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1 Abstract

Chemometrics and Design of Experiments (DOE) are fast becoming integral 

parts of process analysis and incorporated into the resulting advances in technology. 

To this end, two major studies were undertaken to explore the existing methods of 

modelling using both traditional and modern forms of process analytical technology, 

and to create new methods using the most current developments in the field.

The first study involved the use of chemometrics and DOE with low-resolution 

NMR FID spectra of a series of polymers that were collected over a period of ten 

months. Accompanying the NMR FID spectra were the associated laboratory 

reference measurements for a series of quality assurance parameters. This 

information was used to build an online prediction model for the Xylene Soluble 

(XS) content of polymer pellets. The installation of the online model was 

accomplished in numerous stages during which various sample selection methods, 

including work by Shenk and Westerhaus, were developed and evaluated. The 

intrinsic nature of the NMR data meant that traditional methods of sample selection 

could not be employed. The final model used the principal component analysis 

scores as a means of selecting samples for calibration. DOE was used to determine 

the best method of pre-processing to be applied to the data prior to partial least 

squares modelling. The final PLS model was evaluated and the error in prediction 

for the XS content was found to be 0.672%. The success of this project lead to the 

installation of this product online at the point of analysis in December 2006.

The second study employed chemometrics and DOE with a more traditional 

method of process analytical technology, the NIR spectral analysis of pharmaceutical 

tablets. The NIR spectra of over 250 tablets were collected over three production
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campaigns from 1997 to 1999. Accompanying the NIR spectral data were the 

chemical and physical tablet parameters, active pharmaceutical ingredient, weight, 

and tablet thickness. The sample selection techniques developed as part of the 

polymer study were evaluated. In order to correct for variations due to specular and 

diffuse scattering effects, extended multiplicative scatter correction was applied to 

the data. As with the polymer study, DOE was used to determine the best method of 

data pre-processing prior to the partial least squares modelling. The best method of 

sample selection for this study was found to be the use of the condition number. The 

final prediction models for the active pharmaceutical ingredient, weight, and tablet 

thickness were produced. The final step for this study would be to apply this model 

online at the point of analysis in the same manner as the polymer study.
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2 Aims and Objectives

The main aims and objective of this research were to develop a system of 

modelling that, when applied to any set of data, would always result in an optimised, 

robust model. Once produced, the models could then be used to predict various 

quality control parameters relating to production processes. In order to be broadly 

applicable, models must be able to handle and characterise data obtained from a 

variety of sources. The models constructed must also be expanded to cover grade- 

based distributions as well as normally-distributed laboratory reference data. Finally, 

all of the models produced must be applied online to make real-time predictions.

Progress toward these aims and objectives will proceed with the analysis of two 

real process analytical data sets. The first data set to be examined is the NMR spectra 

from the production of polypropylene, the second data set comprised of NIR 

spectroscopic information collected from packaged pharmaceutical tablets. Using 

this data a series of chemometric methods will be developed to generate robust 

predictive models that can be applied online to make real-time measurements.
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3 Introduction

3.1 Process Analytical Technology

Process Analytical Technology (PAT) is defined by Kowalski as "the 

application of analytical science to the monitoring and control of industrial chemical 

processes."^ The information attained through the monitoring of an industrial 

process using PAT can be used to control output and increase performance of the 

chemical process for the optimisation of the processing rate, the quality of the final 

product, the cost of production, and a reduction of waste.

The concept of PAT is not a new one, and it has been employed within the 

petrochemical industry for over fifty years. Within the last couple of decades, 

however, PAT experienced a renaissance and rapidly expanded into newer industrial 

spheres such as food science and pharmaceuticals. The necessity of this 

technological evolution was brought about by a combination of large-scale, large- 

unit cost processes and a dramatic increase in regulations from governing bodies 

such as the PDA. Another major factor driving PAT to the forefront of cost 

minimisation was OPEC's response to the 1973 Arab-Israeli war; OPEC increased 

the cost of crude oil, which forced the petrochemical industry to be much more 

conscious of costs for the first time.

As PAT has become more prominent, the shift from the traditional analytical 

set-up to a more localised set-up has occurred. In the traditional practice, one which 

could be defined as an "off-line method" of analysis, a sample is taken from a 

process stream and then transported to an off-site laboratory equipped with modern 

analytical instruments and a highly-trained professional staff. Using these resources, 

the analysis is performed, with a typical run time of a few hours to a full day. Due to
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the retrospective nature of this kind of analysis, additional time must be incorporated 

into process cycles to accommodate any reworking or altering of reaction conditions 

that might be necessary. The advantages of this traditional method of analysis are 

that the analysis is performed by an expert analyst, there are flexible operation 

procedures such that the instrument can be used for any reaction stream or process, 

the instrument can be utilised for many forms of analysis, and one instrument can be 

used on a number of processes on various projects, reducing overall costs and 

overheads.

The introduction of PAT has helped to dramatically reduce the timeline of 

analysis and has moved the analysis framework from an off-line method to an "at- 

line" or "online" strategy. With PAT, a sample is taken directly from the process 

stream (generally via an automated process using pre-set sampling parameters), and 

the sample is analysed using a specific process instrument that is situated either next 

to or directly on the process stream. When the instrument is situated next to the 

process stream, this is an at-line method; an online method is situated right on the 

process stream. The PAT instruments used vary significantly from the traditional 

instruments employed in the traditional analysis laboratory. The PAT machines are 

far more robust and must be able to accommodate the conditional variations that are 

present in an industrial manufacturing setting but not typically present in a 

traditional laboratory. Such conditional variations may include external temperature 

fluctuations, changes in process flow rates, overall reaction times, and other 

pressures that can occur in an uncontrolled location.

An at-line process has a dedicated instrument, and, due to the immediate and on- 

site processing, the turnaround from sampling to results is reduced substantially in 

conroarison to off-line methods. However, this advantage is offset bv the limitations
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of dedicating an entire instrument to a single process; a dedicated instrument cannot 

be used for any other task during downtimes, which is more costly than having one 

equipment item that can be used for multiple tasks, in addition to the often 

substantial price tag for the initial purchase of robust instrumentation.

Online methods are the pinnacle of PAT, as then- full automation and dedication 

to a single process allow for the immediacy of results. The feedback from analysis 

can be almost instant, and process feedback control can be driven by a single skilled 

technician. Furthermore, online analysers can be used to analyse each sample within 

a given process stream (such as every tablet produced by a reaction), ensuring that 

every single sample produced meets specifications. To maximise productivity and 

minimise costs when using online systems, downtime should be minimised, as time 

when the processor is not running is time when no measurements are being taken 

thus no knowledge of the quality of the final product being produced; furthermore, 

these systems must be continually maintained to ensure all analysis performed is 

within certain tolerances. With the establishment of the online method, a form of 

sample pre-treatment may also have to be performed to facilitate the analysis of 

samples, which is not usually necessary for off-line methods where pre-treatment 

within a lab environment is straightforward.

The PAT instruments have chemometric analysis software to perform all the 

necessary steps to analyse samples and provide feedback. This means that a desired 

process parameter, such as an octane number, can be fed directly to a control centre 

where the fabrication process can be altered or optimised. It is important to highlight 

that, unlike the traditional method, the PAT approach does not require a highly- 

trained technical staff, as most PAT instruments are fully-automated and therefore
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only require routine maintenance by non-technical staff. The in-built chemometrics 

software and models can be updated remotely by one highly-trained chemometrician.

The first transition from the traditional approach to the PAT approach involved 

the relocation of laboratory instruments next to the process streams. This shift 

initially lead to major advancements in areas such as process gas chromatography 

(GC), process high performance liquid chromatography (HPLC) and process nuclear 

magnetic resonance (NMR) spectroscopy J2' More recently, the ability to make 

instruments more robust to environmental factors and to miniaturise what were 

traditionally large instruments has meant that spectroscopic methods such as process 

Near and mid-infrared spectroscopy,^ process Raman spectroscopy, and process 

mass spectrometry (MS) have made significant advances. However, one of the major 

drawbacks to the PAT approach occurs hi the first stage, sampling. In order to take 

the necessary samples without disrupting the production process or compromising 

the quality of the sample itself, a series of non-invasive sampling methods and tools 

have become increasingly important, such as process microwave spectroscopy, [4] 

acoustical analysis, [5> 6] and NIR probes.

Currently, the majority of PAT is implemented by retrofitting the current 

process equipment and blending old and new technologies to better address advances 

in industrial manufacturing. The future of PAT lies with industrial corporations 

building physical plants that have provisions for PAT included from the inception of 

the design process, along with the continued improvement of current PAT 

instrumentation. Increasing regulatory control by governing bodies such as the U. S. 

Food and Drug Administration (FDA)[7] means that, in the future, PAT will always 

play an important role in the manufacturing industry and will no longer be tied to
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specific industrial processes or products. PAT will appear across the board 

throughout all industrial procedures.

As described above, the evolution of PAT has also re-established chemometrics 

as a hot field for research in both academia and industry. While there were no 

significant shifts hi the actual chemometrics involved, the primary vehicle of change 

was the computer and processing technology used to perform the data analysis and 

modelling. Until the 1980s, chemometrics had been relegated to an area of 

theoretical mathematics simply because the necessary calculations required for real 

analysis were so time-consuming and therefore largely impractical. With the 

invention and popularisation of the microprocessor and the desktop computer, the 

calculations needed for chemometrics became easier to perform, and the field 

subsequently found a wider audience, including those involved in the PAT initiative. 

By employing chemometrics, the PAT instruments could perform real-tune analysis 

and modelling on the data collected with only a very small tune delay. This enabled 

real-tune feedback to allow for control and optimisation, completing the PAT agenda 

and firmly linking the fields of PAT and chemometrics. This partnership has lead to 

the developments of methods and algorithms such as self-modelling curve resolution 

(SMCR),^ orthogonal signal correction (OSC)/9^ and extended multiplicative scatter 

correction (EMSC), "' that are designed to correct for the variations observed hi 

large-scale processing situations.
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3.2 Near Infrared Spectroscopy

Near infrared (NIR) Spectroscopy was first discovered over two hundred years 

ago by Herschel, but it wasn't until the early 1950s when NIR Spectroscopy was first 

considered to be more than just and extension of the mid-IR fingerprint region.

The NIR region of an electromagnetic spectrum ranges from 12,800cm"1 to 

4000cm"1 . NIR Spectroscopy is concerned with the absorbance of NIR energy that 

occurs in this region by the molecules in a given sample. Absorption can occur by 

three different means: combinations, overtones, and electronic absorptions. A 

combination occurs when the absorption of a photon is shared between two or more 

vibrations. This would be observed as a single peak in the near infrared region but as 

two fundamental peaks in the mid-infrared region. Overtones are approximately 

multiples of the fundamental vibration; for example, the fundamental x will have 

overtones of 2x, 3x, etc., respectively called the first and second overtones. The 

intensity of successive overtones decreases by a factor ranging between 10 and 100. 

Electronic absorptions are caused by the movement of electrons from one orbit to a 

higher-energy orbit; these are normally observed in the UV-Vis range but can also 

appear hi the NIR in the region from 12,800 to 9000cm"1 .

Combinations and overtones provide the major contributions to NIR spectra. In 

1965, the chemometric technique of multiple linear regressions (MLR) was 

developed by Norris. MLR allowed for NIR calibrations without operator 

interference. This had both advantages and disadvantages, hi that the user could 

efficiently find relevant information related to a property of interest, but this "black 

box" approach to calibrations could mislead the user into thinking there was a 

significant correlation when there was not. Still, it was not until the advent of micro-
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processing and the application of advanced chemometrics in the 1980s that NIR 

really took off.[13]

I
A A

NIR Detector: PbS

Moving 
Mirror

Beam 
Splitter

Sample

Fixed Mirror

Aperture

NIR Source: 
Tungsten Lamp

Figure 1. An FT-NIR spectrometer. 
The dashed box denotes the interferometer component of the instrument.

A FT-NIR spectrometer (Figure 1) has three main components: the NIR source, 

the detector, and the interferometer. The interferometer is only present in an 

instrument that uses the Fourier transform (FT). The NIR source used is a Tungsten 

lamp, which emits radiation across a wide range of the electromagnetic spectrum, 

and the NIR region can be examined with the use of a Lead Sulphide detector.

The interferometer contains two mirrors (one moving and one stationary) and a 

beam splitter. Radiation from the source is split by the beam splitter and then 

directed to the fixed and movable mirror in equal amounts. The beam splitter can be 

made from SiOa or CaFi to function correctly with the NIR source and detector. The 

moving mirror is scanned at a constant velocity, resulting in the changing of optical 

path differences of the beams as a function of time. The reflected beams converge at 

the beam splitter, with half of the radiation returning to the source and half



23

continuing to the detector. The detector measures the intensity as a function of the 

optical path difference in both branches of the interferometer. The signal is called an 

interferogram. The Fourier transform is applied to the interferogram to generate the 

transmission spectra of the sample.

3.2.1 Fourier Transform

The Fourier transform (FT) is a mathematical operation that converts spectra 

from a time domain to a frequency domain and vice versa. The transform breaks 

down the interferogram into its sine and cosine constituents (Equation 1).

v X = cos
2N + 1

•- 
+/sm

Equation 1

Constructed Signal From Sin(x) and 0.5*Sin(2x)

0.5

-0.5

-1 -

\ \

100 200 300 400 500 600 700 
Angle / Degrees

Figure 2. A signal constructed from sin(x) and 0.5*sin(2x).



24

Figure 2 shows a signal constructed from sin(x) + 0.5*sin(2x). When this signal 

is transformed using the Fourier transform it is broken down into the individual sine 

waves. Figure 3 shows the Fourier transform of the constructed signal, and there are 

two peaks. The first peak has twice the amplitude but half the frequency of the 

second peak, as this corresponds to the sin(x) portion of the signal. The second peak 

relates to the 0.5*sin(2x) segment of the signal, so is has twice the frequency but half 

the amplitude of the first peak.

Fourier Transform Of The Constructed Signal From Sin(x) and 0.5*Sin(2x)
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Figure 3. Fourier transform of the construct signal from Figure 2.

A

3.2.2 Near Infrared and Process Analytical Technology

FT-NIR has many advantages when used within industry, as it offers fast scan 

times, a high degree of precision, a non-invasive method of analysis, and low 

maintenance requirements. FT-NIR also uses a very long path-length, meaning that 

the analysis of bulk materials can be performed with little sample pre-treatment. 

These advantages make FT-NIR an ideal tool for PAT, especially due to its use of
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fibre optics. Fibre optics allow the NIR instrument to be fitted with a probe, so that 

the probe can be directly inserted into the reaction chamber and connected to the 

NIR via the fibre optic cables. The cables can run up to 100 meters, allowing the 

NIR instrument to be somewhat remote from the process stream which makes the 

measurement process considerably safer.

For the NIR laboratory instrument to be converted to something suitable for 

PAT, it must become more robust to external factors, portable, and it must allow for 

remote measurements using fibre optic cables.

3.2.3 Probes

The early NIR spectrometers operated in similar manner to UV spectrometers, 

with the sample taken off-site to the instrument for analysis. However, by the 1980s 

it became apparent that fibre optics allowed light to be taken directly to the sample, 

thus making it possible for spectroscopy to be safe and remote. The use of probes 

also solved the problem of the invasive nature of sampling directly from a reaction 

stream. Insertion of a probe into the media meant that no physical sampling needed 

to be performed, thus increasing the safety and significantly reducing the errors in 

sampling. Without fibre optics, the implementation of sampling probes would be 

almost impossible.

There are several different kinds of NIR probes: transmission, transflection, 

reflection, and attenuated total reflection.

3.2.3.1 Transmission Probes

Transmission probes can be split into two categories: insertion and flow cell. 

Insertion probes are typically introduced into a sample stream where measurements 

are recorded.
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Sample Space

Fibre

Light Path

Concave Mirror

Figure 4. A simple single-fibre insertion probe.

Figure 4 shows a simple single-fibre optical insertion probe with a concave 

reflector. The radius of the concave reflector is equal to the distance from the fibre, 

thus causing total internal reflection; this directs all of the light back down the fibre. 

This system has major flaw in that incidental light can be returned to the detector, 

yielding stray light. Stray light is a major cause to the non-linear performance of the 

spectra. This design was quickly superseded by the design shown in Figure 5.

Fibres

Sample Space
Light Path

Concave Mirror

Figure 5. Revised insertion transmission probe.
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Figure 5 shows a revised probe design where the returned light is separated from 

the transmitted light. This almost completely eliminates the problem of stray light, 

but this technique is only a good as the mirror employed in the instrument. A poor- 

quality reflector yields poor alignment and poor focus. This type of design is 

sensitive to the refraction variations of the sample. The variations cause a change in 

the divergence of the light and thus cause alignment and focus errors, which lead to 

baseline, offset tilt and curvature.

Fibres

Plane Mirror

Probe Body

Sample 
Window

Prism

Figure 6. A common commercially-available transmission probe.

Figure 6 shows the schematic of the most common commercially-available NIR 

fibre optic insertion probe. This probe has an excellent design featuring good path- 

length definition and good optical quality. The light passes through the sample twice, 

thus making the path-length of the light twice the distance of the sample window. 

However, because this probe is encased in a body, the optical efficiency of this 

system is reduced to about 56% due to the Fresnel reflection losses (the reflection of 

a portion of light at a discrete interface between two media of different refractive 

indices). Unlike the designs in Figure 4 and Figure 5, the alignment and focus of the 

fibres in this probe can be carefully controlled. These types of insertion probes have
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been used by Blanco et al. to elucidate the profiles of fermenting alcohols. I14] Blanco 

showed that, with the combination of NIR probes and chemometrics, an accurate 

profile of the fermentation process of glucose and ethanol was possible. This profile 

was not achievable through any other means.

3.2.3.2 Transflection Probes

Transflection probes (Figure 7) are probes that can collect spectra of the 

transmitted and reflected light.

Light Path

Fibres

Sample Space

Diffuse Reflector

The sample space

Figure 7. A typical schematic of a transflection probe.

: is located between the fibres and the diffuse white reflector target. 

When no sample is present, the diffuse reflector scatters the light back into the 

receiving fibre. If the sample is a liquid the light passes through it and is then 

scattered by the diffuse reflector toward the receiving fibre. Solid samples scatter the 

light directly back to the receiving fibre. The transmission probes give higher-quality 

data for liquid samples, as not all of the scattered radiation is returned to the fibre. A 

disadvantage to the use of transmission probes is that the optical path is not well 

defined, and the path-length is a composite average of the individual path-lengths. 

This means that the average path-length is dependent upon the refractive index of the
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liquid rather than being a true measurement of each individual sample, thus making 

quantitative studies difficult.

3.2.3.3 Reflectance Probes

Reflectance probes, unlike the previous probes, use bundles of fibres rather than 

single fibres in order to maximise the amount of emitted light.

Return Fibre

Illumination 
Fibre

, ,
v V

Light Path

Sample Plane

Figure 8. A 6-around-l (6:1) reflection probe.

Figure 8 shows a close-packed 6-around-l (or 6:1) configuration. The six outer 

fibres are used to illuminate the sample whilst the central fibre is used to return the 

light to the spectrometer. The area that is illuminated by the source fibres overlaps 

the area covered by the detection fibre. The percentage of overlap increases with the 

distance from the probe tip, although this is not a uniform effect and when the probe 

exceeds a distance of 2.5mm from the target the amount of reflected light is reduced 

dramatically.

Improvement on this design can be made by increasing the number of 

illumination fibres from six to nineteen. A larger return fibre is also useful, as the 

amount of illuminating light is increased along with the collection efficiency. A 19:1 

probe still requires a small working distance between the sample and the probe. The



30

small target sizes and collection efficiencies of reflection probes mean that these 

probes may not be suitable for applications that involve grains or large granulated 

samples. Larger targets can be achieved by increasing the number of illumination 

and return fibres. Greater collection efficiency can also be attained by randomising 

the bundles.

On some occasions, it may be desirable for the probe to be hi direct contact with 

the sample, and for this to be achieved without damaging the fibres a window must 

be hi place. The disadvantage of introducing a window to the probe is that it also 

introduces stray light into the system via Fresnel reflections, hi the same manner as 

was previously noted with transmission probes. None of the reflectance probes 

discussed can eliminate the problem of specular reflection originating at the sample; 

however, when using a simple 6:1 probe (for solid or sheet samples) specular 

reflections can be reduced by tilting the window with respect to the sample.

Reflectance probes have been successfully employed by Dunko et al., Garcia- 

Rey et al., [l6] and Dumitrescu et a/. [17]

3.2.3.4 Attenuated Total Reflection Probes

ATR stands for Attenuated Total Reflection. A typical ATR probe has a 

truncated cone crystal, and light is shone along the length of the crystal causing total 

internal reflection. The light path penetrates the sample when the light is reflected 

off the surface in contact with the sample. The incident light then continues to reflect 

causing further penetrations until it reaches the end of the crystal, at which point it is 

collected by the detector. ATR is not used extensively hi NIR applications mainly 

due to the small absorption coefficients for molecules hi the NIR region.
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Optical Fibre

Light Path

Truncated Cone

Sample Space

Figure 9. An ATR probe.

Figure 9 shows a typical ATR probe. This design is normally made using a 

truncated sapphire cone which creates three reflections of the beam. Having three 

reflections in a spectral region with low absorption coefficients creates a very small 

path-length of approximately 1 um at 3000nm. ATR probes are very sensitive to the 

refractive index of the sample. The refractive index of the crystal used must be 

significantly higher than that of the sample; if this is not the case, total internal 

reflection will not occur and the light will escape into the sample. Dependence on the 

cleanliness of the crystal, variations in refractive indices, and problems with light 

scatter all mean that ATR probes have limited applications within industry.

3.2.4 The Future of Near Infrared Spectroscopy

Recent regulations proposed by the PDA would require that drug manufacturers 

have a precise understanding of what is occurring throughout all aspects of the drug 

manufacturing process. These stringent regulations would require large 

pharmaceutical and cosmetic companies to implement more process analytical 

technology in order to thoroughly understand their production process. This has lead
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to a greater implementation of NIR spectrometers within industry. [18' 19] Furthermore, 

the need for rapid and precise analysis coupled with the ability to use NIR 

spectrometers with fibre optics have lead companies such as BP to incorporate NIR 

spectroscopy as a fundamental technique in the analysis of reactions.120"221
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3.3 Nuclear Magnetic Resonance Spectroscopy

3.3.1 Traditional Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) Spectroscopy is one of the most popular 

techniques used within a research environment for the determination of physical, 

chemical, electronic, and structural information of a species. It is most widely 

applied in the fields of organic and inorganic chemistry for the characterisation of 

new compounds. A typical research instrument features magnets and a radio 

frequency transmitter as the primary components.

y
A

Receiver 
Coil "

Sample Tube

Magnet

z, Bo

Sweep 
Coils

Recorder

Figure 10. Schematic of an NMR instrument in a typical laboratory environment.

Most research instruments employ electromagnets, which can be tuned to the 

required frequency of pulsing, typically in the high-field region 200 to 750Mhz. The
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radio frequency (r.f.) transmitter and receiver coils allow rotation of the net magnetic 

vector.

NMR spectroscopy can be broken down into various stages of both physical and 

magnetic arrangements: a sample is initially placed into a magnetic field, BO; a 

nuclear spin processes about BO; the spin aligns itself with BO; and results in a net 

magnetisation, MO (Figure 1 la). MO is parallel to BO, assuming exponential behaviour 

MO build up along B0 at a rate of 1/Ti where TI is the spin lattice or longitudinal 

relax time. After this an r.f. field is applied for a matter of milliseconds (Figure 1 Ib). 

Application of the r.f. rotates Mo away from the z-axis into the xy plane. The rate at 

which the spin relaxes to no given orientation is given by 1/T2, where TI is spin-spin 

or transverse relaxation time (Figure lie). TI not only defines the time taken to 

generate MO (including placement and spinning of the sample) but it also describes 

the time needed for the magnetisation to return to equilibrium. Both TI and Ta affect 

the signal strength of NMR. Line width of absorption signal after a Fourier 

Transform is given by l/Tj* where TI* is l-i in the presence of magnetic 

inhomogeneities. T2 is effectively the time required for signal or free induced decay 

(FID) to return to 0. The FID forms the raw signal measured using NMR.[2]
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(b)

N

(c)

Figure 11. Action of the nuclei when undergoing nuclear magnetic resonance.

In NMR, the signal-to-noise ratio is often poor, and subsequently the signal is 

treated with an exponentially decaying function so that the noise at longer 

acquisition tunes is 'removed'. In most research systems, the FID undergoes a 

Fourier transform to produce the final NMR spectrum.

All of these effects that are present in the traditional laboratory research 

instrumentation rely on the sample being placed directly into the static field in an 

appropriate physical form. This is not the case when NMR instrumentation is used as 

a tool for process analysis.
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3.3.2 At-line Nuclear Magnetic Resonance Analysis

Process NMR has the potential to be a very powerful technique in the world of 

PAT due to three factors:

1. Process NMR is non-destructive;

2. Process NMR does not require the insertion of a probe in process 

stream, therefore avoids issues of fouling;

3. 'Standard-less' quantitative analysis.

When process NMR was initially applied to at-line and online processes, the high- 

field instruments that were in place within a laboratory were simply moved to the 

process stream. This created problems with the calibration and maintenance of the 

instrumentation. In the past few years, primarily due to the production of small, 

dedicated low-field instruments based on permanent magnetic technologies, there 

has been an increase in the number of applications for at-line and online process 

NMR.[2] The low-field instruments have magnetic field strengths that typically range 

between 15 and 60MHz.

The main issue that must be addressed when using process NMR is the manner 

of sample insertion. Typically, NMR is used to assess the end quality of a product. 

Within the polymer industry, the sample being analysed tends to be in the form of a 

pellet. The analysing instrumentation must be able to melt the pellet so that it can be 

sampled as a liquid and then purge and dispose of the sample after the analysis is 

complete. Once it is in liquid form, the sample is fed into a sample chamber and it 

undergoes the same procedure as it would in research laboratory instrumentation. 

Unlike a laboratory instrument, a process instrument typically uses a permanent 

magnet as they are cheaper to use and maintain than the electromagnets used within 

the research setting. One of the most rapidly growing areas of process NMR is the 

determination of water and fats within samples, which makes it an ideal method for
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the analysis of agricultural products such as dairy and corn.pl Additionally, the 

intrinsic sensitivity of process NMR has lead to applications that determine the 

ethanol content of various alcoholic beverages.

Process NMR is still hi a relative infancy compared with more-established 

methods of PAT, and there are still many avenues available for further investigation. 

In the future, process NMR has the potential to become a standard method of PAT 

analysis, with great opportunities for continued development and application-based 

research.
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3.4 Chemometrics

In the past twenty five years, chemometrics has enjoyed tremendous success in 

fields related to calibration of spectrometers and spectroscopy based measurements. 

Chemometrics can be defined as the application of mathematical and statistical 

methods to chemical measurements.^ Chemometrics offers many advantages when 

applied to calibration methods:

1. It provides speed in obtaining real-time information from data;

2. It allows high-quality information to be extracted from less-resolved data;

3. It provides clear information resolution and discrimination power when 

applied to second-, third-, and possibly higher-order data;

4. It provides diagnostics for the integrity and probability that the information it 

derives is accurate;

5. It promises to improve and reduce the number of measurements required;

6. It improves the knowledge and understanding of existing processes;

7. It techniques cost very little to apply, and can reduce the time and cost of a
F241process. 1 '

Workman et al. have produced a series of reviews in which they discuss many 

different applications of spectroscopy and chemometrics. [25"27] They summarise the 

reviews by stating that, without chemometrics, none of the resulting calibrations 

would have been possible. [24]

3.4.1 Multivariate Methods

3.4.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a method of producing multivariate 

models from large and complicated data sets. This method is an upgrade from the 

traditional univariate models, as the multivariate method allows for the maximum 

amount of information to be retained within the model. PCA is performed by the
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decomposition of the data matrix, D, into the sample scores, U, and the variable 

loadings, V, in accordance with

D = UVT + E
Equation 2

where E is a matrix of residual errors. For the matrix D of size m x n, were m is the 

number of samples and n is the number of variables, the sample scores matrix has 

the size n x k and the variable loadings matrix has a size of m x k. Here k is the 

number of product vectors that can fully express D. These values of k are called the 

principal components (PCs). For every source of independent variation within D 

there is an associated PC. The largest source of variation is the first PC, and the 

second largest source of variation is the second PC, and this continues until all of the 

sources of variation within D are explained. Each PC also relates to each column of 

the scores matrix and each row of the variable loadings.

3.4.1.2 Non-Iterative Partial Least Squares

The decomposition of the data matrix is performed using the Non-Iterative 

Partial Least Squares (NIPALS) algorithm. NIPALS is the standard method for 

computing the principal components and the associated scores and loadings. 

Brereton produced an excellent text that explains the NIPALS algorithm. 1281 NIPALS 

extracts each PC in turn, making it ideal for large data sets (such as found with 

spectroscopic data) that can contain over 2000 variables per sample. The sequential 

generation of components means that the algorithm can be halted when the desired 

number of PCs has been derived, saving both time and effort due to the generation of 

undesirable components.
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NIPALS proceeds by first selecting a column from an appropriately scaled data 

matrix, X. The selected column forms the basis of an initial estimate of the scores 

vector, Uj. Using Uj and X, the variable loadings are generated (Equation 3).

un-norm

Equation 3

These loadings are then normalised and used with X to calculate a new set of scores, 

Ui*, (Equation 4, Equation 5).

Vr un-norm
2 

un—norm

Equation 4

U' = XV
Equation 5

The two scores vectors are compared, and if the sum of the squared value of U,  

Ui* is large or exceeds a predetermined threshold (Equation 6), Uj* becomes Uj. This 

process of calculating loadings and new scores is repeated until the difference 

between Uj and Uj* is small or below the predetermined threshold. At this point, the 

PC is determined and Uj becomes U*, the column in the scores matrix of the Jt* PC.

Equation 6
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Following this, the information relating to the scores and loadings of the PC 

must be removed from X, to allow removal of the next PC. This is accomplished by 

multiplying the scores and loading together and then subtracting this product from 

the data matrix X, to form the residual data matrix, Xres.

xres =x-uv
Equation 7

This residual matrix, Xres, is then recycled to the beginning of the iteration procedure 

whereby another column is extracted. This cycle continues until all of the desired 

components have been removed.

3.4.1.3 Sample Scores

The sample scores can yield information about the intra-sample relationships, 

and this can be observed by plotting the columns of the scores matrix against one 

another (such as plotting the scores relating to the first PC against those of the 

second PC). In this case, the two largest sources of variation are plotted together, and 

the resulting plot can show clusters or groupings of data that suggest that the samples 

are related to one another by the sources of variation from the first and second PCs.

3.4.1.4 Variable Loadings

The loadings illustrate the weight or importance of each variable within the 

original data matrix, e.g. wavelengths, when calculating the PCs. From the loadings, 

it is possible to determine the variables that contribute most significantly to the 

sample scores, and to possibly deduce the variable responsible for the clustering, 

among any other observed relationships.
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3.4.1.5 Eigenvalues

After completion of PCA, the size of every extracted component can be 

determined, and this is referred to as the eigenvalue. The first components extracted, 

which are the most significant components, have the largest eigenvalues. The 

eigenvalue is calculated from the sum of squares of the principal component scores.

T

k £^ tk
t=l

Equation 8 

where A* is the eigenvalue associated with the A* principal component (Equation 8).

3.4.1.6 Modelling Using Principal Component Analysis

One of the first methods applied to modelling using PCA was Soft Independent 

Modelling of Class Analogy (SIMCA). Soft modelling refers to a situation in which 

different classes of information overlap, essentially allowing a sample to belong to 

more that one class. For example, a chemical compound could contain both carbonyl 

and alkene functionality, and it could therefore fit into the class of alkenes or the 

class of carbonyls. SIMCA begins with PCA, but only the most significant principal 

components are retained. Independent modelling of each class (i.e. carbonyls and 

alkenes) is performed by calculating the orthogonal distances of each sample from a 

plane. New samples can be projected into the model, and the classification of new 

samples is performed by determining to which class or classes the sample belongs.

When using PCA to model a system of data, the number of PCs to be included 

in the model must be determined. There are many methods for this, and in theory the 

number of PCs to be included in the model is equal to the number of chemical
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constituents in the analytical system; for example, the data generated from the UV 

spectra of differing mixtures of four metallic compounds should have a PCA model 

that includes four PCs. This, however, is a simplified example, and more 

complicated methods of determining the number of PCs to be included must be 

employed. These methods include use of an F-Test to determine the statistically 

significant PCs to be included in the model or use of a DOE approach to calculate 

the optimum number of PCs based upon the quality of the final model.

The use of PCA as modelling method has become less frequent since the advent 

and wide-scale adoption of Partial Least Squares (PLS), primarily due to the fact that 

PLS allows the user to produce a model that can correlate spectral information with 

quantitative values, such as concentration.

3.4.2 Partial Least Squares

Partial Least Squares is another method of data reduction, but unlike PCA, PLS 

uses both the multivariate spectra, X, and the corresponding concentrations of other 

reference information, y, in the decomposition to produce the PLS scores and 

loadings.

As with many other chemometric methods, PLS evolved from the field of 

economics, and it was in the late 1960s that PLS was explored for non-economic 

purposes by H. Wold. The use of PLS for chemical applications was pioneered by 

groups led by S. Wold and H. Martens during the 1970s. The 1980s saw some of the 

first publications of articles highlighting the use of PLS in what has become a 

traditional use of chemometrics,[29"39] and it was this decade that essentially marked 

the renaissance of PLS as a tool for chemometric analysis as opposed to its previous 

use as a method of economic analysis. From the 1990s to the present, the use of PLS 

has almost become a standard approach and many variations of the original PLS
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have been produced that range in use from non-linear applications140"441 to multiple 

simultaneous predictions. 144' 45]

3.4.2.1 The Partial Least Squares Algorithm

The PLS method begins by finding the first PLS direction. This begins as with 

PCA (see section 3.4.1.2). During PLS the spectral data may be scaled, and this same 

scaling must be applied to the concentration information. The algorithm begins by 

calculating the loading weights vector, h

= X'.y
Equation 9

The spectral scores are then determined using the loading weight vector and the 

spectral data (Equation 10).

X.h

Equation 10

Following this, the spectral loadings, V, are calculated using the newly-defined 

scores and the spectral data (Equation 11).

Equation 11
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The loadings associated with the concentrations, Q, are determined (Equation 12).

Equation 12

The product of the scores and the loading vector is subtracted from the spectra, 

(Equation 13), and the product of the scores and the regression coefficient is added 

to the initial estimate of concentrations to form the new concentration estimate 

(Equation 14).

xres =x-uv
Equation 13

U.Q
Equation 14

The residual concentration is determined by subtracting the new concentration 

estimate from the true concentration. The true concentration values are those 

generated after the actual concentration data has been scaled.

y res y true  / new
Equation 15

The second PLS component is found by replacing the original X and y data sets 

with the residual data. The process is continued until the desired number of 

components is extracted. [28]
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The PLS method can be extended to handle several concentration terms 

simultaneously, which is called PLS2. This method is very similar to PLS but 

instead of maximising the covariance between one concentration and the linear 

functions of the spectra, the covariance of two linear functions (one for the 

concentrations and one for the spectra) is maximised. This can be advantageous for 

calibration purposes, but for prediction, the use of PLS to predict each concentration 

individually produces better results.

As measurement science and PAT continue to evolve, the methods and 

processes to perform analyses also evolve techniques such as Neural Networks and 

Ridge Regression will gain further employment. But throughout these evolutions, 

PLS will likely remain the standard method for analysis of the data recorded due to 

its simplicity and precision.

3.4.3 Model Calibrations

Measurements made in any system are essentially abstract until they are 

compared to other measurements from within the same system. For example, the 

area underneath a single peak of a GC trace means nothing on its own, and trying to 

relate it to a concentration or to any other quantitative factor is nearly impossible. 

However, if a series of GC measurements is performed from samples containing 

known concentrations, the resulting peak areas can be related to the corresponding 

concentrations. This allows for calibration, and using this comparatively with the 

previous abstract value, a prediction of the concentration can be made based upon 

the peak area, which previously had no comparative value.

This is the main aim of producing a calibration model; once constructed; a 

calibration model can make predictions of otherwise unknown samples.146"4^ To this 

end, as much of the relevant variation within the model must be extracted and
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incorporated into the model, with methods such as PCA and PLS being ideal for 

modelling (see section 3.4.1).

The first stage of producing a calibration model is the selection of the samples 

that will comprise the calibration model. There are many different methods for this 

sample selection, such as the use of correlation between spectra for selection and the 

use of the PCA scores and a Euclidean method.

3.4.3.1 Selecting Samples Using Signal Correlation

This method of selecting samples uses the correlation between spectra to 

compose a calibration set. The most highly correlated and therefore similar spectra 

are chosen, and this method is ideal for selecting samples for calibration sets based 

upon the prediction of an unknown spectrum. The correlation between all of the 

calibration spectra and the unknown spectrum would be calculated and the 

calibration spectra that are most highly correlated with the unknown spectra are used 

to make the calibration model and a prediction of the unknown sample using PLS. 

The downside of this method is that it is not suited for larger data sets that have 

regions of clustering, due to factors such as differing grades of material. The signal 

correlation method of sample selection was successfully employed by Shenk and 

Westerhaus et a/. [49"51] Their study used a correlation constraint hi the selection of 

samples to build a calibration model from a data set of over 6500 samples. As an 

unknown sample was determined, the LOCAL algorithm was employed and a 

calibration set was defined. The results from this study showed that this method of 

sample selection was very successful.
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3.4.3.2 Selecting Samples Using the Euclidean Distance and Principal 

Component Analysis

The Euclidean method of selection uses PCA scores, from which the calibration 

set is defined. The data from the calibration set is run through the PCA algorithm to 

produce the sample scores. The unknown sample is then projected into these scores, 

and then the Euclidean distance between the unknown sample and the entire data set 

is determined. The samples that have the smallest Euclidean distance are closest to 

the unknown sample within the scores plot, and are selected for the production of a 

calibration set. These selected samples are then used hi conjunction with PLS to 

make predictions of the unknown sample. This method solves the problem of 

clustering due to differing grade which is encountered by the correlation method, and 

still retains the ability to model systems of a more traditional nature.

3.4.3.3 Selecting Samples Using the Condition Number and a Squared 

Covariance Matrix

The use of the condition number as a method of sample selection is akin to 

methods of optimality insofar as the system relies upon the minimisation of the 

condition number of the data matrix to determine the samples for selection. The 

condition number of a matrix is defined as the ratio of the first eigenvalue and the 

last eigenvalue. This ratio is the true condition number; however, this ratio always 

results in very large conditions, especially when dealing with spectral data. To 

reduce this and make optimisation simpler, the ratio can be altered to be the ratio of 

the first eigenvalue to the last significant eigenvalue.

The last significant eigenvalue can be determined using an F-Test. This 

dramatically reduces the magnitude of the condition number, as well as the tune that
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is taken for the computation to reach optimisation. Additionally, the removal of the 

smaller eigenvalues removes potential noise from the modelling system.

The condition number expresses the amount of variation found in each principal 

component. A good model, with equal variance captured for each principal 

component removed, will have a condition number that is very close to one. 

However, this can be misleading, as a data set that is entirely comprised of noise will 

also have equal variance captured by each principal component, and will therefore 

also have a condition number of one. This problem is partially addressed by only 

using the most significant eigenvalues that relate to the most significant principal 

components, and it can be further solved by using a squared covariance matrix, 

which is performed using scaled data (Equation 16).

(X'YY'X)
Equation 16

The squared covariance matrix can be used to remove variables from a model 

that may contain larger amounts of noise. This reduces the potential for 'noisy' 

principal components and allows the condition number of the matrix to be a true 

representation of the data.

3.4.4 Assessing the Model Quality

The assessment of the quality of a calibration can be determined using the root 

mean square error in calibration (RMSEC). The calibration samples are run 

predicted by the model resulting hi a set of actual values, y, and predicted values, y. 

These are used with the number of calibration samples, N (Equation 17).
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RMSEC =
" N-l

Equation 17

This gives an indication of the lack of fit the model has to the data, which can be 

indicative of the quality of the final predictions. It can also be an indication of the 

quality of the samples selected to build the model. However, the RMSEC can be a 

misleading tool; for example, as each principal component is extracted and included 

in the model the RMSEC will decrease. The RMSEC will continue to decrease as 

more components are included in the model, and this can cause an over-fitting of the 

model.

3.4.4.1 Validation of a Model

Once a model has been constructed it must be evaluated and validated to assess 

its quality. The main aim of a model is to make predictions, therefore using 

predictions to assess the quality of a model would be the most appropriate method. 

There are different methods for doing this; they are separated by the amount of 

samples remaining after calibration. If there is a sufficient number of samples 

remaining after calibration a separate independent validation set of data are 

constructed. This is applied to the model; the subsequent predictions can be used to 

determine the root mean square error in prediction or RMSEP (Equation 18).

Uy-y)RMSEP =
V N-2

Equation 18
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As with the RMSEP the actual values determined by the reference method, y, 

and the values predicted by the model, y, are used with the number samples, N, to 

determine the RMSEP. The RMSEP is one of the most important methods for 

establishing the quality of the model, unlike the RMSEC, when using PCA as more 

components are included in the model the RMSEP will decrease until a point, then it 

will begin to rise sharply. This is over-fitting a model, and to avoid this both 

calibration and validation errors must be monitored. The relationship between 

calibration and validation is shown in Figure 12.

Error

RMSEP

RMSEC
Number of Principal Components

Figure 12. The relationship between the calibration (RMSEC) and prediction (RMSEP) errors.

At point (a) the model is improving until it reaches point (b). At this point the 

model is at its optimum performance, the ratio between RMSEC and RMSEP is at a 

minimum. As more components are added to the model, the RMSEC continues to 

fall, however, the RMSEP increases to point (c), at this tune the ratio between 

calibration and prediction error is significantly larger than at point (b), at this 

position the model is over fitted.
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In situations where the samples remaining after calibration are limited a system 

of cross validation can be employed. Cross validation is the process of removing a 

number of samples from the calibration set, and re-calculating the calibration error. 

This is redefined as the root mean square error in cross validation (RMSECV) which 

is calculated in the same manner as the RMSEC (Equation 17). Cross validation is 

only applicable when the amount of data in insufficient for production of a validation 

set.

3.4.4.2 Normality Plots

Normality plots are a method of determining whether the data being analysed is 

normally distributed. This a graphical method that plots the data value against the 

scaled probability of normality. If the resulting plot is one of a straight line the data 

can be deemed to be normally distributed. However if the data is not straight, the 

graphical approach can be used to look for sections of the data that are straight and 

thus normally distributed.

Normality Probability Plot For Low XS Content Samples
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Figure 13. A typical example of a normality plot 
The data appears to be linear and therefore normally distributed.



53

3.5 Methods for Data Pre-Treatment

3.5.1 Scaling

Scaling methods are quick and simple ways of correcting spectra to remove 

baseline or magnitude effects associated with intra-variable variation.

3.5.1.1 Mean Centring

Mean centring is the process of calculating the mean spectrum, followed by 

subtraction of the mean from each spectrum within the data set (Equation 19).

Xcorr ~ X~ f^

Equation 19

This has the effect of translating the spectra such that they are now centred on the 

origin. Mean centring is performed prior to any form of data reduction; mean centred 

scores are distributed around the origin in a similar manner to the spectra. 

Predictions made by models built using mean centred data are mean centred, and 

thus must have the mean spectrum added to them to convert them back to the 

appropriate data. In data sets with small intra-sample variation the effect of mean 

centring is negligible. However, in situation were there is a much greater amount of 

intra-sample variation application of mean centring results hi a more significant 

effect upon both the scores and loadings. Mean centring has become a standard from 

of pre-treatment to the point were most methods will include correction by mean 

centring as an automatic practise, although chromatographic data is not suitable to 

correction using mean centring.
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3.5.1.2 Auto-Scaling

Auto-scaling is a form of variance scaling that is performed down each column. 

Auto-scaling is a two step procedure; first mean centring is performed subtracting 

the mean spectrum from each sample. Following this each point on the column is 

divided by the standard deviation of the column (Equation 20).

x-
corr

Equation 20

As with mean centring auto-scaling is performed prior to any form of data 

reduction or modelling, predictions made by models using auto-scaled data are 

themselves auto-scaled. To recover the actual values multiplication by the column 

standard deviation and addition of the mean spectrum must be performed.

Auto-scaling is of great importance used with data that has large variations in 

error of signal to noise ratio when moving across from one variable to another. Use 

of auto-scaling reduces the skewing effects brought about by the large variable to 

variable magnitude effects, essentially giving each variable equal significance. 

However, if the data does not have large variation in the error or the signal to noise 

ratio use of auto-scaling can give artificial importance to noisy areas of the spectra 

by scaling every to unit variance. Auto-scaling has not found itself in the same 

company as mean centring amongst the automatic pre-treatment methods, due to the 

ability for it to give noise the same significance as an analytical signal.
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3.5.1.3 Standard Normal Variate Transform

Standard normal variate transform (SNV) is another form of variance scaling. 

Like auto-scaling, the first stage of SNV is mean centring, followed by division by 

the standard deviation. Unlike auto-scaling, SNV uses the standard deviation of the 

row, scaling all rows to the same unit length (Equation 21).

LI

row
Equation 21

SNV has found a niche role within applications that correct spectra for light- 

scattering effects due to differing path-lengths recorded when analysing diffuse 

powders. [52"54] More recently, SNV has been superseded by techniques such as 

multiplicative scatter correction (MSC) and extended multiplicative scatter 

correction (EMSC).
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3.6 Orthogonal Signal Correction

Orthogonal signal correction (OSC) is a method that was initially developed to 

correct for light scatter effects but can also be used to correct more general types of 

interference. OSC accomplishes the correction by removing the effects and artefacts 

that have zero correlation with the reference value. The goal being to leave only the 

spectral information that directly relates to the concentration. OSC is primarily used 

in conjunction with NIR spectroscopy since there are regions within the NIR spectra 

that contain information that have little or no effect on the predictions made by a 

model.

OSC was first proposed by Wold et al. in 1998. [9] Wold showed that using OSC 

treated data lead to the production of models with lower RMSEP values than scatter 

corrected and raw unprocessed models. This meant that the OSC models predicted 

new samples better than the scatter correction and raw models. Further more the 

OSC filtered gave much simpler calibration models when compared against the raw 

models. Wold's results showed that OSC did indeed remove data that was not 

correlated with the spectral data thus making calibrations and predictions simpler 

and more accurate. Wold also showed that OSC was as effective with single 

reference values as it was with multiple references values, so correcting for more 

than one compounds concentration at once.

3.6.1 The Orthogonal Signal Correction Process

Using the algorithm proposed by Fearn, [55 ' OSC first proceeds by creating a 

matrix, M, that contains the majority of variation in the spectral data, X, that is not 

associated with the concentration data, y.
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-1
= l-X'y(yXX'y)~ yX

Equation 22 

The next step is to multiply M by X to form Z, such that ZZ' is symmetrical.

Equation 23

Following this PCA is used to determine the first principal component of ZZ' 

and subsequent first eigenvalue, A,, along with the associated loading vector V. From 

these the loading weight vector, w, is calculated (Equation 24).

MX'V
w = — j=-

VI
Equation 24

Using w, a new scores vector is determined (Equation 25). This new scores 

vector is then orthogonalised to the concentrations, y (Equation 26).

U = Xw
Equation 25

Uosc =U-y(yy)~l yU
Equation 26

The OSC scores, UOsc, are then used with the spectral data to calculate the OSC 

loadings, VOsc (Equation 27).
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V°sc umcu
Equation 27

Using UQSC and VQSC the OSC component is determined; OSC component is 

then subtracted from X to yield the residual spectral matrix Xres .

osc^osc

-X-OSCCOMP

Equation 28

Equation 29

To remove further OSC components substitute Xres with X at the start of the 

process. This process works as an 'anti-NIPALS' method, were NIPALS removes 

the components of greatest of greatest correlation between samples and spectra, OSC 

removes the components of least correlation.

Since Wold's initial publication of OSC and the subsequent follow up by 

SjoblomJ56^ over 200 papers have been published citing the work of Wold et al. In 

2000, a paper was published by Fearn et al. that highlighted some problems with 

Wold's algorithm and suggested improvements. [551 Fearn stated that the current 

method by Wold resulted in models that could be achieved by simply taking one 

more PLS component when building the model. However, the improvements Fearn 

suggested did not result hi major advancements leading Fearn to surmise that Wold's 

method was not the best but it is the best available. The OSC algorithm has been 

used for a variety of different applications ranging from the analysis of port wine[57] 

and the classification of coffee beans correcting for calibration transfer. [58]
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3.7 Derivatisation

The use of derivatives was first proposed by Savitsky and Golay in 1964, 

when they used an nth-order derivative and a polynomial to correct the analytical 

signal. This can have the effect of removing different baseline effects depending 

upon the order of the derivative. A first-order derivative can be used to correct an 

additive baseline. The first derivative spectrum is generated based on the gradient of 

each point in the analytical spectrum. The steepest point of a positively-inclined 

curve in the original spectrum results in a maxima in the first derivative spectrum; 

conversely, the point with the steepest negative inclination hi the original spectrum 

results in a minima in the first derivative spectrum. The absolute top of each maxima 

and bottom of each minima are points where the curves have no gradient and are flat, 

hi the first derivative spectrum these areas translate to points of the spectra that cross 

through zero on the x-axis. This procedure is illustrated in Figure 14 and Figure 15.
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Standard Sine Curve Varying Between 0 and 360 Degrees
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Figure 14. Standard sine curve, (a), (c), and (e) show the areas with steepest 
gradients, while (b) and (d) show the maxima and minima of the curve.

Figure 14 shows the original spectrum of the sine wave after it has completed 

one cycle. Points (a) and (e) represent the areas where there is the steepest positive 

gradient when the angle passed through is 0° and 360°; these points also correspond 

to points (a) and (e) in Figure 15, although in the second figure these points have 

become maximums after the application of a first-order derivative. Point (c) in 

Figure 14 highlights the gradient at the steepest negative inclination, 180°; this again 

translates to point (c) in the first derivative spectrum (Figure 15) where the steepest 

negative gradient has become a minimum.



61

First Derivation of a Standard Sine Curve Varying Between 0 and 360 Degrees
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Figure 15. The first derivative spectrum of the sine wave from Figure 14. 
(a), (c), and (e) show the maxima and minima, while (b) and (d) cross the x-axis at zero.

In Figure 14, points (b) and (d) can be seen to be a maxima and a minima; since 

these points have no gradient they translate to zero points in the first derivative 

spectrum, shown by points (b) and (d) in Figure 15. However, Savitsky and Golay 

also showed that unlike the sine wave an analytical signal is not a continuous 

mathematical curve, and each point recorded is a discrete measurement usually taken 

at evenly spaced intervals, i.e. wavelengths. This creates an interesting situation 

when the maxima or minima falls between two points of discrete measurement. 

Savitsky and Golay proposed the use of a window that encapsulated a set number of 

points, to which a polynomial curve is fitted. Using the curve, which is continuous, 

derivations can be performed on the areas between points. The use of a window does 

require a form of optimisation to be included, as a window that is too small gives 

artificial significance, after derivation, to noise within the original spectra, while a 

window that is too large results in reduced maximums and minimums. The size of
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the window must be optimised to find the right balance of the reduction of the 

artefacts and the increased noise.

The publication by Savitsky and Golay rapidly became one of the most widely- 

cited papers hi the journal Analytical Chemistry even though the original paper 

contained a few typographical errors (subsequently corrected in a paper by Steiner et 

al.).^ Over the past three decades, Savitsky-Golay smoothing and derivation has 

become a standard form of pre-treatment for the removal of redundant variations 

from spectral data, largely due to the fact that it can be applied to many different 

fields such as spectroscopy, biochemistry, physics, and other scientific disciplines. 

An added advantage is that the initial work performed by Savitsky and Golay was 

prior to the invention of the microprocessor; in today's modern computer age, very 

little effort is required to perform the calculations.

3.7.1 Multiplicative Scatter Correction

Multiplicative scatter correction (MSC) was first developed and reported by 

Martens and Naes^. It was employed as a method of correction for varying baseline 

effects and the variation in path-length brought about a particle-size distribution of 

the NIR spectra of powdered samples. The NIR signal is reflected by powdered 

surfaces in two ways: diffuse reflectance and specular reflectance. Diffuse 

reflectance occurs when the NIR signal penetrates the sample and is reflected back to 

the detector. Specular reflectance occurs when the NIR signal does not penetrate the 

sample. MSC attempts to correct for variations in both forms of reflectance by 

constructing an individual linear regression model for each spectrum recorded that 

accounts for the variations when combined with a reference spectrum. The reference 

spectrum is usually determined by finding the mean of the calibration spectra. The 

MSC procedure was superseded by Extended Multiplicative Signal Correction.
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3.7.2 Extended Multiplicative Signal Correction

The extended multiplicative signal correction (EMSC) method of pre-processing 

allows a separation of physical light-scattering effects from chemical light 

absorbance effects in spectra from powders or turbid solutions. EMSC was originally 

designed for use with diffuse reflectance or transmittance spectroscopy, where 

uncontrolled variations in light scattering is often a complicating factor that can 

make multivariate calibration difficult. EMSC can be used to correct for 

multiplicative effects such as path-length variation and light-scattering effects, 

additive chemical effects such as analyte absorbance and interferents, as well as 

additive physical effects such as temperature shifts and baseline variations. The 

ability to correct for all three effects makes EMSC a powerful technique; however, it 

relies upon the assumption that each sample has a significantly different spectrum 

and is therefore linearly independent.^62' 631

Martens et al. first reported on EMSC in 1998, but since then it has had limited 

application. This is mainly because EMSC was first published around the time the 

OSC correction was reported. EMSC has one significant disadvantage when 

compared with OSC, in that EMSC can only correct for one sample's concentration 

at a time, which is problematic in analytical systems where more than one sample is 

being analysed. This is not a problem with OSC. However, hi 2005 Saiz-Abajo 

published a paper evaluating EMSC, and they reported that the use of EMSC with 

prior knowledge of the system produces robust models with good predictive 

performance^621 They also reported that EMSC was an "interesting" method for 

correcting temperature deviations. 1621 The ability to correct for temperature effects 

could be very useful since the NIR spectra are susceptible to changes in

T641temperature. 1 J
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3.8 Design of Experiments

Montgomery defines design of experiments (DOE) as "a scientific approach to 

planning experiments such that the results will yield the most appropriate 

information."[65] Design of experiments is a concept that has been around for 

approximately seventy years and was first introduced by Fisher. Fisher was 

responsible for the basic guidelines for an experimental design and its 

implementation. Fisher implemented his designs in an agricultural context, whereas 

in 1951 Box and Wilson saw an application for designs within an industrial context 

and introduced the concept of response surfaces J65'^

The late 1970s saw the inception of what was at that point a controversial 

chapter in DOE with the publication of work by Tagutchi. Tagutchi's studies 

expanded interest in the use of experimental design; however, most of the underlying 

science proposed by Tagutchi had not been published or reviewed by his peers. By 

the late 1980s, his concepts had been investigated and they were found to have been 

well-founded, but there were significant problems with the experimental designs and 

the data analysis. In the end, Tagutchi's work was not all in vain because he did 

encourage industries to seriously consider the employment of DOE and he increased 

the level of awareness and training of scientists and engineers in this field. [65]

DOE allows an investigator to produce optimisations in a multivariate manner. 

While traditional methods involve varying a single variable at a time, DOE employs 

experimental designs that allow the variation of multiple variables, thus giving the 

investigator information about the interactions between the variables being 

optimised. An interaction is the failure of a factor to produce the same effect in 

responses at different levels of another factor. This is a major advantage of DOE 

when compared to the traditional "one-at-a-time" methods. Another is the ability of
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the design to restrict the experimentation so that only procedures that are statistically 

significant or have major interactions are performed. This is actually beneficial in 

two ways: when compared to the traditional method, DOE saves time (due to the 

performance of fewer experiments) and yields higher-quality results (as the final 

model does not include superfluous information, making it more pertinent and 

robust). These many advantages emphasise that DOE is the best method for 

performing process experimentation.

Montgomery set out a series of guidelines that must be employed to produce a 

successful design of experiments:

1. Recognition of the Problem;

2. Choice of Factors and Levels;

3. Selection of Response Variable;

4. Choice of Experimental Design;

5. Perform Experiments;

6. Analysis of Data;

7. Conclusions and Recommendations. 1651

3.8.1 Recognition of the Problem

Recognising the problem is probably the simplest part of the procedure, yet one 

of the most important. Defining the problem is a critical step, as subsequent 

decisions in the design will hinge upon this definition. Design of experiments is 

commonly used for optimisations, process yields^67 ' reaction times, and 

conditions. [70' 71] The systematic approach of DOE makes it ideal for optimisation. In 

this phase of the procedure it is also important to consider the number of 

experiments that can be feasibly executed; for example, the definition of a problem 

that requires many expensive experiments could rule the design out as being 

financially unrealistic.
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3.8.2 Choice of Factors and Levels

A factor is the variable being changed through the design of experiments, 

examples of which are temperature, mixing times, or reagent concentrations. The 

levels are the values by which the factors will be tested, i.e. the differing 

concentrations of samples. The range of factors is the spread or difference between 

the highest and lowest levels. [65]

This section of the design procedure must be completed using prior knowledge 

of the system. An investigator has to know which factors are important and will 

impact the final optimisation. These factors must be orthogonal so that all factors can 

be varied at once. Levels must be reset using knowledge of the system; for example, 

hi an enzymatic system an investigator must know at what temperature an enzyme is 

denatured, and set the levels accordingly. Levels set beyond the threshold will result 

in the destruction of the enzyme. This is a very unportant step of the design process, 

as the selection of the wrong factors or inappropriate levels will result in a poor 

design.

As a further note, the stage in which design of experiments is employed can 

determine the nature of the input data and thus the available factors. If DOE is 

intended to optimise a process, the factors could range from the typical reaction 

parameters outlined in the previous two paragraphs. However, if DOE is employed 

after experimentation, the input data can change to the spectra collected, the number 

of PCs within the model, or the PCA scores and loadings. This change in factors also 

changes the levels employed.
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3.8.3 Response Variables

This stage requires selection of response variables that will be used to determine 

the quality of the experiment performed, such as prediction error, material yield, or 

peak resolutions. Regardless of which variable is selected it must provide the most 

suitable information to assess the efficiency of the design. This relates back to 

definition of the problem as an accurate definition should make selection of the 

response variable simple. However, in some situations there can be more than one 

form of response, and thus selection of the response that will be the most accessible 

and yield the most information is paramount.

These first three stages of design will always be initiated prior to the start of any 

experimentation.

3.8.4 Choice of Experimental Design

The experimental design defines and outlines the experiments to be performed 

as part of the DOE process. There are all different sorts possible of designs, 

including full and partial factorials and optimal designs.

3.8.4.1 Factorials

3.8.4. 1.1 Full Factorials

Factorial designs allow the examination of two or more factors. A factorial 

design relies on experiments being performed at every combination of factors and 

levels. This is a very systematic process that thoroughly maps a data space, and it 

will produce an optimal solution as long as the correct factors and levels were 

selected. The downside of full factorial designs is that a large number of experiments 

must be performed. The number of experiments is determined by Equation 30.
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nk
Equation 30

In Equation 30, n is the number of levels in the design and k is the number of 

factors being investigated. So in a design with five factors at two levels, 25 or 32 

experiments must be performed. [65]

To alleviate the excessive amount of experimentation in this method, the use of 

partial or fractional factorials was proposed.

3.8.4.1.2 Partial Factorials

In the previous design of five factors at two levels, there are 15 experiments that 

involve the individual factors and two component interactions, with the remaining 17 

experiments contained three, four, or five component interactions. An investigator 

employing a partial factorial would only investigate the one and two component 

interactions, as the higher-order interactions would yield little additional 

information. In this case, the number of experiments performed would be reduced by 

over half, from 32 to 15, saving both money and time. Other advantages of the 

partial factorial method is the ability to project results into a larger design, and to use 

the partial factorial design as a subset of a larger set of designs; this makes it ideal 

for screening experiments. t72' 73] However, partial factorials do have some 

disadvantages. By removing higher-order interactions the data spaces are not 

mapped as thoroughly as occurs with full factorial method. This is not an issue when 

employing partial factorials for the screening process. A partial factorial would be 

used to determine the important factors in an optimisation; then, using this 

information, a full factorial would be implemented that focuses on the areas 

highlighted by the partial factorial. [65]
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3.8.5 Optimal Designs

Optimal designs determine points for experimentation based on the 

maximisation or minimisation of a specific design criterion. Optimal designs have 

two main applications, calibration and sampling. They can be employed either before 

or after experimentation, i.e. prior to experimentation to determine the best 

experiments to perform, or after the use of a full factorial design experiment to 

determine which information to include hi a model. Optimal designs can 

significantly reduce the number of experiments performed; however they can be less 

systematic than factorial designs. Optimal designs only test sample points that have 

significant interactions, with the significance of the interactions determined by the 

design criterion, e.g. a D-optimal design will study the interactions that are at the 

extremities of a system. For the previous five factors/two levels design, a D-optimal 

approach would require sixteen experiments to be performed. There are many 

different types of optimal designs including D-optimal and A-optimal; the key 

variation between each optimal design is the design criterion^65' 

3.8.5.1 D-Optimal Designs

D-optimal designs are possibly the most popular designs used hi scientific 

research, ranging from chemistry to psychology. They were introduced by Kiefer in 

1959,[74] but gained greater clout with the adoption of computer-generated designs 

executing fast computation of design criteria. The D-optimal algorithm has the effect 

of selecting the sample points that surround the edge of the data space. The samples 

within the data space do not add new information to the model when compared to the 

D-optimal points. The ability to select samples from the edge of the data space 

makes D-optimal designs ideal for producing designs based on irregularly-shaped
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data spaces. [65> 72> 75] A design is determined to be D-optimal if it minimizes the 

determinant of the assessment data (Equation 31).

(X'X)
-1

Equation 31

The modelling procedure begins by removing a sample and re-calculating the D- 

optimal criterion. If the D-optimal criterion has unproved, the sample remains 

excluded from X and the next sample is then removed for a re-calculation. If 

removal of the sample causes the D-optimal criterion to worsen, the sample is 

replaced and the iterative sequence again moves on to the next sample. This 

procedure continues until all samples have been removed and tested.

Models produced using D-optimal criteria are thought to be less robust when 

one or more the variables within the model contain more variation than the other 

variables J74^ In these situations, the use other forms of optimal designs (such as A- 

optimal or E-optimal) would yield better results.

3.8.5.2 A-Optimal Designs

The A-optimal design uses the variation from within the regression coefficients. 

The criterion used in this design is shown in Equation 32.

Equation 32

This is the sum of the diagonal (or trace, tr) of the inverted square matrix 

X'X. [65' 74] As with the D-optimal approach, the A-optimality criterion can be applied
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in an iterative series that tests the samples individually and removes or returns them 

to the model depending upon the nature of the optimality criterion.

3.8.5.3 E-Optimal Designs

As with the previous optimal designs, E-optimal design relies on the 

optimisation of a specific criterion, and in this case a design is said to be E-optimal 

when the minimum value of the largest eigenvalue from the inverted matrix of (X'X) 

is determined:

Equation 33

E-optimal designs can be employed with the use of subsets (Figure 16).

XP

-1

Figure 16. E-optimal procedure using subset analysis.

The E-optimal procedure begins by randomising a data matrix, X. From X, a 

number of test samples of size m are selected to form a subset, jc. From X, another 

subset of samples is selected and forms the optimisation set p. These two subsets are
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then added together to form XP. XP undergoes the E-optimality iterative sequence 

of sample removal and PCA of the remaining matrix to determine the eigenvalues. If 

the optimal criterion improves, the sample is excluded from XP and the next sample 

is tested; this is the same as in the D-optimal approach. But, in this case, the iterative 

sequence loops around until m number of samples remain within XP. The new 

matrix, T, then replaces x and the new optimisation subset, p, is removed from X.

This application of E-optimal modelling makes it ideal for maintaining a 

calibration model by restricting the samples within a model to a fixed number whilst 

ensuring that the resulting data set is optimal and contains as much pertinent 

information to the model as possible. The new subset, p, are samples that could be 

potentially added to the calibration model if they would unprove the quality of the 

predictions made.
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4 Experimental

4.1 Materials and Methods

4.1.1 Equipment

The modelling, data processing, and programming were performed on a Dell 

Dimension GX60 PC with a 2.00GHz Dual Core Processor and 2.00GB of RAM. 

The designed optimisations of the pre-processing were preformed using a PC with a 

2.80GHz Celeron processor and 1.00GB of RAM.

4.1.2 Data Processing and Software Development

All data received was transferred into MatLab 7.1, published by Mathworks, 

Inc. (Natick, Massachusetts, USA), for analysis and treatment. The in-house 

software was written with MatLab Editor 7.5, also from Mathworks, Inc. Routines 

from the PLS Toolbox 3.5, published by Eigenvector Technologies (Manson, 

Washington, USA), were used in the construction of the PLS models.
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4.1.3 Adaptive Sample Selection Algorithms

4.1.3.1 The Euclidean Distance Algorithm
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Figure 17. Adaptive sample selection algorithm. 
The samples were selected for calibration using PCA scores and Euclidean distance.

The aim of this programme was to perform sample selection based on the 

Euclidean distance in the scores space of the input data (td_adapt2.m, section 

10.1.1.1). The calibration data undergo data reduction to produce scores and 

loadings. The loadings are then applied to the prediction data to produce the 

prediction scores. The Euclidean distance between the prediction scores and the 

scores of all the points of the calibration scores were then calculated. The distances 

were then ranked in ascending order, with the calibration samples with the smallest 

Euclidean distance selected; at the same tune, the respective lab values were selected
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and used to produce a calibration model. The lab values are used as the reference 

information, y, for the PLS calibration model. The calibration model was then used 

to predict the unknown sample. The output from this programme was the lab value 

of the unknown value.

4.1.3.2 The Shenk and Westerhaus Algorithm
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Figure 18. Sample selection algorithm. 
The samples were selected based on the correlation of calibration to prediction data.

Figure 18 shows the programme used to select calibration samples based on the 

correlation between the prediction spectrum and the calibration spectrum. 49~51 ' The 

figure shows the process employed hi the programme tdl.m (Section 10.1.1.2). The 

inputs for the correlation selection method were the calibration spectrum and the 

prediction spectrum. The correlation between the prediction spectrum and all of the 

calibration spectra were determined. These were ranked in ascending order, with the 

top-correlated samples being selected. At this point, the lab calibration data was 

inserted into the system, and this information along with the most-correlated spectra 

was used to build a calibration model from which a prediction model was produced. 

The prediction model was used to produce a lab value for the prediction spectra. The
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output for this programme was the predicted lab values based on the prediction 

spectra.

4.1.3.3 The Condition Number Selection Algorithm
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SHUFFLE 
SPECTRA MATRIX

REMOVE SAMPLE

PERMANENTLY 
EXCLUDE 
SAMPLE

IS THE
MATRIX

CONDITION
IMPROVED?

RETURN SAMPLE

LOOP 
UNTIL ALL 
SAMPLES

ARE 
REMOVED

AND 
TESTED

OPTIMISED SET OF 
SPECTRA

OUTPUT

Figure 19. Condition number selection algorithm. 
The samples were selected for calibration based on their improvement of the matrix condition.

The condition number algorithm (Figure 19) was used to produce a data set that 

has been optimised such that the final matrix has the lowest condition number. Input 

into the programme was the calibration spectra. The spectra were shuffled so that the 

starting point was randomised. From here a sample was removed and the condition 

of the matrix was calculated. If the removal of the spectrum improved the condition 

of the remaining spectral matrix the sample was permanently excluded from the 

calibration set. However, if the condition of the matrix worsened the spectra was 

returned to the calibration set. After determining exclusion or inclusion, the next
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sample was removed and the condition was calculated again. This sequence of 

spectra removal, testing of condition, and inclusion or exclusion continued until all 

the spectra were tested.

INPUT

CALIBRATION 
SPECTRA

OPTIMISED 
CALIBRATION SET

OUTPUT

PRODUCTION OF 
OPTIMISED SET

ITERATIVE
SEQUENCE

RETURNS TO
START

RUN Id com* AGAIN

ITERATIVE
SEQUENCE
MOVES ONE

STEP, UNTIL END

IS THE NEW
CALIBRATION
CONDITION
SMALLER?

Figure 20. Iterative condition number sample selection algorithm.

The function in Figure 20 was used to produce the optimal sample set by using 

an iterative procedure to ensure that the calibration set selected has the lowest 

condition number. The function began with the input of the calibration spectra and 

the number of iterations to perform. The iterative procedure began with the 

production of another calibration set using the function in Figure 19. The two 

calibration sets were compared, and if the second calibration set had a higher 

condition number than the first set produced, another iteration was processed; 

however, if the second calibration set had a lower condition number, it replaced the 

original calibration set and the iteration count was set back to one. The loop 

continued until there were a successive number of calibration sets produced with a 

higher condition number than the original. The number of iterations was defined as 

an input term.
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4.2 Polymer Study

A series of reference low-resolution Nuclear Magnetic Resonance Free Induced 

Decay (NMR FID) spectra were collected over a period of ten months starting in 

June 2006. The spectra were taken using the MM2720 Industrial Magnetic 

Resonance Solution (Progression, Inc.; North Andover, Massachusetts, USA). 

Reference spectra were recorded every ten minutes; however, the matching reference 

measurement, Xylene Soluble content (XS), was scheduled every eight hours. Any 

incomplete data was excluded from data processing along with the relevant reference 

spectra. This meant that the primary data set contained 233 reference NMR FID 

spectra, with 233 XS measurements within the reference data set.

4.2.1 Initial Examination

The initial examination begins by investigating the distribution of the laboratory 

measured values of the XS content, XS, using normality plots and histograms. 

Following this PCA is performed to produce the scores relating to the NMR FIDs.

Subsequently the FID and laboratory values were split in accordance with their 

XS content. Samples with an XS content greater than 6% form FIDn and XSn- The 

samples with XS content less than 6% were used to produce the data sets FIDt and 

XSL. Using normality plots and histograms the distributions of XSn and XSt were 

tested. The variables created as part of this examination are outlined in Table 1.
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Table 1. The variables created as part of the initial examination.

Variable Name

FID

XS

FIDH

FIDL

XSH

XSL

Description

The entire NMR FID data set.

The laboratory measured value for XS percentage with in the polymer

The NMR FIDs that pertain to samples that have a lab determined XS 
value greater than 6%

The NMR FIDs that pertain to samples that have a lab determined XS 
value lesso than 6%

The samples with a laboratory XS percentage greater than 6%

The samples with a laboratory XS percentage less than 6%

4.2.2 Current Model

This modelling procedure mimicked the current model used online to make 

predictions of the XS content of the polymers analysed. It was important to recreate 

this model as a comparison for the further models produced. This method began with 

FID and XS being randomly split in the ratio of 4:1 to form the calibration and 

prediction subsets FIDcAL, XScAL, FIDpRED and XSpRED- A full factorial design was 

employed to determine the best method of pre-processing of FIDcAL and XScAL- The 

numbers of factors and levels used in the design are outlined in Table 2.
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Table 2. The factors and levels used in the design for 
optimisation of the pre-processing of calibration models.

Factor Level

1.PLS
Regression Method

2. PCR

1. No Scaling

Scaling
2. Mean Centring

3. Auto-scaling

4. Standard Normal Variates

1. No OSC

Orthogonal Signal Correction
2. OSC Component

3. OSC Components

4. OSC Components

1. No Smoothing or 
Derivatisation

2.1 Derivative

Savitsky-Golay Derivatisation and Smoothing 3.2 Derivative

4. 1 st Order Polynomial

5. 2 Order Polynomial

1. One

2. Two

3. Three

4. Four
Latent Variables

5. Five

6. Six

7. Seven

8. Eight
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Using the results from the design, the pre-processed FIDcAL and XScAL were 

used to build a calibration a PLS calibration model, containing four latent variables. 

From this, the RMSEC was determined. Using this model and the appropriately pre- 

processed FIDpRED, predictions of the XS content of the samples whose spectra are 

contained within FIDpRED were made. The predicted XS content was then compared 

to the laboratory determined values within XSpRED to determine the RMSEP.

4.2.3 Local Models

The initial examination demonstrated the potential of using local models due to 

the data's distribution and graded nature. The aim of this part of the study was to 

produce models that could benefit from the multi-modal, grade-based distribution of 

the FID information. To this end, the variables with an XS content on either side of 

6% (Table 1) were split into calibration and prediction subsets (Table 3).

Table 3. Variables created as part of the local modelling procedure. 
The data is split in accordance with the XS content.

Variable Name

FIDH_CAL

F!DH_PRED

FIDL_CAL

FID|__PRED

XS|-|_CAL

XSH_PRED

XSL_CAL

XS|__PRED

Description

The NMR FIDs that pertain to calibration samples that have a lab 
determined XS value greater than 6%

The NMR FIDs that pertain to prediction samples that have a lab 
determined XS value greater than 6%

The NMR FIDs that pertain to calibration samples that have a lab 
determined XS value less than 6%

The NMR FIDs that pertain to prediction samples that have a lab 
determined XS value less than 6%

The calibration samples with a laboratory XS percentage greater than 6%

The prediction samples with a laboratory XS percentage greater than 6%

The calibration samples with a laboratory XS percentage less than 6%

The prediction samples with a laboratory XS percentage less than 6%
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Pre-processing was determined using a full factorial design using the same 

factors and levels as in the previous design (Table 2).

The pre-processed variables were then used to build PLS calibration and 

prediction models. The RMSEC for each calibration models were determined. 

Predictions were made for the respective prediction set and these were compared to 

the measured values to produce the model RMSEP.

4.2.4 Adaptive Selection Models

Construction of the local model highlighted several key advantages to building 

models that used the multi-modal nature of the data to make better predictions. To 

this end, the development of sample selection routines that selected the appropriate 

samples for calibration based the FID information were investigated. This aimed to 

combine the advantages of using local models for better predictions and the global 

models for then- ease of classification.

Three forms of sample selection were investigated with regard to the production 

of adaptive models; the data used in all three models is shown in Table 4.

Table 4. The variables used as part of the adaptive sampling experiments.

Variable Name

FID_CAL

FID_PRED

XS_CAL

XS_pRED

Description

The NMR FID calibration set.

The NMR FID prediction set.

The calibration laboratory measured XS percentages

The prediction laboratory measured XS percentages
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4.2.4.1 Sample Selection Using the Euclidean Distance

The calibration data was first auto-scaled, and following this the validation 

spectra were scaled individually in accordance with the calibration. This formed the 

input for the Euclidean distance algorithm (Figure 17). Output from the Euclidean 

distance algorithm was the value for the XS content as predicted by the PLS model. 

Using XSPRED with the values output from the Euclidean distance algorithm the 

RMSEP for this model was determined.

Within the Euclidean distance algorithm is a series of pre-processing methods as 

part of the modelling stage. The method of pre-processing was determined using a 

full factorial design, and the factors and levels used are outlined in Table 2. A second 

full factorial design was employed to determine the optimum number of samples and 

latent variables to be used when generating the PLS model, and the factors and levels 

are shown in Table 5.

Table 5. The factors and levels used to optimise the number of samples 
and latent variables to be included in the PLS models.

Factor

Number of Samples

Latent Variables

High Level

25

6

Low Level

5

2

4.2.4.2 Sample Selection Using Spectral Correlation

As a means of comparison, the approach of Shenk and Westerhaus using 

correlation between prediction and calibration specW49"51 ^ was also applied to the 

calibration and validation data. Using this method, sample selection is performed by 

calculating the correlation between the calibration sample and validation sample, so
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that the calibration samples that are most highly correlated with the validation 

sample are selected to build the calibration model.

With the variables described in Table 4, the Shenk and Westerhaus programme 

(Figure 18) was initiated using the calibration and prediction spectra as the inputs. 

Output from this programme were the values of the XS content as determined from 

the PLS models and the samples selected for calibration. The RMSEP for these 

models was calculated by using XSPRED and the values output from the correlation 

selection algorithm. Again, the best scheme of pre-processing used with the PLS 

models was found using a full factorial design, the levels and factors of which are 

shown in Table 2 (p. 80). As with the previous method, the number of samples and 

latent variables to be included in the PLS models was defined using a full factorial 

design, and the factors and levels of the design are given in Table 5.

4.2.4.3 Selection Using the Condition of the Matrix

As with previous methods the calibration spectra are outlined in Table 4, and 

these were input into the programme from Figure 19. The condition selection method 

produced a calibration set of spectra with the smallest condition number, and this 

was determined to be the optimum using the condition optimisation method (Figure 

20). The use of the condition selection method and the condition optimisation 

method produced a finalised optimal set of spectra with the lowest condition number. 

This optimal set was then used to predict the XS content of the prediction spectra, 

FIDpRED, using PLS. The pre-processing involved in the modelling stage was 

determined using DOE and a full factorial design (Table 5). The RMSEP was then 

calculated using the values predicted by the PLS model and XSpRED.
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4.2.4.4 Random Selection

As a control and comparison a series of models were built using a random 

selection of samples. Selecting samples at random provides a control method by 

which proof that the methods by which samples are selected are important. The first 

model used the optimal methods of pre-processing and modelling parameters 

(number of latent variables and samples included in the model) as determined for the 

model using the Euclidean distance as selection criteria. Using these parameters and 

pre-processing PLS calibration and prediction models were constructed; the values 

of the XS content predicted by the PLS model were used with XSpRgo to determine 

the RMSEP of the model.

The second model used random sample selection with the pre-processing and 

modelling parameters determined to be optimal for the model using correlation as 

the selection criteria. Using the pre-processed calibration spectra, PLS calibration 

and prediction models were produced. The output from these models was used along 

with XSpRED to determine the model RMSEP.

4.2.5 Implementation of the Online User Interface

The final stage of the NMR study involved the production of a Graphic User 

Interface (GUI) that could be employed online at the point of analysis. The 

development of the GUI involved many iterations and refinements. Feedback from 

the plant engineers was used to refine and alter the GUI so that it became fit for 

purpose. Also as part of the implementation the XS reference measurements were 

performed to determine the time frame and reliability of the reference measurements.

The final iteration of the GUI was implemented on the process NMR based on 

the polypropylene reactor PP5 at the Borealis facility in Schwechat, Austria. The
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GUI was deployed on the instrument making predictions continuously of the XS 

content of the polymer pellets being produced. The prediction errors for the online 

GUI were recorded and compared to that of the online model.
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4.3 Pharmaceutical Tablet Study

This body of work involved the analysis of NIR spectra of a series of tablets. 

The spectra were collected a period of three years across four different processing 

campaigns. The NIR spectra were recorded at the final stage of packaging, the 

tablets analysed are removed from the production line to record the laboratory 

reference information, tablet thickness, tablet weight, and active pharmaceutical 

ingredient. The thickness and weight were recorded using standard methods, and the 

active pharmaceutical ingredient (API) was determined using high performance 

liquid chromatography.

The experiments performed as part of this study were split into three sections 

each relating to a particular property of the tablet being examined: the API, the tablet 

weight, and the tablet thickness.

The variables used as part of this study are shown in Table 6.

Table 6. Variables used in the examination of pharmaceutical data.

Variable Name

SPT

API

THK

WGT

Description

NIR absorbance spectra from the tablets.

The API content of the tablets as assessed by HPLC.

The thickness of the tablets.

The weight of the tablets.

4.3.1 Modelling the Active Pharmaceutical Ingredient

The initial examination of this data began by splitting of the data into calibration 

and prediction sets (Table 7). Then normality plots and histograms were produced to 

assess the normality of the API distribution.



Table 7. Variables created for the modelling of the API content

Variable Name

SPT_CAL

SPT_PRED

API_CAL

API_PR£D

Description

NIR absorbance calibration spectra from the tablets.

NIR absorbance prediction spectra from the tablets.

The calibration set of the API content of the tablets as assessed by HPLC.

The prediction set of the API content of the tablets as assessed by HPLC.

Following this a procedure of variable selection was employed using the cross 

correlation matrix. After variable removal, sample selection was performed using 

SPT_CAL to generate a calibration set. Three methods of sample selection were 

investigated: selection using the Euclidean distance (see section 3.4.3.2), the 

correlation between calibration and prediction spectra (see section 3.4.3.1), and the 

condition number (see section 3.4.3.3). The Euclidean distance and correlation 

sample selection algorithms (Figure 17, Figure 18), and the condition optimisation 

method (Figure 20), were employed to generate the calibration sets for investigation. 

The best method of sample selection was determined to produce a calibration set, 

using this set and the respective samples from API CAL underwent EMSC to produce 

a corrected set of spectra. Then the corrected calibration spectra and the respective 

samples of API CAL were used in a full factorial design to determine the best method 

of pre-processing to be applied to the data prior to building a PLS model. Using the 

results from the design, the corrected calibration spectra were pre-processed with 

API CAL and used to build a PLS calibration model. SPT_PRED and API PRED were 

appropriately scaled and used to build a PLS prediction model to calculate the API 

content of the tablets associated with the spectra in SPT PRED. The predicted API 

values were compared to the values in API PRED to produce the model's RMSEP.



89 

4.3.2 Modelling the Tablet Weight

The procedure employed with this step was the same as that for the tablet API 

(see section 4.3.1). The variables created and used are shown in Table 8.

Table 8. Variables created as part of the modelling of the tablet weight

Variable Name

SPT_CAL

SPT_PRED

WGT_CAL

WGTpRED

Description

NIR absorbance calibration spectra from the tablets.

NIR absorbance prediction spectra from the tablets.

The calibration set of weights of the tablets.

The prediction set of the weights of the tablets.

As with the API study, this procedure began by investigating the nature of the 

tablet weight. This was performed by producing normality plots and histograms of 

WGT (Table 6). Taking these results into account, the variable selection scheme was 

applied using the cross correlation matrix (see section 3.4.4.1) to decide which 

variables should be retained. As with the API modelling, variable selection was 

followed by sample selection; again, as with the API modelling, three methods of 

selecting samples (based on the Euclidean distance, spectral correlation, and 

condition of the matrix) were used. From this a calibration set of spectra was 

defined, SPT CAL, and used hi conjunction with a full factorial design to determine 

the optimal method of pre-processing the spectra. Then the processed calibration 

spectra and associated tablet weights were used to build a PLS calibration model. 

The prediction spectra SPT_PRED were scaled in accordance with the calibration pre­ 

processing and used in conjunction with the calibration model to produce a PLS 

prediction model. This yielded predictions of the tablet weights that were compared 

to the weights hi WGT PRED to calculate the RMSEP.
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4.3.3 Modelling the Tablet Thickness

As with the procedures outlined in sections 4.3.1 and 4.3.2, variable selection 

using the cross correlation matrix and sample selection using the Euclidean distance- 

based algorithm (Figure 17), the correlation based selection algorithm (Figure 18), 

and the condition number based algorithm (Figure 20) were used to generate a set of 

samples for calibration (Table 9) from which the PLS calibration model was 

produced. The best method of pre-processing involved hi calibration was determined 

using a full factorial design, and the factors and levels are displayed hi Table 5.

Table 9. Variables used as part of the modelling of the tablet thickness.

Variable Name

SPIRAL

SPT_pRED

THK_cAt

THK_PRED

Description

NIR absorbance calibration spectra from the tablets.

NIR absorbance prediction spectra from the tablets.

The calibration set of the thickness of the tablets.

The prediction set of the thickness of the tablets.

Using this, the prediction information was scaled and used to produce a PLS 

prediction model. The values generated by the PLS model were compared to the 

values contained in THK PRED to determine the model RMSEP.
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5 Results and Discussion

5.1 Polymer Study

5.1.1 Initial Study

Initial assessment began by examining the FID spectra of the polypropylene 

powder (Figure 21). Each spectrum was recorded over a period of 2000 seconds. The 

decay curves appear to contain a large degree of variation, but the average ultra- 

sample correlation was calculated to be 97%. This meant that all the spectra were 

highly correlated and that methods of data reduction were required in order to break 

the correlation and build the prediction models.

NMR FID Spectra
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Figure 21. The collected NMR FID spectra of polypropylene.
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Data reduction was performed using PC A of the auto-scaled NMR FIDs (Figure 22).
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Figure 22. PCA scores of auto-scaled NMR FIDs showing the splitting 
of samples with low XS content (red) and high XS content (blue).

Figure 22 clearly shows two distinct clusters. The samples with a low Xylene 

Soluble (XS) content (marked in red) formed a tight cluster, with most of the 

variation contained on PC2. The samples with a high XS content (marked in blue) 

showed a higher degree of variation, and could be further arbitrarily split up into four 

separate clusters (labelled (a), (b), (c) and (d). The XS content of the polymers varies 

for different polymer grades, so from Figure 22 one could conclude that there were 

two main grades in production. However, it can be seen that this was not the case 

when compared to the histogram that denotes the distribution of the complete set of 

reference measurements regarding the XS content (Figure 23).
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Figure 23. A histogram of reference measurements showing 
the distributions of samples with low and high XS content.

It is clear that while there was one large grade at low XS that was normally 

distributed, at the higher XS content levels there were more grades, and there was 

little evidence of normality in the distribution. To further investigate the distributions 

of the reference material normality plots were produced, both for the data set as a 

whole, XSiab, and for the individual sets split according to XS content. Samples with 

an XS content lower than 6% formed XSL, and samples with an XS content greater 

than 6% formed XSH .
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Normality Probability Plot For All Samples XS Content
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Figure 24. Normality plot of POLY showing little adherence to the straight line; R2 = 0.831.

Normality plots are a graphical method for determining whether a system is 

normally distributed. A plot consists of a scaled axis and a straight line. If the data 

conforms to the straight line, the null hypothesis that the data is distributed normally 

cannot be disregarded. However, if the data does not conform to the straight line, the 

null hypothesis of normality must be rejected. The normality plot for XSiab (Figure 

24) shows that at the lower end of the XS content range (XSt) the samples did not 

conform to the straight line, suggesting that the null hypothesis was false and should 

be rejected. The samples at the higher end of the XS content range (XSn) adhered to 

the line and this suggests that the data at the higher end was normally distributed. 

When taken as a whole the R2 was determined to be 0.831. The evidence from 

Figure 24 contradicts that from the histogram hi Figure 23, which indicated that XSL 

should be normally distributed, rather than XSH.
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Normality Probability Plot For Low XS Content Samples
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Figure 25. Normality plot for XSL showing greater correlation to the straight line, 
suggesting a normal distribution; R2 = 0.925.

Figure 25 shows the normality plot for XSL. The points on this plot 

approximately conformed to the straight line with an R2 of 0.925, supporting the 

hypothesis that XSL was distributed normally. Figure 25 agrees with the information 

from Figure 23, meaning that the normality plot shown hi Figure 24 could have been 

skewed by the magnitude of XSH. This would give XSL the appearance of non­ 

conformity to the normal distribution.
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Normality Probability Plot For High XS Content Samples
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Figure 26. Normality plot for XSH with less correlation observed; R2 = 0.869.

The normality plot for XSn (Figure 26) again supports the hypothesis that the 

samples with XS content greater than 6% were not distributed normally, as only a 

few of the data points corresponded to the straight line. The R2 was determined to be 

0.869.

Using standard methods of model building (such as PLS) to produce models in 

order to predict samples with a high XS content would be difficult due to the non- 

normal distribution. The reason for the lack of normal distribution is that the 

polymers with a high XS content are made in much smaller quantity than those with 

a low XS content, and with a fixed scheduled sampling procedure in place there are 

many fewer reference samples collected and analysed. A proactive sampling 

procedure, in which samples are taken and measured when there is new information 

content, i.e. when the samples fall outside the ranges currently encountered, or to fill 

holes in the reference material distribution, would be suitable in this instance, as it



97

would require fewer samples being sent for analysis and would maximise the value 

of each reference measurement.

5.1.2 Interpretation of the Pre-processing Designs

Design of experiments was employed extensively to determine the appropriate 

method of pre-processing to be applied to the data prior to the predictive modelling. 

The means of displaying the results from the design are shown hi Figure 27. The 

main diagonal exhibits the results from each individual pre-processing factor. The 

rows and columns show the interactions between each processing method.
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Figure 27. Schematic of a typical pre-processing design.

Further discussion regarding the interpretation of these designs can be found hi the 

papers by Platen and Walmsley. [76' 77]
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5.1.3 Current Model

The first step of this modelling procedure was to reproduce the model currently 

being used online. This generated a baseline to which subsequent models could be 

compared.

This initial PLS model was made in three stages. The first stage was the 

determination of the best method for pre-processing the FID spectra. This was 

achieved through a full factorial design of experiments, using the final model 

prediction error as the response function (Figure 28).
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Figure 28. DOE model for the pre-processing of FID and XS,ab. 
Inset: the best method selected, mean centring with four LVs.

The inset highlights the most important result from this design. It shows that the best 

model will result when the FIDs are mean centred and that the final PLS model 

should contain four latent variables.
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The second stage applied the optimal pre-processing method in order to build 

the calibration model. The samples selected to build the calibration model were 

chosen randomly. The data was split using an approximate ratio of 3:1 between the 

calibration and validation subsets. This led to FID_cai and XS _«], the calibration data 

set that constituted the FIDs and the XS reference measurements containing a total of 

233 samples. The remaining 78 samples were used to form the validation data set 

FIDjred and XSjred. The resulting PLS calibration model (Figure 29) contained four 

latent variables (describing 99.6% of the total variance in the data) and the RMSEC 

was found to be 1 .75%.
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Figure 29. Reproduction of the PLS calibration currently used online; RMSEC = 1.75%.

The plot of the values predicted by the model versus the actual measured values 

of the data is shown in Figure 29. This figure further highlights the results from the 

initial study that the samples with a lower XS content produced a tight cluster of 

samples (a), with only small residual errors and minor amount of deviation from the



incorporated errors in both the NMR and the reference measurements. The RMSEP 

of 2.15% was slightly higher than that of the calibration error and it was considered 

fit for purpose. The bias of this model was determined to be 0.0787%.

Initial PLS Prediction Model Not Employing Sample Selection
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Figure 30. Reproduction of PLS prediction model currently used online; RMSEP = 2.15%.

Figure 30 shows that the validation samples with a lower XS content were 

accurately predicted, as these were the samples best described by the calibration 

data. The validation samples with a higher XS content were not predicted as
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line of predicted values versus actual values. An examination of the samples with a 

higher XS content showed a greater amount of deviation and higher residual errors, 

especially the samples within (b) and (c).

The third stage of this procedure was the prediction of the XS content for the 

validation data, FID_pred and FID_pred (Figure 30) using the model parameters 

determined in the previous stage. The validation data was true validation data, as it 

was taken over the same period of time as the calibration samples, and as such, it
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accurately, and this had a large effect on the final RMSEP. This indicates that some 

local type of modelling or sample selection would lead to more accurate models.

5.1.4 Local Partial Least Squares Models

To build the local models the calibration and validation data were split based on 

XS content. Samples with an XS content lower than 6% formed FIDL CAL, XSL_CAL, 

F!DL_PRED, and XSt PRED, data sets for calibration and validation, respectively. The 

samples with an XS content higher than 6% formed the calibration and validation 

data sets FIDH CAL, XSH_CAL, FIDH PRED, and XSH_PRED-

5.1.4.1 High Content Model

The modelling occurred in three stages, the first of which use a design of 

experiments to determine the optimal pre-processing method The best predictive 

model (inset, Figure 31) was found to be the mean centring of data prior to building 

a model with three latent variables. Figure 31 also shows that other methods of pre­ 

processing the data (such as OSC and Savitsky-Golay derivation and smoothing) 

were unsuccessful in producing a better predictive model, due to the lack of a 

baseline and high correlation between each NMR FID.
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Figure 31. DOE results for the pre-processing of samples with high XS content. 
Inset: the best method selected, mean centring with four LVs.

The second stage was the application of the selected pre-processing method and 

creation of a calibration model using FIDn_CAL and XSn CAL (Figure 32). The 

RMSEC for the model was found to be 1.82%. Using this calibration model, a PLS 

validation model was constructed for the data contained hi F!DH_PRED and XSH_PRED 

(Figure 33). The RMSEP was calculated to be 2.12%. The relatively high prediction 

error can be attributed to the distribution of the data; some samples in the validation 

set appeared only once and were thus difficult to predict.
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Initial PLS Calibration Model of Samples with High XS Content
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5.1.4.2 Low XS Content Model

The same modelling procedure was applied to the data with an XS content lower 

that 6%, FIDL CAL and XSL_CAL- DOE was employed and the best pre-processing 

method was found to be mean centring the data with three latent variables within the 

calibration model (Figure 34). OSC and Savitsky-Golay Derivatisation, the nearly- 

standard methods of processing spectroscopic data, were also tested, and the results 

showed that use of either technique would result in a model with a higher RMSEP 

than the optimal. This was attributed to the high degree of correlation between 

samples and the relatively low amount of noise within the system.
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Figure 34. DOE model for the pre-processing of FID L CAL and XSL CAL. 
Inset: the best method selected, mean centring with three LVs.

As before, the calibration model was produced using the optimal methods of 

pre-processing (Figure 35), and the RMSEC was determined to be 0.182%. This was
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an order of magnitude less than the calibration error determined for the data with a 

higher XS content. This can be ascribed to the normal distribution of the data when 

compared to samples in the high XS content model. It was also partly due to the 

method of calculation of the RMSEC, as making calibrations with smaller numbers 

introduces a magnitude bias effect.

PLS Calibration Model of Samples with Low XS Content
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Figure 35. PLS calibration model for FIDL CAL and XSL CAL ; RMSEC = 0.182%.

Following this, FIDL PRED and XSL PRED were put into the calibration model to 

produce a prediction model (Figure 36). The RMSEP was calculated to be 0.549%. 

This was approximately four times the RMSEC. The relatively large ratio between 

the calibration and prediction errors was partially due to samples (a), (b), and (c), as 

these three samples were the only samples to be poorly predicted by the model. 

However, further investigation showed that these samples were not outliers and 

should be included in the model. The exclusion of these samples lead to a new 

RMSEP of 0.379%.



106

PLS Validation Model of Samples with Low XS Content
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Figure 36. PLS prediction model for FIDL PRED and XSL PRED; RMSEP = 0.549%. 
(a), (b), and (c) are samples that were poorly predicted by the model.

This difference in RMSEPs was due to the nature of the sample distributions 

with each subset. From the initial examination, it was shown that the data was not 

distributed normally. Examination of the lower XS content sample subset indicated 

that this was normally distributed about the mean, whereas the higher XS content 

sample subset was not. The distribution of the samples was attributed to the non- 

continuous nature of producing different batches of polymer grades with varying 

percentages of XS content. In some cases it may not be possible to make valid 

predictions due to insufficient information contained locally about the samples.

Although localised modelling resulted in two models that made better 

predictions than the initial PLS model, it would be very difficult to use such a 

method online. Firstly, a local model would be required for every grade of polymer 

produced, which currently stands at over forty. The introduction of any new grade 

would require the construction of a new model, or else predictions would be
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unreliable until the information was sufficiently updated information within the 

initial model. Secondly, each model would require the individual optimisation of 

pre-processing methods and modelling parameters as well as the removal of outliers. 

Thirdly, before any predictive models could be constructed the correct local 

calibration model must be chosen for the sample to be predicted from. This 

classification is not a trivial procedure. The need to add another layer of complexity 

to the model would introduce an additional area for potential error. The method of 

classification would also require optimisation on a broader scale, such that all the 

samples could be classified into the model. Fourthly, while the initial examination of 

the data suggested a bimodal distribution, the manufacturers informed us that there 

were, in fact, over 40 grades within the initial PLS model and therefore over 40 

modes present. This indicated that the grades must overlap significantly such that 

when PLS is performed the 40 modes appear to only number two. Lastly, the 

localised modelling method would struggle to deal with inliers, transition points used 

to monitor the production cycle and the samples which fall between two grades and 

hence between two models. All of these factors show that applying localised 

modelling online would be an inappropriate method for the treatment of this data.

5.1.5 Sample Selection Models

5.1.5.1 Optimal Solution

The first sample selection procedure applied to the data used the condition 

number of the matrix to choose an optimal set of calibration samples. This used 

sample selection to build a calibration set that best described the entire data set in 

one model. The use of the condition number produced the calibration spectra and 

reference matrices FIDcoND CAL and XSCOND_CAL- The remaining samples formed the
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validation sets F!DCOND_PRED and XSCOND_PRED- The calibration samples selected 

(Figure 37) show that the samples were taken from areas of both lower and higher 

XS content.

PLS Scores Plot Showing the Samples Selected Using The Condition Of The Matrix
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Figure 37. PLS scores plot. The samples selected using the 
condition number come from areas of low and high XS content.

A full factorial design was employed to determine the best method of pre­ 

processing, which was found to be mean centring with the removal of two OSC 

components. The results from this design are shown in Figure 38.
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Figure 38. DOE model for pre-processing using the condition number for sample selection. 
Inset: the best method selected, mean centring with two OSC components.

The resulting calibration model (Figure 39) has a RMSEC of 0.588%. Using 

F!DCOND_PRED an^ XScoND_pRED the prediction model was generated (Figure 40), and 

ithasaRMSEPofl.76%.
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The results from this analysis show that the data could not be treated as a whole 

with one calibration set, due to the distributions and varying modes.

5.1.5.2 Adaptive Selection

Adaptive sample selection is defined as a method of selecting samples that are 

most pertinent to the sample being predicted. Unlike the use of the condition 

number, adaptive sample selection allows for the production of a calibration model 

for each validation sample. Adaptive sample selection determines the criteria by 

which the most pertinent samples can be selected for modelling, with the goal of 

maximising the strengths of both local and global modelling systems. Several 

different sample selection methods with differing selection criteria were explored, 

such as the distance in the scores and the correlation and the distribution amongst the 

scores space. A model with samples selected at random was built as a control model 

for comparison.

5.1.5.3 Shenk and Westerhaus

The Shenk and Westerhaus criteria use the correlation between the calibration 

and validation spectra to choose samples. The optimum number of samples for 

calibration was found to be 15, with the optimum number of latent variable 

determined to be six. These values were assessed using a design (Figure 41).
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Figure 41. Chart showing the results from the design employed to find the 
optimum number of samples and latent variables to build a calibration model.

The average variance captured by the six latent variables was 92.6% of the 

spectral variation. An example of the samples selected using correlation as the 

selection criteria is shown in Figure 42. The ridge formed on the addition of 13 

samples into the model could be due to the addition of a sample that is at the 

extremes of the model. The ridge declines as more samples similar to the extreme 

sample have been added and thus normalises and reduces the error and leverage of 

the first extreme sample.
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PLS Scores Plot Showing the Samples Selected Using Shenk and Westerhaus Correlation
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Figure 42. An example of the samples selected for calibration using spectral correlation. 
The validation sample is labelled (a).

Unlike the samples selected using the Euclidean distance, those selected using 

correlation seemed to bear no relevance to the validation sample (a). The average XS 

content was 2.09%, while the XS content of the validation sample was 14.9%.

The final optimised model had an average RMSEC of 5.66xlO~3%, which was 

significantly lower than any models produced thus far. The RMSEP was determined 

to be 3.58%, which was higher than the RMSEP of both the initial and Euclidean- 

based sample selection models. The fact that the RMSEP was approximately 1600 

times greater than the RMSEC strongly suggests that this method of sample selection 

over-fits the data, resulting in models that are highly calibrated but predict poorly.

The Shenk and Westerhaus approach gave an RMSEP value that was six times 

the RMSEP of the Euclidean-based sample selection approach. This was due to the 

nature of the FIDs; all of the spectra were highly correlated and therefore the spectra 

selected were not from the appropriate grade of polymer within the calibration set.
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Additionally, the continuous nature of chemical processing operations means that a 

new sample is recorded every ten minutes. These samples are collected continually 

and are time-series correlated. By using a selection method that employs correlation 

as the selection criteria, only the most recent samples (i.e. the last fifteen samples) 

would be selected to build calibration models.

5.1.5.4 Euclidean Distance-Based Selection

Euclidean distance-based sample selection chooses the most pertinent samples 

to build a calibration model from the distance between the calibration and validation 

samples. Essentially, the calibration samples with the smallest Euclidean distance 

from the sample to be predicted are chosen to build the model. Using this method, a 

model is created for each new validation sample. In this case, the number of samples 

and latent variables to build the calibration model was optimised using DOE and was 

found to be 18 samples with five latent variables to be included in the calibration 

model (Figure 43). PLS models were built for each validation sample in FID_pred

Surface Plot of the Results from the Design to Find the Optimum Number of Samples and LV's.

Q. 
LUin 
tc.

Optimum
20

Number of Samples

PCs

Figure 43. Chart showing the results from the design employed to find the 
optimum number of samples and latent variables to build a calibration model.
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The average RMSEC was determined to be 0.348%. A typical example of the 

samples selected using the Euclidean distance is shown in Figure 44. The RMSEP 

was found to be 0.672%.

PLS Scores Plot Showing the Samples Selected Using Euclidean Distances
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Figure 44. Example of samples selected to build a calibration model 
based on the Euclidean distance. The validation sample is labelled (a).

The average XS content of the samples selected was 15.6%, while the validation 

sample was found to have an XS content of 14.9%
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The advantage of using Euclidean-based sample selection is that the samples 

closest to the validation samples are used, which allows the algorithm to pick 

samples from the same or very similar grades for each new sample. This negates the 

effects of variant XS content and the subsequent need for a classification procedure.

The prediction error of this modelling procedure was higher than that of the 

local model for the samples with an XS content lower than 6%, but this modelling 

methodology does not feature any of the complicating factors that the local models 

require. This method of selection criteria also predicted the samples with a lower XS 

content as well as the samples with a higher XS content (Figure 45) and the 

measured values differed by the same amount regardless of XS content. This further 

emphasised that locally modelling this data would be the wrong approach. The 

prediction error using the Euclidean distance to select samples was also less than that 

of the initial model, and by selecting only the pertinent samples the skewing and 

leverage of irrelevant samples was removed.

5.1.5.5 Implementation of the Online Model

The final stage of this study was the implementation of the off-line model at the 

point of analysis online on the NMR instrument. The process stream schematic in

Figure 46 shows that the NMR is located after the polymer has been formed into 

pellets. Every eleven minutes pellets are diverted from the process stream into the 

NMR chamber. Inside the chamber, the pellets are heated to form a liquid, and an 

NMR FID is then collected for the liquid sample. This sample is then purged from 

the instrument, and the sampling process begins again. Three times a day a 

laboratory sample is taken from the same sampling point as the online NMR. This 

sample is used to calculate a reference XS content measurement, and this 

measurement is then matched to the most recent NMR FID collected.
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Reagent Input Polymerisation Compounding

Polymer Pellets 
Output Pellet Former

NMR

Figure 46. The process stream of the polymer production cycle. 
The NMR is situated after the formation of sampling pellets.

The implementation of the online procedure began by following the sampling 

procedures already in place at the plant, primarily the laboratory analysis and 

assessment of the time-frame by which measurements were made and could be used. 

The elapsed tune from the collection of a sample of pellets to the recording of an XS 

measurement could range from eight hours to two days. The large discrepancy in 

analysis time depends on when the sample is taken, as a sample collected on a Friday 

afternoon might not have the XS value determined until Monday afternoon, simply 

due to the constraints of the average workweek.

The next step of the installation was the development of a graphic user interface 

(GUI) that could be used by laboratory staff, plant engineers, and process managers 

to track the predictions and performance of the modelling method. The success of 

the Euclidean distance off-line sampling procedure lead to its selection as the 

method for online sampling. The first GUI designed is shown in Figure 47, and this 

model contained sections displaying the newly collected spectra (a) and calibration
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data (b), which gave the user a visual means of outlier detection by observing the 

spectrum. Sections (c) and (d) in Figure 47 show the Euclidean distances calculated 

as part of the sample selection stage from the scores shown in section (e). Section (f) 

is the control panel, and within this the model output the predicted XS value along 

with an alert status. The alert status allowed the user to determine the relevant 

validity of the prediction being made by displaying one of three indicators. A green 

alert status meant that the prediction made was reliable, while a yellow alert status 

meant that the prediction was within bounds but was less reliable and that a 

reference measurement should be ordered. A red alert status meant that the spectra 

collected and prediction generated could not be trusted, and at this point the process 

engineer must address the problem. By using the alert status and sections (a), (b), 

and (f), the GUI could be used for feedback control as well as process monitoring.
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After receiving feedback from the plant engineers regarding the initial user 

interface, a second GUI was produced (Figure 48). This still contained the sections 

pertaining to the new spectra (a), the calibration spectra (b), and the plot of 

Euclidean distances, but the section with the radar plot of the distances was removed. 

The scores plot (d) was modified to show the new sample within the scores of the 

calibration data (e), allowing a user to see the grade or cluster in which the sample 

was located. This new section allowed the user to track the production process, so 

that when there was an alteration to the grade being produced one could see the 

movement of the new sample within the scores towards the new grade; this was an 

important part of the feedback control procedure. Another improvement made for the 

second version of the GUI was to completely automate the control panel (f). This 

required only that the user load the spectra for prediction, and the predicted value 

would be calculated automatically. However, the automation of the procedure 

required an overhaul of the GUI so that the user would only be able to start or stop 

the process, as needed.

Added to the second version was the inclusion of results from the global model 

being used, and the comparison of the two values allowed for a rough form of visual 

validation. Also included was the calculation of the relative errors in each prediction, 

as well as the overall confidence in the data if the new sample spectrum was to be 

included within the overall calibration data. This was the first form of model 

maintenance employed. If the confidence within the data improved due to the 

inclusion of the new sample, the sample should be added to the calibration set with a 

corresponding laboratory reference value.
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Feedback regarding the second GUI lead to the development of the third (and 

current) user interface. Once started, this interface is fully-automated, importing the 

new FID from the capture software, selecting samples, making predictions, and 

determining an alert status for the spectra and predicted XS content. The use of two 

alert status procedures allows a user to separate bad predictions made with good 

spectra from bad predictions made with bad spectra. This version still included the 

plots of the new spectrum and the calibration data, but section about Euclidean 

distances was removed, as it was found to be superfluous. The scores plot is 

included, as it was determined to be a good method of process control. The control 

panel went through another evolution, and this version allows the model to update by 

adding samples to the calibration model. The major improvements to the interface 

involved the functions behind the interface. This GUI reads in data directly from the 

capture interface and process the data accordingly. It also has an error catch term that 

stops the GUI from making a prediction if no new spectrum is recorded, and there is 

a status box which was developed to let the user know what the model is currently 

doing, giving the user an idea of the processes occurring in the background.

The third GUI (Figure 49) was installed in December 2006 on a Progression 

MM2720 NMR located at the Borealis Polymers facility in Schwechat, Austria. 

Online validation of the model is currently underway, but the preliminary results 

show that the RMSEP is 1.23%. The difference in prediction errors between the 

models validated in the laboratory and the model validated online is due to the 

limited information contained within the calibration set used for the online model. 

This makes a strong case for automated model maintenance to control and update the 

information within the calibration set.
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5.1.5.6 Random Sample Selection

The main reason for producing calibration models with random sample selection 

is to confirm that the sample selection criteria employed in a model is actually the 

determining factor in its ability to predict. Using randomly selected samples, two 

models were produced, one using the parameters optimised for the Euclidean 

distance-based model and the other produced using the parameters optimised for the 

Shenk and Westerhaus approach. The RMSEP for the Euclidean-based model was 

9.84%, while the RMSEP for the Shenk and Westerhaus based model parameters 

was 1 1 .4%. An example of the randomly selected samples is shown in Figure 50.

PLS Scores Plot Showing the Samples Selected Randomnly

-60 -40 -20 0 20 40 60 80 100 120 
Scores on PC 1 (96.44%)

Figure 50. An example using randomly selected samples to 
build a calibration model for the validation sample (a).

The significantly higher RMSEPs occurring when selecting samples at random 

demonstrates that the employed selection criteria are essential in the final 

determination of the prediction ability for the model.
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5.1.6 Summary

Table 10 and Figure 51 show the summary of the RMSEC and RMSEP 

determined from each model. The correlation-based model had a much smaller 

RMSEC than any of the other models, although it has already been shown that this 

model is highly over-fit, a theory supported by the ratio of the RMSEP and RMSEC. 

Of note are the errors for the local models, which were lower than the errors of the 

current PLS model; however, the complexities that arise due to the need to perform 

classification along with the inability of this system to handle samples between 

grades and inliers meant that this method of modelling was not implemented.

Table 10. Summary of the calibration and prediction errors 
of the differing sample selection methods investigated.

Model Type

Current PLS Model

Local - Low XS Content

Local - High XS Content

Condition-Based Selection

Euclidean-Based Selection

Correlation-Based Selection

Random - Euclidean Model

Random - Correlation Model

RMSEC/%

1.75

0.182

1.82

0.588

0.348

0.00566

RMSEP/%

2.15

0.379

2.12

1.764

0.672

3.58

9.84

11.4
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The success of the Euclidean distance-based model lead to its installation online 

and it is currently under going a rigorous validation procedure. Upon successful 

validation, the Euclidean distance-based model and an accompanying automated 

system of model maintenance will replace the current PLS model being used. The 

preliminary validation error for the model installed online was determined to be 

1.23%.
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5.2 Pharmaceutical Tablet Study

The aim of this work was to produce calibration and prediction models for the 

quality assurance (QA) parameters, active pharmaceutical ingredient (API), and 

individual tablet weight and thickness of a series of pharmaceutical tablets produced 

by Pfizer Pharmaceuticals, UK. Using a model to predict these parameters can help 

the manufacturer save both time and money. To determine the QA parameters of a 

series of tablets in the traditional laboratory setting is very tune-consuming and 

destructive. By using NIR in conjunction with modelling, each tablet contained 

within the blister packs can have a prediction of the QA parameters performed 

efficiently and without the need for in-lab analysis or destruction of the tablets.

The current method of analysis takes the NIR spectra of each tablet after it has 

been produced (Figure 52). After collection of the spectra a random selection of 

tablets was taken from the process stream to the laboratory where the thickness and 

weight are measured and the API content is determined using HPLC.

Figure 52. Schematic of a NIR sampling scheme.
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Use of the NIR data has one major flaw in that there is an intrinsic variation 

within the spectra that does not occur within QA parameters (such as tablet thickness 

and density). This variation is due to the effect of light scattering caused by the 

differing forms of reflectance, and it is heavily affected by tablet thickness and 

density. In order to produce a model that can be applied online, any variation due to 

this light-scattering effect must be accounted for and corrected. A process must be 

implemented to systematically remove the variation and build a robust online model.

5.2.1 Initial Examination

For the purpose of clarity, the initial examination and modelling will be 

demonstrated using the reference information for the API, making predictions of the 

API content.

The initial examination of the data began by inspecting the spectral and 

reference information. The NIR absorbance spectra, SPT ( 

Figure 53), were reduced to their PCA (Figure 54). The data was split into three 

groups, (a), (b), and (c). Each group relates to a specific tablet production campaign 

undertaken in 1997 (a), 1998 (b), or 1999 (c).
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The distribution of the data was investigated through the use of histograms and 

normality plots, examples of which are shown in Figure 55 and Figure 56. The 

histogram in Figure 55 shows the typical shape displayed in a normal distribution. 

The adherence of the scored points to the straight line in Figure 56 also confirms the 

normality of the data.

5.2.1.1 Tablet Active Pharmaceutical Ingredient

The relative standard deviation of SPT was calculated to be 2.87%. By 

comparison, the relative standard deviation for the API was found to be 1.56%, 

suggesting that there was variation within the spectra that could not be attributed to 

the variation in the API. As noted previously, one of the major drawbacks of using 

NIR to measure tablets is the occurrence of diffuse reflectance and light-scattering 

effects. Thus any models built must include pre-treatment methods (such as EMSC 

and OSC) that can account for the additional variation or remove problematic 

wavelengths that contain variation not due to the analytical signal.
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5.2.1.2 Selecting Variables

Figure 57 shows the product from the diagonal of the cross correlation matrix 

from SPT and API. After wavelength 1400nm the covariance exhibited appears to be 

random and has no correlation with the variation associated with the API. 

Subsequently the wavelengths after 1400nm were removed ( 

Figure 58).

The Diagonal of The Covariance Matrix of NIR Tablet Absorbance Spectra and The Tablet API
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Figure 57. The diagonal response from the cross correlation matrix of SPT and API. 

The wavelengths after 1400nm do not contribute to the variation associated with API.

Following variable selection, the spectra underwent EMSC (Figure 59). The use 

of EMSC accounted for the variation of the spectra due to light-scattering effects 

leaving spectra that no longer exhibit illicit variation. After taking these steps, the 

relative standard deviation of the spectra was re-calculated to be 0.604%, which was 

a reduction in the variation within the spectra of approximately 79%.
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All of the stages of variable selection and EMSC correction are all performed 

prior to model building, and will from here on be referred to as hidden layers.

NIR Tablet Absorbance Spectra After Variable Selection

<
0)o
(0•e
o in
-9 4

3.5

600 700 800 900 1000 1100 1200 1300

Wavelength /nm

Figure 58. SPT after variable selection has been performed.
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Tablet NIR Absorbance Spectra After EMSC Correction

(D
o

4.5

600 700 800 900 1000 1100 1200 1300

Wavelength /nm
Figure 59. SPT corrected for light-scattering effects using EMSC.

5.2.1.3 Selecting Samples and Pre-processing

Following the application of the hidden layers of calibration, samples were 

selected using various sample selection methods with criteria such as correlation, 

condition number, and the Euclidean distance in the scores space.

5.2.1.3.1 Selection Using the Condition Number of the Matrix

Using the condition number to select samples has the effect of building a 

calibration set that has retained as much variation as possible. Samples selected 

using the condition number (Figure 60) came from most of the main clusters 

(excluding (a)), and these samples were taken from a production run from 1998. The 

samples from (a) did not contribute significant variation to the model and could be 

removed.
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PLS Scores Plot Showing the Samples Selected Using the Condition Number
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Figure 60. PLS scores plot showing the samples selected using the condition number.

Following the sample selection design of experiments was employed to 

determine the best method of pre-processing. The best method was found to be mean 

centring of the data with the incorporation of three latent variables (Figure 61).
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Following the pre-processing, PLS calibration, and validation modelling (Figure 

62, Figure 63), the RMSEC was found to be 0.00598% and the RMSEP was found to 

be 0.00624%. The ratio between the errors in calibration and prediction was 

approximately 1.05, suggesting that, despite the very small calibration error, there 

was no over-fitting of the model. Figure 62 shows that very few the samples fell 

upon the line of best fit through the predicted and actual values, but the calculated 

residuals showed that the deviations were small, and hence gave a small calibration 

and subsequent validation error.
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PLS Calibration Model SPT using the Samples Selected With The Condition Of The Matrix
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Figure 62. PLS calibration model with samples selected from SPT 
using the condition number of the matrix; RMSEC = 0.00598%.
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5.2.1.4 Adaptive Sample Selection

Using adaptive models with SPT will result in models that struggle to predict 

the reference data. This flaw is due to the reference data, as SPT is normally 

distributed and has a very small range.

5.2.1.4.1 Sample Selection Using the Correlation of Spectra

Figure 64 shows an example of sample selection using the correlation between 

calibration and validation spectra as the selection criteria in a manner similar to that 

employed in the previous section. However, production of subsequent selections for 

each validation model showed that these same samples were selected every time. 

This was due to the very small range of variation within the reference data, as this 

method was developed for reference material with a significant variation of many 

grades, which would thus be highly correlated. The very small range of variation of 

the API rendered the data ill-suited to the use of this method of sample selection.
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PCA Scores Plot of The Samples Selected Using The Correlation Between Validation and Calibration Spectra As A Criteria For Selection
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Figure 64. PCA scores plot showing the samples selected using 
the correlation coefficient as the criteria for selection.

The unsuitability of this sample selection method was further established with 

the production of the PLS calibration and validation models. Prior to modelling, 

DOE ascertained that the best method of pre-processing was auto-scaling with the 

incorporation of three latent variables. Although the same samples were selected 

each time, the samples selected were representative of the data set as whole and 

produced models with RMSEC of 0.987% and RMSEP determined to 1.20%. The 

yield of higher error rates confirmed the unsuitability of this method.

5.2.1.4.2 Sample Selection Using the Euclidean Distance

Figure 65 shows the calibration samples selected from the entire calibration set 

using the Euclidean distance in the scores space as the selection criteria.
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PCA Scores Plot of The Samples Selected Using The Euclidean Distance As A Criteria For Selection 
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Figure 65. PCA scores plot showing the samples selected 
for calibration using the Euclidean distance.

In this figure, the distance between the validation samples (b) and sample cluster 

(a) appeared to be small, yet no samples were selected from this region (a). The 

reason for this discrepancy lies with the method of visual representation. Because the 

Euclidean distance method of selection is calculated in three dimensions, the two- 

dimensional sample plot from Figure 65 needed to be enhanced to accommodate the 

additional dimension. The new plot (Figure 66) shows the samples selected using 

Euclidean distance in three dimensions, and it is now observable that the samples in 

(a) were considerably farther away from the validation sample. This explained why 

no samples were selected for calibration from this region.



143

PCA Scores Plot of The Samples Selected Using The Euclidean Distance As A Criteria For Selection
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Figure 66. A three-dimensional display of the PCA scores plot of 

the samples selected for calibration using Euclidean distance.

Similar to the correlation-based sample selection, the Euclidean distance-based 

method also selected the same calibration samples each tune. This was due to the 

relatively small amount of variation in the reference measurements, and after EMSC 

correction the variation hi the spectra was reduced dramatically. These adaptive 

modelling systems are designed for in widely-varying systems that require robust 

multi-modal modelling. As this data did not have these characteristics, the adaptive 

sampling methods were found to be unsuitable.

The calibration models had a RMSEC of 0.596%, and the subsequent validation 

models had a RMSEP of 39.7%. The high ratio between calibration and validation 

error suggested that the model was over-fit; the number of latent variables was then 

reduced to two which led to RMSEC and RMSEP values of 0.753% and 24.5%, 

respectively. The fact that ratio between the errors remained very high meant that the
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model was not actually over-fit, but was simply poor at making predictions using the 

Euclidean distance as the criteria for sample selection.

The final assessment of this stage of the modelling determined that the best 

sample selection method used the condition number as the selection criteria.

5.2.2 Tablet Weight

Following the process undertaken for the API, the same procedure was then 

used to build models for the parameter pertaining to the weight of each tablet 

assessed. While EMSC was previously used to correct for light scattering and 

correlate the reference information to the API, in this situation EMSC was used to 

remove variation in light scattering and variation due to the API concentration. The 

remaining variation within the data pertained to the weight of the tablet.

Initial investigation of the tablet weights suggested that the data was not 

distributed, as evidenced by the two distributive peaks (a) and (b) hi the histogram 

(Figure 67). The non-linearity of the data in the normality plot confirmed this 

(Figure 68). This reference information more closely resembled POLy in its 

distribution; however, the range was still very small when compared that of POLy.
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5.2.2.1 Modelling

The hidden layers of variable and sample selection were performed as with the 

API method, and the spectra were cropped at 1400nm. Samples were selected for 

calibration using the condition number. The data then underwent EMSC correction 

to account for the variation observed that was not correlated with the variation 

observed in the tablet weights. The EMSC-corrected data was then used to produce 

calibration and prediction models hi the same manner that was employed with the 

API models. The calibration model was determined to have a RMSEC of 0.987% 

and a RMSEP of 1.120% for the prediction model.

5.2.3 Tablet Thickness

5.2.3.1 Initial Study

From the start, making predictions about tablet thickness seemed the least 

important of the three parameters. However, within industry, of the three laboratory 

measurements examined, the process of measuring the thickness is the most 

destructive. Because of this, the use of NIR spectroscopy to predict tablet thickness 

would save both time and money. As shown in the histogram (Figure 69) and 

normality plot (Figure 70) from the initial study of the thickness data, the data was 

normally distributed. This was indicated by the shape of the histogram and the data's 

adherence to the straight line of the normality plot, with an R2 of 0.990.
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5.2.3.2 Modelling

The prediction of tablet thickness was performed using the same scheme as for 

API and tablet weight. The processing within hidden layers reduced the spectral 

variables by removing wavelengths from 1402nm to 1900nm, and samples were 

selected for calibration using the condition number as the selection criteria.

Again, as with the previous models, the best method for spectral pre-processing 

was determined using design of experiments; this was determined to be mean 

centring. The subsequent calibration model had a RMSEC of 1.70%. From the 

calibration model a prediction model was produced with a RMSEP of 2.46%.

The resulting RMSEP showed that the tablet thickness could be predicted 

successfully using EMSC correction and hidden layers, proving that this method 

could replace the destructive methods currently used to measure the tablet thickness.

5.2.4 Blank Models

For comparison and confirmation, control models were built for each of the 

three prediction parameters. These did not use EMSC or hidden layers. Samples 

were selected randomly for calibration, while the number of samples and PCs used 

remained the same as those used hi the previous models. Results for the blank 

models are shown hi Table 11. Figure 71 shows the comparison between each model 

and its respective blank model, including hidden layers and EMSC correction.

Table 11. The calibration and prediction errors of the blank models.

Parameter

API

Weight

Thickness

RMSEC/%

0.0993

2.29

2.17

RMSEP/%

0.134

2.61

2.98
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The results of this work highlight two key points. The first is that the use of 

sample selection methods and appropriate pre-processing can be used to produce 

models that can robustly predict a wide variety of parameters. The second is that the 

determination of the most appropriate method of sample selection is essential to the 

success of a model. The method chosen must use a criterion that is suitable for the 

data under examination. In this study, the NIR spectral data were normally 

distributed, and samples could be selected from the entire information data space. 

This is in contrast to the data examined in the polymer section, which were not 

normally distributed. In that case, a method of sample selection that selected samples 

from specific regions of the information scores space was required.

The logical next step for the tablet study would be to create a means to apply 

this modelling scheme online. To accomplish this, aspects of model maintenance 

must be employed in a similar manner to those employed with the polymer model.
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6 Conclusions 

6.1 Polymer Study

The main aim of this study was the production of an online robust modelling 

method that could be used to predict the Xylene Soluble content of polymer pellets.

NMR FID spectra of a series of polymers were collected over a period of ten 

months. Using the PCA scores, the data could be portioned into two categories based 

on the XS content. Using the FIDs and the information regarding the XS content, a 

series of calibration models were produced.

The first part of this study focused on the reproduction of the model being used 

at that time. This model was a global model that used all of the samples, and the 

RMSEP for the prediction of XS content with this model was 2.15%. This model 

gave a baseline performance to which the performance of subsequent models could 

be compared. After the PCA the data appeared to be bimodal and this lead to the 

development and production of two local models for samples with high and low XS 

content. The prediction errors for the local models for high and low samples were 

2.12% and 0.379%, respectively. Although the prediction errors of these models 

were better than those of the model then employed online, this system was rejected 

due to its need for an additional stage of classification before predictions could be 

made. However, this part of the study did show that each mode of the data (hi this 

case, each grade of polymer being produced) must be dealt with separately to 

produce good predictions.

Sample selection methods that combined the strengths of the global model with 

the strengths of the local models were then developed and employed, and samples



152

were selected from each grade within a global set of data. The sample selection 

routines selected samples for calibration based on the sample to be predicted. Of the 

methods investigated, sample selection based on the PCA scores and the Euclidean 

distances resulted hi the best prediction models with a RMSEP of 0.672%. Although 

the prediction error for this model was greater than that of the local system, the use 

of this selection method required no form of classification prior to making 

predictions. Furthermore, the use of this form of sample selection allowed for 

tracking of in-lying samples that move between grades and monitoring as the process 

cycle moves from one grade to another.

The final stage of this study was the development and deployment of a user 

interface at the point of analysis that incorporated the model using Euclidean 

distance-based sample selection. The resultant GUI was installed hi December 2006.

The next step hi this study would be to produce an automated method of model 

maintenance that would ensure that only the most pertinent samples were retained hi 

the model. Automated model maintenance would allow the model to determine the 

tunes when a laboratory measurement should be taken. The current method of model 

maintenance requires a scheduled analysis of samples collected three tunes a day. 

Each sample is then added to the model, regardless of whether any this sample 

contributes any additional information to the model. Design of experiments could be 

used employing an E-optimal criterion to ensure that any updates to the calibration 

data set involve only the most informative samples. Automating this process would 

also decrease laboratory analysis costs. If the model can determine the accuracy of 

its predictions then no manual reference measurements are needed, making the 

sampling procedure a proactive initiative.
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The adaptive sampling algorithms could also be expanded to be applied to any 

process that works within a production cycle and requires grade-specific predictions, 

such as the prediction of aromatic and olefin content of petroleum and diesel. Any 

system that contains sampling clusters due to the reference measurements would be 

an ideal arena for the application of these procedures for sample selection.

6.2 Tablet Study

The main aim of the tablet study was to produce a robust model that could 

account for variations in the analytical signal that were not caused by variations 

within the tablet. This study also involved a traditional method of PAT which made 

it ideal for evaluating the modelling methods developed in the polymer study.

The NIR spectra of over 250 tablets were collected over three production 

campaigns from 1997 to 1999. Accompanying the NIR spectral data were the 

chemical and physical tablet parameters for the active pharmaceutical ingredient, 

tablet weight, and tablet thickness.

This study began with the PCA of the data which showed the data distributed in 

accordance with the three production campaigns. Unlike the polymer study, the 

variation observed was not due to differing grades of tablets being produced, but 

instead due to diffuse and specular reflectance of the NIR radiation from the surface 

of the tablet. The reflectance variation was addressed using EMSC and variable 

selection. Three models (one for each of the tablet parameters) were produced, and 

the best predictive models were constructed with samples selected using the 

condition number. The prediction errors for these models are in Table 12.
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Table 12. Calibration and prediction errors for the tablet study.

Parameter

API

Thickness

Weight

RMSEC/%

0.00598

0.9874

1.70

RMSEP/%

0.00624

1.20

2.46

The ability to make the predictions of the tablet API, weight, and thickness from 

one spectrum would save time and money in a process environment, improving upon 

the sampling procedure so that fewer samples need be destroyed for the purpose of 

analysis. Control and maintenance of an automated model could also convert 

sampling from a scheduled practice to a proactive one, using the model to determine 

when tablets should sampled in order to improve predictions and robustness. 

Additionally, automated NIR spectroscopy in PAT provides a practical means to 

analyse every table from the production line, and the ability to control the 

information in the calibration set using an E-optimal approach (as in the polymer 

study) would ensure that the calibration data set only includes relevant samples.

The next logical step for this study would be the development of a user interface 

and then installation online at the point of analysis, as accomplished in the polymer 

study.
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6.3 Summary

From the results of these two experimental studies it has been demonstrated that 

the use a regimented and designed procedure to determine criteria for sample 

selection, correction methods, and data pre-treatment procedures will result in the 

creation of robust, accurate models. The polymer study evolved the use of sample 

selection algorithms based upon the actual sample being predicted, and these models 

successfully predicted polymer samples, but performed poorly in the prediction of 

the NIR data. This discrepancy was attributed to intrinsic differences in the data 

being analysed, which emphasised the fact that there is no one standard approach to 

data analysis. The successful use of chemometrics and design of experiments to 

determine the best method for modelling in both studies indicates that this 

combination of methods should perhaps be established as the standard approach.

The next step for both studies is to employ design of experiments to maintain 

the calibration models, ensuring that they do not grow exponentially and maximising 

the amount of relevant information retained. Further work within the model will 

allow the modelling system to determine if and when reference measurements are 

needed and if a decline hi the quality of predictions requires a laboratory 

measurement. This would replace the traditional manual sampling procedure so that 

samples are taken and laboratory references measurements are recorded only when 

the model deems it necessary.

This work shows that by delving deeper into modelling strategies and 

employing appropriate sample and variable selections with the analytical application 

of design of experiments result in better models capable of make better predictions. 

Advancements in PAT must be accompanied by complementary advances in 

chemometrics to ensure that both remain at the forefront of analytical science.
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7 Self Reflection and Appraisal

The section details the aspects of my personal development over the past three 

years that lead to the successful completion of this research.

When I started my PhD in 2004,1 had a basic understanding of the principles 

and applications of chemometrics. I also had a working knowledge of Excel and 

limited experience with MatLab. Three years later, through immersion hi 

challenging and enjoyable research, I was pushed to develop new skills and advance 

beyond my expectations. One of the most important skills I gained was the ability to 

produce algorithms and programmes with MatLab. During the last three years I 

wrote and developed a large number of programmes, the most important of which 

being the user interface that is currently employed by Borealis to predict various 

parameters of the polymers they produce. This project forced a significant shift of 

my internal paradigm as I evolved from simply being a user, a button pusher, and 

embraced a new philosophy when developing programmes - that of an artist. This 

development took a lot of hard work and patience, and it reminded me of the first 

steps in learning a foreign language; but the results bore a programme that is now in 

use online at a major manufacturing facility.

This accomplishment required both an understanding of programming itself and 

an understanding of the people who would use the programme. I gained the 

necessary insight into the people who would use (and ultimately benefiting from) the 

software in development when I spent a month at the Borealis plant in Schwechat, 

Austria. My tune there was spent writing code and working hi the laboratory where I 

performed the analysis methods used to generate reference information for the 

models. This gave me a deep appreciation for the work involved; previously had I 

craved and demanded data, but upon returning from Austria I realised that the
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reference measurements were only a small part of a bigger picture. The time in 

Austria also allowed me the opportunity to interact with and learn from the people 

who would be the primary users of my software, and their feedback lead to the 

implementation of a traffic light system to indicate the quality of the model 

predictions. To this I would look to implement an on-demand sampling procedure, 

so that when an inaccurate value was predicted by the model a system would be 

initiated to collect a sample, record a spectrum, and call for a laboratory reference 

measurement. The newly-recorded sample would then be added to the model using a 

maintenance algorithm with an E-optimal approach. This method could also be used 

to identify and remove samples that no longer add sufficient information within the 

framework of the model. The model maintenance algorithm would control the size of 

the model and prevent it from expanding, thus keeping the system information-rich, 

as opposed the data-rich, information-poor state that trap models of ever increasing 

sizes.

In the past three years I have found that to people outside of the field 

chemometrics appears to be some unintelligible form of black magic. To this end, I 

have made an effort to communicate my work to other scientists through posters and 

talks at conferences. I also place great importance on the demonstration of 

chemometrics to undergraduate students, as the demonstration classes have provided 

me with a means to increase awareness of and enthusiasm for the field, and 

hopefully inspire some potential future chemometricians. Demonstrating in 

chemometrics has required me to reconsider the field as it is seen by the uninitiated 

in order to be able to communicate the fundamental theories and principles of 

chemometrics to students who likely have no prior experience with this form of data
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analysis. Breaking down fundamental concepts such as PCA has served to ensure 

that I myself have a thorough understanding of the theories and practices of my field. 

In addition to my time in Austria, I also had the opportunity to spend three 

months in Seattle working for the Center for Process Analytical Chemistry (CPAC) 

at the University of Washington. My time there was spent working on a project 

based on calibration transfer between gas chromatography instruments in different 

parts of the world. This work again added another string to my bow as I experienced 

working within a new group, one with different ideas and expectations; additionally, 

I had to adjust as I worked with an entirely different form of data. As a whole, I feel 

that my experiences over the past three years have allowed me to develop skills that 

will be indispensable throughout the entirety of my career.
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10 Appendix

10.1MatLab Programmes

10.1.1 Sample Selection Routines

10.1.1.1 Euclidean Distance Routine

function [Value,dist,s,I] = 
td_adapt2(Calibration,Validation, TConc)

:aptive sampling using the euclidean distance in the PCA 

scores space

% I/O: [Value,dist,s] = td_adapt2(Calibration,Validation,TConc)

T = Calibration; 
[T_x,mc,stds] = auto(T); 
- -". ---.-  - svd(T_x) 

options = [] ;
  ciea^i^ --.e options inputs for the PCA programme. 
options.name = 'options'; 
options.display = 'off: 
options .plots = '' r '; 
options.outputversion = 3; 
options.preprocessing = {[] []}; 
options.algorithm = ; 
options.blockdetails = 'standard'; 

model = pea(T_x,3,options); 
U = model.loads{l}; 
V = model.loads {2}; 
U_d = U; 
V_d = V;
[m,n] = size(Validation); 
Value = []; 
dist = []; 
foi i=l:m

v = Validation(i,:);
v_x = scale(v,me,stds);
nx = v_x*V_d;
x_o = nx(:,1);
y_o = nx(:,2);
z_o = nx(:,3);
dx = U_d(:,l)-x_o;
dy = U_d(:,2)-y_o;
dz = U_d(:,3)-z_o;
dx2 = dx.^2;
dy2 = dy.^2;
dz2 = dz.^2;
D2 = [dx2+dy2+dz2];
D = sqrt(D2);
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[y, I] = sort(D);
dist = [dist y];
s = 1(1:18,:);
X = T(s,:);
Y = TConc(s,:);
[aX,mX,stX] = auto(X);
[aY,mY,stY] = auto(Y);
[a_v] = scale(v,mX,stX);
options = [];
options.name = 'options';
options.display = 'off; %Displays output to the 

command windoi.
options .plots = '-,-ri-'; IGoverns plots to make
options.outputversion = 3; %2,3 Tells what to output 

(3=ModelStru.-
options.preprocessing = {[] []}; %See preprocess
options.algorithm = 'sim 1 ; %SIMPLS algorithm
options.blockdetails = ' ; mdard'; %level of details
model = pis(aX,aY,5,options);
p_model = pis(a_v,model,options);
pred = p_model.pred{2};
pred = [(pred*stY)+mY];
Value = [Value;pred]; 

end

10.1.1.2 Shenk and Westerhaus Routine

function [sel,ssel] = tdl(tspec,vspec); 
tic
[m,n] = size(tspec); 
cof = []; 
for i = l:m

a = tspec(i,:) ;
b = vspec;
t = corrcoef([a;b]');
s = t(2,l);
cof = [cof;s];

end
[D,I] = sort(cof);
[p,q] = find(cof>0.99);
sel = 1(1:13);
ssel = tspec(sel,:);
toe

function [v,model,pmodel,RMSEC] = 
td_adapt_shenk(tspec,vspec,tconc)

[sel] = tdl(tspec,vspec); 
ts = tspec(sel,:); 
tc = tconc(sel,:);
[atx,mx,stds] = auto(ts);
[ate,me,stdc] = auto(tc);
[ay] = scale(vspec,mx,stds); 
comp = 3; 
options = [] ;

options.name = 'options'
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options.display = 'off; %Displays output to the 
command >>> i n,-i,-,.

options.plots = 'none'; ^Governs plots to make 
options.outputversion = 3; %2,3 Tells what to output 

(3=ModelStruct)
options.preprocessing = {[] []}; ; See preprocess 
options.algorithm = 'sun'; iSIMPLS algorithm 
options.blockdetails = 'standard'; %level of details

model = pis(atx,ate,comp,options);
pmodel = pis(ay,model,options);
RMSEC= model.detail.rmsec(1,comp);
% [mcx,mxj =-- rnncn (tspec) ;
% [mcc,mc] = mncn(tconc);
% [ay] = scale(a,mx);
% model = pis(mcx,mcc,5};
% pmodel = pis(ay,model);
p = pmodel.pred{2};
v = [(p*stdc)+mc];
%v = [p+mc];

10.1.1.3 Condition Number Routine

function [pcs] =td_f(X) 
load ; 
S = svd(X); 
tot_eig = sum(S); 
tor i = 2:19;

a= [sum(S(l:i,:))/tot_eig]*100; 
n = i+1; 
±L n>19

dispf ' Final PC') ; 
oreak 

else 
end
b= [sum(S(l:n,:))/tot_eig]*100; 
F = [b. A 2]/[a."2] 
CValue = FCrit([i-1],i) 
XI. F<CValue 

pcs = i; 
break 

else 
end 

end 
pcs;

function [sel,cnumfor,cnumback,index] = td_cond2(matrix)

%try o 1 .
[p,q] = size(matrix);
[X,index] = shuffle(matrix,[1:p]');
[mcx,me] = mncn(X);
[U,S,V] = svds(mcx,15);
s = diag(S) ;
[o, w] = size (s) ;
[pcs] = td_f(mcx);
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final_pc = pcs 
a = 1;
cnumfor = [ ] ; 
[m, n] = size (X) ; 
while m>7 

a; 
X;
m_x = mncn(X); 
[m,n] = size(m_x); 
m
si = svds(m_x,final_pc); 
cl = si(1,:)/si(final_pc,:); 
e = delsamps(X,a); 
index_e = delsamps(index,a); 
m_e = mncn(e); 
s2 = svds(m_e,final_pc); 
c2 = s2(1,:)/s2(final_pc,:}; 

i c2<cl 
X = e;
index = index e; 
disp( '_^:::[--- Kemoved!') 
a = a;
cnumfor = [cnumfor;c2]; 

else
X = X; 
a = a+1; 

- _ a >= m 
break 

else 
end 

end 
end 
X;
index;
[f,g] = size(X); 
cnumback = []; 
z = f; 
whil' z>0 

z
53 = svd(X);
S3a = S3(l:final_pc,:};
c3 = [ (S3a(l,:))/(S3a(final_pc,
j = delsamps(X,z);
index_j = delsamps(index,z);
54 = svd(j);
S4a = S4(1:final_pc,:);
c4 = [(S4a(l,:)}/(S4a(final_pc,:

X = j;
z = z;
index = index_j ;
cnumback = [cnumback; c4 ];
disp( . : . - Remov

2\   A. f

z = z-1; 
end 

end 
sel = X;
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10.1.2 Fourier Transform Routine

function [D] = td fftk(kdt,N,n) 
d = []; 
f = []; 
for k=-N:N

a = cos((2*pi*k*n)/((2*N)+1);;
d = [d;a];
b = (sin((2*pi*k*n)/((2*N}+1)))*sqrt(-l);
f = [f;b]; 

end
f = f.*kdt;
d = d.*kdt;
h = [d+f] ;
j = sum(h);
D = (l/((2*N)+l)*j);

function [X,D,v] = td_fftn(time_interval,measurment_time, input);
% Calculates the discrete fourier transform of a signal. This is 

not a FAST
\ FOURIER TRANSFORM so care must be taken runing large sample 

sets.
%
% I/O [X,v] = td_fftn(time__interval,measurment_time,input)
%
°- Tom Dearing University of Hull v.2 15/2/2006

tic
kdt = input;
[p, r] = size (kdt) ;
N = (p-l)/2;
tm = measurment_time;
dt = time_interval;
vmin = 1/tm;
vmax = I/(2*dt);
nmax = vmax/vmin;
v = 0:vmin:vmax;
D = [];
kdt = mncn(kdt);
torn = waitbar(0, 'Please Wait....');
for n = 0:nmax;

tn = n/nmax;
waitbar(tn)
q = td_fftk(kdt,N,n);
D = [D;q]; 

end
close(torn) 
X = D;
WIDTH = 0.025; 
figure,bar(v,abs(X) ,WIDTH) ; 
xlabel( 'Frequency /Hz'); 
ylabel ( 'A(n) ') ; 
toe



171 

10.1.3 Graphic User Interfaces

10.1.3.1 First Iteration - Demo4

function
% DEM04 M-file for Demo4.fig
% DEM04, by itself, creates a new DEMO4 or raises the 

existing
% singleton*.
%
% H = DEM04 returns the handle to a new DEM04 or the handle 

to
% the existing singleton*.
%
% DEM04('CALLBACK 1 ,hObject,eventData,handles,...) calls the 

local
% function named CALLBACK in DEM04.M with the given input 

arguments.
%
% DEM04('Property','Value',...) creates a new DEM04 or 

raises the
% existing singleton*. Starting from the left, property 

value pairs are
% applied to the GUI before Demo4_OpeningFunction gets 

called. An
% unrecognized property name or invalid value makes 

property application
% stop. All inputs are passed to Demo4_OpeningFcn via 

varargin.
:T5

% *See GUI Options on GUIDE'S Tools menu. Choose "GUI 

allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Demo4 

% Last Modified by GUIDE v2.5 21-Nov-2006 15:46:33

"egin initialization code - DO NOT EDIT 

gui_Singleton = 1; 
gui_State = struct ( ' gui__Name'.. mfilename,

' gui_Singleton', gui_Singleton,     
'gui_OpeningFcn' r @Demo4_OpeningFcn, 
'gui "  .- :tFcn'r @Demo4_OutputFcn, 
'gu 1. .tFcn', [] , 
 gui_Callback', []); 

ifnargin && ischar(varargin{1}}
gui_State.gui_Callback = str2func(varargin{l}); 

end

i f nargout
[varargout{l:nargout}] = gui_mainfen(gui_State, 

varargin{:}); 
else

gui_mainfcn(gui_State, varargin{:}); 
end



172

% End initialization code - DO NOT EDIT

% --- Executes just before Demo4 is made visible.
function Demo4_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn. 
% hObject handle to figure
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA) 
% varargin command line arguments to Demo4 (see VARARGIN)

% Ch - ''-fault command line output for Demo4 
handles.output = hObject;

% Update handles structure 
guidata(hObject, handles);

% UIWAIT makes Demo4 wait for user response (see UIRESUME) 
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command 
line.

function varargout = Demo4_0utputFen(hObject, eventdata, 
handles)

5 varargout cell array for returning output args (see 
VARARGOUT);

% hObject handle to figure
1 eventdata reserved - to be defined in a future version of 

MAT LAB
% handles structure with handles and user data (see GUIDATA)

* Get default command line outDut from handles structure 
varargout{1} = handles.output;

% --- Executes on button press in pushbuttonl .
~- : -- pushbuttonl_Callback (hObject, eventdata, handles) 

uspec = uiimporr; 
uspec = uspec. data; 
[m,n] = size (uspec) ;

uspec = uspec( : ,2) ' ;
els-
uspec = uspec;
eria
load H^modata;
save -riodatal cspec vspec2 uspec cconc vconc2
axes (handles . axesl) ;
cla;
plot (uspec' ), axis , grid, title ('" ' " -d 

Spc-rra'KxlabeK 'Time /-'),ylabel( ');
axes (handles . axes2 ) ;
cla;
plot (cspec' ) , axis auto, grid, title( 'Calibration 

Spectra ') , xlabel (' Time /s'),ylabel( 'igrial Amplitude');
load :
spectra. FID = [spectra. FID;uspec] ;
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o = clock;
spectra.name =

[ spectra, name; sprint f( ' -"name. *n2.0f/%02.0f/%02.0f.%02.0f:%02.0f:%02. 
Of,o(3),o(2),o(l),o(4),o(5),0(6))];

Save   ^.LpuL ^,p._..,:_! a

% hObject handle to pushbuttonl (see GCBO) 
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback (hObject, eventdata, handles)
load demodata ;
[AX,mc,stds] = auto (cspec);
[BX] = scale (uspec, me, stds) ;
options = [] ;
% creates the options inputs for the PCA programme.
opt ions. name = 'options';
options, display = 'off;
options. plots = 'none';
options. outputversion = 3;
options .preprocessing = {[] []};
options .algorithm = 'sim';
options .blockdetails = 'standard'; 

model = pea (AX, 3, options ); 
U = model. loads { 1} ; 
V = model . loads { 2 } ; 
v = BX(1, :); 
Uv = v*V; 
axes (handles . axes3) ;

plot(Uv(l,l),Uv(l,2), _ . )
xlabel( 'Scores on PCI '), ylabel (' Scores on PC2 '), title (' PCA

Scores riot of Calibrat " " "-'');
axis auto, legend { 'Ca ; . ', ' nown 

Scores', 'Location', 'Best');
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of 

MAT LAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbuttons.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttons (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB
» handles structure with handles and user data (see GUIDATA) 

load -modata":
[Value,dist,s] = td_adapt2(cspec,uspec,cconc);
axes(handles.axes4)
polar(dist),axis aut^r
title( 'Distances of Samples from Calibration Data');
axes(handles.axesS)
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plot(dist),title('Distances from Calibration
Data " ) , xlabel ( " ...ample Number ') , ylabel ( ' '"uclidean Distance ') ; 

grid,axis mto

function Untitled_l_Callback(hObject, eventdata, handles)
% hObject handle to Untitled_l (see GCB'
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject handle to pushbutton4 (see GCBO) 
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA)
axes (handles.axesl)
cla
axes(handles.axes2)
cla
axes(handles.axes3)
cla
axes(handles.axes4)
cla
axes(handles.axes5)
cla
set(handles.text4, 'String', ' = .........');
set(handles.text6, tring', ' = .........');
set (handles, text 10, ' "" '...:',' = .........');
set(handles.textlO, jundColor', 'k')

\ --- Executes on button press in pushbuttons.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject handle "to pushbuttons (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB  
CJ- handles structure with handles and user data (see GUIDATA) 

load demodata'_
[Value,dist,s] = td_adapt2(cspec,uspec,cconc);
load
spectra.predictions = [spectra.predictions;Value];
set(handles.text4, " : ' ',Value);
[conf, conf_p,conf_d] = p_conf2(cspec,uspec)
« [conf , cop, conf _p, c'_':i  ._ i. ~ i. <jun L ( c^ ;... -  , .-pee); 
c = conf_d(l,1};
spectra.confidence = [spectra.confidence;conf_d(1,1)]; 
save 
set (handles .textG, ' String ', c) ;
if c>0

load ':tput
set (handles.textlO, 'String', 'Green');
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set(handles.textlO,'ForegroundColor',' ') 
spectra.alert_status = [spectra.alert_status; 
save utput spectra 

elseit c<0&c>-l
load , ,nt r,i it

set(handles.textlO,'String 1 ,'Yellow');
set(handles.textlO, 'ForegroundColor', ' ');
spectra.alert_status = [spectra.alert_status;
save utput spectra 

els- 
load utput
set(handles.textlO, 'String', 'Red ') ;
set (handles.textlO, ' F. -.r^aroundColor ', ' r') ;
spectra.alert_status = [spectra.alert_status; '
save !,£-,,. ::: r ._-M_r,l 

end

%set(handles.text 9, 'String',time) ;

% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonG (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton8.
function pushbutton8_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttons (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB
* handles structure with handles and user data (see GUIDATA) 
close(Demo4)

10.1.3.2 Second Iteration DemoS

functionvararqout = DemoS(varargin)
% DEMOS M-±i.ie ZO.L _i^; - . : - j
% DEMOS, by itself, creates a new DEMOS or raises the 

existing
% singleton*.
%
% H = DEMOS returns the handle to a new DEMOS or the handle

to
% the existing singleton*.
%
% DEMOS('CALLBACK',hObject,eventData,handles,...) calls the 

local
% function named CALLBACK in DEMOS.M with the given input 

arguments.
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% DEM05('Property','Value',...) creates a new DEMO5 or 
raises the

% existing singleton*. Starting from the left, property 
value pairs are

% applied to the GUI before Demo5_OpeningFunction gets 
called. An

% unrecognized property name or invalid value makes 
property application

% stop. All inputs are passed to Demo5_OpeningFcn via 
varargin.

%
% *See GUI Options on GUIDE'S Tools menu. Choose "GUI 

allows only one
« instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Demo5 

% Last Modified by GUIDE v2 . 5 29-Nov-2006 16:34:50

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, 
'gui_OpeningFcn', @Demo5_OpeningFcn,     
'guiJDutputFcn 1 , @Demo5_OutputFcn,  -- 
' gui_LayoutFcn', [] ,       
'aui CalIback' [ ] ) ;

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});

end.

if nargout
[varargout{l:nargout}] = guijmainfen(gui_State, 

varargin{: }) ;

gui__mainf en (gui_State, varargin{ : }) ;
end
\ End initialization code - DO NOT EDIT

% --- Executes ^'j?t before DemoS is made visible.
function Demo5_OpeningFcn(hObject, eventdata, handles, varargin)
% This functi._... , _._. no output .^LJS, see OutputFcr.. 
% hObject handle to figure
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA) 
% varargin command line arguments to DemoS (see VARARGIN)

% Choose default command line output for DemoS 
handles.output = hObject;

% Update handles structure 
guidata(hObject, handles);

% UIWAIT makes DemoS wait for user response (see UIRESUME)
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uiwait(handles.figurel);

% --- Outputs from this function are returned to the command 
line.

function varargout = Demo5_OutputFcn(hObject, eventdata, 
handles)

varargout cell array for returning output args (see 
VARARGOUT);

% hObject handle to figure
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure 
varargout{1} = handles.output;

% --- Executes on button press in pushbuttonl. 
function pushbuttonl_Callback (hObject, eventdata, handles) 

% hObject hanu ^::- _. ,.. .,oiibuttonl (see GCBO)
% eventdata reserved - to be defined in a future version of 

MAT LAB
% handles structure with handles and user data (see GUIDATA)

'C: \Program Files\MATLAB71\work\Model ' 
uspec = uiimport; 
uspec = uspec. data; 
[m,n] = size (uspec); 
if m>l

uspec = uspec(:,2)';

uspec = uspec;
end
load d=:- --'- '--!;

save d i: :1 cspec vspec2 uspec cconc vconc2;
axes (handles . axesl) ;
plot (uspec' ), axis . , grid, title (' .iewly Collected 

Spectr.; ) , xlabel ( ' Time /s')/ylabel( .'ignal Amplitude');

axes (handles . axes2 ) ;
plot (cspec' ), axis , grid, title ( alibration 

Spectre ), xlabel (' Time ) , ylabel ( . ;.iynal Amplitude');

[AX,mc,stds] = auto (cspec) ;
[BX] = scale (uspec, me, stds) ;
load
model = pea (AX, 3, options) ;
U = model. loads {!};
V = model. loads {2 };
v = BX ( 1 , : ) ;
Uv = v*V;
axes (handles. axes4) ;

plot(Uv(l,l) ,Uv(l,2) , ' ) ;
xlabel ( , ' '), ylabel (' Scores on PCI 1 }, title ( ?CA 

Scores Plot of Calibration and Unknown Samples');
axis auto, legend (' Calibration Scores ',' Unknown 

Scores ' , ' L^cat i on ' , ' Best ' ) ;
[Value, dist, s] = td_adapt2 (cspec, uspec, cconc) ;
axes (handles . axes3)
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plot(dist),title('Distances from Calibration 
Data'),xlabel('Sample Number'),ylabel('Euclidean 
Distanc '),grid,axis auto;

[s4,su4] = td_confs(cspec, uspec};
[preds] = td_pls(cspec,cconc,uspec);
[c_conf,glob_conf,confs_o,confsg_o] = 

td_pconf4(Value,preds,cspec,cconc, uspec);
set (handles. text7, '......,, ,sprintf( -6.2f',s4));
set(handles.text8,'String',sprintf( -6.2f,su4));
set (handles, text 9, 'String' , sprint f ( ' ?.-6.2f ' , Value) ) ;
set(handles.textlO,'String',sprintf('1-6.2f,preds));
set(handles.textll,'string',sprintf('%-6.2 \ ,c_conf));
set(handles.text!2, ' String',sprintf('%-6.2 ,glob_conf));
set(handles.text20,'String',sprintf(' %-G .2 ,confs_o));
set(handles.text21,'String',sprintf('%-6.2f',confsg_o));
% --- Executes on bntt-.ri nress in oushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pusnouttonz (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA)

axes(handles.axesl)
cla
axes(handles.axes2)
cla
axes(handles.axes3)
cla
axes(handles.axes4)
cla
set(handles.text7, tring','.......');
set(handles.text8, tring','.......');
set(handles.text9, tring 1 , 1 .......');
set(handles.textlO, ','.......');
set(handles.textll,' :','.......');
set(handles.text!2, :ng','.......');
set (handles.text20,' ...,iing' ,'.......' ) ;
set(handles.text21,'String' ,'.......' ) ;

10.1.3.3 Installed GUI

function vararqout = DemoG(varargin)
% DEM06 M-file for Demo6.fig
% DEM06, by itself, creates a new DEM06 or raises the 

existing
% singleton*.
%
% H = DEMO6 returns the handle to a new DEM06 or the handle 

to
% the existing singleton*.
%
% DEMO6('CALLBACK',hObject,eventData, handles, ...) calls the 

local
% function named CALLBACK in DEM06.M with the given input 

arguments.
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% DEM06('Property','Value',...) creates a new DEM06 or 
raises the

% existing singleton*. Starting from the left, property 
value pairs are

% applied to the GUI before Demo6_OpeningFunction gets 
called. An ~

° unrecognized property name or invalid value makes 
property application

% stop. All inputs are passed to Demo6_OpeningFcn via 
varargin.

%
% *See GUI Options on GUIDE'S Tools menu. Choose "GUI 

allows only one
% instance to run (singleton)". 
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Demo6

% Last Modified by GUIDE v2.5 ll-Dec-2006 15:11:09

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @Demo6_OpeningFcn, ...
'gui_OutputFcn', @Demo6_OutputFen, ...
'gui_LayoutFcn', [] , ...

[]);
if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfen(gui_State, 

varargin{:});
else

gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before De  ~     -~ ------ -- : -'-'•-

function Demo6_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output aigd, feec uuLpuLFcn. 
% hObject handle to figure
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA) 
% varargin command line arguments to DemoG (see VARARGIN)

°- Choo.?e default command line output for Demo6 
handles.output = hObject;

°- He-date handl°s ?-*~ ru'-^ure 
guidata(hObject, handles);

% UIWAIT makes Demo6 wait for user response (see UIRESUME) 
% uiwait(handles.figurel);
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% --- Outputs from this function are returned to the command 
line.

function varargout = Demo6_0utputFen(hObject, eventdata, 
handles)

 t varargout cell array tor returning output args (see 
VARARGOUT);

% hObject handle to figure
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

% --- Executes on button press in pushbuttonl.
function pushbuttonl_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonl (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA)
%start button!
cd( 'c:\Proaram Files\MATLAB71\work\Model') ;
set(handles.pushbuttonl, 'enable', 'off');
set(handles.pushbutton4, 'enable', 'off');
set(handles.pushbuttons, 'enable', 'off');
load . :  : p^control
while loop_control>0

set(handles.texts, 'String', 'Waiting to Import Spectra'); 
set(handles.texts, 'ForegroundColor', 'b'); 
pause(60)
utirr.ing loop, cr; the plant machine this is set for 11.5 

minutes
set (handles .texts, 'string', ' Importing'i ;

;,-_ . . .,..;,._ ; . i -j.'.; FID file
cd( 'c:\Program Files\Aztec\Rawdata_Res' \ ; 
n = importdata( 'rawdata.raw' | ; 
new_spec = n.data(:,2)';
cd(~c:\Program Files\MATLAB7l\work\Model') ; 
load last_isr
M = (sum((last_ispec - new_spec). A 2)); 
load ioop_controi 
if M>0

last_ispec = new_spec; 
save iasL_idpcc -L.d3t_ispecr 
last_spec = last_spec +1;
save loop_control loop_control last_spec; 
load )Utput_m 
d = now;
dt_import = [dt_import;d]; 
load
spec_num = [spec_num;last_spec]; %variable for output 
%save loop__contro_L L..."_'p_control last_size last__spec; 
uspec = new_spec(:,1:2000); 
clear new_spec: 
load cdata
s-save imported spectra for later updating and maintenane 
ispec = [ispec;uspec];
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save out_spec ispec
%StatUS tn nlr.M-in.i FTDs

axes (handles. axesl) ; 
cla
axes (handles . axes2 ) ; 
cla
axes (handles . axesS) ; 
cla
set (handles. texts, ' Bering' , ' Plotting FIDs ' ) ; 
axes (handles . axesl } ;
plot (uspec) , title ( ' Imported Fir ) , grid, xlabel ( ime 

/s' ),ylabel( j; , . . ...,:. ....-); 
axes (handles . axes2 ) ;
plot (cspec 1 ) , title ( 'Calibration FIDs ' ) , grid, xlabel ( 'Time 

/s'),ylabel(  .');
[s4,su4] = td_confs (cspec, uspec) ; 
^i (su4/s4)<l

set (handles. text 8, 'String' , 'Green' ) ; 
set (handles. texts, ' ForegroundColor ' , ' g ' ) ; 
a = 1;
spec_alert = [spec_alert;a] ; 

else
set (handles, texts, ' "i- *  -; r, n < r < Re d' ) ;
set (handles. texts, oundColor ' , ' r ' } ;
a = -I;
spec_alert = [spec_alert;a] ; 

end
^calculating scores
set (handles. texts, ' Stri no ', 'Calculating Scores Space'); 
[AX,mc,stds] = auto (cspec) ; 
[BX] = scale (uspec, me, stds) ; 
model = pea (AX, 3, options) ; 
U = model. loads{l} ; 
V = model. loads {2}; 
v = BX(1, :); 
Uv = v*V; 
%plotting scores
set (handles .text 5, 'String', 'Plotting Scores'); 
axes (handles . axesS) ;

plot(Uv(l,l),Uv(l,2), )
xlabel ( >n PCI '), ylabel (' Scores on 

PC2 ' ), title ( CA Sci t of CaiiurdL±on and Ur 
Samp_ ),axis autoi, legend (' Calibration Scores ','"_..........-.
Scores' , 'Location' ,' ' ) ;

%calcuating adapti"  : le»
set (handles, texts, ' ',' D -;-: n d^m Adaptive Model');
[Value] = td_adapt2 (cspec, uspec, cconc) ; ?=,variable for 

output
[m_preds] = [m_preds; Value] ;
[preds] = td_pls (cspec, cconc, uspec ) ;
set (handles, textl,' ,J _^., ' , sprint f I -6.2f ' , Value) ) ;
set ( handles. text2, 'Strin : ' , sprint f (' --6.2 f , preds) ) ;
% caicuiatiiig model confidencoi
set (handles. texts, ' ot r: --T' , '^-;1 culating Confidence. ) ;
[c_conf , glob_conf , conf s_o] = 

td_pconf4 (Value, preds, cspec, cconc, uspec) ;
m_confs = [m_conf s; c_conf ] ;
set (handles .text 3, ' 3 LI in' • , sprint f (' %-6 . 3f ' , c_conf ) ) ; 

%variable f ...
set (handles. text4, ' String ' , sprintf (' %-6. 3f ' , glob_conf ) ) ;
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if (c_conf/confs_o)<1
set(handles.text9,'String' , 'Green 1 );
set (handles. text9, ' ForegrouridColor' ,'g' ) ; % variable 

for output
b = 1;
conf_alert = [conf_alert;b]; 

els(=i   (c_j2onf/confs=o)>!&&(c_conf/confs=o)<2
set (handles.text?, ' String", 'Yellow 1 )
set (handles .text9, ' ForegrouridColor ' , ' y ' ) ; ^variable 

for output
b = 0;
conf_alert = [conf=alert;b]; 

else
set(handles.text9, , ');
set (handles. text9, ' _, ior','-'); "variable 

for output
b - -1;

conf alert = [conf alert;b]; 
end
% calculate ATSM stats '^variable for output 
%compose output form of csv
save output_m spec_num spec_alert conf_alert dt_import 

m_confs m_pr=Hp
save oop_control loop_control last_spec;
vl = (spec_num);
v2 = (m_preds);
v3 = (m=confs);
T = [vl dt_import v2 v3 spec_alert conf_alert];
save edata.asc T -ascii -double
^displaying saving data.

else
disp(['New Spectra Not Found - Skipped: 

', datestr(now)]) ;
set(handles.texts,'String','No New Spectra'); 
set(handles.texts, 'ForegroundColor', 'r') ; 
loop_control; 

end
loop_control; 

end
set(handles.texts, '   ' - - ', ' "^opped'); 
set(handles.pushbuttons, ,e','on'); 
set(handles.pushbutton4,'enable','on');

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB
'J K-r-i!~'S r^r'.ic-'-^r? with handles and user data (see GUIDATA)
set(handles.pushbutton2,'enable','o: );
set(handles.pushbuttons, 'enable', 'on');
load
loop_control = -1;
save _..[._ _;  :; _i _ ! loop_control last_spec;

f, --- Executes on button press in pushbuttons.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObiect handle to pushbuttons (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB
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% handles structure with handles and user data (see GUIDATA)
set(handles.pushbuttonl, 'enable', 'on');
set(handles.pushbutton2, 'enable', 'on');
set(handles.pushbuttons, 'enable', 'off);
set(handles.pushbuttons,'enable','off');
set(handles.pushbuttons, 'enable', 'off');

load loop_control
loop_control = 1;
save op_control loop_control l.i
set(handles.texts,'string','System

% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA)

close(Demo6);

% --- Executes on button press in pushbuttons, 
function pushbutton5_Callback(hObject, eventdata, handles) 
% hObject handle to pushbuttons (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB
;- handles structure with handles and user data (see GUIDATA)
cd( Program Files\MATLAB7l\work\Mode ) ;
set(handles.pushbuttons, 'enable', 'off');
load ;
load C~L__, ;
load out_uj;
%load loop control;
load    . <-!- :' r-i;

UPdata = csvread( 'update.csv') ;
s_num = CJPdata (:, 1) ;
a = [spec_num(l,1)-1];
n_num = [s_num-a];
ncspec = ispec(n_num,:);
ncconc = UPdata(:,9);
spec_addn = [spec_addn;n_num];
conc_add = [conc_add;ncconc];
new_spec = [new_spec;ncspec];
Save La_aduea 6peC_:. ' ^C

% at this point for "...:  .     . ' : look at an automatic 
purge of

% samples that may become surplus to requirement based upon 
addition of

these samples
cspec = [cspec;ncspec];
cconc = [cconc;ncconc];
save cJaLa cipcc cconc options
set (handles .texts, '."' ring', 'Update Complete"!');
set(handles.pushbuttons, 'enable', 'on');
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% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttons (see GCBO)
% eventdata reserved - to be defined in a future version of 

MATLAB
% handles structure with handles and user data (see GUIDATA)
% purge button
set(handles.pushbuttons,'enable','off');
load output_m
spec_num = [];
dt_import = [];
m_confs = [];
m_preds = [ ] ;
spec_alert = [];
conf_alert = [];
save output m spec_num spec_alert conf_alert dt_import m_confs 

m_pred3
ispec = [];
save out_spec ispec

10.1.3.4 Confidence Algorithm

function [c_conf,glob_conf,confs_o,confsg_o] 
td_pconf4(pred_a,pred_g,cspec,cconc,uspec)

[AX,me,stds] = auto(cspec); 
[BX] = scale(uspec,me,stds); 
options = [];
6 creates the options inputs for the PCA programme.
options.name = 'options':
options . display = 'off;
options.plots = 'none';
options.outputversion = 3;
options.preprocessing = {[] []};
options.algorithm = . _. ;
options.blockdetails = 'standard'; 

model = pea(AX,3,options); 
U = model.loads{l}; 
V = model.loads{2}; 
v = BX(1,:); 
Uv = v*V; 
xo = Uv(:,!}; 
yo = Uv(:,2); 
zo = Uv(:,3); 
dx = U(:,l) - xo; 
dy = U(:,2) - yo; 
dz = U(:,3) - zo; 
dx2 = dx. A 2; 
dy2 = dy."2; 
dz2 = dz. A 2; 
ed2 = dx2+dy2+dz2; 
ed = sqrt(ed2); 
[sel,I] = sort(ed); 
Isel = 1(1:18,:); 
Iconc = cconc(Isel,:);
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Ipconc = [Iconc;pred_a]; 
stca = std(Ipconc); 
[m,n] = size(Ipconc); 
sqm = sqrt(m); 
a = (stca/sqm); 
c_conf = 1.96*a; 
IGconc = [cconc;pred_g]; 
stcg = std(IGconc) ; 
[p,q] = size(IGconc); 
sqp = sqrt(p); 
b = (stcg/sqp); 
glob_conf = 1.96*b; 
sd_conc = std(Iconc); 
sqrm = sqrt(m-l); 
c = [sd_conc/sqrm] ; 
confs_o = 1.96*c; 
stdcconc = std(cconc); 
sqrp = sqrt(p-1); 
d = (stdcconc/sqrp); 
confsg_o = 1.96*d;




