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1 Abstract

Chemometrics and Design of Experiments (DOE) are fast becoming integral
parts of process analysis and incorporated into the resulting advances in technology.
To this end, two major studies were undertaken to explore the existing methods of
modelling using both traditional and modern forms of process analytical technology,
and to create new methods using the most current developments in the field.

The first study involved the use of chemometrics and DOE with low-resolution
NMR FID spectra of a series of polymers that were collected over a period of ten
months. Accompanying the NMR FID spectra were the associated laboratory
reference measurements for a series of quality assurance parameters. This
information was used to build an online prediction model for the Xylene Soluble
(XS) content of polymer pellets. The installation of the online model was
accomplished in numerous stages during which various sample selection methods,
including work by Shenk and Westerhaus, were developed and evaluated. The
intrinsic nature of the NMR data meant that traditional methods of sample selection
could not be employed. The final model used the principal component analysis
scores as a means of selecting samples for calibration. DOE was used to determine
the best method of pre-processing to be applied to the data prior to partial least
squares modelling. The final PLS model was evaluated and the error in prediction
for the XS content was found to be 0.672%. The success of this project lead to the
installation of this product online at the point of analysis in December 2006.

The second study employed chemometrics and DOE with a more traditional
method of process analytical technology, the NIR spectral analysis of pharmaceutical

tablets. The NIR spectra of over 250 tablets were collected over three production
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campaigns from 1997 to 1999. Accompanying the NIR spectral data were the
chemical and physical tablet parameters, active pharmaceutical ingredient, weight,
and tablet thickness. The sample selection techniques developed as part of the
polymer study were evaluated. In order to correct for variations due to specular and
diffuse scattering effects, extended multiplicative scatter correction was applied to
the data. As with the polymer study, DOE was used to determine the best method of
data pre-processing prior to the partial least squares modelling. The best method of
sample selection for this study was found to be the use of the condition number. The
final prediction models for the active pharmaceutical ingredient, weight, and tablet
thickness were produced. The final step for this study would be to apply this model

online at the point of analysis in the same manner as the polymer study.
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2 Aims and Objectives

The main aims and objective of this research were to develop a system of
modelling that, when applied to any set of data, would always result in an optimised,
robust model. Once produced, the models could then be used to predict various
quality control parameters relating to production processes. In order to be broadly
applicable, models must be able to handle and characterise data obtained from a
variety of sources. The models constructed must also be expanded to cover grade-
based distributions as well as normally-distributed laboratory reference data. Finally,
all of the models produced must be applied online to make real-time predictions.

Progress toward these aims and objectives will proceed with the analysis of two
real process analytical data sets. The first data set to be examined is the NMR spectra
from the production of polypropylene, the second data set comprised of NIR
spectroscopic information collected from packaged pharmaceutical tablets. Using
this data a series of chemometric methods will be developed to generate robust

predictive models that can be applied online to make real-time measurements.
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3 Introduction

3.1 Process Analytical Technology

Process Analytical Technology (PAT) is defined by Kowalski as “the
application of analytical science to the monitoring and control of industrial chemical
processes.” ! The information attained through the monitoring of an industrial
process using PAT can be used to control output and increase performance of the
chemical process for the optimisation of the processing rate, the quality of the final
product, the cost of production, and a reduction of waste.

The concept of PAT is not a new one, and it has been employed within the
petrochemical industry for over fifty years. Within the last couple of decades,
however, PAT experienced a renaissance and rapidly expanded into newer industrial
spheres such as food science and pharmaceuticals. The necessity of this
technological evolution was brought about by a combination of large-scale, large-
unit cost processes and a dramatic increase in regulations from governing bodies
such as the FDA. Another major factor driving PAT to the forefront of cost
minimisation was OPEC’s response to the 1973 Arab-Israeli war; OPEC increased
the cost of crude oil, which forced the petrochemical industry to be much more
conscious of costs for the first time.

As PAT has become more prominent, the shift from the traditional analytical
set-up to a more localised set-up has occurred. In the traditional practice, one which
could be defined as an “off-line method” of analysis, a sample is taken from a
process stream and then transported to an off-site laboratory equipped with modern
analytical instruments and a highly-trained professional staff. Using these resources,

the analysis is performed, with a typical run time of a few hours to a full day. Due to
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the retrospective nature of this kind of analysis, additional time must be incorporated
into process cycles to accommodate any reworking or altering of reaction conditions
that might be necessary. The advantages of this traditional method of analysis are
that the analysis is performed by an expert analyst, there are flexible operation
procedures such that the instrument can be used for any reaction stream or process,
the instrument can be utilised for many forms of analysis, and one instrument can be
used on a number of processes on various projects, reducing overall costs and
overheads.

The introduction of PAT has helped to dramatically reduce the timeline of
analysis and has moved the analysis framework from an off-line method to an “at-
line” or “online” strategy. With PAT, a sample is taken directly from the process
stream (generally via an automated process using pre-set sampling parameters), and
the sample is analysed using a specific process instrument that is situated either next
to or directly on the process stream. When the instrument is situated next to the
process stream, this is an at-line method; an online method is situated right on the
process stream. The PAT instruments used vary significantly from the traditional
instraments employed in the traditional analysis laboratory. The PAT machines are
far more robust and must be able to accommodate the conditional variations that are
present in an industrial manufacturing setting but not typically present in a
traditional laboratory. Such conditional variations may include external temperature
fluctuations, changes in process flow rates, overall reaction times, and other
pressures that can occur in an uncontrolled location.

An at-line process has a dedicated instrument, and, due to the immediate and on-
site processing, the turnaround from sampling to results is reduced substantially in

comparison to off-line methods. However. this advantage is offset bv the limitations
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of dedicating an entire instrument to a single process; a dedicated instrument cannot
be used for any other task during downtimes, which is more costly than having one
equipment item that can be used for multiple tasks, in addition to the often
substantial price tag for the initial purchase of robust instrumentation.

Online methods are the pinnacle of PAT, as their full automation and dedication
to a single process allow for the immediacy of results. The feedback from analysis
can be almost instant, and process feedback control can be driven by a single skilled
technician. Furthermore, online analysers can be used to analyse each sample within
a given process stream (such as every tablet produced by a reaction), ensuring that
every single sample produced meets specifications. To maximise productivity and
minimise costs when using online systems, downtime should be minimised, as time
when the processor is not running is time when no measurements are being taken
thus no knowledge of the quality of the final product being produced; furthermore,
these systems must be continually maintained to ensure all analysis performed is
within certain tolerances. With the establishment of the online method, a form of
sample pre-treatment may also have to be performed to facilitate the analysis of
samples, which is not usually necessary for off-line methods where pre-treatment
within a lab environment is straightforward.

The PAT instruments have chemometric analysis software to perform all the
necessary steps to analyse samples and provide feedback. This means that a desired
process parameter, such as an octane number, can be fed directly to a control centre
where the fabrication process can be altered or optimised. It is important to highlight
that, unlike the traditional method, the PAT approach does not require a highly-

trained technical staff, as most PAT instruments are fully-automated and therefore
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only require routine maintenance by non-technical staff. The in-built chemometrics
software and models can be updated remotely by one highly-trained chemometrician.

The first transition from the traditional approach to the PAT approach involved
the relocation of laboratory instruments next to the process streams. This shift
initially lead to major advancements in areas such as process gas chromatography
(GC), process high performance liquid chromatography (HPLC) and process nuclear
magnetic resonance (NMR) spectroscopy.”) More recently, the ability to make
instruments more robust to environmental factors and to miniaturise what were
traditionally large instruments has meant that spectroscopic methods such as process
Near and mid-infrared spectroscopy,”! process Raman spectroscopy, and process
mass spectrometry (MS) have made significant advances. However, one of the major
drawbacks to the PAT approach occurs in the first stage, sampling. In order to take
the necessary samples without disrupting the production process or compromising
the quality of the sample itself, a series of non-invasive sampling methods and tools
have become increasingly important, such as process microwave spectroscopy,”
acoustical analysis, ® and NIR probes.

Currently, the majority of PAT is implemented by retrofitting the current
process equipment and blending old and new technologies to better address advances
in industrial manufacturing. The future of PAT lies with industrial corporations
building physical plants that have provisions for PAT included from the inception of
the design process, along with the continued improvement of current PAT
instrumentation. Increasing regulatory control by governing bodies such as the U. S.
Food and Drug Administration (FDA)m means that, in the future, PAT will always

play an important role in the manufacturing industry and will no longer be tied to
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specific industrial processes or products. PAT will appear across the board
throughout all industrial procedures.

As described above, the evolution of PAT has also re-established chemometrics
as a hot field for research in both academia and industry. While there were no
significant shifts in the actual chemometrics involved, the primary vehicle of change
was the computer and processing technology used to perform the data analysis and
modelling. Until the 1980s, chemometrics had been relegated to an area of
theoretical mathematics simply because the necessary calculations required for real
analysis were so time-consuming and therefore largely impractical. With the
invention and popularisation of the microprocessor and the desktop computer, the
calculations needed for chemometrics became easier to perform, and the field
subsequently found a wider audience, including those involved in the PAT initiative.
By employing chemometrics, the PAT instruments could perform real-time analysis
and modelling on the data collected with only a very small time delay. This enabled
real-time feedback to allow for control and optimisation, completing the PAT agenda
and firmly linking the fields of PAT and chemometrics. This partnership has lead to
the developments of methods and algorithms such as self-modelling curve resolution
(SMCR),™ orthogonal signal correction (OSC),” and extended multiplicative scatter
correction (EMSC),“O'm that are designed to correct for the variations observed in

large-scale processing situations.
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3.2 Near Infrared Spectroscopy

Near infrared (NIR) spectroscopy was first discovered over two hundred years
ago by Herschel, but it wasn’t until the early 1950s when NIR spectroscopy was first
considered to be more than just and extension of the mid-IR fingerprint region.

The NIR region of an electromagnetic spectrum ranges from 12,800cm™ to
4000cm™. NIR spectroscopy is concerned with the absorbance of NIR energy that
occurs in this region by the molecules in a given sample. Absorption can occur by
three different means: combinations, overtones, and electronic absorptions. A
combination occurs when the absorption of a photon is shared between two or more
vibrations. This would be observed as a single peak in the near infrared region but as
two fundamental peaks in the mid-infrared region. Overtones are approximately
multiples of the fundamental vibration; for example, the fundamental x will have
overtones of 2x, 3x, etc., respectively called the first and second overtones. The
intensity of successive overtones decreases by a factor ranging between 10 and 100.
Electronic absorptions are caused by the movement of electrons from one orbit to a
higher-energy orbit; these are normally observed in the UV-Vis range but can also
appear in the NIR in the region from 12,800 to 9000cm™.

Combinations and overtones provide the major contributions to NIR spectra. In
1965, the chemometric technique of multiple linear regressions (MLR) was
developed by Norris. MLR allowed for NIR calibrations without operator
interference. This had both advantages and disadvantages, in that the user could
efficiently find relevant information related to a property of interest, but this “black
box” approach to calibrations could mislead the user into thinking there was a

significant correlation when there was not. Still, it was not until the advent of micro-
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fibre optics. Fibre optics allow the NIR instrument to be fitted with a probe, so that
the probe can be directly inserted into the reaction chamber and connected to the
NIR via the fibre optic cables. The cables can run up to 100 meters, allowing the
NIR instrument to be somewhat remote from the process stream which makes the
measurement process considerably safer.

For the NIR laboratory instrument to be converted to something suitable for
PAT, it must become more robust to external factors, portable, and it must allow for

remote measurements using fibre optic cables.

3.2.3 Probes

The early NIR spectrometers operated in similar manner to UV spectrometers,
with the sample taken off-site to the instrument for analysis. However, by the 1980s
it became apparent that fibre optics allowed light to be taken directly to the sample,
thus making it possible for spectroscopy to be safe and remote. The use of probes
also solved the problem of the invasive nature of sampling directly from a reaction
stream. Insertion of a probe into the media meant that no physical sampling needed
to be performed, thus increasing the safety and significantly reducing the errors in
sampling. Without fibre optics, the implementation of sampling probes would be
almost impossible.

There are several different kinds of NIR probes: transmission, transflection,

reflection, and attenuated total reflection.

3.2.3.1 Transmission Probes
Transmission probes can be split into two categories: insertion and flow cell.
Insertion probes are typically introduced into a sample stream where measurements

are recorded.
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small target sizes and collection efficiencies of reflection probes mean that these
probes may not be suitable for applications that involve grains or large granulated
samples. Larger targets can be achieved by increasing the number of illumination
and return fibres. Greater collection efficiency can also be attained by randomising
the bundles.

On some occasions, it may be desirable for the probe to be in direct contact with
the sample, and for this to be achieved without damaging the fibres a window must
be in place. The disadvantage of introducing a window to the probe is that it also
introduces stray light into the system via Fresnel reflections, in the same manner as
was previously noted with transmission probes. None of the reflectance probes
discussed can eliminate the problem of specular reflection originating at the sample;
however, when using a simple 6:1 probe (for solid or sheet samples) specular
reflections can be reduced by tilting the window with respect to the sample.

Reflectance probes have been successfully employed by Dunko et al. ' Garcia-

[16] [17]

Rey et al.," ™ and Dumitrescu et al.

3.2.3.4 Attenuated Total Reflection Probes

ATR stands for Attenuated Total Reflection. A typical ATR probe has a
truncated cone crystal, and light is shone along the length of the crystal causing total
internal reflection. The light path penetrates the sample when the light is reflected
off the surface in contact with the sample. The incident light then continues to reflect
causing further penetrations until it reaches the end of the crystal, at which point it is
collected by the detector. ATR is not used extensively in NIR applications mainly

due to the small absorption coefficients for molecules in the NIR region.
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to a greater implementation of NIR spectrometers within industry.[ls’ 191 Furthermore,
the need for rapid and precise analysis coupled with the ability to use NIR
spectrometers with fibre optics have lead companies such as BP to incorporate NIR

spectroscopy as a fundamental technique in the analysis of reactions.”*”]
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radio frequency (r.f.) transmitter and receiver coils allow rotation of the net magnetic
vector.

NMR spectroscopy can be broken down into various stages of both physical and
magnetic arrangements: a sample is initially placed into a magnetic field, Bo; a
nuclear spin processes about By; the spin aligns itself with By; and results in a net
magnetisation, My (Figure 11a). My is parallel to By, assuming exponential behaviour
M build up along By at a rate of 1/T; where T is the spin lattice or longitudinal
relax time. After this an r.f. field is applied for a matter of milliseconds (Figure 11b).
Application of the r.f. rotates My away from the z-axis into the xy plane. The rate at
which the spin relaxes to no given orientation is given by 1/T,, where T, is spin—spin
or transverse relaxation time (Figure 11c). T; not only defines the time taken to
generate My (including placement and spinning of the sample) but it also describes
the time needed for the magnetisation to return to equilibrium. Both T; and T affect
the signal strength of NMR. Line width of absorption signal after a Fourier
Transform is given by 1/T>* where T>* is T, in the presence of magnetic
inhomogeneities. T; is effectively the time required for signal or free induced decay

(FID) to return to 0. The FID forms the raw signal measured using NMR.?
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3.3.2 At-line Nuclear Magnetic Resonance Analysis

Process NMR has the potential to be a very powerful technique in the world of
PAT due to three factors:

1. Process NMR is non-destructive;
2. Process NMR does not require the insertion of a probe in process
stream, therefore avoids issues of fouling;

3. ‘Standard-less’ quantitative analysis.

When process NMR was initially applied to at-line and online processes, the high-
field instruments that were in place within a laboratory were simply moved to the
process stream. This created problems with the calibration and maintenance of the
instrumentation. In the past few years, primarily due to the production of small,
dedicated low-field instruments based on permanent magnetic technologies, there
has been an increase in the number of applications for at-line and online process
NMR.™? The low-field instruments have magnetic field strengths that typically range
between 15 and 60MHz.

The main issue that must be addressed when using process NMR is the manner
of sample insertion. Typically, NMR is used to assess the end quality of a product.
Within the polymer industry, the sample being analysed tends to be in the form of a
pellet. The analysing instrumentation must be able to melt the pellet so that it can be
sampled as a liquid and then purge and dispose of the sample after the analysis is
complete. Once it is in liquid form, the sample is fed into a sample chamber and it
undergoes the same procedure as it would in research laboratory instrumentation.
Unlike a laboratory instrument, a process instrument typically uses a permanent
magnet as they are cheaper to use and maintain than the electromagnets used within
the research setting. One of the most rapidly growing areas of process NMR is the

determination of water and fats within samples, which makes it an ideal method for
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the analysis of agricultural products such as dairy and corn.”) Additionally, the
intrinsic sensitivity of process NMR has lead to applications that determine the
ethanol content of various alcoholic beverages.

Process NMR is still in a relative infancy compared with more-established
methods of PAT, and there are still many avenues available for further investigation.
In the future, process NMR has the potential to become a standard method of PAT
analysis, with great opportunities for continued development and application-based

research.
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3.4 Chemometrics

In the past twenty five years, chemometrics has enjoyed tremendous success in
fields related to calibration of spectrometers and spectroscopy based measurements.
Chemometrics can be defined as the application of mathematical and statistical
methods to chemical measurements.”>! Chemometrics offers many advantages when
applied to calibration methods:

1. It provides speed in obtaining real-time information from data;

2. It allows high-quality information to be extracted from less-resolved data;

3. It provides clear information resolution and discrimination power when
applied to second-, third-, and possibly higher-order data;

4. It provides diagnostics for the integrity and probability that the information it
derives is accurate;

5. It promises to improve and reduce the number of measurements required;

6. It improves the knowledge and understanding of existing processes;

7. It techniques cost very little to apply, and can reduce the time and cost of a

process.*¥

Workman et al. have produced a series of reviews in which they discuss many
different applications of spectroscopy and chemometrics.”>?” They summarise the
reviews by stating that, without chemometrics, none of the resulting calibrations

would have been possible.’*”

3.4.1 Multivariate Methods

3.4.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a method of producing multivariate
models from large and complicated data sets. This method is an upgrade from the
traditional univariate models, as the multivariate method allows for the maximum

amount of information to be retained within the model. PCA is performed by the
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decomposition of the data matrix, D, into the sample scores, U, and the variable

loadings, V, in accordance with

D=UV"+E

Equation 2
where E is a matrix of residual errors. For the matrix D of size m x n, were m is the
number of samples and » is the number of variables, the sample scores matrix has
the size n x k and the variable loadings matrix has a size of m x k. Here £ is the
number of product vectors that can fully express D. These values of k are called the
principal components (PCs). For every source of independent variation within D
there is an associated PC. The largest source of variation is the first PC, and the
second largest source of variation is the second PC, and this continues until all of the
sources of variation within D are explained. Each PC also relates to each column of

the scores matrix and each row of the variable loadings.

3.4.1.2 Non-lterative Partial Least Squares

The decomposition of the data matrix is performed using the Non-Iterative
Partial Least Squares (NIPALS) algorithm. NIPALS is the standard method for
computing the principal components and the associated scores and loadings.
Brereton produced an excellent text that explains the NIPALS algorithm.”® NIPALS
extracts each PC in turn, making it ideal for large data sets (such as found with
spectroscopic data) that can contain over 2000 variables per sample. The sequential
generation of components means that the algorithm can be halted when the desired
number of PCs has been derived, saving both time and effort due to the generation of

undesirable components.
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NIPALS proceeds by first selecting a column from an appropriately scaled data
matrix, X. The selected column forms the basis of an initial estimate of the scores

vector, U;. Using U; and X, the variable loadings are generated (Equation 3).

!
AP
un—norm 2
.U
Equation 3

These loadings are then normalised and used with X to calculate a new set of scores,

Ui*, (Equation 4, Equation 5).

V

un—norm

- S,

Equation 4

E '

U =XV

l
Equation 5
The two scores vectors are compared, and if the sum of the squared value of U;—
U;* is large or exceeds a predetermined threshold (Equation 6), U;* becomes U;. This
process of calculating loadings and new scores is repeated until the difference
between U; and U;* is small or below the predetermined threshold. At this point, the

PC is determined and U; becomes Uy, the column in the scores matrix of the A PC.

>(v,-0)

Equation 6
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Following this, the information relating to the scores and loadings of the PC
must be removed from X, to allow removal of the next PC. This is accomplished by
multiplying the scores and loading together and then subtracting this product from

the data matrix X, to form the residual data matrix, Xres.

X =X-UV

Equation 7

This residual matrix, Xres, is then recycled to the beginning of the iteration procedure
whereby another column is extracted. This cycle continues until all of the desired

components have been removed.

3.4.1.3 Sample Scores

The sample scores can yield information about the intra-sample relationships,
and this can be observed by plotting the columns of the scores matrix against one
another (such as plotting the scores relating to the first PC against those of the
second PC). In this case, the two largest sources of variation are plotted together, and
the resulting plot can show clusters or groupings of data that suggest that the samples

are related to one another by the sources of variation from the first and second PCs.

3.4.1.4 Variable Loadings

The loadings illustrate the weight or importance of each variable within the
original data matrix, e.g. wavelengths, when calculating the PCs. From the loadings,
it is possible to determine the variables that contribute most significantly to the
sample scores, and to possibly deduce the variable responsible for the clustering,

among any other observed relationships.
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3.4.1.5 Eigenvalues

After completion of PCA, the size of every extracted component can be
determined, and this is referred to as the eigenvalue. The first components extracted,
which are the most significant components, have the largest eigenvalues. The

eigenvalue is calculated from the sum of squares of the principal component scores.

Equation 8

where Ay is the eigenvalue associated with the ¥ principal component (Equation 8).

3.4.1.6 Modelling Using Principal Component Analysis

One of the first methods applied to modelling using PCA was Soft Independent
Modelling of Class Analogy (SIMCA). Soft modelling refers to a situation in which
different classes of information overlap, essentially allowing a sample to belong to
more that one class. For example, a chemical compound could contain both carbonyl
and alkene functionality, and it could therefore fit into the class of alkenes or the
class of carbonyls. SIMCA begins with PCA, but only the most significant principal
components are retained. Independent modelling of each class (i.e. carbonyls and
alkenes) is performed by calculating the orthogonal distances of each sample from a
plane. New samples can be projected into the model, and the classification of new
samples is performed by determining to which class or classes the sample belongs.

When using PCA to model a system of data, the number of PCs to be included
in the model must be determined. There are many methods for this, and in theory the

number of PCs to be included in the model is equal to the number of chemical
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constituents in the analytical system; for example, the data generated from the UV
spectra of differing mixtures of four metallic compounds should have a PCA model
that includes four PCs. This, however, is a simplified example, and more
complicated methods of determining the number of PCs to be included must be
employed. These methods include use of an F-Test to determine the statistically
significant PCs to be included in the model or use of a DOE approach to calculate
the optimum number of PCs based upon the quality of the final model.

The use of PCA as modelling method has become less frequent since the advent
and wide-scale adoption of Partial Least Squares (PLS), primarily due to the fact that
PLS allows the user to produce a model that can correlate spectral information with

quantitative values, such as concentration.

3.4.2 Partial Least Squares

Partial Least Squares is another method of data reduction, but unlike PCA, PLS
uses both the multivariate spectra, X, and the corresponding concentrations of other
reference information, y, in the decomposition to produce the PLS scores and
loadings.

As with many other chemometric methods, PLS evolved from the field of
economics, and it was in the late 1960s that PLS was explored for non-economic
purposes by H. Wold. The use of PLS for chemical applications was pioneered by
groups led by S. Wold and H. Martens during the 1970s. The 1980s saw some of the
first publications of articles highlighting the use of PLS in what has become a

(939 and it was this decade that essentially marked

traditional use of chemometrics,
the renaissance of PLS as a tool for chemometric analysis as opposed to its previous

use as a method of economic analysis. From the 1990s to the present, the use of PLS

has almost become a standard approach and many variations of the original PLS
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[40

have been produced that range in use from non-linear applications 41 to multiple

simultaneous predictions./** %!

3.4.2.1 The Partial Least Squares Algorithm

The PLS method begins by finding the first PLS direction. This begins as with
PCA (see section 3.4.1.2). During PLS the spectral data may be scaled, and this same
scaling must be applied to the concentration information. The algorithm begins by

calculating the loading weights vector, h

!
h=X.y
Equation 9

The spectral scores are then determined using the loading weight vector and the

spectral data (Equation 10).

X.h

G

Following this, the spectral loadings, V, are calculated using the newly-defined

Equation 10

scores and the spectral data (Equation 11).
!

Equation 11
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The loadings associated with the concentrations, Q, are determined (Equation 12).

_yU
T3
Equation 12

The product of the scores and the loading vector is subtracted from the spectra,
(Equation 13), and the product of the scores and the regression coefficient is added
to the initial estimate of concentrations to form the new concentration estimate

(Equation 14).

X =X-UV

Equation 13

Voo =¥, TUQ

Equation 14

The residual concentration is determined by subtracting the new concentration
estimate from the true concentration. The true concentration values are those

generated after the actual concentration data has been scaled.

yres :ytrue_—ynew

Equation 15

The second PLS component is found by replacing the original X and y data sets
with the residual data. The process is continued until the desired number of

components is extracted.?®!
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The PLS method can be extended to handle several concentration terms
simultaneously, which is called PLS2. This method is very similar to PLS but
instead of maximising the covariance between one concentration and the linear
functions of the spectra, the covariance of two linear functions (one for the
concentrations and one for the spectra) is maximised. This can be advantageous for
calibration purposes, but for prediction, the use of PLS to predict each concentration
individually produces better results.

As measurement science and PAT continue to evolve, the methods and
processes to perform analyses also evolve techniques such as Neural Networks and
Ridge Regression will gain further employment. But throughout these evolutions,
PLS will likely remain the standard method for analysis of the data recorded due to

its simplicity and precision.

3.4.3 Model Calibrations

Measurements made in any system are essentially abstract until they are
compared to other measurements from within the same system. For example, the
area underneath a single peak of a GC trace means nothing on its own, and trying to
relate it to a concentration or to any other quantitative factor is nearly impossible.
However, if a series of GC measurements is performed from samples containing
known concentrations, the resulting peak areas can be related to the corresponding
concentrations. This allows for calibration, and using this comparatively with the
previous abstract value, a prediction of the concentration can be made based upon
the peak area, which previously had no comparative value.

This is the main aim of producing a calibration model; once constructed; a
calibration model can make predictions of otherwise unknown samples.!*¢*®! To this

end, as much of the relevant variation within the model must be extracted and
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incorporated into the model, with methods such as PCA and PLS being ideal for
modelling (see section 3.4.1).

The first stage of producing a calibration model is the selection of the samples
that will comprise the calibration model. There are many different methods for this
sample selection, such as the use of correlation between spectra for selection and the

use of the PCA scores and a Euclidean method.

3.4.3.1 Selecting Samples Using Signal Correlation

This method of selecting samples uses the correlation between spectra to
compose a calibration set. The most highly correlated and therefore similar spectra
are chosen, and this method is ideal for selecting samples for calibration sets based
upon the prediction of an unknown spectrum. The correlation between all of the
calibration spectra and the unknown spectrum would be calculated and the
calibration spectra that are most highly correlated with the unknown spectra are used
to make the calibration model and a prediction of the unknown sample using PLS.
The downside of this method is that it is not suited for larger data sets that have
regions of clustering, due to factors such as differing grades of material. The signal
correlation method of sample selection was successfully employed by Shenk and
Westerhaus et al.'*>! Their study used a correlation constraint in the selection of
samples to build a calibration model from a data set of over 6500 samples. As an
unknown sample was determined, the LOCAL algorithm was employed and a
calibration set was defined. The results from this study showed that this method of

sample selection was very successful.
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3.4.3.2 Selecting Samples Using the Euclidean Distance and Principal

Component Analysis

The Euclidean method of selection uses PCA scores, from which the calibration
set is defined. The data from the calibration set is run through the PCA algorithm to
produce the sample scores. The unknown sample is then projected into these scores,
and then the Euclidean distance between the unknown sample and the entire data set
is determined. The samples that have the smallest Euclidean distance are closest to
the unknown sample within the scores plot, and are selected for the production of a
calibration set. These selected samples are then used in conjunction with PLS to
make predictions of the unknown sample. This method solves the problem of
clustering due to differing grade which is encountered by the correlation method, and

still retains the ability to model systems of a more traditional nature.

3.4.3.3 Selecting Samples Using the Condition Number and a Squared

Covariance Matrix

The use of the condition number as a method of sample selection is akin to
methods of optimality insofar as the system relies upon the minimisation of the
condition number of the data matrix to determine the samples for selection. The
condition number of a matrix is defined as the ratio of the first eigenvalue and the
last eigenvalue. This ratio is the true condition number; however, this ratio always
results in very large conditions, especially when dealing with spectral data. To
reduce this and make optimisation simpler, the ratio can be altered to be the ratio of
the first eigenvalue to the last significant eigenvalue.

The last significant eigenvalue can be determined using an F-Test. This

dramatically reduces the magnitude of the condition number, as well as the time that
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is taken for the computation to reach optimisation. Additionally, the removal of the
smaller eigenvalues removes potential noise from the modelling system.

The condition number expresses the amount of variation found in each principal
component. A good model, with equal variance captured for each principal
component removed, will have a condition number that is very close to one.
However, this can be misleading, as a data set that is entirely comprised of noise will
also have equal variance captured by each principal component, and will therefore
also have a condition number of one. This problem is partially addressed by only
using the most significant eigenvalues that relate to the most significant principal
components, and it can be further solved by using a squared covariance matrix,

which is performed using scaled data (Equation 16).

(X'YY'X)

The squared covariance matrix can be used to remove variables from a model
that may contain larger amounts of noise. This reduces the potential for ‘noisy’
principal components and allows the condition number of the matrix to be a true

representation of the data.

3.4.4 Assessing the Model Quality

The assessment of the quality of a calibration can be determined using the root
mean square error in calibration (RMSEC). The calibration samples are run
predicted by the model resulting in a set of actual values, y, and predicted values, §.

These are used with the number of calibration samples, N (Equation 17).



50

RMSEC =

A 2

2 (7-)

N-1

Equation 17
This gives an indication of the lack of fit the model has to the data, which can be
indicative of the quality of the final predictions. It can also be an indication of the
quality of the samples selected to build the model. However, the RMSEC can be a
misleading tool; for example, as each principal component is extracted and included
in the model the RMSEC will decrease. The RMSEC will continue to decrease as
more components are included in the model, and this can cause an over-fitting of the

model.

3.4.4.1 Validation of a Model

Once a model has been constructed it must be evaluated and validated to assess
its quality. The main aim of a model is to make predictions, therefore using
predictions to assess the quality of a model would be the most appropriate method.
There are different methods for doing this; they are separated by the amount of
samples remaining after calibration. If there is a sufficient number of samples
remaining after calibration a separate independent validation set of data are
constructed. This is applied to the model; the subsequent predictions can be used to

determine the root mean square error in prediction or RMSEP (Equation 18).

A 2
RMSEP = 2.0~
N-2

Equation 18
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3.5 Methods for Data Pre-Treatment

3.5.1 Scaling

Scaling methods are quick and simple ways of correcting spectra to remove

baseline or magnitude effects associated with intra-variable variation.

3.5.1.1 Mean Centring

Mean centring is the process of calculating the mean spectrum, followed by

subtraction of the mean from each spectrum within the data set (Equation 19).

Equation 19

This has the effect of translating the spectra such that they are now centred on the
origin. Mean centring is performed prior to any form of data reduction; mean centred
scores are distributed around the origin in a similar manner to the spectra.
Predictions made by models built using mean centred data are mean centred, and
thus must have the mean spectrum added to them to convert them back to the
appropriate data. In data sets with small intra-sample variation the effect of mean
centring is negligible. However, in situation were there is a much greater amount of
intra-sample variation application of mean centring results in a more significant
effect upon both the scores and loadings. Mean centring has become a standard from
of pre-treatment to the point were most methods will include correction by mean
centring as an automatic practise, although chromatographic data is not suitable to

correction using mean centring.
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3.5.1.2 Auto-Scaling

Auto-scaling is a form of variance scaling that is performed down each column.
Auto-scaling is a two step procedure; first mean centring is performed subtracting
the mean spectrum from each sample. Following this each point on the column is

divided by the standard deviation of the column (Equation 20).

L _X-nm

corr
O-col

Equation 20

As with mean centring auto-scaling is performed prior to any form of data
reduction or modelling, predictions made by models using auto-scaled data are
themselves auto-scaled. To recover the actual values multiplication by the column
standard deviation and addition of the mean spectrum must be performed.

Auto-scaling is of great importance used with data that has large variations in
error of signal to noise ratio when moving across from one variable to another. Use
of auto-scaling reduces the skewing effects brought about by the large variable to
variable magnitude effects, essentially giving each variable equal significance.
However, if the data does not have large variation in the error or the signal to noise
ratio use of auto-scaling can give artificial importance to noisy areas of the spectra
by scaling every to unit variance. Auto-scaling has not found itself in the same
company as mean centring amongst the automatic pre-treatment methods, due to the

ability for it to give noise the same significance as an analytical signal.
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3.5.1.3 Standard Normal Variate Transform

Standard normal variate transform (SNV) is another form of variance scaling.
Like auto-scaling, the first stage of SNV is mean centring, followed by division by
the standard deviation. Unlike auto-scaling, SNV uses the standard deviation of the

row, scaling all rows to the same unit length (Equation 21).

_X-H
O

row

X

corr

Equation 21

SNV has found a niche role within applications that correct spectra for light-
scattering effects due to differing path-lengths recorded when analysing diffuse
powders.[52'54] More recently, SNV has been superseded by techniques such as
multiplicative scatter correction (MSC) and extended multiplicative scatter

correction (EMSC).
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3.6 Orthogonal Signal Correction

Orthogonal signal correction (OSC) is a method that was initially developed to
correct for light scatter effects but can also be used to correct more general types of
interference. OSC accomplishes the correction by removing the effects and artefacts
that have zero correlation with the reference value. The goal being to leave only the
spectral information that directly relates to the concentration. OSC is primarily used
in conjunction with NIR spectroscopy since there are regions within the NIR spectra
that contain information that have little or no effect on the predictions made by a
model.

OSC was first proposed by Wold et al. in 1998.”! Wold showed that using OSC
treated data lead to the production of models with lower RMSEP values than scatter
corrected and raw unprocessed models. This meant that the OSC models predicted
new samples better than the scatter correction and raw models. Further more the
OSC filtered gave much simpler calibration models when compared against the raw
models. Wold’s results showed that OSC did indeed remove data that was not
correlated with the spectral data thus making calibrations and predictions simpler
and more accurate. Wold also showed that OSC was as effective with single
reference values as it was with multiple references values, so correcting for more

than one compounds concentration at once.

3.6.1 The Orthogonal Signal Correction Process

Using the algorithm proposed by Fearn,**! OSC first proceeds by creating a
matrix, M, that contains the majority of variation in the spectral data, X, that is not

associated with the concentration data, y.
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M=1-Xy(yxxX'y) yXx
Equation 22

The next step is to multiply M by X to form Z, such that ZZ’ is symmetrical.

Z=XM

Equation 23
Following this PCA is used to determine the first principal comnponent of ZZ’
and subsequent first eigenvalue, A, along with the associated loading vector V. From

these the loading weight vector, w, is calculated (Equation 24).

_MXV

JA

w

Equation 24

Using w, a new scores vector is determined (Equation 25). This new scores

vector is then orthogonalised to the concentrations, y (Equation 26).

U=Xw

Equation 25

U,.=U~-y(yy) »U
Equation 26

The OSC scores, Ugsc, are then used with the spectral data to calculate the OSC

loadings, Vosc (Equation 27).
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1]
V - X Uosc
osc U' U
osc
Equation 27

Using Ugsc and Vosc the OSC component is determined; OSC component is

then subtracted from X to yield the residual spectral matrix Xyes.

OSCoppp =U. _V

osc osc

Equation 28

X, =X -08§ CCOMP

Equation 29

To remove further OSC components substitute X, with X at the start of the
process. This process works as an ‘anti-NIPALS’ method, were NIPALS removes
the components of greatest of greatest correlation between samples and spectra, OSC
removes the components of least correlation.

Since Wold's initial publication of OSC and the subsequent follow up by

(561 over 200 papers have been published citing the work of Wold er al. In

Sjoblom,
2000, a paper was published by Fearn er al. that highlighted some problems with
Wold's algorithm and suggested improvements.[sﬂ Fearn stated that the current
method by Wold resulted in models that could be achieved by simply taking one
more PLS component when building the model. However, the improvements Fearn
suggested did not result in major advancements leading Fearn to surmise that Wold's
method was not the best but it is the best available. The OSC algorithm has been

used for a variety of different applications ranging from the analysis of port wine'®”!

and the classification of coffee beans correcting for calibration transfer.)
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3.7 Derivatisation

The use of derivatives was first proposed by Savitsky and Golay in 1964,

when they used an nth-order derivative and a polynomial to correct the analytical
signal. This can have the effect of removing different baseline effects depending
upon the order of the derivative. A first-order derivative can be used to correct an
additive baseline. The first derivative spectrum is generated based on the gradient of
each point in the analytical spectrum. The steepest point of a positively-inclined
curve in the original spectrum results in a maxima in the first derivative spectrum;
conversely, the point with the steepest negative inclination in the original spectrum
results in a minima in the first derivative spectrum. The absolute top of each maxima
and bottom of each minima are points where the curves have no gradient and are flat.
In the first derivative spectrum these areas translate to points of the spectra that cross

through zero on the x-axis. This procedure is illustrated in Figure 14 and Figure 15.
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the window must be optimised to find the right balance of the reduction of the
artefacts and the increased noise.

The publication by Savitsky and Golay rapidly became one of the most widely-
cited papers in the journal Analytical Chemistry even though the original paper
contained a few typographical errors (subsequently corrected in a paper by Steiner ef
al ). Over the past three decades, Savitsky-Golay smoothing and derivation has
become a standard form of pre-treatment for the removal of redundant variations
from spectral data, largely due to the fact that it can be applied to many different
fields such as spectroscopy, biochemistry, physics, and other scientific disciplines.
An added advantage is that the initial work performed by Savitsky and Golay was
prior to the invention of the microprocessor; in today’s modern computer age, very

little effort is required to perform the calculations.

3.7.1 Multiplicative Scatter Correction

Multiplicative scatter correction (MSC) was first developed and reported by
Martens and Naes!®). It was employed as a method of correction for varying baseline
effects and the variation in path-length brought about a particle-size distribution of
the NIR spectra of powdered samples. The NIR signal is reflected by powdered
surfaces in two ways: diffuse reflectance and specular reflectance. Diffuse
reflectance occurs when the NIR signal penetrates the sample and is reflected back to
the detector. Specular reflectance occurs when the NIR signal does not penetrate the
sample. MSC attempts to correct for variations in both forms of reflectance by
constructing an individual linear regression model for each spectrum recorded that
accounts for the variations when combined with a reference spectrum. The reference
spectrum is usually determined by finding the mean of the calibration spectra. The

MSC procedure was superseded by Extended Multiplicative Signal Correction.
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3.7.2 Extended Multiplicative Signal Correction

The extended multiplicative signal correction (EMSC) method of pre-processing
allows a separation of physical light-scattering effects from chemical light
absorbance effects in spectra from powders or turbid solutions. EMSC was originally
designed for use with diffuse reflectance or transmittance spectroscopy, where
uncontrolled variations in light scattering is often a complicating factor that can
make multivariate calibration difficult. EMSC can be used to correct for
multiplicative effects such as path-length variation and light-scattering effects,
additive chemical effects such as analyte absorbance and interferents, as well as
additive physical effects such as temperature shifts and baseline variations. The
ability to correct for all three effects makes EMSC a powerful technique; however, it
relies upon the assumption that each sample has a significantly different spectrum
and is therefore linearly independent.m’ 631

Martens et al. first reported on EMSC in 1998, but since then it has had limited
application. This is mainly because EMSC was first published around the time the
OSC correction was reported. EMSC has one significant disadvantage when
compared with OSC, in that EMSC can only correct for one sample’s concentration
at a time, which is problematic in analytical systems where more than one sample is
being analysed. This is not a problem with OSC. However, in 2005 Saiz-Abajo
published a paper evaluating EMSC, and they reported that the use of EMSC with
prior knowledge of the system produces robust models with good predictive
performance.[”) They also reported that EMSC was an “interesting” method for
correcting temperature deviations.[®” The ability to correct for temperature effects
could be very useful since the NIR spectra are susceptible to changes in

temperature.[64]
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3.8 Design of Experiments

Montgomery defines design of experiments (DOE) as “a scientific approach to
planning experiments such that the results will yield the most appropriate
information.”®! Design of experiments is a concept that has been around for
approximately seventy years and was first introduced by Fisher. Fisher was
responsible for the basic guidelines for an experimental design and its
implementation. Fisher implemented his designs in an agricultural context, whereas
in 1951 Box and Wilson saw an application for designs within an industrial context
and introduced the concept of response surfaces.!*> %!

The late 1970s saw the inception of what was at that point a controversial
chapter in DOE with the publication of work by Tagutchi. Tagutchi’s studies
expanded interest in the use of experimental design; however, most of the underlying
science proposed by Tagutchi had not been published or reviewed by his peers. By
the late 1980s, his concepts had been investigated and they were found to have been
well-founded, but there were significant problems with the experimental designs and
the data analysis. In the end, Tagutchi’s work was not all in vain because he did
encourage industries to seriously consider the employment of DOE and he increased
the level of awareness and training of scientists and engineers in this field.!*”!

DOE allows an investigator to produce optimisations in a multivariate manner.
While traditional methods involve varying a single variable at a time, DOE employs
experimental designs that allow the variation of multiple variables, thus giving the
investigator information about the interactions between the variables being
optimised. An interaction is the failure of a factor to produce the same effect in

responses at different levels of another factor. This is a major advantage of DOE

when compared to the traditional “one-at-a-time” methods. Another is the ability of
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the design to restrict the experimentation so that only procedures that are statistically
significant or have major interactions are performed. This is actually beneficial in
two ways: when compared to the traditional method, DOE saves time (due to the
performance of fewer experiments) and yields higher-quality results (as the final
model does not include superfluous information, making it more pertinent and
robust). These many advantages emphasise that DOE is the best method for
performing process experimentation.

Montgomery set out a series of guidelines that must be employed to produce a
successful design of experiments:

Recognition of the Problem;
Choice of Factors and Levels;
Selection of Response Variable;
Choice of Experimental Design;
Perform Experiments;

Analysis of Data;
(65]

NS

Conclusions and Recommendations.

3.8.1 Recognition of the Problem

Recognising the problem is probably the simplest part of the procedure, yet one
of the most important. Defining the problem is a critical step, as subsequent
decisions in the design will hinge upon this definition. Design of experiments is

(67691 reaction times, and

commonly used for optimisations, process yields,
conditions.[® ! The systematic approach of DOE makes it ideal for optimisation. In
this phase of the procedure it is also important to consider the number of
experiments that can be feasibly executed; for example, the definition of a problem

that requires many expensive experiments could rule the design out as being

financially unrealistic.
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3.8.2 Choice of Factors and Levels

A factor is the variable being changed through the design of experiments,
examples of which are temperature, mixing times, or reagent concentrations. The
levels are the values by which the factors will be tested, i.e. the differing
concentrations of samples. The range of factors is the spread or difference between
the highest and lowest levels.[®

This section of the design procedure must be completed using prior knowledge
of the system. An investigator has to know which factors are important and will
impact the final optimisation. These factors must be orthogonal so that all factors can
be varied at once. Levels must be reset using knowledge of the system; for example,
in an enzymatic system an investigator must know at what temperature an enzyme is
denatured, and set the levels accordingly. Levels set beyond the threshold will result
in the destruction of the enzyme. This is a very important step of the design process,
as the selection of the wrong factors or inappropriate levels will result in a poor
design.

As a further note, the stage in which design of experiments is employed can
determine the nature of the input data and thus the available factors. If DOE is
intended to optimise a process, the factors could range from the typical reaction
parameters outlined in the previous two paragraphs. However, if DOE is employed
after experimentation, the input data can change to the spectra collected, the number

of PCs within the model, or the PCA scores and loadings. This change in factors also

changes the levels employed.
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3.8.3 Response Variables

This stage requires selection of response variables that will be used to determine
the quality of the experiment performed, such as prediction error, material yield, or
peak resolutions. Regardless of which variable is selected it must provide the most
suitable information to assess the efficiency of the design. This relates back to
definition of the problem as an accurate definition should make selection of the
response variable simple. However, in some situations there can be more than one
form of response, and thus selection of the response that will be the most accessible
and yield the most information is paramount.

These first three stages of design will always be initiated prior to the start of any

experimentation.

3.8.4 Choice of Experimental Design

The experimental design defines and outlines the experiments to be performed
as part of the DOE process. There are all different sorts possible of designs,

including full and partial factorials and optimal designs.

3.8.4.1 Factorials

3.8.4.1.1 Full Factorials

Factorial designs allow the examination of two or more factors. A factorial
design relies on experiments being performed at every combination of factors and
levels. This is a very systematic process that thoroughly maps a data space, and it
will produce an optimal solution as long as the correct factors and levels were
selected. The downside of full factorial designs is that a large number of experiments

must be performed. The number of experiments is determined by Equation 30.
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k
n

Equation 30

In Equation 30, n is the number of levels in the design and k is the number of
factors being investigated. So in a design with five factors at two levels, 2° or 32
experiments must be performed.!®”!

To alleviate the excessive amount of experimentation in this method, the use of

partial or fractional factorials was proposed.

3.8.4.1.2 Partial Factorials

In the previous design of five factors at two levels, there are 15 experiments that
mvolve the individual factors and two component interactions, with the remaining 17
experiments contained three, four, or five component interactions. An investigator
employing a partial factorial would only investigate the one and two component
interactions, as the higher-order interactions would yield little additional
information. In this case, the number of experiments performed would be reduced by
over half, from 32 to 15, saving both money and time. Other advantages of the
partial factorial method is the ability to project results into a larger design, and to use
the partial factorial design as a subset of a larger set of designs; this makes it ideal
for screening experiments.m’ 31 However, partial factorials do have some
disadvantages. By removing higher-order interactions the data spaces are not
mapped as thoroughly as occurs with full factorial method. This is not an issue when
employing partial factorials for the screening process. A partial factorial would be
used to determine the important factors in an optimisation; then, using this
information, a full factorial would be implemented that focuses on the areas

highlighted by the partial factorial.©*”
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3.8.5 Optimal Designs

Optimal designs determine points for experimentation based on the
maximisation or minimisation of a specific design criterion. Optimal designs have
two main applications, calibration and sampling. They can be employed either before
or after experimentation, i.e. prior to experimentation to determine the best
experiments to perform, or after the use of a full factorial design experiment to
determine which information to include in a model. Optimal designs can
significantly reduce the number of experiments performed; however they can be less
systematic than factorial designs. Optimal designs only test sample points that have
significant interactions, with the significance of the interactions determined by the
design criterion, e.g. a D-optimal design will study the interactions that are at the
extremities of a system. For the previous five factors/two levels design, a D-optimal
approach would require sixteen experiments to be performed. There are many
different types of optimal designs including D-optimal and A-optimal; the key

variation between each optimal design is the design criterion.*>

3.8.5.1 D-Optimal Designs

D-optimal designs are possibly the most popular designs used in scientific
research, ranging from chemistry to psychology. They were introduced by Kiefer in
1959, but gained greater clout with the adoption of computer-generated designs
executing fast computation of design criteria. The D-optimal algorithm has the effect
of selecting the sample points that surround the edge of the data space. The samples
within the data space do not add new information to the model when compared to the
D-optimal points. The ability to select samples from the edge of the data space

makes D-optimal designs ideal for producing designs based on irregularly-shaped
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data spaces.® ™ 7! A design is determined to be D-optimal if it minimizes the

determinant of the assessment data (Equation 31).

(xx)

The modelling procedure begins by removing a sample and re-calculating the D-
optimal criterion. If the D-optimal criterion has improved, the sample remains
excluded from X and the next sample is then removed for a re-calculation. If
removal of the sample causes the D-optimal criterion to worsen, the sample is
replaced and the iterative sequence again moves on to the next sample. This
procedure continues until all samples have been removed and tested.

Models produced using D-optimal criteria are thought to be less robust when
one or more the variables within the model contain more variation than the other
variables.’¥ In these situations, the use other forms of optimal designs (such as A-

optimal or E-optimal) would yield better results.

3.8.5.2 A-Optimal Designs

The A-optimal design uses the variation from within the regression coefficients.

The criterion used in this design is shown in Equation 32.

Zdiag(X 'X)™
Equation 32

This is the sum of the diagonal (or trace, tr) of the inverted square matrix

X°X.[65 7 As with the D-optimal approach, the A-optimality criterion can be applied
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then added together to form XP. XP undergoes the E-optimality iterative sequence
of sample removal and PCA of the remaining matrix to determine the eigenvalues. If
the optimal criterion improves, the sample is excluded from XP and the next sample
is tested; this is the same as in the D-optimal approach. But, in this case, the iterative
sequence loops around until m number of samples remain within XP. The new
matrix, T, then replaces x and the new optimisation subset, p, is removed from X.
This application of E-optimal modelling makes it ideal for maintaining a
calibration model by restricting the samples within a model to a fixed number whilst
ensuring that the resulting data set is optimal and contains as much pertinent
information to the model as possible. The new subset, p, are samples that could be
potentially added to the calibration model if they would improve the quality of the

predictions made.
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4 Experimental

4.1 Materials and Methods

4.1.1 Equipment

The modelling, data processing, and programming were performed on a Dell
Dimension GX60 PC with a 2.00GHz Dual Core Processor and 2.00GB of RAM.
The designed optimisations of the pre-processing were preformed using a PC with a

2.80GHz Celeron processor and 1.00GB of RAM.
4.1.2 Data Processing and Software Development

All data received was transferred into MatLab 7.1, published by Mathworks,
Inc. (Natick, Massachusetts, USA), for analysis and treatment. The in-house
software was written with MatLab Editor 7.5, also from Mathworks, Inc. Routines
from the PLS Toolbox 3.5, published by Eigenvector Technologies (Manson,

Washington, USA), were used in the construction of the PLS models.
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4.2 Polymer Study

A series of reference low-resolution Nuclear Magnetic Resonance Free Induced
Decay (NMR FID) spectra were collected over a period of ten months starting in
June 2006. The spectra were taken using the MM2720 Industrial Magnetic
Resonance Solution (Progression, Inc.; North Andover, Massachusetts, USA).
Reference spectra were recorded every ten minutes; however, the matching reference
measurement, Xylene Soluble content (XS), was scheduled every eight hours. Any
incomplete data was excluded from data processing along with the relevant reference
spectra. This meant that the primary data set contained 233 reference NMR FID

spectra, with 233 XS measurements within the reference data set.
4.2.1 Initial Examination

The initial examination begins by investigating the distribution of the laboratory
measured values of the XS content, XS, using normality plots and histograms.
Following this PCA is performed to produce the scores relating to the NMR FIDs.

Subsequently the FID and laboratory values were split in accordance with their
XS content. Samples with an XS content greater than 6% form FIDy and XSy. The
samples with XS content less than 6% were used to produce the data sets FID; and
XS.. Using normality plots and histograms the distributions of XSy and XS, were

tested. The variables created as part of this examination are outlined in Table 1.
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Table 1. The variables created as part of the initial examination.

Variable Name Description

FID The entire NMR FID data set.
XS The laboratory measured value for XS percentage with in the polymer

The NMR FIDs that pertain to samples that have a lab determined XS
FIDy

value greater than 6%

The NMR FIDs that pertain to samples that have a lab determined XS

FID,
value lesso than 6%

XSy The samples with a laboratory XS percentage greater than 6%
XS, The samples with a laboratory XS percentage less than 6%

4.2.2 Current Model

This modelling procedure mimicked the current model used online to make

predictions of the XS content of the polymers analysed. It was important to recreate

this mode! as a comparison for the further models produced. This method began with

FID and XS being randomly split in the ratio of 4:1 to form the calibration and

prediction subsets FIDcar, XScar, FIDprep and XSprep. A full factorial design was

employed to determine the best method of pre-processing of FIDca1 and XScar. The

numbers of factors and levels used in the design are outlined in Table 2.



Table 2. The factors and levels used in the design for

optimisation of the pre-processing of calibration models.

Factor Levei
1. PLS
Regression Method
2. PCR
1. No Scaling

80

Scaling

2. Mean Centring

3. Auto-scaling

4. Standard Normal Variates

1. No OSC

Orthogonal Signal Correction

2. OSC Component

3. OSC Components

4. OSC Components

Savitsky-Golay Derivatisation and Smoothing

1. No Smoothing or
Derivatisation

2. 1 Derivative

3. 2" Derivative

4. 1% Order Polynomial

5. 2" Order Polynomial

1. One

Latent Variables

2. Two

3. Three

4. Four

5. Five

6. Six

7. Seven

8. Eight
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Using the results from the design, the pre-processed FIDcar and XScaL were

used to build a calibration a PLS calibration model, containing four latent variables.

From this, the RMSEC was determined. Using this model and the appropriately pre-

processed FIDprep, predictions of the XS content of the samples whose spectra are

contained within FIDpgrep were made. The predicted XS content was then compared

to the laboratory determined values within XSprep to determine the RMSEP.

4.2.3 Local Models

The initial examination demonstrated the potential of using local models due to

the data’s distribution and graded nature. The aim of this part of the study was to

produce models that could benefit from the multi-modal, grade-based distribution of

the FID information. To this end, the variables with an XS content on either side of

6% (Table 1) were split into calibration and prediction subsets (Table 3).

Table 3. Variables created as part of the local modelling procedure.

The data is split in accordance with the XS content.

Variable Name

Description

The NMR FIDs that pertain to calibration samples that have a lab

FID_ca determined XS value greater than 6%

FID The NMR FIDs that pertain to prediction samples that have a lab
H_PRED determined XS value greater than 6%

FID The NMR FIDs that pertain to calibration samples that have a lab
L.CAL determined XS value less than 6%

FID The NMR FIDs that pertain to prediction samples that have a lab
L_PRED determined XS value less than 6%

XSh_caL The calibration samples with a laboratory XS percentage greater than 6%

XSy_prep The prediction samples with a laboratory XS percentage greater than 6%

XS caL The calibration samples with a laboratory XS percentage less than 6%

XS__prep The prediction samples with a laboratory XS percentage less than 6%
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Pre-processing was determined using a full factorial design using the same
factors and levels as in the previous design (Table 2).

The pre-processed variables were then used to build PLS calibration and
prediction models. The RMSEC for each calibration models were determined.
Predictions were made for the respective prediction set and these were compared to

the measured values to produce the model RMSEP.

4.2.4 Adaptive Selection Models

Construction of the local model highlighted several key advantages to building
models that used the multi-modal nature of the data to make better predictions. To
this end, the development of sample selection routines that selected the appropriate
samples for calibration based the FID information were investigated. This aimed to
combine the advantages of using local models for better predictions and the global
models for their ease of classification.

Three forms of sample selection were investigated with regard to the production

of adaptive models; the data used in all three models is shown in Table 4.

Table 4. The variables used as part of the adaptive sampling experiments.

Variable Name Description
FID caL The NMR FID calibration set.
FID_prep The NMR FID prediction set.
XS _caL The calibration laboratory measured XS percentages
XS prep The prediction laboratory measured XS percentages




83

4.2.4.1 Sample Selection Using the Euclidean Distance

The calibration data was first auto-scaled, and following this the validation
spectra were scaled individually in accordance with the calibration. This formed the
input for the Euclidean distance algorithm (Figure 17). Output from the Euclidean
distance algorithm was the value for the XS content as predicted by the PLS model.
Using XSprep with the values output from the Euclidean distance algorithm the
RMSEP for this model was determined.

Within the Euclidean distance algorithni is a series of pre-processing methods as
part of the modelling stage. The method of pre-processing was determined using a
full factorial design, and the factors and levels used are outlined in Table 2. A second
full factorial design was employed to determine the optimum number of samples and
latent variables to be used when generating the PLS model, and the factors and levels

are shown in Table 5.

Table 5. The factors and levels used to optimise the number of samples
and latent variables to be included in the PLS models.

Factor High Level | Low Level
Number of Samples 25 5
Latent Variables 6 2

4.2.4.2 Sample Selection Using Spectral Correlation

As a means of comparison, the approach of Shenk and Westerhaus using

correlation between prediction and calibration spectra[49'51]

was also applied to the
calibration and validation data. Using this method, sample selection is performed by

calculating the correlation between the calibration sample and validation sample, so
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that the calibration samples that are most highly correlated with the validation
sample are selected to build the calibration model.

With the variables described in Table 4, the Shenk and Westerhaus programme
(Figure 18) was initiated using the calibration and prediction spectra as the inputs.
Output from this programme were the values of the XS content as determined from
the PLS models and the samples selected for calibration. The RMSEP for these
models was calculated by using XSprep and the values output from the correlation
selection algorithm. Again, the best scheme of pre-processing used with the PLS
models was found using a full factorial design, the levels and factors of which are
shown in Table 2 (p. 80). As with the previous method, the number of samples and
latent variables to be included in the PLS models was defined using a full factorial

design, and the factors and levels of the design are given in Table 5.

4.2.4.3 Selection Using the Condition of the Matrix

As with previous methods the calibration spectra are outlined in Table 4, and
these were input into the programme from Figure 19. The condition selection method
produced a calibration set of spectra with the smallest condition number, and this
was determined to be the optimum using the condition optimisation method (Figure
20). The use of the condition selection method and the condition optimisation
method produced a finalised optimal set of spectra with the lowest condition number.
This optimal set was then used to predict the XS content of the prediction spectra,
FIDprep, using PLS. The pre-processing involved in the modelling stage was
determined using DOE and a full factorial design (Table 5). The RMSEP was then

calculated using the values predicted by the PLS model and XSpggp.
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4.2.4.4 Random Selection

As a control and comparison a series of models were built using a random
selection of samples. Selecting samples at random provides a control method by
which proof that the methods by which samples are selected are important. The first
model used the optimal methods of pre-processing and modelling parameters
(number of latent variables and samples included in the model) as determined for the
model using the Euclidean distance as selection criteria. Using these parameters and
pre-processing PLS calibration and prediction models were constructed; the values
of the XS content predicted by the PLS model were used with XSprep to determine
the RMSEP of the model.

The second model used random sample selection with the pre-processing and
modelling parameters determined to be optimal for the model using correlation as
the selection criteria. Using the pre-processed calibration spectra, PLS calibration
and prediction models were produced. The output from these models was used along

with XSprep to determine the model RMSEP.

4.2.5 Implementation of the Online User Interface

The final stage of the NMR study involved the production of a Graphic User
Interface (GUI) that could be employed online at the point of analysis. The
development of the GUI involved many iterations and refinements. Feedback from
the plant engineers was used to refine and alter the GUI so that it became fit for
purpose. Also as part of the implementation the XS reference measurements were
performed to determine the time frame and reliability of the reference measurements.

The final iteration of the GUI was implemented on the process NMR based on

the polypropylene reactor PP5 at the Borealis facility in Schwechat, Austria. The
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GUI was deployed on the instrument making predictions continuously of the XS
content of the polymer pellets being produced. The prediction errors for the online

GUI were recorded and compared to that of the online model.
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4.3 Pharmaceutical Tablet Study

This body of work involved the analysis of NIR spectra of a series of tablets.
The spectra were collected a period of three years across four different processing
campaigns. The NIR spectra were recorded at the final stage of packaging, the
tablets analysed are removed from the production line to record the laboratory
reference information, tablet thickness, tablet weight, and active pharmaceutical
ingredient. The thickness and weight were recorded using standard methods, and the
active pharmaceutical ingredient (API) was determined using high performance
liquid chromatography.

The experiments performed as part of this study were split into three sections
each relating to a particular property of the tablet being examined: the API, the tablet
weight, and the tablet thickness.

The variables used as part of this study are shown in Table 6.

Table 6. Variables used in the examination of pharmaceutical data.

Variable Name Description
SPT NIR absorbance spectra from the tablets.
API The API content of the tablets as assessed by HPLC.
THK The thickness of the tablets.
WGT The weight of the tablets.

4.3.1 Modelling the Active Pharmaceutical Ingredient

The initial examination of this data began by splitting of the data into calibration
and prediction sets (Table 7). Then normality plots and histograms were produced to

assess the normality of the API distribution.
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Table 7. Variables created for the modelling of the API content.

Variable Name Description
SPT caL NIR absorbance calibration spectra from the tablets.
SPT pren NIR absorbance prediction spectra from the tablets.
APl _ca The calibration set of the API content of the tablets as assessed by HPLC.
APl prep The prediction set of the API content of the tablets as assessed by HPLC.

Following this a procedure of variable selection was employed using the cross
correlation matrix. After variable removal, sample selection was performed using
SPT caL to generate a calibration set. Three methods of sample selection were
investigated: selection using the Euclidean distance (see section 3.4.3.2), the
correlation between calibration and prediction spectra (see section 3.4.3.1), and the
condition number (see section 3.4.3.3). The Euclidean distance and correlation
sample selection algorithms (Figure 17, Figure 18), and the condition optimisation
method (Figure 20), were employed to generate the calibration sets for investigation.
The best method of sample selection was determined to produce a calibration set,
using this set and the respective samples from API car. underwent EMSC to produce
a corrected set of spectra. Then the corrected calibration spectra and the respective
samples of API carL were used in a full factorial design to determine the best method
of pre-processing to be applied to the data prior to building a PLS model. Using the
results from the design, the corrected calibration spectra were pre-processed with
API car and used to build a PLS calibration model. SPT prep and API prep were
appropriately scaled and used to build a PLS prediction model to calculate the API
content of the tablets associated with the spectra in SPT prep. The predicted API

values were compared to the values in API prgp to produce the model’s RMSEP.
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4.3.2 Modelling the Tablet Weight

The procedure employed with this step was the same as that for the tablet API

(see section 4.3.1). The variables created and used are shown in Table 8.

Table 8. Variables created as part of the modelling of the tablet weight.

Variable Name Description
SPT caL NIR absorbance calibration spectra from the tablets.
SPT prep NIR absorbance prediction spectra from the tablets.
WGT caL The calibration set of weights of the tablets.
WGT prep The prediction set of the weights of the tablets.

As with the API study, this procedure began by investigating the nature of the
tablet weight. This was performed by producing normality plots and histograms of
WGT (Table 6). Taking these results into account, the variable selection scheme was
applied using the cross correlation matrix (see section 3.4.4.1) to decide which
variables should be retained. As with the API modelling, variable selection was
followed by sample selection; again, as with the API modelling, three methods of
selecting samples (based on the Euclidean distance, spectral correlation, and
condition of the matrix) were used. From this a calibration set of spectra was
defined, SPT caL, and used in conjunction with a full factorial design to determine
the optimal method of pre-processing the spectra. Then the processed calibration
spectra and associated tablet weights were used to build a PLS calibration model.
The prediction spectra SPT prep were scaled in accordance with the calibration pre-
processing and used in conjunction with the calibration model to produce a PLS
prediction model. This yielded predictions of the tablet weights that were compared

to the weights in WGT prep to calculate the RMSEP.
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4.3.3 Modelling the Tablet Thickness

As with the procedures outlined in sections 4.3.1 and 4.3.2, variable selection
using the cross correlation matrix and sample selection using the Euclidean distance-
based algorithm (Figure 17), the correlation based selection algorithm (Figure 18),
and the condition number based algorithm (Figure 20) were used to generate a set of
samples for calibration (Table 9) from which the PLS calibration model was
produced. The best method of pre-processing involved in calibration was determined

using a full factorial design, and the factors and levels are displayed in Table 5.

Table 9. Variables used as part of the modelling of the tablet thickness.

Variable Name Description

SPT ca NIR absorbance calibration spectra from the tablets.

SPT prep NIR absorbance prediction spectra from the tablets.

THK caL The calibration set of the thickness of the tablets.

THK prep The prediction set of the thickness of the tablets.

Using this, the prediction information was scaled and used to produce a PLS
prediction model. The values generated by the PLS model were compared to the

values contained in THK prep to determine the model RMSEP.
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line of predicted values versus actual values. An examination of the samples with a
higher XS content showed a greater amount of deviation and higher residual errors,
especially the samples within (b) and (c).

The third stage of this procedure was the prediction of the XS content for the
validation data, FID peq and FID peq (Figure 30) using the model parameters
determined in the previous stage. The validation data was true validation data, as it

was taken over the same period of time as the calibration samples, and as such, it
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accurately, and this had a large effect on the final RMSEP. This indicates that some

local type of modelling or sample selection would lead to more accurate models.

5.1.4 Local Partial Least Squares Models

To build the local models the calibration and validation data were split based on
XS content. Samples with an XS content lower than 6% formed FIDy, car, XSt caL,
FID1_prep, and XS;_prep, data sets for calibration and validation, respectively. The
samples with an XS content higher than 6% formed the calibration and validation

data sets FIDH_CAL, XSH_CAL, FIDH_pRED, and XSH_PRED.

5.1.4.1 High Content Model

The modelling occurred in three stages, the first of which use a design of
experiments to determine the optimal pre-processing method The best predictive
model (inset, Figure 31) was found to be the mean centring of data prior to building
a model with three latent variables. Figure 31 also shows that other inethods of pre-
processing the data (such as OSC and Savitsky-Golay derivation and smoothing)
were unsuccessful in producing a better predictive model, due to the lack of a

baseline and high correlation between each NMR FID.
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unreliable until the information was sufficiently updated information within the
initial model. Secondly, each model would require the individual optimisation of
pre-processing methods and modelling parameters as well as the removal of outliers.
Thirdly, before any predictive models could be constructed the correct local
calibration model must be chosen for the sample to be predicted from. This
classification is not a trivial procedure. The need to add another layer of complexity
to the model would introduce an additional area for potential error. The method of
classification would also require optimisation on a broader scale, such that all the
samples could be classified into the model. Fourthly, while the initial examination of
the data suggested a bimodal distribution, the manufacturers informed us that there
were, in fact, over 40 grades within the initial PLS model and therefore over 40
modes present. This indicated that the grades must overlap significantly such that
when PLS is performed the 40 modes appear to only number two. Lastly, the
localised modelling method would struggle to deal with inliers, transition points used
to monitor the production cycle and the samples which fall between two grades and
hence between two models. All of these factors show that applying localised

modelling online would be an inappropriate method for the treatment of this data.

5.1.5 Sample Selection Models

5.1.5.1 Optimal Solution

The first sample selection procedure applied to the data used the condition
number of the matrix to choose an optimal set of calibration samples. This used
sample selection to build a calibration set that best described the entire data set in
one model. The use of the condition number produced the calibration spectra and

reference matrices FIDconp car and XSconp_caL. The remaining samples formed the
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The results from this analysis show that the data could not be treated as a whole

with one calibration set, due to the distributions and varying modes.

5.1.5.2 Adaptive Selection

Adaptive sample selection is defined as a method of selecting samples that are
most pertinent to the sample being predicted. Unlike the use of the condition
number, adaptive sample selection allows for the production of a calibration model
for each validation sample. Adaptive sample selection determines the criteria by
which the most pertinent samples can be selected for modelling, with the goal of
maximising the strengths of both local and global modelling systems. Several
different sample selection methods with differing selection criteria were explored,
such as the distance in the scores and the correlation and the distribution amongst the
scores space. A model with samples selected at random was built as a control model

for comparison.

5.1.5.3 Shenk and Westerhaus

The Shenk and Westerhaus criteria use the correlation between the calibration
and validation spectra to choose samples. The optimum number of samples for
calibration was found to be 15, with the optimum number of latent variable

determined to be six. These values were assessed using a design (Figure 41).
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The advantage of using Euclidean-based sample selection is that the samples
closest to the validation samples are used, which allows the algorithm to pick
samples from the same or very similar grades for each new sample. This negates the
effects of variant XS content and the subsequent need for a classification procedure.

The prediction error of this modelling procedure was higher than that of the
local model for the samples with an XS content lower than 6%, but this modelling
methodology does not feature any of the complicating factors that the local models
require. This method of selection criteria also predicted the samples with a lower XS
content as well as the samples with a higher XS content (Figure 45) and the
measured values differed by the same amount regardless of XS content. This further
emphasised that locally modelling this data would be the wrong approach. The
prediction error using the Euclidean distance to select samples was also less than that
of the initial model, and by selecting only the pertinent samples the skewing and

leverage of irrelevant samples was removed.

5.1.5.5 Implementation of the Online Model

The final stage of this study was the implementation of the off-line model at the
point of analysis online on the NMR instrument. The process stream schematic in

Figure 46 shows that the NMR is located after the polymer has been formed into
pellets. Every eleven minutes pellets are diverted from the process stream into the
NMR chamber. Inside the chamber, the pellets are heated to form a liquid, and an
NMR FID is then collected for the liquid sample. This sample is then purged from
the instrument, and the sampling process begins again. Three times a day a
laboratory sample is taken from the same sampling point as the online NMR. This
sample is used to calculate a reference XS content measurement, and this

measurement is then matched to the most recent NMR FID collected.
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data (b), which gave the user a visual means of outlier detection by observing the
spectrum. Sections (c) and (d) in Figure 47 show the Euclidean distances calculated
as part of the sample selection stage from the scores shown in section (e). Section ®
is the control panel, and within this the model output the predicted XS value along
with an alert status. The alert status allowed the user to determine the relevant
validity of the prediction being made by displaying one of three indicators. A green
alert status meant that the prediction made was reliable, while a yellow alert status
meant that the prediction was within bounds but was less reliable and that a
reference measurement should be ordered. A red alert status meant that the spectra
collected and prediction generated could not be trusted, and at this point the process
engineer must address the problem. By using the alert status and sections (a), (b),

and (), the GUI could be used for feedback control as well as process monitoring.
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After receiving feedback from the plant engineers regarding the initial user
interface, a second GUI was produced (Figure 48). This still contained the sections
pertaining to the new spectra (a), the calibration spectra (b), and the plot of
Euclidean distances, but the section with the radar plot of the distances was removed.
The scores plot (d) was modified to show the new sample within the scores of the
calibration data (e), allowing a user to see the grade or cluster in which the sample
was located. This new section allowed the user to track the production process, so
that when there was an alteration to the grade being produced one could see the
movement of the new sample within the scores towards the new grade; this was an
important part of the feedback control procedure. Another improvement made for the
second version of the GUI was to completely automate the control panel (f). This
required only that the user load the spectra for prediction, and the predicted value
would be calculated automatically. However, the automation of the procedure
required an overhaul of the GUI so that the user would only be able to start or stop
the process, as needed.

Added to the second version was the inclusion of results from the global model
being used, and the comparison of the two values allowed for a rough form of visual
validation. Also included was the calculation of the relative errors in each prediction,
as well as the overall confidence in the data if the new sample spectrum was to be
included within the overall calibration data. This was the first form of model
maintenance employed. If the confidence within the data improved due to the
inclusion of the new sample, the sample should be added to the calibration set with a

corresponding laboratory reference value.






123

Feedback regarding the second GUI lead to the development of the third (and
current) user interface. Once started, this interface is fully-automated, importing the
new FID from the capture software, selecting samples, making predictions, and
determining an alert status for the spectra and predicted XS content. The use of two
alert status procedures allows a user to separate bad predictions made with good
spectra from bad predictions made with bad spectra. This version still included the
plots of the new spectrum and the calibration data, but section about Euclidean
distances was removed, as it was found to be superfluous. The scores plot is
included, as it was determined to be a good method of process control. The control
panel went through another evolution, and this version allows the model to update by
adding samples to the calibration model. The major improvements to the interface
involved the functions behind the interface. This GUI reads in data directly from the
capture interface and process the data accordingly. It also has an error catch term that
stops the GUI from making a prediction if no new spectrum is recorded, and there is
a status box which was developed to let the user know what the model is currently
doing, giving the user an idea of the processes occurring in the background.

The third GUI (Figure 49) was installed in December 2006 on a Progression
MM2720 NMR located at the Borealis Polymers facility in Schwechat, Austria.
Online validation of the model is currently underway, but the preliminary results
show that the RMSEP is 1.23%. The difference in prediction errors between the
models validated in the laboratory and the model validated online is due to the
limited information contained within the calibration set used for the online model.
This makes a strong case for automated model maintenance to control and update the

information within the calibration set.
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5.1.6 Summary

Table 10 and Figure 51 show the summary of the RMSEC and RMSEP
determined from each model. The correlation-based model had a much smaller
RMSEC than any of the other models, although it has already been shown that this
model is highly over-fit, a theory supported by the ratio of the RMSEP and RMSEC.
Of note are the errors for the local models, which were lower than the errors of the
current PLS model; however, the complexities that arise due to the need to perform
classification along with the inability of this system to handle samples between

grades and inliers meant that this method of modelling was not implemented.

Table 10. Summary of the calibration and prediction errors
of the differing sample selection methods investigated.

Model Type RMSEC/% | RMSEP/%
Current PLS Model 1.75 215
Local - Low XS Content 0.182 0.379
Local - High XS Content 1.82 2.12
Condition-Based Selection 0.588 1.764
Euclidean-Based Selection 0.348 0.672
Correlation-Based Selection 0.00566 3.58
Random — Euclidean Model 9.84
Random — Correlation Model 11.4
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The success of the Euclidean distance-based model lead to its installation online
and it is currently under going a rigorous validation procedure. Upon successful
validation, the Euclidean distance-based model and an accompanying automated
system of model maintenance will replace the current PLS model being used. The

preliminary validation error for the model installed online was determined to be

1.23%.
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Use of the NIR data has one major flaw in that there is an intrinsic variation
within the spectra that does not occur within QA parameters (such as tablet thickness
and density). This variation is due to the effect of light scattering caused by the
differing forms of reflectance, and it is heavily affected by tablet thickness and
density. In order to produce a model that can be applied online, any variation due to
this light-scattering effect must be accounted for and corrected. A process must be

implemented to systematically remove the variation and build a robust online model.

5.2.1 Initial Examination

For the purpose of clarity, the initial examination and modelling will be
demonstrated using the reference information for the API, making predictions of the
API content.

The initial examination of the data began by inspecting the spectral and
reference  information. @~ The NIR  absorbance  spectra, SPT  (
Figure 53), were reduced to their PCA (Figure 54). The data was split into three
groups, (a), (b), and (¢). Each group relates to a specific tablet production campaign

undertaken in 1997 (a), 1998 (b), or 1999 (c).
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The distribution of the data was investigated through the use of histograms and
normality plots, examples of which are shown in Figure 55 and Figure 56. The
histogram in Figure 55 shows the typical shape displayed in a normal distribution.
The adherence of the scored points to the straight line in Figure 56 also confirms the

normality of the data.

5.2.1.1 Tablet Active Pharmaceutical Ingredient

The relative standard deviation of SPT was calculated to be 2.87%. By
comparison, the relative standard deviation for the API was found to be 1.56%,
suggesting that there was variation within the spectra that could not be attributed to
the variation in the API. As noted previously, one of the major drawbacks of using
NIR to measure tablets is the occurrence of diffuse reflectance and light-scattering
effects. Thus any models built must include pre-treatment methods (such as EMSC
and OSC) that can account for the additional variation or remove problematic

wavelengths that contain variation not due to the analytical signal.
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5.2.1.4 Adaptive Sample Selection

Using adaptive models with SPT will result in models that struggle to predict
the reference data. This flaw is due to the reference data, as SPT is normally

distributed and has a very small range.

5.2.1.4.1 Sample Selection Using the Correlation of Spectra

Figure 64 shows an example of sample selection using the correlation between
calibration and validation spectra as the selection criteria in a manner similar to that
employed in the previous section. However, production of subsequent selections for
each validation model showed that these same samples were selected every time.
This was due to the very small range of variation within the reference data, as this
method was developed for reference material with a significant variation of many
grades, which would thus be highly correlated. The very small range of variation of

the API rendered the data ill-suited to the use of this method of sample selection.
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model was not actually over-fit, but was simply poor at making predictions using the
Euclidean distance as the criteria for sample selection.
The final assessment of this stage of the modelling determined that the best

sample selection method used the condition number as the selection criteria.

5.2.2 Tablet Weight

Following the process undertaken for the API, the same procedure was then
used to build models for the parameter pertaining to the weight of each tablet
assessed. While EMSC was previously used to correct for light scattering and
correlate the reference information to the API, in this situation EMSC was used to
remove variation in light scattering and variation due to the API concentration. The
remaining variation within the data pertained to the weight of the tablet.

Initial investigation of the tablet weights suggested that the data was not
distributed, as evidenced by the two distributive peaks (a) and (b) in the histogram
(Figure 67). The non-linearity of the data in the normality plot confirmed this
(Figure 68). This reference information more closely resembled POLy in its

distribution; however, the range was still very small when compared that of POLy.
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5.2.2.1 Modelling

The hidden layers of variable and sample selection were performed as with the
API method, and the spectra were cropped at 1400nm. Samples were selected for
calibration using the condition number. The data then underwent EMSC correction
to account for the variation observed that was not correlated with the variation
observed in the tablet weights. The EMSC-corrected data was then used to produce
calibration and prediction models in the same manner that was employed with the
API models. The calibration model was determined to have a RMSEC of 0.987%

and a RMSEP of 1.120% for the prediction model.
5.2.3 Tablet Thickness

5.2.3.1 Initial Study

From the start, making predictions about tablet thickness seemed the least
important of the three parameters. However, within industry, of the three laboratory
measurements examined, the process of measuring the thickness is the most
destructive. Because of this, the use of NIR spectroscopy to predict tablet thickness
would save both time and money. As shown in the histogram (Figure 69) and
normality plot (Figure 70) from the initial study of the thickness data, the data was
normally distributed. This was indicated by the shape of the histogram and the data’s

adherence to the straight line of the normality plot, with an R? of 0.990.
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5.2.3.2 Modelling

The prediction of tablet thickness was performed using the same scheme as for
API and tablet weight. The processing within hidden layers reduced the spectral
variables by removing wavelengths from 1402nm to 1900nm, and samples were
selected for calibration using the condition number as the selection criteria.

Again, as with the previous models, the best method for spectral pre-processing
was determined using design of experiments; this was determined to be mean
centring. The subsequent calibration model had a RMSEC of 1.70%. From the
calibration model a prediction model was produced with a RMSEP of 2.46%.

The resulting RMSEP showed that the tablet thickness could be predicted
successfully using EMSC correction and hidden layers, proving that this method

could replace the destructive methods currently used to measure the tablet thickness.

5.2.4 Blank Models

For comparison and confirmation, control models were built for each of the
three prediction parameters. These did not use EMSC or hidden layers. Samples
were selected randomly for calibration, while the number of samples and PCs used
remained the same as those used in the previous models. Results for the blank
models are shown in Table 11. Figure 71 shows the comparison between each model

and its respective blank model, including hidden layers and EMSC correction.

Table 11. The calibration and prediction errors of the blank models.

Parameter RMSEC/% RMSEP/%
API 0.0993 0.134
Weight 2,29 2.61
Thickness 217 2.98
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The results of this work highlight two key points. The first is that the use of
sample selection methods and appropriate pre-processing can be used to produce
models that can robustly predict a wide variety of parameters. The second is that the
determination of the most appropriate method of sample selection is essential to the
success of a model. The method chosen must use a criterion that is suitable for the
data under examination. In this study, the NIR spectral data were normally
distributed, and samples could be selected from the entire information data space.
This is in contrast to the data examined in the polymer section, which were not
normally distributed. In that case, a method of sample selection that selected samples
from specific regions of the information scores space was required.

The logical next step for the tablet study would be to create a means to apply
this modelling scheme online. To accomplish this, aspects of model maintenance

must be employed in a similar manner to those employed with the polymer model.
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6 Conclusions

6.1 Polymer Study

The main aim of this study was the production of an online robust modelling
method that could be used to predict the Xylene Soluble content of polymer pellets.

NMR FID spectra of a series of polymers were collected over a period of ten
months. Using the PCA scores, the data could be portioned into two categories based
on the XS content. Using the FIDs and the information regarding the XS content, a
series of calibration models were produced.

The first part of this study focused on the reproduction of the model being used
at that time. This model was a global model that used all of the samples, and the
RMSEP for the prediction of XS content with this model was 2.15%. This model
gave a baseline performance to which the performance of subsequent models could
be compared. After the PCA the data appeared to be bimodal and this lead to the
development and production of two local models for samples with high and low XS
content. The prediction errors for the local models for high and low samples were
2.12% and 0.379%, respectively. Although the prediction errors of these models
were better than those of the model then employed online, this system was rejected
due to its need for an additional stage of classification before predictions could be
made. However, this part of the study did show that each mode of the data (in this
case, each grade of polymer being produced) must be dealt with separately to
produce good predictions.

Sample selection methods that combined the strengths of the global model with

the strengths of the local models were then developed and employed, and samples
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were selected from each grade within a global set of data. The sample selection
routines selected samples for calibration based on the sample to be predicted. Of the
methods investigated, sample selection based on the PCA scores and the Euclidean
distances resulted in the best prediction models with a RMSEP of 0.672%. Although
the prediction error for this model was greater than that of the local system, the use
of this selection method required no form of classification prior to making
predictions. Furthermore, the use of this form of sample selection allowed for
tracking of in-lying samples that move between grades and monitoring as the process
cycle moves from one grade to another.

The final stage of this study was the development and deployment of a user
interface at the point of analysis that incorporated the model using Euclidean
distance-based sample selection. The resultant GUI was installed in December 2006.

The next step in this study would be to produce an automated method of model
maintenance that would ensure that only the most pertinent samples were retained in
the model. Automated model maintenance would allow the model to determine the
times when a laboratory measurement should be taken. The current method of model
maintenance requires a scheduled analysis of samples collected three times a day.
Each sample is then added to the model, regardless of whether any this sample
contributes any additional information to the model. Design of experiments could be
used employing an E-optimal criterion to ensure that any updates to the calibration
data set involve only the most informative samples. Automating this process would
also decrease laboratory analysis costs. If the model can determine the accuracy of
its predictions then no manual reference measurements are needed, making the

sampling procedure a proactive initiative.
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The adaptive sampling algorithms could also be expanded to be applied to any
process that works within a production cycle and requires grade-specific predictions,
such as the prediction of aromatic and olefin content of petroleum and diesel. Any
system that contains sampling clusters due to the reference measurements would be

an ideal arena for the application of these procedures for sample selection.

6.2 Tablet Study

The main aim of the tablet study was to produce a robust model that could
account for variations in the analytical signal that were not caused by variations
within the tablet. This study also involved a traditional method of PAT which made
it ideal for evaluating the modelling methods developed in the polymer study.

The NIR spectra of over 250 tablets were collected over three production
campaigns from 1997 to 1999. Accompanying the NIR spectral data were the
chemical and physical tablet parameters for the active pharmaceutical ingredient,
tablet weight, and tablet thickness.

This study began with the PCA of the data which showed the data distributed in
accordance with the three production campaigns. Unlike the polymer study, the
variation observed was not due to differing grades of tablets being produced, but
instead due to diffuse and specular reflectance of the NIR radiation from the surface
of the tablet. The reflectance variation was addressed using EMSC and variable
selection. Three models (one for each of the tablet parameters) were produced, and
the best predictive models were constructed with samples selected using the

condition number. The prediction errors for these models are in Table 12.



Table 12. Calibration and prediction errors for the tablet study.

Parameter | RMSEC/% RMSEP/%
API 0.00598 0.00624
Thickness 0.9874 1.20
Weight 1.70 2.46
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The ability to make the predictions of the tablet API, weight, and thickness from
one spectrum would save time and money in a process environment, improving upon
the sampling procedure so that fewer samples need be destroyed for the purpose of
analysis. Control and maintenance of an automated model could also convert
sampling from a scheduled practice to a proactive one, using the model to determine
when tablets should sampled in order to improve predictions and robustness.
Additionally, automated NIR spectroscopy in PAT provides a practical means to
analyse every table from the production line, and the ability to control the
information in the calibration set using an E-optimal approach (as in the polymer
study) would ensure that the calibration data set only includes relevant samples.

The next logical step for this study would be the development of a user interface
and then installation online at the point of analysis, as accomplished in the polymer

study.
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6.3 Summary

From the results of these two experimental studies it has been demonstrated that
the use a regimented and designed procedure to determine criteria for sample
selection, correction methods, and data pre-treatment procedures will result in the
creation of robust, accurate models. The polymer study evolved the use of sample
selection algorithms based upon the actual sample being predicted, and these models
successfully predicted polymer samples, but performed poorly in the prediction of
the NIR data. This discrepancy was attributed to intrinsic differences in the data
being analysed, which emphasised the fact that there is no one standard approach to
data analysis. The successful use of chemometrics and design of experiments to
determine the best method for modelling in both studies indicates that this
combination of methods should perhaps be established as the standard approach.

The next step for both studies is to employ design of experiments to maintain
the calibration models, ensuring that they do not grow exponentially and maximising
the amount of relevant information retained. Further work within the model will
allow the modelling system to determine if and when reference measurements are
needed and if a decline in the quality of predictions requires a laboratory
measurement. This would replace the traditional manual sampling procedure so that
samples are taken and laboratory references measurements are recorded only when
the model deems it necessary.

This work shows that by delving deeper into modelling strategies and
employing appropriate sample and variable selections with the analytical application
of design of experiments result in better models capable of make better predictions.
Advancements in PAT must be accompanied by complementary advances in

chemometrics to ensure that both remain at the forefront of analytical science.
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7 Self Reflection and Appraisal

The section details the aspects of my personal development over the past three
years that lead to the successful completion of this research.

When I started my PhD in 2004, I had a basic understanding of the principles
and applications of chemometrics. I also had a working knowledge of Excel and
limited experience with MatLab. Three years later, through immersion in
challenging and enjoyable research, I was pushed to develop new skills and advance
beyond my expectations. One of the most important skills I gained was the ability to
produce algorithms and programmes with MatLab. During the last three years I
wrote and developed a large number of programmes, the most important of which
being the user interface that is currently employed by Borealis to predict various
parameters of the polymers they produce. This project forced a significant shift of
my internal paradigm as I evolved from simply being a user, a button pusher, and
embraced a new philosophy when developing programmes — that of an artist. This
development took a lot of hard work and patience, and it reminded me of the first
steps in learning a foreign language; but the results bore a programme that is now in
use online at a major manufacturing facility.

This accomplishment required both an understanding of programming itself and
an understanding of the people who would use the programme. I gained the
necessary insight into the people who would use (and ultimately benefiting from) the
software in development when I spent a month at the Borealis plant in Schwechat,
Austria. My time there was spent writing code and working in the laboratory where 1
performed the analysis methods used to generate reference information for the
models. This gave me a deep appreciation for the work involved; previously had I

craved and demanded data, but upon returning from Austria I realised that the
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reference measurements were only a small part of a bigger picture. The time in
Austria also allowed me the opportunity to interact with and learn from the people
who would be the primary users of my software, and their feedback lead to the
implementation of a traffic light system to indicate the quality of the model
predictions. To this I would look to implement an on-demand sampling procedure,
so that when an inaccurate value was predicted by the model a system would be
initiated to collect a sample, record a spectrum, and call for a laboratory reference
measurement. The newly-recorded sample would then be added to the model using a
maintenance algorithm with an E-optimal approach. This method could also be used
to identify and remove samples that no longer add sufficient information within the
framework of the model. The model maintenance algorithm would control the size of
the model and prevent it from expanding, thus keeping the system information-rich,
as opposed the data-rich, information-poor state that trap models of ever increasing
sizes.

In the past three years I have found that to people outside of the field
chemometrics appears to be some unintelligible form of black magic. To this end, I
have made an effort to communicate my work to other scientists through posters and
talks at conferences. I also place great importance on the demonstration of
chemometrics to undergraduate students, as the demonstration classes have provided
me with a means to increase awareness of and enthusiasm for the field, and
hopefully inspire some potential future chemometricians. Demonstrating in
chemometrics has required me to reconsider the field as it is seen by the uninitiated
in order to be able to communicate the fundamental theories and principles of

chemometrics to students who likely have no prior experience with this form of data
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analysis. Breaking down fundamental concepts such as PCA has served to ensure
that I myself have a thorough understanding of the theories and practices of my field.

In addition to my time in Austria, I also had the opportunity to spend three
months in Seattle working for the Center for Process Analytical Chemistry (CPAC)
at the University of Washington. My time there was spent working on a project
based on calibration transfer between gas chromatography instruments in different
parts of the world. This work again added another string to my bow as I experienced
working within a new group, one with different ideas and expectations; additionally,
I had to adjust as [ worked with an entirely different form of data. As a whole, I feel
that my experiences over the past three years have allowed me to develop skills that

will be indispensable throughout the entirety of my career.
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Ipconc = [Iconc;pred al;
stca = std(Ipconc);
[m,n}] = size(Ipconc);

sqgm = sqrt(m);
a = (stca/sgm);
c_conf = 1.96*a;

IGconc = [cconcipred g];
stcg = std(IGconc);
[p,q] = size(IGconc);

sgp = sqrt(p):

b = (stcg/sqgp):
glob_conf = 1.96*b;
sd conc = std(Iconc);
sgrm = sqgrt(m-1);

¢ = [sd _conc/sqgrm];
confs_o = 1.96*c;
stdcconc = std{cconc);
sgrp = sqgrt({p-1):;

d = (stdcconc/sqgrp);
confsg o = 1.96*d;





