),
757(m), 738(w), 722(m), 694(m), 661(w), 622(w), 607(m), 538(m), 526(m), 485(w), 429(w).

3.6. Preparation of [Ti3(L1)4(OtBu)4(CH3CN)] (5·CH3CN)

The synthesis of 5 was carried out according to the same procedure as for 1, but using
L1H2 (2.00 g, 8.76 mmol) and [Ti(OtBu)4] (3.38 mL, 8.75 mmol). Yield 10% (0.42 g). Anal.
Calcd for C74H79NO16Ti3 (1382.04 g/mol): C, 64.31; H, 5.76; N, 1.01%; found: C, 63.94;
H, 5.77; N, 0.94%. HR-MS (EI): m/z 1468.42 [Ti3(L1)4(OtBu)4(CH3CN)·CH3CN + 2Na]+.
1H-NMR (400 MHz, Acetone-D6) δ 7.77–7.10 (bm, 40H, ArH), 2.28 (s, 3H, MeCN), 1.15 (s,
36H, C(CH3)3). IR (nujol mull, cm−1): 2958(s), 2853(s), 2727(w), 2671(w), 1704(w), 1660(w),
1644(w), 1568(w), 1463(s), 1377(s), 1310(m), 1261(s), 1236(s), 1170(s), 1088(s), 1026(s), 941(w),
915(w), 795(s), 722(s), 694(m), 666(w), 638(w), 621(w), 607(m), 587(w), 545(m), 490(m),
456(w).

3.7. Preparation of [Ti(L2H2)3OMe]·2.5CH3CN (6·2.5CH3CN)

As for 1, but using L2H3 (1.00 g, 4.40 mmol) and [Ti(OMe)4] (0.38 g, 2.21 mmol), af-
fording 6·2.5CH3CN as colorless prisms. Yield 24% (0.46 g). Anal. Calcd for C43H39N3O7Ti
(860.30 g/mol): C, 68.17; H, 5.19; N, 5.55%; found: C, 67.98; H, 4.99; N, 5.46%. HR-MS
(EI): m/z 1031.87 [2×Ti(L2H2)6(OMe)2 − OMe-2(L2H2)]. 1H NMR (400 MHz, Acetone-D6)
δ 7.77–7.15 (bm, 30H, ArH), 3.27 (s, 3H, OMe), 2.95 (bs, 6H, NH2). IR (KBr disc, cm−1):
3336(w), 3246(w), 3056(m), 2958(s), 2923(s), 2854(s), 2360(w), 2342(w), 2250(w), 1682(s),
1651(w), 1589(m), 1494(m), 1463(s), 1448(s), 1377(s), 1261(s), 1191(w), 1101(s), 1019(s), 800(s),
764(m), 698(s), 677(w), 614(w), 583(w), 502(w), 455(w).

3.8. Preparation of [Ti(L2H2)2(OnPr)6]·CH3CN (7·CH3CN)

As for 1, but using L2H3 (2.00 g, 8.80 mmol) and [Ti(OnPr)4] (2.61 mL, 8.80 mmol),
affording 7·CH3CN as colorless prisms. Yield 80% (3.17 g). Anal. Calcd for C46H66N2O10Ti2
(902.77 g/mol): C, 61.20; H, 7.37; N, 3.10%; found: C, 60.93; H, 7.02; N, 2.98%. HR-MS
(EI): m/z 811.76 [Ti2(L2H2)2(OnPr)6–2nPr–3H+]. 1H NMR (400 MHz, CD3CN, 25 ◦C): 7.40
(overlapping m, 5H, ArH), 7.33 (overlapping m, 13H, ArH), 7.23 (overlapping m, 2H,
ArH), 4.45–3.99 (overlapping bm, 12H, NH2 + 5x OCH2CH2CH3), 3.43 (m, J = 6.4 Hz, 2H,
OCH2CH2CH3), 2.31 (bs, 2H, NH2), 1.46 (overlapping m, 12H, OCH2CH2CH3), 0.89–0.62
(overlapping m, 18H, OCH2CH2CH3). IR (KBr disc, cm−1): 3336(w), 3246(w), 3056(m),
2958(s), 2923(s), 2854(s), 2360(w), 2342(w), 2250(w), 1682(s), 1651(w), 1589(m), 1494(m),
1463(s), 1448(s), 1377(s), 1261(s), 1191(w), 1101(s), 1019(s), 800(s), 764(m), 698(s), 677(w),
614(w), 583(w), 502(w), 455(w).

3.9. Preparation of [Ti2(L2H2)2(OiPr)6] (8)

As for 1, but using L2H3 (2.00 g, 8.76 mmol) and [Ti(OiPr)4] (2.61 mL, 8.80 mmol),
affording 8 as colorless prisms. Yield 30% (0.40 g). Anal. Calcd for C46H66N2O10Ti2
(902.88 g/mol): C, 61.20; H, 7.37; N, 3.10%; Found: C, 60.12; H, 6.92; N, 3.38%%. HR-MS
(EI): m/z 1080.09 = 2[Ti2(L2H2)2(OiPr)6] − 3(L2H2) – iPr − 3H+]. 1H-NMR (400 MHz,
Acetone-D6): δ 7.31 (overlapping m, 8H, ArH), 7.26 (overlapping m, 12H, ArH), 5.01 (sept,
J = 6.4 Hz, 2H, CH(CH3)2), 3.86 (sept, J = 6.4 Hz, 4H, CH(CH3)2), 3.27 (bs, 2H, NH2), 2.86
(bs, 2H, NH2), 1.16 (d, J = 6.4 Hz, 12H, CH(CH3)2), 1.08 (d, J = 6.4 Hz, 24H, CH(CH3)2). IR
(KBr disc, cm−1): 3366(m), 3296(m), 2955(s), 2923(s), 2853(s), 2724(w), 2613(w), 2355(w),
1986(w), 1960(w), 1900(w), 1682(s), 1651(m), 1633(m), 1574(m), 1495(m), 1463(s), 1378(s),
1365(m), 1322(m), 1261(s), 1192(w), 1160(m), 1105 (s), 1073(m), 1014(s), 980(m), 948(w),
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932(m), 916(w), 851(m), 801(s), 775(w), 758(w), 732(w), 700(m), 674(w), 624(m), 606(m),
553(m), 524(w), 499(m), 472(m), 458(m), 426(w).

3.10. Preparation of [(L2H2)2Ti(OiPr)2] (9)

As for 1, but using L2H3 (2.00 g, 8.76 mmol) and [Ti(OiPr)4] (1.31 mL, 4.40 mmol),
affording 9 as colorless prisms. Yield 30% (0.82 g). Anal. Calcd for 3 × [C34H38N2O6Ti]
(1855.69 g/mol): C, 66.02; H, 6.19; N, 4.53%; found: C, 65.88; H, 6.07; N, 4.42%. HR-MS
(EI): m/z 770.16 = 2 × [Ti(L2H2)2(OiPr)2] − 2L2H2 − CH3]. 1H-NMR (400 MHz, CDCl3):
δ 7.31–6.87 (2x bm, 20H, ArH), 4.65 (sept, J = 6.4 Hz, 2H, CHMe2), 3.70 (bs, 4H, NH2), 1.19
(d, J = 6.4 Hz, 12H, CHMe2). IR (nujol mull, cm−1): 3356(w), 3316(w), 3280(w), 3202(w),
3134(w), 2955(s), 2923(s), 2853(s), 1667(s), 1573(m), 1494(w), 1463(s), 1377(s), 1344(w),
1307(m), 1261(m), 1192(w), 1165(w), 1117(m), 1066(w), 1050(w), 1017(m), 967(w), 922(w),
911(w), 892(w), 857(m), 819(s), 802(s), 763(w), 747(m), 723(m), 696(m), 676(w), 631(w),
617(w), 561(w), 540(w), 517(w), 492(w), 458(m), 405(m).

3.11. Preparation of [(L2H2)Ti(OtBu)2]·2MeCN (10·2MeCN)

As for 1, but using L2H3 (2.00 g, 8.76 mmol) and [Ti(OtBu)4] (3.00 mL, 8.80 mmol), affording
10·2MeCN as colorless prisms. Yield 60% (3.85 g). Anal. Calcd for C36H42N2O6Ti·2[CH3CN]
(728.72 g/mol): C, 65.93; H, 6.64; N, 7.69%; found: C, 65.40; H, 6.74; N, 6.98%. HR-MS
(EI): m/z 589.781 [Ti(L2H2)2(OtBu)2 − tBu]. 1H-NMR (400 MHz, Acetone-D6) δ 7.54 (bm,
2H, ArH), 7.47 (bm, 2H, ArH), 7.36 (bm, 4H, ArH), 7.29 (overlapping m, 8H, ArH), 7.18
(bm, 4H, ArH), 4.43 (bs, 2H, NH2), 1.16 (s, 18H, C(CH3)3), 1.03 (bs, 2H, NH2). IR (nujol
mull, cm−1): 3347(m), 3244(m), 3057(w), 2955(s), 2922(s), 2853(s), 2727(w), 2671(w), 1684(s),
1651(s), 1572(s), 1494(m), 1463(s), 1377(s), 1362(m), 1327(m), 1296(s), 1261(m), 1234(m),
1182(s), 1124(s), 1078(m), 1032(w), 1015(s), 990(s), 861(w), 821(m), 793(m), 767(m), 758(m),
737(w), 723(w), 699(s), 677(m), 624(m), 609(m), 579(m), 544(w), 522(w), 489(m), 466(m),
447(w), 421(w).

3.12. ROP of ε-Caprolactone or Rac-Lactide

All polymerizations were carried out in Schlenk tubes under nitrogen atmosphere.
ε-CL and r-LA were polymerized using complexes and toluene as solvent (2 mL). The
reaction mixture was then placed into a preheated oil bath to the required temperature
(shown in Tables 1 and 3). The reaction was quenched by the addition of an excess of glacial
acetic acid (0.2 mL), then the reaction solution was poured into cold methanol (20 mL). The
precipitated polymers were recovered by filtration, washed with methanol and dried at
60 ◦C overnight in a vacuum oven.

3.13. Crystallography

Full sets of X-ray diffraction intensity data were collected using modern X-ray diffrac-
tometers at the National Crystallography Service in Southampton, UK. The routine pro-
cessing of raw intensity data and multi-scan absorptions corrections were applied. The
structures were solved using dual-space methods within SHELXT and full-matrix least
squares refinement was carried out using SHELXL-2018 [57] via the program Olex2. [58]
All non-hydrogen positions were located in direct and difference Fourier maps and refined
using anisotropic displacement parameters. Disorder was modeled conservatively using
standard techniques.

4. Conclusions

We have investigated the reaction between acids of the type 2,2′-Ph2C(X)(CO2H),
where X = OH and NH2, i.e., benzilic acid (2,2′-diphenylglycolic acid, L1H2), and 2,2′-
diphenylglycine (L2H3), with titanium tetraalkoxides [Ti(OR)4] (R = Me, nPr, iPr, tBu). The
resulting mono-, bi-, tri or tetra-metallic products have been structurally characterized
and employed as catalysts for the ROP of both ε-CL and r-LA. For the ROP of ε-CL, the
complex [Ti(L2H2)2(OnPr)6]·CH3CN (7·CH3CN) exhibited the best performance, achieving
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a conversion of ≥99% within 6 min at 100 ◦C. A number of the other systems proved to be
quite sluggish and experienced induction periods. For the ROP of r-LA, the benzilic acid-
derived complexes all exhibited good conversions, whilst most of the 2,2′-dipheylglycine-
derived species proved to be poorer catalysts. The exception again was complex 7, which
achieved high conversion (98%). As well as polymers bearing alkoxide/hydroxy end
groups, there was evidence of cyclic polymers.
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MALDI-TOF spectrum of PLA using 5 (Table 3, entry 5). Figure S39. 1H NMR (400 MHz, CDCl3)
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