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Abstract 

 

The thesis concerns the theoretical development of Active Fault-Tolerant Control 

(AFTC) methods for nonlinear system via T-S multiple-modelling approach. The thesis 

adopted the estimation and compensation approach to AFTC within a tracking control 

framework. In this framework, the thesis considers several approaches to robust T-S 

fuzzy control and T-S fuzzy estimation: T-S fuzzy proportional multiple integral 

observer (PMIO); T-S fuzzy proportional-proportional integral observer (PPIO); T-S 

fuzzy virtual sensor (VS) based AFTC; T-S fuzzy Dynamic Output Feedback Control 

TSDOFC; T-S observer-based feedback control; Sliding Mode Control (SMC). The 

theoretical concepts have been applied to an offshore wind turbine (OWT) application 

study. The key developments that present in this thesis are: 

• The development of three active Fault Tolerant Tracking Control (FTTC) strategies 

for nonlinear systems described via T-S fuzzy inference modelling. The proposals 

combine the use of Linear Reference Model Fuzzy Control (LRMFC) with either the 

estimation and compensation concept or the control reconfiguration concept.  

• The development of T-S fuzzy observer-based state estimate fuzzy control strategy 

for nonlinear systems. The developed strategy has the capability to tolerate 

simultaneous actuator and sensor faults within tracking and regulating control 

framework. Additionally, a proposal to recover the Separation Principle has also 

been developed via the use of TSDOFC within the FTTC framework. 

• The proposals of two FTTC strategies based on the estimation and compensation 

concept for sustainable OWTs control. The proposals have introduced a significant 

attribute to the literature of sustainable OWTs control via (1) Obviating the need for 

Fault Detection and Diagnosis (FDD) unit, (2) Providing useful information to 

evaluate fault severity via the fault estimation signals.  

• The development of FTTC architecture for OWTs that combines the use of 

TSDOFC and a form of cascaded observers (cascaded analytical redundancy). This 

architecture is proposed in order to ensure the robustness of both the TSDOFC and 

the EWS estimator against the generator and rotor speed sensor faults.  

• A sliding mode baseline controller has been proposed within three FTTC strategies 

for sustainable OWTs control. The proposals utilise the inherent robustness of the 

SMC to tolerate some matched faults without the need for analytical redundancy. 
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Following this, the combination of SMC and estimation and compensation 

framework proposed to ensure the close-loop system robustness to various faults.  

• Within the framework of the developed T-S fuzzy based FTTC strategies, a new 

perspective to reduce the T-S fuzzy control design conservatism problem has been 

proposed via the use of different control techniques that demand less design 

constraints. Moreover, within the SMC based FTTC, an investigation is given to 

demonstrate the SMC robustness against a wider than usual set of faults is enhanced 

via designing the sliding surface with minimum dimension of the feedback signals.  
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Chapter 1 : Introduction 

1-1. Introduction 

Owing to the increasing demand on maintaining acceptable system performances in 

wide operating conditions, it becomes very important to design controllers so that the 

system under control maintains nominal performance (with acceptable degrade) when 

malfunction occurs. These controllers are known as fault tolerant controllers and have 

the ability to deal with systems that are subjected to faults. While the classical controller 

design only considers systems during nominal operation, the fault tolerant control 

(FTC) design explicitly includes the effects of faults on the behaviour of the system 

(Patton, 1997a, Blanke, Kinnaert, Lunze and Staroswiecki, 2006, Zhang and Jiang, 

2008). 

An increased interest in designing FTC and fault detection and diagnosis (FDD) 

systems has appeared in the last two decades, one can notice this through the 

publications which consider these topics in different application studies (Gertler, 1998, 

Chen and Patton, 1999, Chiang, Russell and Braatz, 2001, Blanke, Kinnaert, Lunze and 

Staroswiecki, 2006, Ding, 2008, Ducard, 2009, Noura, Theilliol, Ponsart and 

Chamseddine, 2009, Tehrani and Khorasani, 2009, Edwards, Lombaerts and Smaili, 

2010, Jelali and Huang, 2010, Yang, Jiang and Cocquempot, 2010, Alwi, Edwards and 

Tan, 2011, Meskin and Khorasani, 2011, Richter, 2011, Song and Hedrick, 2011, Yang 

and Ye, 2011). 

Historically, safety critical systems have stimulated a significant amount of research in 

FTC systems. Specifically, aviation accidents at the end of the 1970’s have initiated the 

need for FTC design problem (Patton, 1997a, Zhang and Jiang, 2008). Extensive survey 

of aircraft accidents and history of flight reconfigurable control have been presented in 

(Steinberg, 2005, Edwards, Lombaerts and Smaili, 2010). However, FTC has begun to 

stimulate research in a different industrial community, particularly, the systems that 

demand high degree of reliability and availability (sustainability) and at the same time 

are characterised by expensive and safety critical maintenance work. In fact, there is 

clear conflict between ensuring a high degree of availability and reducing costly 

maintenance times. However, the recently developed offshore wind turbines (OWTs) 
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are the foremost example of systems for which this conflict has arisen since wind 

turbines have a stochastic and uncontrollable driving force as input in the form of wind 

speed. The OWT site accessibility is not always ensured during malfunctions. 

Therefore, system availability is highly affected by malfunctions and weather 

conditions. On the other hand, OWT maintenance work is more expensive to perform 

by a factor of 5-10 times compared with their onshore counterparts. Additionally, the 

cost (day rate) of general purpose lifting equipments required for OWTs is higher than 

that for the onshore wind turbine by a factor of 10 (van Bussel and Zaaijer, 2001). Thus, 

a reduction of maintenance effort to a minimum level is essential for OWTs. 

 

Figure  1-1: OWTs maintenance (www.siemens.co.uk, 2012, www.smart-energy.com, 

2012) 

Several problems add credibility to the points raised above. For example, a megawatt 

turbine in Canada developed a gearbox bearing fault in January 2004, requiring 

complete overhaul of the gearbox, which demanded replacement of the existing gearbox 

with a new one. The 300 ton capacity crane was ordered as well as a replacement 

gearbox. Unfortunately, the crane arrived and bad weather set in. The work was 

suspended for the next 3 weeks because of weather and hazardous work conditions. The 

result was that the crane costs exceeded $ 150,000, an energy loss of $26,000 was 

incurred, and replacement of the gearbox, cost over $ 250,000 (The World Wind Energy 

Association, 2012). Analysis on wind farm maintenance costs has shown that 

unscheduled maintenance visits account for approximately 75% of the total wind 

turbine maintenance costs, whilst preventive visits and major planned overhauls account 
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for 20% and 5%, respectively (The World Wind Energy Association, 2012). 

Furthermore, wind turbine maintenance is a very dangerous process; several accidents 

have been reported during maintenance and some of these were fatal. Details of wind 

turbine accidents up to 31 March 2012 are available in 

(www.caithnesswindfarms.co.uk, 2012). 

Consequently, improvements in reliability and availability and the requirement to 

minimize the complexity and cost of maintenance operations of OWTs are combined 

challenges that serve to enhance the importance of FDD and FTC for wind turbines. In 

fact, early or prompt fault detection and fault isolation for the mechanical and electrical 

subsystems of wind turbines can help to ensure that major component failures are 

avoided as well as preventing side effects that can lead to other component 

malfunctions. Since fault detection can be performed while the malfunctioning 

component is still operational, this will avoid unscheduled maintenance. Furthermore, 

avoiding unscheduled maintenance is of vital important for offshore wind farms, where 

bad weather conditions can prevent any repair actions for several weeks (van Bussel and 

Zaaijer, 2001, Ribrant and Bertling, 2007). Moreover, based on the information 

provided by FDD, an FTC scheme can trigger specific control actions to prevent 

damage of plant components and ensure system availability during malfunctions. Thus, 

overall maintenance costs and off-time of wind turbines can be significantly reduced. In 

the literature, FTC and its complementary FDD system have been recognised to be the 

proper solution of ensuring these requirements (kk-electronic, Wei and Verhaegen, 

2008, Amirat et al., 2009, Bin, Yaoyu, Xin and Zhongzhou, 2009, Hameed et al., 2009, 

Odgaard, Stoustrup and Kinnaert, 2009, Wei and Liu, 2010, Sloth, Esbensen and 

Stoustrup, 2011, Kamal, Aitouche, Ghorbani and Bayart, 2012). 

Moreover, FTC methods represent promising approaches for handling several practical 

fault scenarios for real system applications. For example, in (Patton, Putra and 

Klinkhieo, 2010b), FTC is utilised to compensate the effect of existing friction in 

mechatronic systems. In (Sung, Lee and Bien, 2005) FTC is used to enhance the 

performance of an electromagnetic suspension system through tolerating the effect of 

air gap sensor fault and an accelerometer fault. In (Podder and Sarkar, 2001) a way of 

tolerating the effect of a faulty thruster is proposed through reallocation of thruster 

forces of an autonomous underwater vehicle. (Ducard, 2009) describes the application 
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of FTC methods for flight control of unmanned airborne vehicles. FTC for a power 

plant application is also presented in (Luqing et al., 2001). 

The importance of the FTC for different application studies, specifically OWTs, has 

been the main motivation for this research, providing investigation of different fault 

impacts, the main approaches for FTC, and some new methods in FTC of nonlinear 

systems. The rest of this Chapter introduces some fundamental terminology, main 

approaches, and basic building blocks of FTC and FDD topics. 

1-2. Fault definition, classification, and modelling 

A fault is an uncontrollable defect in the system structure or parameter that eventually 

leads to degradation in the closed-loop system performance or even the loss of the 

system function (failure). The literature various definitions for faults and failures. For 

example, (Blanke, Kinnaert, Lunze and Staroswiecki, 2006) defined a fault as ‘…a 

deviation in the system structure or the system parameters from the nominal situation 

…’. (Isermann, 2006) defined a fault as ‘… a non-permitted deviation of a 

characteristic property (feature), of the system from the acceptable, usual, standard 

condition…’. A failure, on the other hand, is defined as ‘… A failure is a permanent 

interruption of a system’s ability to perform a required function under specified 

operating conditions ...’(Isermann, 2006). 

Clearly, a failure is a much more severe concept than a fault. Although the fault causes 

the deviation of nominal system performance, the nominal controller can be equipped 

with some remedial activities to overcome the fault effects and hence maintain 

acceptable performance. On the other hand, when a failure occurs, a totally different 

component is needed to be able to retain the nominal performance, so that a form of 

redundancy becomes necessary.  

Faults are classified according to their time characteristics as abrupt (non-smooth time 

behaviour), incipient (smooth time behaviour), and intermittent (pulsating time 

behaviour) (Isermann, 2006) (see Figure  1-2). 

 

Figure  1-2: Fault classification with respect to time 

 

Time Time Time 

Fault Fault Fault Abrupt Fault 

Incipient Fault 
Intermittent Fault 

��� ��� ��� ��� 
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Based on the location of the faults acting within a dynamical system, the faults are 

classified as actuator faults, sensor faults, or process faults. This classification is widely 

used in the FTC literature (Chen and Patton, 1999). Figure  1-3 below illustrates these 

faults classes. 

 

Figure  1-3: Fault classification with respect to their location 

• Actuator Fault (�����): This fault corresponds to variations of the control input 

applied to the controlled system either completely or partially. The complete 

actuator faults means that the actuator produces no actuation regardless of the input 

applied to it. This can occur as a result of breakage, or burn out wiring. Partial 

actuator faults are cases in which the actuator has a slower response or become less 

effective and hence provides the plant with part of the normal actuation signal. 

• Sensor Fault (�����): The sensors are any equipment that takes a measurement or 

observation from the system, e.g. potentiometers, accelerometers, tachometers, 

pressure gauges, strain gauges, etc. Sensor faults imply that incorrect readings or 

measurements are taken from the real dynamical system. This fault can also be 

subdivided into either complete or partial sensor faults. The complete sensor fault is 

the case in which the sensor provides readings that no longer correspond to the 

required physical parameters. The partial sensor fault is the case in which the sensor 

still provides inaccurate readings that contains the required physical parameters 

such that the required reading could be retrieved.  

• Process Fault (�	���): These faults directly affect the physical parameters of the 

system and in turn the input/output properties of the system. Process faults are often 

termed component faults, arising as variations from the structure or parameters used 

during system modelling, and as such cover a wide class of possible faults e.g. dirty 

water having a different heat transfer coefficient compared to when it is clean, or 

����� 


��� 


��� 


��� 
����� ����� 
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changes in the viscosity of a liquid or components slowly degrading over time 

through wear and tear, aging or environmental effects, etc. 

Some literature further classifies the faults according to the way they are modelled as 

either additive or multiplicative faults. Fault modelling is concerned with the 

representation of the real physical faults and their effects on the mathematical model of 

the system. The importance of fault modelling comes from the fact that all remedial 

actions taken to compensate the fault are based on the most appropriate form of 

modelling (Chen and Patton, 1999).  

Fault effects appear in mathematical system models either as additive (signal change) or 

multiplicative (parameter change) terms. For example, actuator faults deform the control 

signal required to actuate the system. Mathematically, an actuator fault appears in the 

system model as follows: 

�� = ��� ( 1-1) 

where	�� is a diagonal matrix with diagonal elements	0 ≤ 	��� ≤ 1,	� = 1, 2, . . . �. Here, 

each element of the �� matrix determines the intensity of the fault in the ��� actuator 

with ��� = 0 indicating a complete ��� actuator fault (failure), whereas ��� = 1 implies 

that the ��� actuator operates normally. Any ��� between 0 and 1 implies the presence of 

partial faults. Suppose that the state space model of the nominal system is given by: 

� ! = " + $�% = & 											' ( 1-2) 

The state space model of the system dynamics with actuator faults will be: 

� ! = " + $���% = & 																' ( 1-3) 

This form of faulty models can represent a so called multiplicative fault and is useful in 

implementing FTC loops (Theilliol et al., 2008). Similarly, multiplicative sensor faults 

can be modelled as: 

%� = �(% ( 1-4) 

The effect of the sensor fault appears in the system model as follows: 

� ! = " + $�%� = �(& 					' ( 1-5) 
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where	�( is a diagonal matrix with diagonal elements  0 ≤ 	��( ≤ 1 , � = 1, 2, . . . ). Here, 

each element of the matrix �( determines the intensity of the fault in the ��� sensor with ��( = 0 denoting that a complete ��� sensor fault has occurred. ��( = 1 implies that the ��� sensor operates normally, and any ��( values between 0 and 1 imply that partial 

sensor faults have occurred. 

Another way of introducing the effects of actuator, sensor and component faults into 

system model is by adding (additive fault) a new term to the dynamics of Eq. ( 1-1) as 

illustrated in Eq. ( 1-6): 

� ! = " + $� + *+,% = & + *-,											'	 ( 1-6) 

where f is the fault signal, Fx and Fy are the fault distribution matrices. It should be 

noted that additive faults representation best describes the cases in which the fault is 

independent of the system input and/or state such as plant leaks. On the other hand a 

multiplicative fault reflects the situation in which the plant parameters change and this 

is a good way to describe the deterioration of plant equipments, i.e. via parametric 

variations. 

Remark: In Chapter 3, a new approach to fault modelling is presented in which, from 

an FTC stand point, the additive fault model can be considered as a generalized fault 

representation. Hence, only the additive fault model is considered in this thesis.  

1-3. Structure and Approaches to FTC Systems  

Generally, the nominal controller (sometimes referred to as the “baseline” controller, 

see Patton, 1997) aims to stabilize and achieve the required closed-loop performance 

during normal operation conditions. To give the controlled system the ability to tolerate 

fault effects, additional inherent ability of the controller and/or extra assistant blocks 

should be inserted in the control loop. Figure  1-4 illustrates the main structure of the 

fault tolerant system. 
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Figure  1-4: Schematic of the fault tolerant system (Blanke, Kinnaert, Lunze and 

Staroswiecki, 2006) 

Generally, two steps are required to provide the system with the capability to tolerate 

faults: 

• Equip the system with some mechanism to make it able to detect the fault once it 

occurs, provide information about the location, identification of faulty component, 

and decide the required remedial action in order to maintain acceptable operation 

performance (Supervision level). 

• Make use of the information obtained from the supervision level and adapt the 

controller parameters and/or reconfigure the structure of the controller so that the 

required remedial activity can be achieved (Control reconfiguration level). 

Hence, the FTC loop extends the usual feedback controller by a supervision level. In the 

absence of a fault, the system matches its nominal response so that the nominal 

controller attenuates the disturbance and ensures good reference following and other 

requirements on the closed-loop system. In this situation, the diagnostic block 

recognizes that the closed-loop system is fault-free and no change of the control law is 

necessary.  

If a fault occurs, the supervision level makes the control loop fault-tolerant. The 

diagnosis block identifies the fault and the control re-design block adjusts the controller 

to the new controller parameter set. Following this, the reconfigured system continues 

to satisfy the control target.  


��� 


��� 
��� 
 

 



9 

 

Thus, FTC is the control loop that has the ability to fulfil the required system 

performances even if faults occur through utilizing the help provided by the supervision 

level. Approaches for synthesizing the FTC loop are classified as either a passive FTC 

(PFTC) or active FTC (AFTC). In the PFTC approach, the control loop is designed to 

tolerate some anticipated types of faults. The effectiveness of this strategy, that usually 

handles anticipated faults scenarios, depends upon the robustness of the nominal closed-

loop system. Additionally, since the robustness of the closed-loop system to the fault is 

considered during the design cycle of the nominal controller, this may lead to post-fault 

degraded performance of the closed-loop system. However, it is interesting to note that 

the PFTC system does not require the FDD and controller reconfiguration and hence it 

has the ability to avoid the time delay due to online diagnosis of the faults and 

reconfiguration of the controller. In fact, this is very important in practice where the 

time windows during which the system remains stabilisable in the presence of faults are 

very short, e.g. the unstable double inverted pendulum example (Niemann and 

Stoustrup, 2005, Weng, Patton and Cui, 2007). Most of the PFTC methods have been 

proposed mainly based on robust control theory. However, the fundamental difference 

between the traditional robust control and the PFTC lies in the fact that robust control 

deals with small parameter variations or model uncertainties, whilst PFTC deals with 

more drastic changes in system configuration caused by faults (Šiljak, 1980, Veillette, 

Medanic and Perkins, 1992, Veillette, 1995, Seo and Kim, 1996, Guang-Hong, Si-Yang, 

Lam and Jianliang, 1998, Zhao and Jiang, 1998, Geromel, Bernussou and de Oliveira, 

1999, Wang and Shao, 2000, Yang, Wang and Soh, 2000, Yew-Wen, Der-Cheng and 

Ti-Chung, 2000, Puig and Quevedo, 2001, Fang, Jian Liang and Guang-Hong, 2002, 

Hsieh, 2002, Benosman and Lum, 2010, Guang-Hong and Dan, 2010). It should be 

noted that in the early literature the PFTC approach was referred to as “reliable control” 

(Veillette, Medanic and Perkins, 1992, Veillette, 1995). 

In order to improve the post-fault control performance and cope with severe faults that 

break the control loop, it is commonly advantageous to switch to a new controller that is 

on-line or designed off-line to control the faulty plant. 

In the AFTC approach, two conceptual steps are required: FDD and controller 

adjustment so that the control law is reconfigured to achieve performance requirements, 

subsequent to faults (Patton, 1997a, Blanke, Staroswiecki and Wu, 2001, Blanke, 

Kinnaert, Lunze and Staroswiecki, 2006, Zhang and Jiang, 2008, Richter, 2011). An 
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AFTC system compensates for faults either by selecting a pre-computed control law 

(projection-based approaches) (Pogoda and Maybeck, 1989, Maybeck and Stevens, 

1991, Rauch, 1995, Boskovic and Mehra, 1999, Zhang and Jiang, 2001, Seron, De Dona 

and Martinez, 2009, Shengqi, Liang, Cuijuan and Wenwei, 2009, Sanchez-Parra, Suarez 

and Verde, 2011) or by synthesizing a new control strategy on-line (on-line automatic 

controller redesign approaches) (Ahmed-Zaid, Ioannou, Gousman and Rooney, 1991, 

Tao, Joshi and Ma, 2001, Zhang and Jiang, 2002, Yen and Liang-Wei, 2003, Lunze and 

Steffen, 2006, Richter, Schlage and Lunze, 2007, Alwi and Edwards, 2008, Sijun, 

Youmin, Xinmin and Rabbath, 2009, Gayaka and Bin, 2011, Hamayun, Edwards and 

Alwi, 2011, Zou and Kumar, 2011, Li and Yang, 2012). Another widely studied method 

is the fault compensation approach, where a fault compensation input is superimposed 

on the nominal control input (Theilliol, Noura and Sauter, 1998, Noura, Sauter, Hamelin 

and Theilliol, 2000, Boskovic and Mehra, 2002, Bin, Staroswiecki and Cocquempot, 

2006, Gao and Ding, 2007a, Gao and Ding, 2007b, Jiang, Gao, Shi and Xu, 2010, 

Zhang, Jiang and Staroswiecki, 2010).(Patton, Putra and Klinkhieo, 2010a) 

It should be noted that owing to the ability of the traditional adaptive control methods to 

automatically adapt controller parameters to changes in system parameters, adaptive 

control has been considered as a special case of AFTC that obviates the need for 

diagnosis and controller re-design steps (Tao, Joshi and Ma, 2001, Tao, Chen, Tang and 

Joshi, 2004, Ye and Guang-Hong, 2006, Yang and Ye, 2011). However, adaptive 

control is best suited for application to plants that have slowly varying parameters, 

whilst, plants under the influence of faults typically have a nonlinear behaviour with 

sudden parameter changes since the faults cause nonlinear effects as the system moves 

away from its known equilibrium point. Furthermore, obviously adaptive control based 

AFTC can actively tolerate actuator and system faults, but it is not capable of tolerating 

sensor faults since in this situation the controller adapt its parameters according to the 

faulty measurements and hence causes the closed-loop system to deviate from correct 

operation. Therefore, for the case of sensor fault and FDD unit is required to detect, 

isolate, identify and then compensate the fault. 

1-4. Fault Detection and Diagnosis 

Fault detection and diagnosis (FDD) concerns procedures for determining whether or 

not a fault has occurred (fault detection) and judging the level of severity of the fault 
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and it’s likely consequence (fault diagnosis), based on the available input and output 

signals. In the literature, another terminology has been popular for more than 25 years 

(Patton, Frank and Clark, 1989), this is fault detection and isolation (FDI) in which the 

fault is not only detected but also located in the system (or the fault is “isolated”). 

Sometimes the combined actions of fault isolation and fault identification are referred to 

as the diagnosis component of an FDD scheme (Gertler, 1998). The FDD function plays 

a vital role since the reconfiguration process, involved within the AFTC framework, 

depends on the information delivered by the FDD unit and hence the overall robustness 

of the AFTC design is strongly affected by the robustness of the FDD unit. 

The process of FDD includes successive steps with each step serving the next until a 

diagnosis is achieved (Gertler, 1998, Chen and Patton, 1999, Blanke, Kinnaert, Lunze 

and Staroswiecki, 2006, Isermann, 2006, Ding, 2008, Meskin and Khorasani, 2011). 

These steps are: 

Fault Detection: This step determines the occurrence of the fault by generating a signal 

that is affected by the faults only, this signal is called the residual. Therefore, in some 

literature this step is named as the residual generation step.  

Fault Isolation (Localization): This step determines the component in which the fault 

has occurred. 

Fault Identification (Analysis): This step determines the fault type and its consequences. 

In fact, fault isolation and identification are based on processing the residual signal to 

extract the information about the fault of interests. Therefore in the literature, faults 

isolation and identification are sometimes referred to as decision making or the residual 

evaluation step (Patton, Frank and Clark, 1989, Patton, Frank and Clark, 2000). 

The importance of detecting and diagnosing system faults comes from the fact that 

every controlled system can be subjected to faults occurring at unexpected time instants, 

making each fault difficult to predict and prevent. System faults can lead to catastrophic 

effects on human life, they can damage the environment, and lead to unsuitable plant 

economics. Whilst the occurrence of a fault cannot be prevented, the early detection of 

faults can lead to avoiding the fault consequences or at least minimise the severity of 

fault consequences. In fact, from a practical stand point, the topics of FDI and FDD 

have led to very interesting and challenging directions for theoretical and applied 

research in the control community. For example: the detection of faults, to be useful in 
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practice, should be achieved early by detecting “incipient” effects associated with the 

fault before its effects become serious (Patton, Frank and Clark, 1989, Patton and Chen, 

1993, Zolghadri, Henry and Monsion, 1996, Patton, 1997b, Edwards, Spurgeon and 

Patton, 2000, Patton, Frank and Clark, 2000, Goh, Spurgeon and Jones, 2002, Tan and 

Edwards, 2002, Henry and Zolghadri, 2005, Marcos, Ganguli and Balas, 2005, Henry, 

2007, Rodrigues, Theilliol, Adam-Medina and Sauter, 2008, Simani and Patton, 2008, 

Alwi, Edwards and Tan, 2009, Patton, Uppal, Simani and Polle, 2010).  

Hardware and analytical redundancies are very important aspects of FDD. Hardware 

redundancy implies the addition of redundant physical components in order to increase 

the reliability of a closed-loop system. For example, two or three sensors are used to 

measure the same state to ensure reliable measurements in the case of a fault. On the 

other hand, analytical redundancy makes use of observers to provide estimates of the 

signal of interest instead of using redundant hardware. Hence, analytical redundancy 

obviates the need for extra hardware which in turn reduces the manufacturing costs. 

Figure  1-5 schematically illustrates these concepts. 

 

Figure  1-5: Hardware and analytical redundancy (Ding, 2008) 

Generally, FDD methods are classified as to whether or not they utilise the 

mathematical model of the monitored plant. FDD methods which use an explicit 

mathematical model of the plant are often preferred (Patton, Frank and Clark, 1989, 

Gertler, 1998, Chen and Patton, 1999, Patton, Frank and Clark, 2000, Isermann, 2006, 

Ding, 2008). FDD techniques that do not require the use of models are often referred to 

as “model-free” FDD methods and can be classified as: 


��� 
��� 
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1. Physical redundancy: Multiple sets of sensors are installed to measure the same 

sets of variables. Any inconsistency between the measurements indicates a sensor 

fault. Clearly, increasing the level of redundancy implies that more information 

about the fault can be utilised. For example, with two parallel sets of measurements 

fault isolation is not possible, whereas, with three set of measurements, a voting 

scheme can be formed to isolate the faulty sensor. 

2. Limit checking: This is the most frequently used in practice in which plant 

measurements are compared by computer to preset limits. Fault indication activates 

if the measurements exceeds the predefined threshold. The serious drawback of this 

method is that a single component fault may propagate through many plant 

variables which in turn could cause a significant number of system signals to 

exceed their limits and appear as multiple faults, leading to a very challenging fault 

isolation problem. 

3. Frequency spectral analysis: This approach is based on observing the consistency 

between frequency spectra of plant measurements and the spectrum of normal 

operation conditions; any inconsistency represents an indication of abnormality. 

Fault isolation is also possible if they have their distinctive mark in the spectrum. 

On the other hand, the intuitive idea of the model-based approach to FDD is appealing 

as this approach makes use of the concept of analytical redundancy in which the plant 

model runs in parallel with the real plant and is provided with the same inputs and 

outputs as the real plant. The differences between the sensor measurements and the 

analytically computed values of the respective variables, are referred to as residual, and 

these are indicators of the presence of faults in the system. In the literature, the 

procedure for extracting fault symptoms from the system, with the fault symptoms 

represented by a residual signal is called residual generation. On the other hand, the 

algorithm used to generate a residual is called a residual generator (Patton, Frank and 

Clark, 1989, Chen and Patton, 1999, Ding, 2008). 

Owing to the presence of noise and modelling errors, the residual generation process 

needs to be followed by residual evaluation which is responsible for evaluating the 

residuals and monitor if and where a fault has occurred. This process may make use of a 

simple threshold test on the instantaneous values of the residual, or it may consist of 

methods of statistical decision theory (Chen and Patton, 1999). Figure  1-6 shows the 
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schematic outline of fault diagnosis showing the residual generation and residual 

evaluation functions. 

 

Figure  1-6: Schematic of model-based fault diagnosis adapted from (Ding, 2008) 

The most important issue in model-based fault diagnosis is the robustness against 

modelling uncertainty which arises from inaccurate modelling of the monitored process, 

measurement noise, and disturbance. During the last 25 years robust fault diagnosis has 

steadily become a very significant research issue (Chen and Patton, 1999, Patton, Frank 

and Clark, 2000, Ding, 2008, Tehrani and Khorasani, 2009, Falcoz, Henry and 

Zolghadri, 2010, Patton, Uppal, Simani and Polle, 2010, Qing and Mehrdad, 2010). 

In the literature, there are three different approaches used for residual generation in 

model-based FDD (Gertler, 1998, Chen and Patton, 1999, Ding, 2008): 

1. Observer-based FDD: In this approach the observer is used to provide estimation of 

the actual system output. The residual signal is generated via the weighted output 

estimation error between the measured output and the estimated output. The 

available flexibility in selecting observer gains and the wide usage of observers in 

control theory and application has motivated interest in this approach.  

2. Parity relation based FDD: In this approach, the residual signals are generated 

based upon a consistency check on system input and output data over a given time 

window. Several researchers have proved that the parity equation approach has 

some correspondence with certain types of observer-based FDD/FDI approaches 

(Chen and Patton, 1999, Isermann, 2006, Ding, 2008). 

3. Parameter estimation approach: This approach is developed based on system 

identification techniques. The faults are reflected in the physical system parameters 

and then the idea of the fault detection is based on the comparison between the 

online estimation of system parameter and the parameter of the fault-free reference 

model. 


��� 
��� 
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It is also interesting to note that model-based FDD methods can be based on the use of 

an “implicit model”, rather than the more usually understood explicit model-based 

methods outlined above.  In this case the model is implicitly represented using either a 

dynamical or recurrent neural network or a fuzzy logic fault diagnosis scheme (Calado 

et al., 2001) or via a combination in the form of a neuro-fuzzy structure (Uppal and 

Patton, 2005). 

1-5. Thesis Structure 

The main trend of the work is the proposal of AFTC methods for nonlinear systems 

using the estimation and compensation methodology. The remainder of the thesis is 

arranged as follows: 

Chapter 2 gives a generic literature review of the main FTC strategies, as well as an 

investigation of their advantages and limitations. Since the main trend of the work is 

based on multiple-model approach, Section  2-3 describes the main concepts of the T-S 

fuzzy based nonlinear system modelling and control and the literature of research 

studies that use the T-S fuzzy framework in FTC of nonlinear systems. The survey 

presented in Chapter 2 has established good foundations to highlight the challenges in 

the FTC framework to be considered in the next Chapters.  

The work presented in Chapter 3 is motivated by the lack of literature investigating the 

following points: 

1. The relative impacts of the sensor and actuator faults on regulator control problems. 

2. The relative impacts of the sensor and actuator faults on tracking control problems. 

3. The advantageous features of the use of Linear Reference Model Fuzzy Control 

(LRMFC) within multiple-models (specifically T-S fuzzy approach) and in an FTC 

framework. 

To attain the aim of this Chapter, the LMI-based design of the model reference state 

tracking T-S fuzzy controller is designed first to be the basis for illustrating the 

investigations. The main contributions of this Chapter are: 

• The proposal of the use of an LRMFC strategy as an alternative approach to the 

LMI-based pole-clustering closed-loop performance specification. This achieves 

significant attributes to the T-S fuzzy modelling and control via: (i) governing the 

closed-loop performance of nonlinear system without the use of additional (e.g. 
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pole-clustering) LMIs. (ii) Offering precise allocation of closed-loop system 

eigenvalues. Following this a new research trend is established based on 

modifying the control strategies to minimise design constraints. 

• Investigate the relative impacts of actuator and sensor faults within the tracking 

and regulator control framework. This is a significant attribute in the FTC 

literature since the solutions to the challenges that arise in Chapter3 have not been 

considered in the FTC literature. 

• Introduce the concept of additive fault modelling as a generalised fault model 

within the fault estimation framework. 

Following the investigations presented in Chapter 3, the sensor FTTC is the most 

challenging fault scenario. Hence the main contributions in Chapter 4 are: 

a. The proposal of the LMI-based design of active sensor fault tolerant model 

reference tracking control for nonlinear systems described via T-S fuzzy inference 

modelling. The designed strategy is based on the use of the VS method based on-

line control reconfiguration. From the simulation results, the limitations of using 

this method within T-S fuzzy framework have been examined. These limitations are 

the main motivation to set the thesis direction towards the estimation and 

compensation based approach to AFTC. 

b. The proposal of an LMI-based design of active sensor fault tolerant model reference 

tracking control for nonlinear systems described via T-S fuzzy modelling. The 

strategy combines the design of ./	fuzzy PMIO, fuzzy state feedback control, and 

linear reference modelling to form a new sensor fault estimation and hiding 

(‘implicit compensation’) based FTTC. The use of an ./	T-S fuzzy PMIO is also 

proposed to overcome the problems of uncertain fault time behaviour and provide 

simultaneous state and sensor fault estimation. Furthermore, compared with the 

literature of T-S fuzzy model reference AFTC, the proposed method considers the 

case of an unmatched reference model. 

c. The proposal of an LMI-based design of active actuator fault tolerant model 

reference tracking control for nonlinear system described via T-S fuzzy model. The 

strategy combines the design of ./	fuzzy PPIO, fuzzy state feedback control, and 

linear reference model to form new actuator fault estimation and compensation 

based FTTC. The use of ./	T-S fuzzy PPIO is proposed to overcome the uncertain 

fault time behaviour and provide simultaneous state and actuator fault estimation. 
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The simulation results have clearly shown the ability of the LRMFC to maintain 

acceptable closed-loop performance for some minor actuator faults. 

The proposed strategies are illustrated via a nonlinear inverted pendulum example with 

control objective to force the pendulum cart position to follow a reference position in 

both faulty sensor and fault-free cases. 

Based on the investigations of the proposed methods presented in Chapter 4, the 

advantages and limitations of the methods are investigated and stimulate the use of 

observer-based fault estimation and compensation approaches in Chapter 5 and 6. 

Chapter 5 proposes a novel LMI-based design for observer-based state feedback 

tracking and regulator FTC for nonlinear systems affected by simultaneous actuator and 

sensor faults. The proposed strategy is based on the use of interacting multi-observers, 

one dedicated for sensor faults and the other focussed on actuator faults. Each of the 

observers is designed to be robust against the estimation error of the other observer. The 

sensor fault estimation observer is responsible for hiding the sensor fault from both the 

controller and the actuator fault estimator. On the other hand, the estimated actuator 

fault signal is used to compensate the effect of the actuator fault. The proposed strategy 

is applied to different nonlinear systems affected by simultaneous actuator and sensor 

faults. 

The main contributions involved in this strategy are: 

• The proposal of an LMI-based design for observer-based active FTTC and FTC 

strategy for nonlinear systems subjected to simultaneous actuator and sensor faults 

using the estimation and compensation idea.  

• An enhancement to the T-S PMIO design proposed in Chapter 4 by adding an 

adaptive term in order to ensure observer robustness against unanticipated faults.  

• Proposal of a method for de-coupling the design of the fault estimation observers 

and hence minimise the effects of each fault on the alternative observer.  

The two proposed LMI-based T-S fuzzy FTTC and FTC schemes are applied to two 

different nonlinear systems affected by simultaneous actuator and sensor faults. 

Chapter 6 proposes a novel LMI-based design for TSDOFC based FTTC for nonlinear 

systems subject to simultaneous actuator and sensor faults. The proposed strategy 

follows the idea presented in Chapter 5. However, due to global stability constraints 
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required for the T-S fuzzy observer and/or control design problem, it is generally not 

possible to assign the observer and/or controlled system closed-loop eigenvalues 

anywhere in the stable complex plane. Hence, following this in the fuzzy observer-

based state estimates feedback control, observer dynamics are not guaranteed to have 

fast enough dynamics compared with controller dynamics even if the Separation 

Principle holds. This limitation may lead to degradation of the closed-loop system 

tracking performance. Therefore, the main contributions of this Chapter are: 

1. Proposal of a generic LMI-based design for TSDOFC based FTTC for nonlinear 

systems subject to simultaneous actuator and sensor faults using the concept of 

estimation and compensation.  

2. An enhancement of the T-S PPIO design proposed in Chapter 4 via adding an 

adaptive term in order to ensure observer robustness against unanticipated faults. 

The proposed LMI-based design strategy is applied to a nonlinear system affected by 

simultaneous actuator and sensor faults. 

Chapter 7 presents an investigation into different aspects of wind turbine operation and 

the wind turbine control design problem. Specifically, the Chapter includes the 

following topics: 

• The presentation of a mathematical model of an offshore wind turbine dynamical 

system that combines the constituent subsystem models together that make up the 

overall wind turbine dynamics. 

• A description of the basic characteristics of the wind to be exploited to produce 

electrical power, different components of wind speed, and the effects of wind 

turbine structure and sizes on the uncertainty of the measured wind speed. 

• The description of wind turbine control within low and high wind speed ranges. 

• The main challenges for the deployment of wind turbine systems and the different 

approaches proposed to make wind energy systems competitive with other energy 

sources. 

• Investigation of the importance of FTC for wind turbine systems and specifically 

the OWTs. 

• Investigate the state space model of a wind turbine and based on this the motivation 

of using T-S fuzzy inference modelling within the wind turbine control problem. 

Following this, the derivation of the T-S fuzzy model of the wind turbine system. 
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The material included in Chapter7, alongside with the 5MW wind turbine benchmark 

(Odgaard, Stoustrup and Kinnaert, 2009), form the basis of the work in Chapters 8 and 

9.  

Chapter 8 proposes three new observer-based sensor FTTC approaches for wind 

turbine systems. Compared with the literature of wind turbine sensor FTC, the proposed 

strategy overcomes the complexity of the fault tolerant strategy and provides further 

information about the fault via the fault estimation signal. 

The main contributions of this Chapter are: 

1. An investigation into the effects of different fault scenarios on the wind turbine 

power extraction efficiency and drive train loading. 

2. The proposal of a state feedback sensor FTTC using the sensor fault hiding 

(‘implicit compensation’ ) approach of Chapter 4 to obviate the residual evaluation 

block described in the literature for tolerating the fault in a wind turbine FTC 

system, via a generalised observer method. 

3. The proposal of a T-S fuzzy dynamic output feedback sensor FTTC strategy to 

tolerate the effects of generator and rotor rotational speed sensor faults on the 

performance of the wind turbine.  

4. The proposal of a generic T-S fuzzy dynamic output feedback approach for sensor 

FTTC of wind turbine system with simultaneous EWS estimation and generator and 

rotor rotation speed sensor faults. This strategy is based on the architecture 

proposed in Chapter 6  

Chapter 9 proposes three new methods that utilize the inherent robustness of SMC 

within an AFTC framework for wind turbine systems. Clearly, the main challenge 

involved within the development of FTC for wind turbines is that the number of 

unknown input and output signals exceed the number of measurements making a 

challenging closed-loop robustness problem against unknown input and output signals. 

This Chapter focuses on an approach for handling this challenging operation scenario 

via utilizing the inherent robustness of an SMC strategy within the AFTC framework 

for power maximization in the OWT benchmark. Within this framework, the Chapter 

introduces a new perspective to the sliding mode surface design problem from an FTC 

stand point. This new perspective simply requires the design of the sliding surface with 



20 

 

the minimum number of possible feedback signals. In doing so, the robustness of the 

SMC is ensured over a wider than usual range of fault scenarios. 

The first strategy uses the inherent robustness of a simple adaptive gain SMC against 

matched faults as a basis for FTC of OWT. Although the proposed method is simple 

and obviates the need for the sensor fault hiding observer, the main challenges lies in 

the need to optimise the sensitivity of the sliding surface to unknown outputs 

(measurement noises and/or faults). Hence, the second strategy combines the use of 

SMC and the estimation and compensation concept to enhance the overall robustness of 

the SMC control against faults that affect the sliding surface. In the third strategy, the 

SMC based AFTC is proposed using the spirit of Chapter 5 to overcome the sliding 

surface sensitivity to measurement noise and faults and provide robust estimation of the 

EWS. The proposed strategies are illustrated via FTC design for the 5MW OWT 

benchmark system. 

The main contributions of this Chapter are: 

1. An investigation of the robustness of SMC within the FTC framework via a tutorial 

example. 

2. The proposal for an adaptive SMC to tolerate the effects of the generator speed 

sensor fault. In fact, via designing the sliding surface with minimum feedback 

signals, some sensor faults (i.e. the generator speed sensor fault) become similar to 

the case of matched uncertainty and hence the robustness of the SMC can tolerate 

this effect (as the generator speed fault is de-coupled during sliding). 

3. The proposal of an AFTC strategy based on the combination of SMC and fault 

estimation and the fault compensation concept in order to ensure the robustness of 

the sliding motion against the rotor speed sensor fault. 

4. The proposal of a generic approach for simultaneous sensor faults and EWS 

estimation so that the robustness of the sliding surface against the unknown outputs 

(sensor fault and/or noise) is ensured by making use of the spirit of the methods 

proposed in Chapter 5 & 6. 

Chapter 10 summarises and concludes the overall work described by the thesis and 

makes suggestions and recommendations as to how the research can be further 

developed in the future. 
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Chapter 2 : A generic overview of FTC methods 

2-1. Introduction 

The design of FTC systems has attracted more and more attention in both industry and 

academic communities due to the increased demands for safety, high system 

performance, availability and operating efficiency in a wider range of engineering 

applications, not limited to traditional safety-critical systems. 

Many FTC design approaches have been proposed in the literature, with each approach 

having some advantages and some limitations that should be well understood in order to 

decide the best approach to handle a specific fault in a specific application study. This 

Chapter provides a generic overview of the main FTC approaches. 

2-2. Overview of the FTC design approaches 

The FTC methods are generally classified into PFTC and AFTC methods. These classes 

are achieved via different control techniques. Figure  2-1 shows a general overview of 

the main approaches used to achieve FTC for each class. 

 

Figure  2-1: General classification of FTC methods 

The following subsections present the FTC methods that belong to the main 

classifications given in Figure  2-1. 
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2-2-1. Model-following 

The main idea and aim of the use of a model-following approach to FTC or 

reconfigurable control is to determine a reconfiguring controller gain that is able to 

provide a control signal that enables the following post-fault closed-loop behaviour: 

 !� = "� � + $��� ( 2-1) 

to follow a reference model defined by Eq. (2-2) as follows: 

 !0 = "0 0 + $0�0 ( 2-2) 

According to the model-matching requirement different model-following control 

mechanisms are possible. For example, the so-called perfect model-following (PMF) 

(Gao and Antsaklis, 1992) or the pseudo inverse method (PIM) (Gao and Antsaklis, 

1991) propose a control reconfiguration methodology to achieve best matching between 

the nominal and the post-fault closed-loop matrix. The PIM based reconfiguration 

methodology requires the nominal closed-loop system matrix to compute the new 

controller gain, whilst the PMF presents a more general reconfiguration methodology in 

which the reference model (e.g. the nominal closed-loop system) is implemented as part 

of the controller (Gao and Antsaklis, 1992). 

Based on Eqs. (( 2-1 & ( 2-2), the error dynamics (1 =  0 −  �) between the nominal 

and faulty plant can be stated as: 

1! = "�1 + 3"0 − "�4 0 + $0�0 − $��� ( 2-3) 

For PMF the control signal would be of the form: 

�� = 561 + 50 0 + 57�0 ( 2-4) 

where 56, 50, 89:	57 are the design matrices which can be determined as follows 

(Gao and Antsaklis, 1992): 

�50 = $�;3"0 − "�4					57 = $�;$0																				< ( 2-5) 

And the gain 56 is selected such that "� − $�56 is a stable matrix. Using the controller 

gains given in Eq. ( 2-5), the dynamic error equation becomes: 

1! = 3"� − $�5641 + �= − $�$�;�3"0 − "�4 0 + �= − $�$�;�$0�0 ( 2-6) 
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Based on the last equation, the perfect PMF requires that: 

�3= − $�$�;43"0 − "�4 = 0					3= − $�$�;4$0 = 0																			< ( 2-7) 

On the other hand, PIM actually does not require full interaction with the reference 

model (Gao and Antsaklis, 1992). However, only the reference closed-loop system 

matrix is required to compute the system reconfiguration gain: 

"� + $�5� = "0 + $050 5� = $�;�"0 − "� + $050� ( 2-8) 

Hence the error dynamics for the PIM simply become: 

1! = �"0 + $050�1 + �= − $�$�;�3"0 − "� + $0504 � ( 2-9) 

Generally, the exact model matching may be too demanding. Therefore, approximate 

model matching is of more interest and can be reached through finding the value of (5�� 
that minimizes the following Frobenius norm (Gao and Antsaklis, 1991): 

>"0 + $050 − "� − $�5�>?@  ( 2-10) 

Beside the similarity between the PMF and PIM methodology, the essential research 

features are: (1) The guarantee of the stability of the reconfigured closed-loop system, 

(2) Minimization of the time consumed to approach the acceptable matching, and/or (3) 

Achieving the perfect matching through the use of different control methodologies. For 

example, a modified PIM algorithm was proposed in (Gao and Antsaklis, 1991) to 

guarantee the stability of the reconfigured closed-loop system. To relax the matching 

condition, (Staroswiecki, 2005, Staroswiecki, 2006) proposed an admissible model 

matching approach 

Although PMF and PIM are characterized by their reconfiguration simplicity, the main 

limitations are:(i) The robustness issues against model uncertainty and exogenous inputs 

are not considered in the reconfiguration process, (ii) The methods are highly dependent 

on accurate post-fault model provided by the FDD unit, (iii) A trade-off exists between 

the reconfiguration time and an urgent requirement for a multi-objective minimization 

algorithm, (iv) The reconfiguration algorithm always gives solutions for the minimum 

distance between the pre- and post-fault closed-loop systems and this indicates that the 

post-fault system dynamic response cannot be determined. 
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2-2-2. Eigenstructure assignment 

The spirit of the eigenstructure assignment based approach to reconfigurable control 

follows the framework of model-following based FTC. The controller should be 

reconfigured so that the post-fault closed-loop system eigenstructure matches the pre-

fault closed-loop system eigenstructure, i.e. in order to recover the approximate 

dynamic performance of the closed-loop fault-free system. The new “should be fast 

computed” controller computed so that at least the dominant faulty closed-loop system 

eigenvalues are preserved to be as close as possible to the dominant fault-free closed-

loop system eigenvalues. On the other hand, the new eigenvectors have to be close to 

those of the corresponding nominal eigenvalues. 

Assume that the closed-loop system has eigenvalues A� , � = 1, 2, … , 9 then in the case of 

the faulty system the feedback gain matrix (5�) should achieve the following: A�� = A� ( 2-11) 

�3"� + $�5�4C�� = A�C��								, � = 1, 2, … , 9					C�� = �A�= − "��DE$�5�C��																															 < ( 2-12) 

C�� = arg��9IJK>C� − C��> ( 2-13) 

C�	and C�� are the pre- and post-fault eigenvectors. The A��are the eigenvalues of the 

faulty closed-loop system, "� and $� are the post-fault system matrices, and 5�	is the 

reconfigured controller gain. 

An eigenstructure assignment-based approach to FTC was first  proposed in (Jiang, 

1994). This work describes how the stability of the system after reconfiguration as well 

as the time consumed to determine the best possible reconfigured controller parameters 

are evaluated as the main focus of interest in this approach. In the literature, either static 

state or output feedback controllers have been proposed. When full state feedback 

control is used, the stability of the reconfigured system will be guaranteed as there will 

be freedom to assign all the closed-loop system eigenvalues (Jiang, 1994). On the other 

hand, if static output feedback control is used, only part of the post-fault closed-loop 

eigenvalues can be assigned. Consequently the reconfigured closed-loop system 

stability cannot be guaranteed. Hence, more constraints are required to guarantee the 

post-fault system stability (Jiang, 1994, Ashari and Sedigh, 2004). The reconfiguration 

algorithm proposed in (Konstantopoulos and Antsaklis, 1996, Konstantopoulos and 
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Antsaklis, 1999) uses a Lyapunov equation as an additional constraint to guarantee 

closed-loop system stability. An integrated FDD based FTC design is proposed in 

(Zhang and Jiang, 2002), in which the reconfigured state feedback controller is 

computed based on the information provided by the fault detection unit. 

Owing to the fact that the achievable eigenvectors are a linear combination of the 

columns of the matrix		�A�= − "��DE$�, the main challenge in this method is that the 

computation of the controller gain (whether using output or state feedback) is based on 

the assumption that there is no intersection between the open-loop and closed-loop 

eigenvalues. However, this assumption is violated if there are uncontrollable mode(s), 

in this case the term �A�= − "��DE	will be singular. The same problem arises if, due to a 

fault, some of the pre-fault dominant eigenvalues become identical with the post- fault 

system open-loop eigenvalues. 

2-2-3. Multiple-model approaches 

The multiple-models belong to the model-based AFTC method in which a local 

controller is designed off-line to guarantee acceptable performance and stability for 

each anticipated faulty system model. In the literature, fault tolerance can be achieved 

by developing an on-line procedure that produces a control action representing a 

weighted combination of the local control signals as follows: 

where �� is the local control signal and L�is its weight. Usually the weight is computed 

based on a residual signal generated by taking the difference between the measured 

system outputs and the estimated outputs produced by an observer designed off-line for 

each local model (anticipated faulty model). Figure  2-2 shows the schematic of the 

multiple-model approach to AFTC. 

The research in the literature mainly focuses on: (i) The tolerance of a large range of 

fault scenarios, (ii) making use of different local control methods, and (iii) ensuring the 

robustness of the weighting signal against unknown signals. A multiple-model method 

for FTC was proposed by (Pogoda and Maybeck, 1989, Maybeck and Stevens, 1991, 

Rauch, 1995) to tolerate single or multiple sensor and/or actuator faults. In 

developments by (Yen and Liang-Wei, 2003, Jin and Youmin, 2006, Efimov, Cieslak 

��M� = 	NL����M�O
�PE 	 ,NL� = 1O

�PE  ( 2-14) 
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and Henry, 2012) more attention has been focussed on methods to ensure robustness of 

the controller weight generation algorithm. 

 

Figure  2-2: Schematic of multiple-model approach to AFTC 

Another approach of multiple-model-based FTC obviates the weighting of local control 

signals so that a single controller is activated at each time instant (see Figure  2-3). This 

approach of multiple-models presented in (Gopinathan, Boskovic, Mehra and Rago, 

1998, Xin and Guang-Hong, 2007, Seron, De Dona and Martinez, 2009, Sanchez-Parra, 

Suarez and Verde, 2011).  

 

Figure  2-3: Schematic of multiple-model AFTC based on switching between controllers 

The main limitation of this method is usually that the reconfiguration strategy considers 

a finite number of anticipated faults. Furthermore, due to the inevitable model 
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uncertainty and/or unanticipated faults the combined local control signals will not in 

general, provide an optimal signal for the system, with the inevitable consequence of 

closed-loop performance degradation. 

2-2-4. Fault hiding 

The concept of the fault hiding approach is centred on achieving FTC loop goals such 

that the nominal control loop remains unchanged. One way to achieve this is through 

the use of analytical redundancy known as virtual actuators or sensors before and after 

the nominal controller. Some basic details of this approach can be found in (Blanke, 

Kinnaert, Lunze and Staroswiecki, 2006). 

The virtual actuators (VA) or virtual sensors (VS) is a dynamic system depends mainly 

on the difference between the nominal and faulty system state to changes in its 

dynamics such that the required control objectives are continuously achieved even if a 

fault occurs. In the sensor fault case the VS masks the effect of the fault from the input 

of the controller. However, in the actuator fault case, the virtual actuator compensates 

the effect of the fault. The literature for this method is mainly covered by the papers 

(Lunze and Steffen, 2006, Richter, Schlage and Lunze, 2007, Richter, Heemels, van de 

Wouw and Lunze, 2008, Seron and De Dona, 2009, Richter, Heemels, van de Wouw 

and Lunze, 2011). Although this method depends completely on the fault model 

provided by the FDD unit, the literature lacks any attempt to build an integrated FDD 

and virtual actuator and/or virtual sensor. It is always assumed that the FDD/fault 

estimation scheme is available! However, leaving out this information leaves an 

unpublished aspect of research as the robust fault estimation problem associated with 

the virtual actuator/virtual sensor approach to FTC is an important and challenging topic 

of considerable practical value. A proposal of VS approach to FTTC for nonlinear 

systems is given in chapter 4. Moreover, Chapter 4 has also shown how the 

simultaneous state and fault estimate capability of the PMIO can be used as integrated 

fault estimate/VS into the FTTC loop  

2-2-5. FTC via generalized observer 

The FTC via the use of generalized observers is a viable approach for building sensor 

fault-tolerance into an FTC system. The concept of the generalized observer was first 

proposed as a fault detection strategy (Patton, Frank and Clark, 1989). The concept is 
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based on analytical redundancy in which a set of observers are designed based on 

individual measurements. In the case of sensor faults, a residual evaluation unit 

compares the residual signals generated by each observer to identify the faulty 

measurements. Recently, some researchers have used this technique to design an 

observer-based state feedback sensor fault FTC scheme in which the residual evaluation 

unit simply switches the state estimation from the faulty observer to a fault-free one 

(Oudghiri, Chadli and El Hajjaji, 2008, Kamal, Aitouche, Ghorbani and Bayart, 2012). 

The main limitations of this approach are (a) there is a need for the system to be 

observable from each measurement set, and (b) the requirement of a residual evaluation 

unit with an accompanying need for system switching, and finally (c) it can only be 

used for sensor FTC problems. 

2-2-6. Sliding mode control (SMC) 

Due to the inherent robustness of SMC against matched model uncertainty and faults, 

SMC offers a promising basis for an important approach to FTC. As a result, the 

numbers of publications that use the SMC method for FTC have increased substantially, 

considering various application problems. The earliest SMC based FTC study can be 

attributed to (Ting, Tosunoglu and Fernandez, 1994) wherein the robustness of the SMC 

against matched unknown inputs has been used to tolerate actuator faults and the pre-

fault path recovery is investigated on a four degrees of freedom planar serial robot. The 

combination of the estimation and compensation concept within the SMC framework in 

the presence of matched and/or unmatched faults is suggested in (Patton, Putra and 

Klinkhieo, 2010a). The idea of tolerating actuator faults by redistributing the control 

signal over other fault-free actuators (‘known as control allocation’) within an SMC 

framework has been dealt with in several publications (Corradini, Orlando and 

Parlangeli, 2005, Alwi and Edwards, 2008, Sijun, Youmin, Xinmin and Rabbath, 2009, 

Fu, Cheng, Jiang and Yang, 2011). Current research in SMC based FTC is mainly 

focussed on exploiting the advantage of integral SMC to achieve enhanced reliability of 

the FTC loop (Alwi, Edwards and Hamayun, 2011, Hamayun, Edwards and Alwi, 2011, 

Larbah and Patton, 2012). 

The common weakness of the SMC approach to FTC is that the sensitivity of the sliding 

mode surface to unknown output signals (sensor faults and/or measurement noise) tends 

to be ignored. In fact, the sliding mode surface represents the heart of the SMC and 
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hence the design of an SMC based FTC with due care for unknown outputs greatly 

contributes to the SMC FTC methodology. This problem is studied carefully in Chapter 

8 of this thesis wherein the unknown output hiding approach is used to render the 

sliding surface immune to unknown outputs. 

2-2-7. Adaptive control 

Owing to the ability to regulate controller parameters on-line based on signals in the 

system, adaptive control has been extensively used as an AFTC method. In fact, the raw 

adaptive controller’s operation philosophy best coincides with the philosophy of AFTC. 

Clearly, using adaptive control methods as an approach to FTC can lead to obviate the 

need for and FDD unit (either based on fault residual signals or on fault estimation). 

The main features of research in adaptive control based AFTC are focused on proposing 

methods that can handle different scenarios of system and/or actuator faults as well as 

robustness against exogenous input effects. The early use of adaptive control based FTC 

is due mainly to work by (Ahmed-Zaid, Ioannou, Gousman and Rooney, 1991) in which 

an adaptive control was a supplementary controller to help the nominal controller of an 

F-16 fighter aircraft to accommodate to some faults effects. To ensure stability and 

acceptable performance over a large class of faults which may lead to large variations in 

system dynamics encountered in a flight control application,  (Boskovic and Mehra, 

1999) proposed multiple fault tolerant adaptive controllers with each controller 

designed to handle a specific fault scenario. More recently, various investigators have 

developed schemes for adapting controller parameters to tolerate the effects of actuator 

faults, plant uncertainty, and/or exogenous inputs (Tao, Joshi and Ma, 2001, Jin and 

Yang, 2009, Gayaka and Bin, 2011, Zou and Kumar, 2011). These approaches have 

become the characterizing features of fault tolerant adaptive control research. 

Clearly, fault tolerant adaptive control methods have always appeared to be appropriate 

for handling system and/or actuator fault problems. However, in this method, sensor 

FTC represents the most challenging fault scenario and has been rarely considered in 

fault tolerant adaptive control methods. For example, output feedback adaptive control 

can tolerate actuator and/or system faults, whereas, if sensor faults have occurred the 

adaptation will force the faulty outputs to follow the reference signals and hence, the 

control signal is no longer suitable for the system under control. Therefore, sensor fault 
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tolerant adaptive control requires an FDD unit to help the adaptive control to handle 

sensor faults. 

2-2-8. Estimation and compensation 

Traditionally, FTC requires the activity of a nominal controller and an FDD unit 

(Patton, 1997a). Either the controller reconfiguration or fault compensation is performed 

based on the residual evaluation and parameter identification provided by the FDD unit. 

However, the main challenge of this general FTC methodology lies in the requirement 

for a robust and fast FDD unit. As an extension to this FDD concept the estimation and 

compensation approach to FTC is based on the computation of fault estimates and a 

mechanism to compensate these fault effects by the addition of a new compensating 

control law to the nominal one as shown in Eqs. ( 2-15) and ( 2-16): 

� = �O + ��U ( 2-15) 

���U = 5�,V																			, ≠ 0��U = 0																								, = 0' ( 2-16) 

�O is the nominal control signal, ��U is the additive control signal responsible for fault 

compensation, 5� is the additive control signal gain, and , and ,V are the fault and fault 

estimation, respectively. 

Clearly, this approach obviates the need for residual evaluation and parameter 

identification and hence requires no time consuming algorithms for maintaining the 

performance of the nominal system control law. Consequently, this FTC strategy can be 

implemented quite easily. Following this reasoning, the number of FTC publications 

that follow this approach has steadily increased in the last decade. This approach was 

first proposed in (Theilliol, Noura and Sauter, 1998) to compensate the effect of 

additive or multiplicative actuator and/or system component faults. In (Noura, Sauter, 

Hamelin and Theilliol, 2000) the estimation and compensation approach has been used 

to compensate the effect of winding machine actuator faults. The features of the 

estimation and compensation research mainly deals with the problem of robust fault 

estimation against exogenous inputs, the modification of the nominal control strategy to 

enhance the overall closed-loop system performance, ensure the stability of the post-

fault closed-loop system for different fault scenarios, and extension of the proposed 

method to nonlinear systems. For example, in (Gao and Ding, 2007b) the estimation and 
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compensation method has been used to tolerate actuator faults for generalized systems. 

Also to cope with the time varying nature of the faults a proportional, multiple-integral 

and derivative observer is proposed which leads to an enhancement of the fault 

tolerance performance. To obviate the need for explicit friction modelling for robust on-

line friction compensation, (Patton and Klinkhieo, 2009) make use of the estimation and 

compensation idea to tolerate the effect of friction, considering the friction phenomenon 

as an unwanted fault effect The estimation and compensation method has also been 

extended to deal with FTC for nonlinear systems (Gao and Ding, 2007a, Jiang, Gao, Shi 

and Xu, 2010, Zhang, Jiang and Staroswiecki, 2010). 

Clearly, post-fault system performance using this approach is highly affected by the 

estimation of the fault signal. On the other hand, the fault is an unpredictable event in 

both its occurring time and its behaviour. Therefore, to ensure good closed-loop system 

performance over a wide range of fault scenarios, the estimation strategy must have due 

care for the time varying nature of the fault and the robustness against exogenous 

inputs. 

2-3. FTC via T-S fuzzy modelling and control 

The Takagi-Sugeno (T-S) fuzzy inference modelling approach for dynamical systems  

(Takagi and Sugeno, 1985) is an important and systematic tool for  approximating a 

nonlinear function that can be very useful in model-based FDD and FTC. The T-S fuzzy 

model consists of a set of IF-THEN rules which represent local linear input-output 

relations of the nonlinear system. The main feature of this approach is that it can express 

the local dynamics of each fuzzy rule by a linear system model. The overall fuzzy 

model is achieved by connecting the local linear model of each rule by membership 

functions yielding the global model of the system. A typical fuzzy rule in this approach 

has the following form:  

Model i  

IF )E�M� is X�E and ..... and  )Y�M� is X�Y 

THEN 

� ! �M� = 	"� �M� +	$�	��M�							%�M� = &�	 																																	� = 1, 2, . . Z		' ( 2-17) 
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here, X�[ is the fuzzy set and Z is the number of model rules. Matrices	" ∈ ℛO∗O,	$ ∈ℛO∗0, and	& ∈ ℛ_∗O is the system, input, and the output matrices; )E�M�…)Y�M� are 

premise variables that may be functions of the state variables, or external disturbances. 

Each linear consequent equation is called a subsystem. The final outputs of the fuzzy 

systems are inferred as follows: 

� ! �M� = Nℎ�	3)�M�4a"� �M� +	$���M�bc
�PE

%�M� = Nℎ�	�)�M��a&	 �M�bc
�PE 																			 				� = 1, 2, . . Z		

def
eg

 ( 2-18) 

where )�M� = [)E�M�, . . . , )Y�M�]   ,  ℎ�3)�M�4 = 	 jJ	3Y���4∑ jJ	3Y���4lJmn    , o�	3)�M�4 = ∏ X�[�	)[�M��Y[PE  

The term X�[�	)[�M�� is the grade of membership of )[�M� in	X�[, since: 

�No�	3)�M�4c
�PE > 0	
o�	3)�M�4 ≥ 0						 													� = 1, 2, . . Zs ( 2-19) 

then 

�Nℎ�	3)�M�4c
�PE = 1	
ℎ�	3)�M�4 ≥ 0						 													� = 1, 2, . . Zs ( 2-20) 

for all M. 
2-3-1. T-S fuzzy model construction 

It is important to note that a T-S fuzzy controller is a model-based approach to control.  

The procedure of obtaining a T-S fuzzy model for a nonlinear system is the corner stone 

in this control approach. Generally, there are two approaches for constructing a T-S 

fuzzy model. (1) The identification using input-output data. (2) Derivation from given 

nonlinear system equations. The two approaches are schematically shown in Figure  2-4 

below. 
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Figure  2-4: Construction methods for T-S fuzzy models 

The fuzzy model identification approach is suitable for plants that are too difficult to be 

embodied in analytical models. In the literature, this fuzzy modelling approach is 

referred to as Takagi-Sugeno-Kang fuzzy model (TSK fuzzy model) (Sugeno and Kang, 

1988). On the other hand, the second approach, which derives the fuzzy model from 

given nonlinear dynamical models, is more appropriate and utilizes the concept of 

sector nonlinearity or local approximation. In section  2-3-3 a tutorial example is given 

to illustrate how to construct fuzzy models based on the second approach. 

2-3-2. Sector nonlinearity 

This approach to T-S fuzzy model construction is based on the concept of considering a 

scalar non-linear smooth and differentiable function ,� � in terms of its bounded values 

within a sector of the graph of ,� � against   as shown in Figure 2-5 (Tanaka and 

Wang, 2001). It is assumed that the nonlinearity is guaranteed to exactly represent the 

nonlinear function ,� � within the sector defined by the straight lines: 8E  and	8@ . 

The sector bounding can be global or semi-global (local sector nonlinearity). Based on 

the values of	8E, 8@, and	,� �, the membership functions ℎE� � and ℎ@� � used to 

approximate the function ,� �, are constructed as follows: 

ℎ@� � = ,� � − 8@ �8E − 8@� 		 , ℎE� � = 8E − ,� ��8E − 8@�  

where ℎE� � + ℎ@� � = 1 and ℎE� �, ℎ@� � ≥ 0 for all  . 
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Figure  2-5: Global sector nonlinearity 

It is sometimes difficult to find global sectors to cover the dynamics. However, it is 

possible to find local sectors that cover a specific bound. This is reasonable since 

variables of physical systems are always bounded. Figure  2-6 shows the local sector 

nonlinearity in which two lines become the local sectors under	−t <  < t. 

 

Figure  2-6: Local sector nonlinearity 

Although the sector nonlinearity approach offers a tool for exact global or semi-global 

fuzzy modelling of the nonlinear system, it is often preferable to simplify the original 

nonlinear model as much as possible because it always leads to the reduction of the 

number of model rules, which reduces the effort for analysis and design of control 

systems. 
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2-3-3. Local approximation in fuzzy partition spaces 

In order to reduce the number of local models, the T-S model of the nonlinear system 

obtained uses the local approximation approach. The spirit of this approach is to 

approximate the smooth nonlinear terms by linearizing the given nonlinear model 

around a number of operating points of interest (Tanaka and Wang, 2001). In this 

approach, the membership functions are always defined as triangular, trapezoidal, or 

Gaussian types. On the other hand, the membership functions for the sector bounded 

nonlinearity approach are obtained so as to exactly represent the nonlinear system. 

(Teixeira and Zak, 1999) suggest a modified local approximation approach based on 

linearization and optimization to minimise the expected modelling error.  

Example 1: A nonlinear inverted pendulum T-S fuzzy model via sector nonlinearity. 

A non-linear state space model of the inverted pendulum on a moving cart is considered 

as follows (Teixeira and Zak, 1999): 

xyy
yyz
 !E !@ !{ !|}~~
~~� =

xyy
yyz

0 0 1 00 0 0 1� (�O�+n�|_ {⁄ D0_����(�+n��� n�n 0 D0_�+�(�O�@+n� @⁄|_ {⁄ D0_����(�+n��� 0D0��(�O�@+n�	 @⁄| {⁄ D0����(�+n��� E+n 0 �_+� (�O�+n�|0/{| {⁄ D0����(�+n��� 0}~~
~~�	
xy
yy
z E @ { |}~

~~
� 		

+
xyy
yyz

00D� ��(�+n�|_ {⁄ D0_����(�+n���|� {⁄| {⁄ D0����(�+n��� }~
~~~
�
��� 

( 2-21) 

where  E,  @,  {, and  | are the pendulum angular position, cart position, pendulum 

angular velocity, and  cart velocity, respectively. The nonlinear terms in Eq. ( 2-21) can 

then be defined as follows: 

�
�E = 1 �4� 3⁄ − ��8����� E��@�	⁄�@ = ��9� E�  E⁄ 																																�{ =  { ��9� E�																																		�| = ���� E�																																						def

eg
 ( 2-22) 

Suppose further that  E ∈ [−88�, 88�] and  { ∈ [−�, �]. The maximum and minimum 

values of each nonlinear term under the specified period are calculated as follows: 



36 

 

Max Min Max Min 

�EE = E|_ {⁄ D0_����(������ �E@ = E|_ {⁄ D0_� �@E = 1 �@@ = (�O������  

�{E = � �{@ = −� �|E = 1 �|@ = ����88� 
From the maximum and minimum values, the nonlinear system can be locally 

represented in terms of membership functions and maximum and minimum values as 

follows: 

�
�E = XE ∗ �EE +X@ ∗ �E@�@ = �E ∗ �@E +�@ ∗ �@@�{ = �E ∗ �{E + �@ ∗ �{@�| = �E ∗ �|E + �@ ∗ �|@

					
def
eg

 ( 2-23) 

where 

XE +X@ = 1 �E + �@ = 1 �E + �@ = 1 �E + �@ = 1 

Therefore the membership functions can be calculated as: XE = �nD�n��nnD�n� X@ = �nnD�n�nnD�n� �E = ��D�����nD��� �@ = ��nD����nD��� �E = ��D�����nD��� �@ = ��nD����nD��� �E = ��D�����nD��� �@ = ��nD����nD��� 
Hence, the T-S fuzzy model for the inverted pendulum is determined as follows: 

xyy
yyz
 !E !@ !{ !|}~~
~~� = NNNNX��[���_

�
��xyy
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( 2-24) 

Although the T-S fuzzy model given in Eq. ( 2-24) exactly represents the nonlinear 

model in Eq. ( 2-21) in the specified range of operation, two important points must be 

highlighted: (1) Accurate modelling always leads to complex controller design since the 

number of local models increases, also (2) Accurate fuzzy models require more premise 

variables which may be unmeasured variables and hence complicate the controller 

design problem. 
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Example 2: A stand alone solar power generation system consists of a photovoltaic 

(PV) array and a dc/dc buck converter (Chian-Song, 2010). 

The solar power uses the PV effect to convert solar energy into electrical energy; the PV 

panel is a nonlinear power source. The solar power circuit diagram with DC-DC buck 

converter is shown in Figure  2-7. 

 

Figure  2-7: PV with DC-DC buck converter (adapted from (Chian-Song, 2010)) 

The output power of a PV panel array depends on the PV voltage and unpredictable 

weather conditions. In order to optimize the ratio between the output power and 

installation cost, dc/dc converters are used to draw maximum power from the PV panel 

array. Power maximisation is achieved by adjusting the duty cycle of the convertor in 

order to track the maximum power point.  

Using Kirchhoff’s current and voltage laws, the dynamic model of this system is 

derived and summarised below: 

xyy
z �!_!C!�@C!YI}~~

� =
xyy
yzDE�E[ � +  � n �¡ n] DE�E[  � �¡ n] 0E¢@[  � �¡ n] DE¢@[ E �¡ n] 00 0 E¢E[J£¤¤£¤]}~~

~� ¥ �_C�@CYI¦ + xy
yzDE�E§ ��¨DI£¤D©nª0DE¢E�_ }~

~� ���

+ ¥D©n�E00 ¦ 
( 2-25) 

where i¬, v®@, v¯°and i¯° are the inductance (L1) current, capacitance (C2) voltage, the 

photovoltaic array voltage, and the PV current. VE is the power diode (D1) forward 

voltage, REand	R@ are the parasitic resistances of the capacitance (C2) and inductance, 
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R{ is the drain to source static resistance, and R| is the load resistance. Defining the 

variables as: 

�E = �_ �@ = CYI �{ = �YICYI 

Also, assume the following bounds on these variables:  �_ ∈ [�_0�+ = �EE, �_0�O = �E@], CYI ∈ [CYI0�+ = �@E, CYI0�O = �@@], and 
�£¤I£¤ ∈ [�£¤I£¤0�+ = �{E, �£¤I£¤0�O = �{@].  

Hence, based on the specified bounds, �E, �@, and �{ can be represented as follows: 

��E = XE ∗ �EE +X@ ∗ �E@�@ = �E ∗ �@E + �@ ∗ �@@�{ = �E ∗ �{E + �@ ∗ �{@ 				s ( 2-26) 

where  XE +X@ = 1 �E + �@ = 1 �E + �@ = 1 

Therefore the membership functions can be calculated as: 

XE = �nD�n��nnD�n� X@ = �nnD�n�nnD�n� 
�E = ��D�����nD��� �@ = ��nD����nD��� 
�E = ��D�����nD��� �@ = ��nD����nD��� 
Hence, the T-S fuzzy model for the photovoltaic array with buck DC-DC converter 
become as follows: 

xyy
z �!_!C!�@C!YI}~~

� = NNNX��[��
�
���xyy
yzDE�E[ � +  � n �¡ n] DE�E[  � �¡ n] 0E¢@[  � �¡ n] DE¢@[ E �¡ n] 00 0 E¢E��¸}~~

~� ¥ �_C�@CYI¦
@

�PE
@

[PE
@

�PE

+ xy
yzDE�E[ ��nJD��[D©n]0DE¢E�nJ }~

~� ���
�
���+ ¥D©n�E00 ¦ 

( 2-27) 

Hence, the T-S fuzzy model of the stand alone solar power system consists of eight 

local models. 
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2-3-4. Research trends in T-S fuzzy control 

The attention on T-S fuzzy model approaches has increased in parallel with the 

development of the use of LMI (Boyd, El Ghaoui, Feron and Balakrishnan, 1994) as an 

efficient tool to design controllers and prove the stability of a multiple-model system. 

Compared with linear model-based control, the T-S approach has the potential for 

minimizing the modelling uncertainty of nonlinear systems (Tanaka and Wang, 2001), 

(Feng, 2010). The diagram shown in Figure  2-8 illustrates the main directions of 

research based on T-S fuzzy control. 

 

Figure  2-8: T-S fuzzy control research trends 

2-3-4-1. LMI-based relaxed design constraints 

Due to the fact that using T-S approach is always characterised by the trade-off between 

the control design complexity and nonlinear system T-S model accuracy (Tanaka and 

Wang, 2001), the earliest research trend has been to completely focus on relaxing the 

stability proof constraints. In this research field, two main LMI-based fuzzy controllers 

and/or observer design methods have been developed. (i) Fuzzy controller and/or 

observer-based on common Lyapunov function design approach (Tanaka, Ikeda and 

Wang, 1998, Euntai and Heejin, 2000, Tuan, Apkarian, Narikiyo and Yamamoto, 2001, 

Lin, Wang and Heng Lee, 2005, Mansouri et al., 2009) and (ii) Fuzzy controller and/or 

observer-based on fuzzy Lyapunov function design approach in which the fuzzy 

Lyapunov function is defined by fuzzily blending quadratic Lyapunov functions 

(Tanaka, Hori and Wang, 2003, Guerra and Vermeiren, 2004, Guelton, Bouarar and 

Manamanni, 2009). Although the fuzzy Lyapunov design has been suggested to relax 

the constraints on the fuzzy controller imposed by the common Lyapunov approach, this 

approach require precise information about the membership function time derivative.  
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2-3-4-2. FTC via T-S fuzzy control 

The use of the T-S fuzzy model in FTC for nonlinear systems has its origins in the work 

of  (Lopez-Toribio, Patton and Daley, 2000). However, the last five years have 

witnessed increasing interest in the T-S fuzzy based FTC framework. 

The fuzzy PFTC considered in (Chen and Liu, 2004) represents the first attempt to 

design an reliable state feedback controller for uncertain T-S fuzzy model. However, 

actuator fault tolerance is considered as a consequence of the robustness against model 

uncertainty. Based on the same idea, (Huai-Ning and Hong-Yue, 2006) proposed a 

reliable state feedback strategy with actuator faults considered explicitly in the fuzzy 

model. Additionally, the method proposed two different stability conditions to simplify 

the controller design conservatism. An enhancement of the aforementioned researches 

has been introduced in (Gassara, El Hajjaji and Chaabane, 2010) in which reliable 

observer-based fuzzy FTC is proposed to ensure the stability of time delay fuzzy model 

system in the presence of actuator faults. Hence, the fuzzy PFTC methods are suggested 

to handle actuator faults. The actuator faults addressed in these approaches are assumed 

to be bounded and without need for fault detection or estimation. 

On the other hand, in the literature, the fuzzy AFTC approach has gained much more 

attention than the fuzzy PFTC. (Lopez-Toribio, Patton and Daley, 2000) proposed a 

sensor FTC based on the idea of the generalized observer. The proposed method was 

applied to regulate the torque and flux of an induction motor in an industry-based 

collaboration, for which the system was demonstrated on a real application. The system 

used robust estimation of torque and flux via a d-q axis model. Based on the same FTC 

concept, (Oudghiri, Chadli and El Hajjaji, 2008) proposed a sensor FTC approach for 

the lateral dynamics of a vehicle represented by an uncertain Takagi-Sugeno (TS) fuzzy 

model. The control strategy uses observer-based control with two observers, with each 

one driven by a single sensor output. The “failure” is detected first, and then the faulty 

sensor is identified. After that, the state variables are reconstructed from the output of 

the healthy sensor.  Recently, the generalised observer-based FTC within T-S 

framework has also been used in (Kamal, Aitouche, Ghorbani and Bayart, 2012) for the 

wind turbine application study to tolerate the effects of the generator rotational speed 

affected by a scale factor fault. In (Tong, Yang and Zhang, 2011) the T-S fuzzy 

descriptor observer design proposed in (Gao, Shi and Ding, 2008) is extended to handle 
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systems with time delay and for use within an observer-based  FTC framework. 

However, the proposed strategy requires open-loop stable local models. Moreover, the 

results presented show that the state and fault estimation errors require long settling 

times. 

A number of actuator AFTC approaches for T-S fuzzy system via estimation and 

compensation approach have been described during the last 10 years. In an earlier study 

(Yixin and Passino, 2001) use an adaptive control approach to actively tolerate the 

effect of an actuator fault. In (Zhang, Jiang and Shi, 2009) an observer-based actuator 

FTC design is  proposed for fuzzy systems with time delay. In (Zhang, Jiang and 

Staroswiecki, 2010), in order to avoid the complexity of designing the observer-based 

FTC, a combination of estimator and dynamic output feedback controller is proposed. 

The method has been extended to discrete time T-S fuzzy system in (Jiang, Zhang and 

Shi, 2011). In (Jiang, Gao, Peng and Yufei, 2010), an adaptive actuator fault tolerant 

state feedback tracking controller consisting of both a normal control law and an 

adaptive compensation control term is proposed for a near space vehicle attitude 

dynamics. In (Ichalal, Marx, Ragot and Maquin, 2012), two actuator AFTC methods are 

suggested. The first method uses observer-based state feedback control in which the 

fault estimate signal used to compensate the effect of the actuator fault. The second 

method is model reference tracking control which also uses the fault estimate signal to 

compensate the effect of actuator fault. Recently, (Aouaouda, Chadli, Khadir and 

Bouarar, 2012) proposed a model reference tracking controller for T-S fuzzy system 

with an unmeasurable premise variable, modelling uncertainty, and an actuator fault. 

The controller design problem is formulated in a bilinear matrix inequality and the 

performances of the proposed approach have been tested on a model of wastewater 

treatment plant. 

2-3-4-3. T-S fuzzy control for application study 

Along with the increasing interest in the use of T-S fuzzy control in FTC for nonlinear 

systems, application based research trends have attracted the attention of researchers 

interested in T-S fuzzy control. This research direction has clearly appeared in the last 

five years for different application studies such as induction machines modelling and 

control, photovoltaic power control, power system stabilization, wind turbine control, 

and power electronic systems control etc. (Kuang-Yow, Liou and Chien-Yu, 2006, 
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Soliman, Elshafei, Bendary and Mansour, 2009, Chian-Song, 2010, Jiang, Gao, Peng 

and Yufei, 2010, Aouaouda, Chadli, Khadir and Bouarar, 2012, Kamal, Aitouche, 

Ghorbani and Bayart, 2012). 

2-4. Conclusions 

This Chapter started by outlining different FTC methods and the mechanisms of 

achieving fault tolerance, with more focus on FTC for nonlinear systems via T-S fuzzy 

modelling and control. Generally, AFTC methods fall into two categories, (1) FDD 

based FTC and (2) FTC without FDD. The main challenges encountered in these 

methods are summarized by: high dependency on accurate post-fault modelling 

provided by the FDD unit and/or accurate estimation of fault signals, the time required 

to reconfigure the control system must be as low as possible. In fact, this is very 

important in practice where the time windows during which the system remains 

stabilisable in the presence of a fault are very short. The last challenge is that usually the 

reconfiguration strategy considers a finite number of anticipated faults. Hence, any 

attempt to develop an FTC strategy must take into consideration the aforementioned 

challenges.  

On the other hand, from a control system stand point, the current research interest is to 

develop FTC methods that have the ability to take into account the system nonlinearity. 

T-S fuzzy modelling and control is preferred over other nonlinear control strategies 

because the T-S fuzzy control method offers an approach to control of nonlinear 

systems via the well-developed linear control strategy. Hence T-S fuzzy modelling 

methods can represent the nonlinear system either globally or semi-globally, through 

the use of the sector nonlinearity modelling approach. Moreover, for systems that are 

too difficult to be embodied into analytical models, the fuzzy modelling literature offers 

an identification approach to derive T-S fuzzy models. Hence, this method gives 

opportunity to cover a wide range of nonlinear systems. 

Although different FTC schemes have been proposed in the last two decades, the 

literature lacks to any research study that focuses on the relative impacts of actuator and 

sensor faults within regulator and tracking control problems. Hence, Chapter 3 will give 

an investigation of the challenges that are embedded in regulator and tracking control 

problems when subject to separate actuator and sensor faults.  
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Chapter 3 : Investigation of the FTC challenges 

embedded in tracking and regulator control problem 

3-1. Introduction 

Although control design problems are generally classified as either a regulator or a 

tracking control problem, the FTC literature lacks investigations of the relative impacts 

of different actuator and sensor fault scenarios on the regulator and tracking control 

problems. The motivation behind this investigation is to highlight the challenges 

embedded in these control problems within the FTC framework in order to provide a 

suitable background for the remaining Chapters of this thesis. 

This Chapter uses the design of state feedback model reference fuzzy controllers for 

both tracking and regulator problems, forming the basis to highlight  the hurdles that are 

associated with these two approaches to control when subject to  separate actuator and 

sensor faults. The locally approximated T-S fuzzy model of an example non-linear 

system, the nonlinear inverted pendulum (as presented in Chapter 2) is exploited to 

achieve the following objectives, to investigate: 

1. The importance of the model reference framework within the T-S fuzzy control 

and FTC. 

2. The relative impacts of actuator and sensor faults on the tracking control problem. 

3. The relative impacts of actuator and sensor faults on the regulator control 

problem. 

3-2. LMI-based design of T-S fuzzy control within model reference 

framework 

In order to facilitate an investigation of the relative impacts of actuator and sensor 

faults, formal definitions of regulation and tracking problems are given first. (Slotine 

and Li, 1991) define the regulation problem as: 

“Given a nonlinear dynamic system described by: 

¹! = º�¹, », M� 
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find a control law �»�	such that, starting from anywhere in a region in	�¼�, the state �¹� tends to	�½� as M → ∞”. 

On the other hand, (Slotine and Li, 1991) define the tracking problem as: 

“Given a nonlinear dynamic system described by: 

¹! = º�¹, », M� 
À = Á�¹� 

and a desired output trajectory		ÀÂ, find a control law �»�	such that, starting from 

anywhere in a region in	�¼�, the tracking errors	�À − ÀÂ� go to	�½�, while the whole 

state	�¹� remains bounded”. 

A number of approaches to design both regulator and tracking problems have been 

proposed in the literature (Veillette, 1995, Tanaka, Ikeda and Wang, 1998, Xiaodong 

and Qingling, 2003, Kuang-Yow and Jeih-Jang, 2006, Chian-Song and Ya-Lun, 2011, 

Aouaouda, Chadli, Khadir and Bouarar, 2012). This Section introduces the LMI-based 

design approach for model reference state tracking fuzzy control of nonlinear system 

described via T-S fuzzy inference modelling.  As described in Section 2-3 the T-S fuzzy 

model of a nonlinear system is represented by the following non-linear state and output 

equations: 

� ! = Nℎ�	3)�M�4a"� �M� +	$���M�b	c
�PE

% = Nℎ�	�)�M��a&� 	 �M�bc
�PE 																								def

eg
 ( 3-1) 

where  �M� ∈ ℛO is the state vector,	��M� ∈ ℛ0 is the input vector and %�M� ∈ ℛ_ is the 

output vector,	"� ∈ ℛO∗O,	$� ∈ ℛO∗0,	and &� ∈ ℛ_∗O		� = 1, 2, . . , Z are the system 

matrices, Z is the number of fuzzy rules and the term ℎ�	�)�M�� is the weighting 

function. 

For the LRMFC within a tracking problem the control objective is to force the nonlinear 

system to follow the state variables of a reference model that has the same order 9 as 

the individual local linear model of the T-S fuzzy system itself. The reference model is 

assumed to have the form: 

 !U = "U U + $U: ( 3-2) 
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where  U ∈ ℛO is the desired trajectory for  	for all M ≥ 0 , : ∈ ℛU is the bounded 

reference input, "U 	 ∈ ℛO∗O	and $U 	 ∈ ℛO∗U are a stable and controllable state space 

pair. To achieve the control aim, the following fuzzy controller is proposed: 

�� = Nℎ�	�)�a5��	 −  U� + 5�c U + 5�U:bc
�PE  ( 3-3) 

where 	5� 	 ∈ ℛ0∗O, 5�c 	 ∈ ℛ0∗O, 5�U 	 ∈ ℛ0∗U are the feedback and feed-forward 

controller gains. Subtracting ( 3-2) from ( 3-1) and substituting for �� from ( 3-3), then 

the tracking error (1�) dynamics are given by: 

1!� =  ! −  !U = NNℎ�	�)�ℎ[	�)�Ã3"� + $�5[41� + 3$�5[c + "� − "U4 Uc
[PE

c
�PE+ �$�5[U − $U�:Ä 

( 3-4) 

Using Eq. ( 3-2) and ( 3-4) the augmented system takes the form: 

 Å!��M� = NNℎ�	�)�ℎ[	�)�Ã"Æ�[ Å� +	�Ç�[:Äc
[PE

c
�PE  ( 3-5) 

where: 

"Æ�[ = È"� + $�5[ $�5[c + "� − "U0 "U É	 
 Å� = È1� UÉ	,				�Ç�[ = È$�5[U − $U$U É			 

The objective here is to minimize the sensitivity of the error dynamics to a bounded 

tracking input		: via computation of the gains	5[c, 5[U, 89:	5[ 	. Hence, it is required to 

attenuate the error dynamics to a suitable level 	Ê using ./ to ensure robust tracking 

performance. An LMI-based design formulation is derived so that the closed-loop gains 

are obtained through a one-step solution to the set of LMIs defined in Theorem 3-1: 

Theorem 3-1: for t>0 and ℎ�	�)�ℎ[	�)� ≠ 0, The closed-loop fuzzy system in ( 3-5) is 

asymptotically stable and the ./ performance is guaranteed with an attenuation 

level		Ê, provided that the signal �:� is bounded, if there exist symmetric positive 

definite (SPD) matrices ËE, Ë@ and the matrices 	Ì[ , and the scalar Ê	 satisfy the 

following LMI constraints ( 3-6)&( 3-7): 

X�9����1		Ê, ���ℎ	Mℎ8M:   
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ËE > 0, Ë@ > 0 ( 3-6) 

xyy
yyz
ΨEE $�5[c + "� − "U $�5[U − $U ÎE∗ Ë@"U + �Ë@"U�Ï Ë@$U 0∗ ∗ −Ê= 0ÎE ∗ ∗ −Ê=}~~

~~� < 0 ( 3-7) 

oℎ1Z1:	 5[ = Ì[XEDE		, ÎE = ËEDE			,ΨEE = "�ÎE + �"�ÎE�Ï + $�Ì[ + �$�Ì[�Ï	 
Proof: From Theorem 3-1 the tracking performance objective can be presented 

mathematically as follows: ‖ Å�‖@‖:‖@ 	≤ Ê = 	1ÊÒ  Å�Ï∞

Ó  Å�:M − ÊÒ :Ï∞

Ó :	 ≤ 0 ( 3-8) 

Consider the following candidate Lyapunov function for the augmented system ( 3-5): 

Ô� Å�� =  Å�Ï	ËÕ	 Å�		, oℎ1Z1	ËÕ > 0	 
To achieve the performance required by ( 3-8) and the required closed-loop stability of 

( 3-5) the following inequality must hold (Ding, 2008): 

Ô!� Å�� + 1Ê  Å�Ï	 Å� − Ê:Ï: < 0 ( 3-9) 

where Ô!� Å�� is the time derivative of the candidate Lyapunov function. Using Eq. ( 3-5), 

this becomes: 

Ô!� Å�� = NNℎ�	ℎ[	Ã Å�Ï3"Æ�[Ï ËÕ 	+ ËÕ"Æ�[4 Å� +	 Å�ÏËÕ�Ç�[: + :Ï�Ç�[ÏËÕ Å�Äc
[PE

c
�PE  ( 3-10) 

The inequality ( 3-9) (in matrix form) after substituting Ô!� Å�� from Eq. ( 3-10) becomes:  

NNℎ�	ℎ[	 ÖÈ Å�: ÉÏ ×"Æ�[Ï ËÕ 	+ ËÕ"Æ�[ + 1Ê = ËÕ�Ç�[�Ç�[ÏËÕ −Ê= Ø È Å�: ÉÙc
[PE

c
�PE < 0 ( 3-11) 

Inequality ( 3-11) implies that the inequality ( 3-12) must hold: 

×"Æ�[Ï ËÕ 	+ ËÕ"Æ�[ + 1Ê = ËÕ�Ç�[�Ç�[ÏËÕ −Ê= Ø < 0 ( 3-12) 

To be consistent with ( 3-5), 	ËÕ is structured as follows: 
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ËÕ = ÈËE 00 Ë@É > 0 ( 3-13) 

Then after simple manipulation the inequality ( 3-12) can be re-formulated as: 

Ú�[ = ¥ÛEE ËE�$�5[c + "� − "U� ËE�$�5[U − $U�∗ Ë@"U + �Ë@"U�Ï Ë@$U∗ ∗ −Ê= ¦ < 0 ( 3-14) 

where: 

ÛEE = ËE"� + �ËE"��Ï + ËE$�5[ + 3ËE$�5[4Ï + 1Ê =  

Inequality ( 3-14) contains several nonlinear terms and the next step is to formulate this 

as an LMI. The single step design formulation of the LMI in ( 3-14) is proposed to avoid 

the complexity of separate design steps characterised by repeated iteration to determine 

the gains required. Hence, to implement a change of variables, the following Lemma is 

required: 

Lemma 1 (Congruence) Consider two matrices Ë and	Ü, if Ë is positive definite and if Ü is a full column rank matrix, then the matrix Ü ∗ Ë ∗ ÜÏ is positive definite. Now, let Ü = diagonal	�ËEDE, =, =� 
Then Ü ∗ Πßà ∗ ÜÏ < 0	is also true and it can be re-written as: 

Ú�[ = ¥ËEDEÛEEËEDE ËEDEËE�$�5[c + "� − "U� ËEDEËE�$�5[U − $U�∗ Ë@"U + �Ë@"U�Ï Ë@$U∗ ∗ −Ê= ¦ < 0 ( 3-15) 

Using the Schur complement Theorem, the LMI in ( 3-7) obtained. This completes the 

proof. 

To investigate the relative impacts of the actuator and sensor faults within tracking and 

regulation problems, a tutorial example is considered using the non-linear simulation of 

the inverted pendulum and cart with tracking of a time-varying reference cart position. 

Various results are generated by considering the cart position sensor and cart actuator to 

have either additive, parametric, or stuck faults. The results generated from this example 

are separated into three sections corresponding to an investigation of:  

1. The importance of LRMFC within FTC,  
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2. The separate effects of the actuator and sensor faults on the tracking control 

problem,  

3. The separate effects of the actuator and sensor faults on the regulator problem.  

The nonlinear inverted pendulum and cart system model is presented in Chapter 2 Eqs. 

( 2-21). The system parameters are	�: Pendulum mass (2kg), 2�: Pendulum length (1m), X: Cart mass (8kg), 8 = E0¡á. The output matrix is assumed to be the identity so that 

all the states are available at the output. 

Three system operating points are chosen corresponding to the pendulum angular 

positions		â = 0	and ±ä/4. Due to symmetry, this results in the choice of two fuzzy 

rules in the T-S model. Details of the fuzzy model are presented in (Teixeira and Zak, 

1999) and are omitted here.  

3-2-1. Investigation of the importance of model reference framework 

within T-S fuzzy control and FTC 

It has been stated in Chapter 2 that the model reference framework is one of the many 

ways of achieving control reconfiguration. The popularity of the model reference 

framework for system control is due to several advantageous features. Many 

performance specifications are given in the time domain e.g. in terms of rise time, 

damping ratio etc. These can be represented in terms of an ideal transfer function 

response, which represents the reference model the closed-loop system must follow for 

tracking purposes. Clearly, the choice of reference model has to satisfy two 

requirements. It should reflect the performance specifications in the control task, whilst 

at the same time take into account some inherent constraints on the structure of the 

reference model (e.g., the reference model order). 

The closed-loop performance specification within a T-S fuzzy framework is a 

challenging task due to the global stability constraints required for designing T-S fuzzy 

controllers. The T-S approach to closed-loop performance specification actually 

requires additional LMI constraints to locate the closed-loop eigenvalues within a 

specified region in the stable complex plan. This increases the probability of infeasible 

solutions (Chilali and Gahinet, 1996, Chadli, Maquin and Ragot, 2002, El Messoussi, 

Pages and El Hajjaji, 2006, Mansouri, Manamanni, Guelton and Djemai, 2008). 

Moreover, specifying the closed-loop performance via additional LMI constraints (e.g. 
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via a D-region) can guarantee bounded performance since only a region in the complex 

plane is defined. The consequence of this is that precise closed-loop eigenvalue 

locations are not defined (Chilali and Gahinet, 1996). To overcome these challenges, the 

trend in some research studies has been to focus completely on relaxing the global 

stability and the performance constraints via an approach based on the use of fuzzy 

Lyapunov function design (Tanaka, Hori and Wang, 2003, Guerra and Vermeiren, 2004, 

Rhee and Won, 2006, Guelton, Bouarar and Manamanni, 2009, Ezzeldin, Jokic and van 

den Bosch, 2010).  

Recently the model reference framework has been proposed within T-S fuzzy 

formulation (Witczak, Dziekan, Puig and Korbicz, 2008, Aouaouda, Chadli, Khadir and 

Bouarar, 2012, Ichalal, Marx, Ragot and Maquin, 2012). However, the strategies 

described by these authors do not exploit the use of the reference model as a way of 

specifying the closed-loop system performance. This is because they use a T-S (and 

hence non-linear) reference model which is chosen to precisely replicate the fuzzy 

model of the real closed-loop plant. This is clearly a disadvantage since the performance 

of the reference model cannot be governed precisely as long as it is based on a multiple-

model representation. Chapter 4 describes three model-reference based fuzzy control 

strategies for overcoming this problem by making use of a linear reference model 

strategy to specify the closed-loop system performance. Following this Chapter 4 

develops the theme further by applying this T-S control strategy within an FTC system. 

Figure  3-1 a, b, & c show how the tracking performance of the nonlinear system is 

controlled via a T-S fuzzy controller when the reference model dynamics are changed. 
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(b) 

 
(c) 

Figure  3-1: The effect of reference model response on the closed-loop performance. (a) 

Fast reference model dynamics, (b) & (c) different slow reference model dynamics 

Hence, the use of a reference model within the T-S fuzzy control scheme overcomes the 

design hurdles associated with the use of LMI region constraints. Moreover, in this 

context the design approach for the model reference system is to assign precise 

performance whilst the LMI region can only assign performance bounds. 

Another advantage of using a model reference framework is that it allows the reference 

model response to the reference signal to be changed online via either using multiple 

predesigned reference models or alternatively by adapting the reference model response 

online to cope with changes in the system operating conditions. This is particularly of 

value when the control system is also required to be fault tolerant. 

The linear model reference strategy used within a T-S fuzzy control system also has an 

inherent capability to tolerate some actuator faults. For example, in some fault 

conditions, to reduce the demand on damaged actuators, a ‘slower’ reference model is 
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desirable (Jin and Youmin, 2006) and this is achieved by changing the reference model 

response when faults occur. The simulation results in Figure  3-2 show the effect of loss 

of effectiveness corresponding to an actuator fault modelled as two separate parametric 

changes in the input matrix $ represented as �0.8$�	and	�0.75$� when fast model-

reference dynamics are selected. 

 
(a) 

 
(b) 

Figure  3-2: (a) The effect of parametric actuator fault on the tracking performance, and 

(b) Zoom-in  

Figure  3-3 shows that, apart from a transient phase, by changing the reference model 

response to a slower dynamic acceptable operation in the presence of the two proposed 

actuator fault scenarios (i.e. �0.8$� and	�0.75$�) is achieved. 
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(a) 

 
(b) 

Figure  3-3: The effect of changing reference model response to minimize fault effects, 

and (b) Zoom-in  

3-2-2. Investigation of the impact of actuator and sensor fault on 

tracking control problem 

Many control problems require a tracking control solution, for example in robotics, 

missile guidance, unmanned airborne vehicles and wind turbine control systems. It is 

clear from the literature that there have been no studies covering the impact that actuator 

and sensor faults have within a fault-tolerant tracking control (FTTC) system. This is 

the case even though the importance of this topic is significant. The non-linear inverted 

pendulum system has been chosen as a tutorial tracking system example since it is very 

familiar to the control system community.  

Based on the T-S fuzzy state feedback tracking controller introduced in Theorem 3-1 of 

Section  3-2, the simulation results presented in this Section show the effects of different 

bounded actuator and sensor fault scenarios on the tracking performance without 
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affecting the closed-loop system stability. The sensor fault is assumed to affect the cart 

position measurement 	� @� whilst the actuator fault affects the control channel with 

distribution vector	$. 

A parametric fault: as presented in Chapter 1, in general this fault is referred to as a 

multiplicative fault in the literature.  

1. An output matrix parametric fault: this fault scenario represents as loss of 

effectiveness of the sensor so that the faulty measurement becomes:  @� = ç @ ( 3-16) 

where ç	 ∈ ℛ		represents the fault severity factor. For analysis purposes, consider 

the tracking error defined in Eq. ( 3-4) with the assumption that the perfect model 

matching is achieved (i.e.	3$�5[c + "� − "U4 = 0	and	3$�5[U − $U4 = 0 ).  1!� = ["��)� + $��)�5[�)�]1� ( 3-17) 

where "��)� = ∑ ℎ�	�)�c[PE "�, $��)� = ∑ ℎ�	�)�c[PE $�, and 5��)� = ∑ ℎ�	�)�c[PE 5�. 
Clearly, the tracking problem becomes a regulation problem in terms of the 

tracking error	�1��. Specifically, suppose following a transient time that the cart 

position tracking error �1�@� becomes	31�@ =  @U −  @� = 04, this implies that:  @ =  @U ç⁄ . Hence, from a control stand point, for the case of a sensor fault the 

controller starts to produce a control signal that minimizes the difference between 

the faulty measurement and the desired cart position. Moreover, as the severity of 

the sensor fault increases the tracking performance then deeply degrades. 

Figure  3-4 shows the effect of this sensor fault scenario for	ç = 0.9, 0.8, 0.7. 

 
Figure  3-4: The Effect of different sensor parametric faults on tracking performance 
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2. An input matrix parametric fault: This fault scenario either magnifies or attenuates 

the control signal (�). The model of this fault usually takes the form: �� = ç�� ( 3-18) 

where ��	is the faulty control signal. Equivalently, this fault can be represented as �$ + ∆$� in which �∆$ = ç$ − $� is a scaled version of		$. In this case the 

tracking error dynamics in Eq. ( 3-17) become: 

1!� = ["��)� + ç$��)�5[�)�]1� ( 3-19) 

The important difference between the effect if this fault compared with parametric 

sensor fault is that the controller continues to receive valid measurements whilst the 

fault affects the closed-loop matrix. Hence, in some bounded fault scenarios for 

which the tracking dynamics remain stable, the tracking error converges to zero 

after some transient time. Specifically, suppose the cart position tracking error in 

this case becomes	�1�@ =  @U −  @ = 0�, this implies ( @ =  @U). 

Clearly, this fault affects the transient performance of the tracking error dynamics 

since the closed-loop matrix differs from the nominal case. Therefore, the impacts 

can be passively tolerated by the nominal controller and the effect then becomes the 

time required to retain the track of reference signal. Figure  3-5 a & b show the 

effects of a parametric actuator fault on tracking performance for	ç = 0.9, 0.8, 0.7. 
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(b) 

Figure  3-5 : (a) The effect of different actuator parametric fault on tracking 

performance, (b) Zoomed-in transient performance with actuator parametric fault  

An additive fault: This fault signal is in effect similar to either the measurement noise 

for the case of a sensor fault or the input disturbance for the case of an actuator fault. 

1. A sensor additive fault: The cart position for this fault scenario in this case is 

represented as:  @� =  @ + ,( ( 3-20) 

where ,(	is the fault signal. The effect of the additive sensor fault is similar to the 

parametric sensor fault case since in this case the tracking error dynamics remain 

similar to Eq. ( 3-17), for which if the steady state cart position tracking error 

is	31�@ =  @U −  @� = 04, implies that ( @ =  @U + ,(). Figure  3-6 shows the effect 

of an additive sensor fault on the tracking performance with ,( = 1� and	,( =−1�. 

 
Figure  3-6: Tracking performance with additive sensor fault 
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2. An actuator additive fault: the fault in this case represent either constant or time 

varying offset to the control signal. This fault scenario is represented as: �� = �� + ,� ( 3-21) 

where ,�	is the additive actuator fault signal. In this fault scenario the tracking error 

dynamic given in Eq. ( 3-17) takes the form: 1!� = §"��)� + $��)�5[�)�ª1� + $��)�,� ( 3-22) 

Clearly, this fault scenario has a different effect from the parametric actuator fault case 

since the tracking error can only converge to a small region (Û) in the vicinity of	�1� =0�. Moreover, the main difference between this case and the sensor fault case is that by 

appropriate control design the tracking error can be made as small as possible in the 

steady state. Hence, the steady state cart position tracking error is approximately. 

Figure  3-7 a & b show the effect of additive fault on tracking performance with ,� = 1 

and ,� = −1. 

 
(a) 

 
(b) 

Figure  3-7 : (a) The tracking performance with additive actuator fault, (b) Zoomed-in 
tracking performance with additive actuator fault 
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Based on the simulation results presented in this Section, the following points are now 

highlighted:  

• The relative impacts of actuator and sensor faults on the closed-loop tracking 

performance are precisely investigated by observing the problem from a controller 

stand point. In the case of a sensor fault the controller starts to produce the control 

signal based on measurements that no longer represent the real closed-loop system 

situation. Hence, as the severity of the sensor fault increases the tracking 

performance deeply degrades. Conversely, the controller simply reads the actuator 

fault as form of matched uncertainty.  

• Within some bound of actuator faults, the fault impacts can be passively tolerated by 

the nominal controller. The effect then becomes the time required to retain good 

tracking of the reference signal for the parametric fault case and minimizing the 

steady state tracking error for the additive fault case. Moreover, some control 

strategies can inherently tolerate some actuator faults without the need for an FDD 

unit. However, same strategies cannot tolerate sensor faults without the FDD 

function.  For example, (1) the PFTC methodology (e.g. robust control) has the 

ability to tolerate the effects of actuator faults. On the other hand, the sensor fault 

occurring within tracking control loop cannot be tolerated in a PFTC scheme 

without an FDD unit. (2) SMC can passively tolerate matched actuator faults and 

conversely the control performance is significantly degraded if sensors are 

contaminated by faults. (3) Based on the spirit of adaptive control, actuator faults 

can be tolerated easily whilst sensor faults cannot be tolerated without compensating 

their effects via an FDD role (e.g. via fault estimation, or via a redundant sensor). 

• For sensor FTTC the design of the estimation and compensation method must take 

into account the robustness of the sensor fault estimation to (a) the uncertain 

behaviour of faults, (b) the effects of unknown inputs, and (c) modelling uncertainty. 

All of these robustness issues are considered in this thesis as follows: the PMIO is 

used to cover robustness case (a). For case (b) ./ performance optimization is used 

to attenuate the effect of unknown input signals, Modelling uncertainty is tackled in 

this thesis using multiple-modelling based on T-S fuzzy inference modelling. 

Conversely, owing to the inherent capability of the nominal controller to tolerate 

minor actuator faults, some bound on actuator fault estimation error is acceptable. 
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• The challenging sensor fault scenario within the tracking problem is the sensor fault 

that affects the objective output, i.e. the output of control interest. Clearly, if the 

controller aims to force a specific output to follow a desired reference signal, the 

faulty measurement of the other (non-objective) outputs can be tolerated via PFTC 

since in this case the fault does not affect the tracking error directly. A similar case 

is considered in (Wang et al., 2008). 

Clearly, this investigation gives the reason why most of the PFTC strategies developed 

within the tracking control framework consider the actuator rather than the sensor fault 

problem with the fault affecting the objective output. The literature during the last 

decade indicates clearly that the community has not clearly highlighted the real issues 

involved within the tracking control problem. See for example (Fang, Jian Liang and 

Guang-Hong, 2002, Wang et al., 2008, Zhang, Ye, Li and Wang, 2011, Hu, Yue, Du 

and Liu, 2012).  

3-2-3. Investigation of impact of actuator and sensor faults on the 

regulator control problem 

The investigation of the relative impacts of actuator and sensor faults on the regulator 

control problem is given here. Clearly, the effects of actuator faults within the regulator 

problem are similar to their effects within the tracking problem since from a controller 

stand point these faults emulate the effects of matched uncertainty. Conversely, two 

factors affect the impact of sensor faults on the closed-loop regulation performance; 

these are (i) sensor fault type and (ii) time of occurrence of the sensor fault. The 

following simulation results consider three sensor fault scenarios these are parameter 

change, additive, and stuck sensor faults.  

1. Parameter change sensor fault: Suppose that a dynamical system is at an equilibrium 

state so that	xëìíîïð	ëìîìí = 0. As a result, the system state x�t� will hide the effect of 

the fault from the controller since pre-fault	&� �M� = 0, ,�Z	� = 1,2,3,4 . Also, for 

the post-fault case	&�� �M� = 0. However, if the system is in its transient phase or 

just perturbed in the vicinity of its equilibrium, the transient time will be 

significantly affected by this fault scenario. Consequently, the output matrix for the 

parametric fault simulates the effect of the initial condition on the transient response, 

since from the controller stand point the effective initial condition appears to differ 
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from the actual initial condition and hence the control action is also affected by this 

difference causing (according to the parameter change), either an increase or a 

decrease in the transient time. Figure  3-8 illustrates the effects of the parametric 

change sensor fault on the stabilizing performance of the pendulum system. 

 
(a) 

 
(b) 

Figure  3-8: Effects of sensor fault on regulation performance. (a) fault started at t=0, (b) 

fault started at t=50. 

2. External additive sensor fault: This fault scenario affects the system both in the 

transient and in the steady state operating regions. The key difference with the 

parameter change fault is now that the fault no longer completely depends on the 

system states. Therefore, even when the system is in its steady state and	&� �M� = 0, 

the controller receives the state independent measurement	&� �M� + ,(�M�. In fact, 

the controller starts to direct the system in such a way as to make	&� �M� + ,(�M� =0. Clearly, the solution to this is to drive the faulty measured state to be equal 

to	−,(�M�. The controller continuously tracks the sensor fault signal (see Figure  3-9). 
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Figure  3-9: Effects of additive sensor fault on stabilizing control problem 

3. Stuck measurement sensor fault:	�&� �M� = ��9�M89M� This fault scenario represents 

the worst sensor fault case since the controller receives measurements that are 

completely independent of the system states. In fact, this fault eventually leads the 

controller to destabilise the closed-loop system since whatever control signal is 

delivered, the measurements are fixed at	&� �M� = ��9�M89M (see Figure  3-10). 

 

Figure  3-10: Effects of fixed measurement fault on stabilizing control problem 

From the controller stand point, parameter changes and additive faults of the input 

matrix have the same effects in both regulator and tracking control problems. 

Figure  3-11a below shows the effect of the input matrix parameter change on the 

performance of the closed-loop system whilst Figure  3-11b shows the effect of the 

additive actuator fault. 
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(a) 

 
(b) 

Figure  3-11 : (a) Effects of parametric actuator fault on regulator control problem, (b) 

Effects of additive actuator fault on regulator control problem 

The main concepts arising from this Section are: 

1. In contrast to the tracking control problem, the regulator control problem has greater 

immunity against output matrix parameter faults and can passively tolerate their 

effects, i.e. the steady-state value (xëìíîïð	ëìîìí = 0 ) “hides” the parametric faults. 

2. Although the parametric sensor fault does not affect the steady state response in the 

regulation problem, this fault scenario gives rise to a new challenge within the FDD 

framework since the steady-state hides the effect of this fault and hence it becomes 

undetectable in this situation. 

3. The FTTC problem involves more design challenges compared with the regulator 

control problem since within the tracking problem the reference signal and the fault 

are both considered as dynamic uncertainties that affect the closed-loop 

performance. Moreover, within the T-S fuzzy based FTC the tracking problem 
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increases the design challenges from both control and estimation stand points due to 

the fact that the reference signal can force the system dynamics to fluctuate between 

the operating points corresponding to the local models and hence the fault affects the 

whole range of system operation, i.e. the FTC has global behaviour across the range 

of system operation. Figure  3-12 a & b show the effect of the reference signal on the 

fuzzy model of the nonlinear inverted pendulum system.  

 
(a) 

 
(b) 

Figure  3-12: (a) Effect of tracking error on fuzzy model using the sinusoidal reference, 

(b) Effect of the tracking error on fuzzy model using the multi-step reference. 

It is clear from that the presence of reference signal (the sinusoidal in Figure  3-12a and 

the multi-step in Figure  3-12b signals) forces the inverted pendulum dynamics to 

continuously hover over the two local models (see the membership functions ℎE�)�	&	ℎ@�)�).  
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3-3. Fault modelling for FTC framework 

It has been already stated in Section  1-2 that some literature classifies the fault as either 

additive or multiplicative fault. On the other hand, Sections  3-2-2 &  3-2-3 have 

investigate the separate effects of both the additive and the multiplicative faults on 

tracking and regulator control problems. Clearly, any remedial action taken to tolerate 

the effects of any fault depends on the appearance of the fault in system model. For 

example, the augmented state observer based FTC proposed in (Klinkhieo, 2009) is 

suitable for additive faults whilst adaptive control based FTC has the capability to 

tolerate additive or multiplicative actuator faults (Yang and Ye, 2011). 

While the main trend of the work presented in this thesis is following the estimation and 

compensation based AFTC scheme, the use of an additive representation of a fault is 

proposed as a generalized fault model in the following chapters. This is because the 

proposed strategies perform online fault estimation and compensation. Hence, there is 

no restriction even if the faults become state dependent. The following subsections 

investigate this issue for different sensor fault scenarios: 

Suppose the measured output is given by: 

% = & = ó1 00 1ô ó E @ô ( 3-23) 

An output matrix parametric fault:  

%� = &� = ó1 00 0.3ô ó E @ô ( 3-24) 

This fault scenario can be represented as an additive fault in which the fault signal 

depends on the measured state, as illustrated below: 

%� = & + õ,( = & + ó01ô �−0.7 ∗ 	 @� ( 3-25) 

Hence, parameter changes in the output matrix &	can be considered as a special case in 

which the faults signal (,() is a scaled version of the measured state. 

Loss of measurement fault: This fault is a special case of the parametric fault and can 

also be represented as an additive fault in which the additive fault signal is equal to the 

negative of the corresponding state: 

%� = &� = ó1 00 0ô ó E @ô = & + ó01ô �−	 @� ( 3-26) 
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Time varying parameter fault: This fault can also be represented as an additive fault 

as follows: 

%� = &� = ö1 00 ,�M�÷ ó E @ô = & + ó01ô ��,�M� − 1� @� ( 3-27) 

Hence, even a time-varying parametric fault can be represented as a special case of an 

additive fault. 

Stuck sensor reading: A given measurement is fixed or “stuck” at a constant value	ø. 

This fault can also be considered as an additive fault as follows: 

%� = &� = È1 00 �+�É ó E @ô = & + ó01ô �ø −  @� ( 3-28) 

Thus, parametric faults, multiplicative faults, and stuck faults are special cases of 

additive faults in which the fault signal is a function of the corresponding measured 

state. Moreover, an additive fault can be used to represent a fault scenario in which the 

fault is independent of system state as follows: 

%� = & + õ,( ( 3-29) 

where ,( could be any external signal. As a result, additive faults can be considered via 

a generalized fault representation. Thus, an additive fault representation is considered 

appropriate throughout this thesis to cover the different fault scenarios. 

3-4. Conclusion 

This Chapter presents an investigation of the importance of the LRMFC framework in 

an approach to FTC using T-S fuzzy multiple-modelling, as well as the relative impacts 

of actuator and sensor faults for both tracking and regulator control problem. It has been 

shown that the sensor fault has a direct effect on the performance of the tracking control 

problem. The importance of the sensor FTTC is attributed to the fact that, when a fault 

occur, the controller starts to direct the system according to measurements that no 

longer represent the real system situation. As a result, if the sensor fault severity 

increases the controller drives the system strongly away from the required reference 

value. 

Based on the investigation presented in this Chapter, the most challenging case within 

the framework of FTC is to consider either sensor faults or severe actuator faults within 
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the FTTC problem. On the other hand, designing the FTTC within model reference 

framework offers several advantageous features that enhance the overall FTTC 

performance. The combination of FTTC within a model reference framework is the 

topic of Chapter 4. 
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Chapter 4 : Design of model reference FTTC of 

nonlinear systems via T-S fuzzy approach
1
 

4-1. Introduction 

This Chapter proposes three new FTTC strategies for nonlinear systems described via 

T-S fuzzy inference form, employing the advantages of LRMFC. The proposed 

strategies are: (i) Control reconfiguration based sensor FTTC via VS, (ii) Estimation 

and hiding based sensor FTTC via T-S fuzzy PMIO. (iii) Estimation and compensation 

based actuator FTTC via T-S fuzzy PPIO. The main contributions in this chapter are: 

1. The proposal of an LMI-based design of a T-S fuzzy VS based FTTC. The 

advantageous feature of the LRMFC is employed in this strategy. Moreover, 

investigation of the main limitations encountered by this method within the T-S 

fuzzy framework has also been inspected. 

2. The proposal of an LMI-based design of a T-S fuzzy PMIO for simultaneous 

estimation of system states and sensor faults, as well as the use of the T-S fuzzy 

PMIO within an LMI design of sensor fault tolerant model reference state tracking 

fuzzy control. 

3. The proposal of an LMI-based design of a T-S fuzzy PPIO for simultaneous 

estimation of system states and actuator faults, as well as the use of the T-S fuzzy 

PPIO within an LMI design of actuator fault tolerant model reference state tracking 

fuzzy control. 

Although T-S fuzzy FTTC within a model reference framework has recently been 

proposed (Aouaouda, Chadli, Khadir and Bouarar, 2012, Ichalal, Marx, Ragot and 

Maquin, 2012), the strategies presented in this Chapter introduce significant 

contributions via: 

                                                 
1 Section  4-4 has been published in the 20th Mediterranean Conference on Control & Automation. Sami, M. & Patton, R. J. 

2012f. A multiple-model approach to fault tolerant tracking control for non-linear systems. 20th Mediterranean Conference on 

Control & Automation, Barcelona, 498-503. 3-6 July. 
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a) Exploiting the advantages of LRMFC. In fact this is not the case in the 

aforementioned references since they use a T-S (non-linear) reference model which 

is chosen to precisely replicate the fuzzy model of the real closed-loop plant.  

b) Considering the design of sensor fault within the tracking control problem. 

c) Introducing the LMI-based design of LRMFC-based T-S fuzzy PMIO and T-S fuzzy 

PPIO to enhance the closed-loop fault tolerance capability since the two observers 

have the ability to provide accurate estimation of a variety of fault scenarios.  

d) Considering the use of control reconfiguration (i.e. the VS) for sensor FTTC.  

e) The addition of feed-forward control signals to handle the robustness problem is 

made as a consequence of the use of a linear reference model that does not in any 

way replicate the T-S model. 

The remaining Sections of this Chapter are organized as follows: Section  4-2 presents 

the main concept of the VS based AFTC as well as the necessary conditions for the 

existence for both the static and dynamic VS cases. Section  4-2-1 presents the 

derivation of the LMI-based design of a T-S fuzzy VS to tolerate the effect of sensor 

faults in the LRMFC loop. The LMI-based approach for sensor fault hiding 

incorporating the use of T-S fuzzy PMIO and LRMFC is presented in Section  4-3. 

Section  4-4 presents the LMI-based design of T-S fuzzy PPIO based FTTC within the 

model reference framework. A concluding discussion and a statement of the 

motivations behind the work proposed in Chapters 5 and 6 are presented in Section  4-5. 

4-2. Sensor fault hiding via VS approach 

This Section provides a suitable background for the design of sensor FTTC 

incorporating the use of T-S fuzzy VS and the LRMFC, focusing on a comparison 

between different AFTC approaches (specifically the control reconfiguration and the 

estimation and compensation).   

Details about the VS concept and design approaches are given in (Steffen, 2005, 

Blanke, Kinnaert, Lunze and Staroswiecki, 2006, Richter, Heemels, van de Wouw and 

Lunze, 2008, de Oca and Puig, 2010, Ponsart, Theilliol and Aubrun, 2010, Richter, 

2011, Richter, Heemels, van de Wouw and Lunze, 2011). In summary, the concept of 

VS based fault hiding is to recover the pre-fault closed-loop system behaviour without 

changing the nominal controller. On the other hand, static and dynamic VS based FTC 

is presented in the literature. The choice of a static or dynamic approach depends on the 
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available number of measurements and the expected fault scenarios. The schematics of 

the two approaches are shown in Figure  4-1 a&b. 

 
(a) 

 
(b) 

Figure  4-1: VS (a) static, (b) dynamic 

Both the static and the dynamic VS require an accurate post-fault plant model. Hence, 

this method is significantly affected by the robustness of the FDD unit. 

Basically, the static VS approach is applied for systems that are equipped with 

redundant measurements or at least the faulty measurement can be reconfigured from 

other measurements. The reconfiguration process requires two steps. The first is to 

detect and isolate the faulty sensor. Secondly, based on the fault isolation, the parameter 

of the static block (S) is determined so that the faulty measurement is recovered by the 

redundant one. The following rank condition must hold to successfully reconfigure the 

faulty measurements: 

			Ò  

ù� 
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Z89ø	3&�4 = Z89ø	�È&�& É� ( 4-1) 

where & and &� are the pre and post-fault output matrices, respectively. It is clear from 

the rank condition that if a complete sensor fault occurs that rank condition no longer 

holds unless there is a redundant measurement to recover the rank. On the other hand, a 

dynamic VS can cover a variety of sensor fault scenarios. For example, covering the 

sensor fault cases that destruct the rank condition in Eq. ( 4-1) provided that the system 

remains observable via the faulty measurements, see for more details (Steffen, 2005).  

In reality, the dynamic VS design problem emulates the observer design problem. 

Therefore, by combining the post-fault plant and the model of the nominal plant, the 

dynamical equation of the augmented system can be written as follows: 

�  ! = " + $�� 						 !� = " � + $��			%� = & û																		%� = &� �																						df
g

 ( 4-2) 

The aim of the dynamic VS is basically to ensure continuous delivery of the feedback 

signals that reflect the actual system behaviour during both faulty and fault-free sensor 

measurements. This requires that the dynamic VS states ( û) continue to converge 

towards the actual system states ( �) even if a sensor fault occurs. By achieving the 

convergence, the controller input (%�) continuously reflects the actual system states in 

both the pre- and post-sensor fault cases. 

Clearly, the presence of a sensor fault will affect the system states. However, it is 

assumed that other system parameters (i.e. " and	$) are not affected. Under the 

assumption that &� is accurately identified via the FDD unit (Steffen, 2005), the 

dynamical VS is an observer expressed as: 

designed to stabilize the error signal: 

1 = %� − &� û = &� � − &� û ( 4-4) 

Obviously, when 1 → 0 then  û →  � and hence the VS provides “state estimates” that 

represent the actual system states. Therefore, when a fault occurs, the overall 

 û! = " û + $�� + ü��%� − &� û� ( 4-3) 
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reconfiguration strategy is completed in four steps. Firstly, the faulty output matrix &� is 

accurately identified by the FDD unit. Secondly, a check for the observability of the 

pair	�", &�� is made. Thirdly, compute the gain ü� so that the dynamic VS is stable. The 

fourth step is to insert the new dynamic system (based on the VS) and hence the result is 

a stable reconfigured closed-loop system. Clearly, the necessary condition for the 

existence of the VS is the observability or at least the detectability of the pair	�", &��. 
Furthermore, other constraints could be added to the reconfiguration steps. For example, 

the gain ü� is required to stabilise the dynamic system by locating the closed-loop 

eigenvalues in a specific region of the stable complex plane. However, the overall 

reconfiguration strategy must take due care to minimise the time consumed to 

reconfigure the closed-loop system, which in turn may limit the design freedom of	ü�. 

4-2-1. T-S fuzzy VS based model reference FTTC  

In this Section a new sensor FTTC scheme is proposed for a nonlinear system that can 

be described via T-S fuzzy inference modelling. The strategy incorporates the use of T-

S fuzzy VS and the LRMFC. The scheme is illustrated in Figure  4-2 in which "�)� =∑ ℎ�	�)�c[PE "�, $�)� = ∑ ℎ�	�)�c[PE $� are the system matrices. ü�)� = ∑ ℎ�	�)�c[PE ü� 
and ü��)� = ∑ ℎ�	�)�c[PE ü�� are the nominal and the VS gains. & and &� are the nominal 

and the faulty output matrices. 

 
Figure  4-2: Schematic of the proposed sensor FTC strategy 

			Ò  

ù� 

vú 
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The main contributions in this Section are to: (i) Consider the extension of the VS based 

FTC method to nonlinear systems via the T-S fuzzy inference modelling approach. (ii) 

Consider the design of the T-S VS within the tracking control problem. (iii) Exploit the 

advantageous features of the LRMFC framework. 

The T-S fuzzy model of the nonlinear system with sensor faults considered as 

embedded in the output matrix (via the matrix	&�) can be mathematically represented by 

the following equation: 

� ! = Nℎ�	3)�M�4a"� �M� +	$���M�b	c
�PE

% = Nℎ�	�)�M��Ã&��	 �M�Äc
�PE 																						def

eg
 ( 4-5) 

where  �M� ∈ ℛO is the state vector,	��M� ∈ ℛ0 is the input vector and %�M� ∈ ℛ_ is the 

output vector,	"� ∈ ℛO∗O,	$� ∈ ℛO∗0,	and &�� ∈ ℛ_∗O		� = 1, 2, . . , Z are the system 

matrices, Z is the number of fuzzy rules and the term ℎ�	�)�M�� is the weighting 

function. 

The first control objective is to force the states of the actual nonlinear system to follow 

the states of the reference model, which has the same order	9, via the design of the T-S 

fuzzy observer-based T-S fuzzy control scheme. Maintenance of good tracking 

performance is expected for both the fault-free and faulty measurement cases. The 

required reference model is assumed to have the following form: 

 !U = "U U + $U: ( 4-6) 

where  U ∈ ℛO is the desired trajectory for  	for all M ≥ 0 , : ∈ ℛU is the bounded 

reference input, "U 	 ∈ ℛO∗O	and $U 	 ∈ ℛO∗U are a stable state space pair chosen to 

reflect the required closed-loop performance. 

To achieve the tracking performance objective, as well as to give due care to the 

mismatch between the fuzzy model and the reference model a combination of feedback 

and feed foreword control signals is proposed yielding a T-S fuzzy controller of the 

following form: 

�� = Nℎ�	�)�a5��	 û −  U� + 5�c U + 5�U:bc
�PE  ( 4-7) 
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where 	 û is the estimate of the system state, 5� 	 ∈ ℛ0∗O is the feedback gain,, 5�c 	 ∈ℛ0∗O and 5�U 	 ∈ ℛ0∗U are the feed-forward gains.   Clearly, from Eq. ( 4-7) the 

proposed fuzzy controller tolerates the effect of the sensor fault if the state estimate 

signal ( û) reflects the actual behaviour of the nonlinear system, i.e. as required to hide 

the effect of the &�	matrix. Hence, for the sensor fault-free case, by subtracting ( 4-6) 

from ( 4-5) and substituting for �� from ( 4-7), then the tracking error (1�) dynamics are 

given by: 

1!� =  ! −  !U = NNℎ�	�)�ℎ[	�)�Ã3"� + $�5[41� − $�5[eþc
[PE

c
�PE+ 3$�5[c + "� − "U4 U + �$�5[U − $U�:Ä 

( 4-8) 

The state estimate signal in the fault-free case is then obtained via the design of a T-S 

fuzzy observer which is given by: 

 û! = Nℎ�	�)�a"� û + $��� + ü��% − & û�bc
�PE  ( 4-9) 

where  û ∈ ℛO is the estimate of the state vector  , ü� ∈ ℛO×_ 	 is the observer gain to be 

designed, and 1+	is the state estimation error defined as: 

1+ =  −  û ( 4-10) 

Therefore, if the pairs �"� , &�	are observable, then there may exist an observer in the 

form of Eq. ( 4-9) providing system state estimation. The state estimation error dynamics 

are given by: 

1!+ = Nℎ�	�)�a�"� − ü�&�1+bc
�PE  ( 4-11) 

The dependence of the estimation error dynamics on the measured output signals is 

clear from Eq. ( 4-11) . However, when there is a sensor fault both the estimation error 

and hence also the control signal are directly affected so that the controller produces a 

control signal based on the faulty measurements tending to drive the system away from 

the reference model. Therefore, it is important to reconfigure the estimation process so 

that when a sensor fault occurs the observer dynamics are reconfigured to ensure the 

continuity of the accurate estimation of the system states. For this reason, in this 
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strategy the observer subsystem has been accompanied by an FDD controlled feedback 

path activated once a sensor fault arises. 

Following the idea of the dynamic VS, suppose that the post-fault output matrix has 

been identified by the FDD unit. The new feedback path of the estimator given in Eq. 

( 4-9) is fed by the estimated faulty output %û� (&� û). Hence, the new estimator (VS) 

becomes: 

 û! = Nℎ�	�)�Ã"� û + $��� + ü��3%� − &� û4Äc
�PE  ( 4-12) 

This clearly shows that the observer starts to minimise the error between %�	89:	%û� 

through new observer gain ü�� which is computed on-line. Off-line computation of ü�� 
could also be carried out based on the information provided by the FDD unit. 

Obviously, the whole observer reconfiguration process and so the sensor fault tolerance 

is governed by the delectability of the post-fault pairs	3"� , &�4. If this necessary 

condition is satisfied, then there may exist observer gain ü�� to stabilise the error 

between %�	89:	%û� or equivalently between	&� 		89:	&�	 û. 
Using Eqs. ( 4-6), ( 4-8), and ( 4-11) the augmented system takes the form: 

 Å!��M� = NNℎ�	�)�ℎ[	�)�Ã"Æ�[ Å� +	�Ç�[:Äc
[PE

c
�PE  ( 4-13) 

where: 

"Æ�[ = ×"� + $�5[ −$�5[ $�5[c + "� − "U0 "� − ü�& 00 0 "c Ø	 
 Å� = �1�1+ U� 	,				�Ç�[ = ×$�5[U − $U0$U Ø			 

The objective here is to compute the gains ü� , 5[c, 5[U , 89:	5[	such that based on Eq. 

( 4-13) the effect of the bounded input		: on the tracking error dynamics is attenuated 

below the desired level	Ê to ensure robust tracking performance. 

Clearly, a stability proof is required when considering the closed-loop behaviour of the 

overall augmented system. This stability requirement becomes more complicated for 

multiple-model systems since the local controllers must stabilize the local linear model 
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as well as satisfying the global stability constraints. Moreover, the number of design 

constraints increase as the number of local models is increased. Hence, a “trial and 

error” design methodology is a time-consuming approach. Therefore, an LMI-based 

design formulation is derived so that the closed-loop gains are obtained through a one-

step solution to the appropriate set of LMIs. 

Theorem 4-1: for t>0 and ℎ�	�)�ℎ[	�)� ≠ 0, The closed-loop fuzzy system in ( 4-13) is 

asymptotically stable and the H∞ performance is guaranteed with an attenuation 

level		Ê, provided that the signal (:) is bounded, and the pair (Ai ,C) is observable, if 

there exist SPD matrices ËE, Ë@, Ë{,	 and matrices .� , Ì[ , and scalars Ê	89:	L satisfying 

the following the LMI constraints ( 4-14)&( 4-15): 

X�9����1		Ê, ���ℎ	Mℎ8M:   

ËE > 0, Ë@ > 0, Ë{ > 0 ( 4-14) 

xy
yy
yy
yzΨEE −$�Ì[ ΨE{ $�5[U − $U 0 0 0 ÎE∗ −2LÎE 0 0 L= 0 0 0∗ ∗ −2L= 0 0 L= 0 0∗ ∗ ∗ −2L= 0 0 L= 0∗ ∗ ∗ ∗ Ψ�� 0 0 0∗ ∗ ∗ ∗ ∗ Ψ�� Ë{ ∗ $U 0∗ ∗ ∗ ∗ ∗ ∗ −Ê= 0ÎE ∗ ∗ ∗ ∗ ∗ ∗ −Ê=}~

~~
~~
~�
< 0 ( 4-15) 

where   5[ = Ì[XEDE, üÕ� = Ë@DE.�		, ÎE = ËEDE, 

ΨEE = "�ÎE + ("�ÎE)Ï + $�Ì[ + ($�Ì[)Ï; ΨE{ = $�5[c + "� − "U 

Ψ�� = Ë@"� + (Ë@"�)Ï − .�& − (.�&)Ï, Ψ�� = Ë{"U + (Ë{"U)Ï	 
Proof: From Theorem 4-1 the tracking performance objective can be presented 

mathematically as follows: 

‖ Å�‖@‖:‖@ 	≤ Ê = 	1ÊÒ  Å�Ï∞

Ó  Å�:M − ÊÒ :Ï∞

Ó :	 ≤ 0 ( 4-16) 

Consider the following candidate Lyapunov function for the augmented system ( 4-13): Ô( Å�) =  Å�Ï	ËÕ	 Å�		, oℎ1Z1	ËÕ > 0	  

To achieve the performance required by ( 4-16) and the required closed-loop stability of 

( 4-13) the following inequality must then hold (Ding, 2008): 
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Ô!( Å�) + 1Ê  Å�Ï	 Å� − Ê:Ï: < 0 ( 4-17) 

where Ô!( Å�) is the time derivative of the candidate Lyapunov function. Using Eq. 

( 4-13), this becomes: 

Ô!( Å�) = NNℎ�	ℎ[	Ã Å�Ï3"Æ�[Ï ËÕ 	+ ËÕ"Æ�[4 Å� +	 Å�ÏËÕ�Ç�[: + :Ï�Ç�[ÏËÕ Å�Äc
[PE

c
�PE  ( 4-18) 

The inequality ( 4-17) (in matrix form), after substituting Ô!( Å�) from Eq. ( 4-18), 

becomes:  

NNℎ�	ℎ[	 ÖÈ Å�: ÉÏ ×"Æ�[Ï ËÕ 	+ ËÕ"Æ�[ + 1Ê = ËÕ�Ç�[�Ç�[ÏËÕ −Ê= Ø È Å�: ÉÙc
[PE

c
�PE < 0 ( 4-19) 

Inequality ( 4-19) implies that the inequality ( 4-20) must hold: 

×"Æ�[Ï ËÕ 	+ ËÕ"Æ�[ + 1Ê = ËÕ�Ç�[�Ç�[ÏËÕ −Ê= Ø < 0 ( 4-20) 

To be consistent with Eq. ( 4-13) ËÕ is structured as follows: 

ËÕ = �ËE 0 00 Ë@ 00 0 Ë{� > 0 ( 4-21) 

Then after simple manipulation and using variable change (.� = Ë@ü�) the inequality 

( 4-20) can be re-formulated as: 

where: ÛEE = ËE"� + (ËE"�)Ï + ËE$�5[ + 3ËE$�5[4Ï + 1Ê = Û@@ = Ë@"� + (Ë@"�)Ï − .�& − (.�&)Ï 

Inequality ( 4-22) contains several nonlinear terms and the next step is to formulate this 

as an LMI problem. The single step design formulation of the LMI in ( 4-22) is proposed 

to avoid the complexity of separate design steps characterised by repeated iteration to 

Ú�[ =
xyy
yyz
ÛEE −ËE$�5[ ËE3$�5[c + "� − "U4 ËE3$�5[U − $U4∗ Û@@ 0 0∗ ∗ Ë{"U + (Ë{"U)Ï Ë{$U∗ ∗ ∗ −Ê= }~~

~~� < 0 ( 4-22) 
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determine the required gains. Hence, after partitioning the matrix inequality shown in 

( 4-22) Ú�[ becomes: 

Ú�[ = ÈÚEE ÚE@∗ Ú@@É ( 4-23) 

where ÚEE = ÛEE, ÚE@ =	 h−ËE$�5[ ËE($�5[c + "� − "U) ËE($�5[U − $U)i, and Ú@@	is the lower right block of inequality ( 4-22)  

To effect the necessary change of variables, the Congruence Lemma presented in 

Section  3-2 is required. let: Ü = diagonal	(ËEDE, Î), 89:		Î = diagonal(ËEDE, =, =) 
Then Ü ∗ Πßà ∗ ÜÏ < 0	is also true and it can be re-written as: 

ÈËEDEÚEEËEDE ËEDEÚE@Î∗ ÎÚ@@Î É < 0 ( 4-24) 

The negativity of the inequality ( 4-24) imposes the negativity of the nonlinear term 

(ÎÚ@@Î) which can be rewritten using the following approximation (Xie and de Souza 

Carlos, 1992, Guerra, Kruszewski, Vermeiren and Tirmant, 2006, Mansouri, 

Manamanni, Guelton and Djemai, 2008): 

(Î + LÚ@@DE)ÏÚ@@(Î + LÚ@@DE) ≤ 0	 ⇔ ÎÚ@@X ≤ −2LÎ − L@Ú@@DE	 ( 4-25) 

where L is a scalar. 

By substituting ( 4-25) into ( 4-24) and using the Schur complement Theorem, then 

( 4-25) holds if the following inequality holds: 

¥ËEDEÚEEËEDE ËEDEÚE@Î 0ÎÚE@ËEDE −2LÎ L=0 L= Ú@@
¦ < 0 ( 4-26) 

After substituting for ÚEE, ÚE@, Ú@E, Ú@@	from ( 4-23) and by simple manipulation, the 

LMI in ( 4-15) is obtained. This completes the proof. 

4-2-2. Reconfiguration steps and constraints 

The observer reconfiguration involves two steps. The first, is to identify the post-fault 

output matrix	&�. The second step is to compute a new observer gain	ü��. However, the 

reconfiguration process is constrained by several requirements. The satisfaction of these 

constraints is governed by the fault scenarios and the allowable computation time. 
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• The pairs ("� , &�) must satisfy the observability condition or at least satisfy the 

detectability condition which in turn implies the stability of any unobservable mode. 

Clearly, this constraint depends upon the fault itself and hence it is beyond the 

capability of the designer since the fault is not known a priori.  

• Stabilisation of the estimation error via the new gain	ü��. This is the most important 

reconfiguration task since the overall closed-loop system performance depends on 

the estimation performance. Consequently, if the reconfiguration process only 

requires achieving stabilization, then ü�� can be computed using the following 

constraints: 

Ë@"� + (Ë@"�)Ï − .�& − (.�&)Ï < 0 ( 4-27) 

where the variables are defined in Section  4-2-1. However, observer-based control 

methods always require that fast estimation error dynamics are assured As a result, 

the assignment of VS eigenvalues in a specific region of the left half of the complex 

plane is necessary. However, it is not always possible to handle this constraint due 

to the reconfiguration time limitation. Moreover, if the detectability condition is 

satisfied, only a subset of the VS eigenvalues can be assigned. 

4-2-3. Simulation results 

To illustrate the proposed T-S fuzzy VS design, the tutorial example of the non-linear 

inverted pendulum with a cart is used here. The cart is linked by a transmission belt 

which is used to drive the wheel via a DC motor to rotate the pendulum into vertical 

position in the vertical plane by force control ��(M) on the cart. The nonlinear inverted 

pendulum and cart system model presented in Chapter 2 Eq. ( 2-21), the system 

parameters are �: The pendulum mass (2kg), 2�: The pendulum length (1m), X: The 

cart mass (8kg),  8 = E0¡á . The output matrix is: 

& = È1 0 0 00 1 0 00 0 0 1É 
As stated in Chapter 3, three system operating points are chosen corresponding to the 

pendulum angular positions		â = 0	89: ± ä/4 . Due to symmetry, this results in the 

choice of two fuzzy rules in the T-S model. By solving the LMI design constraints given 

in ( 4-14) & ( 4-15), the LMI parameters, and the computed controller and nominal 

observer gains are:	L = 10	and Ê = 3.4774. 5E = h668.4 75.78 195.2 122.8i	; 	5@ = h1167.8 134.1 380.04 229.4i 
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5Ec = h−30.58 −7.29i ; 5@c = h−52.63 −17.11i 5EU = h241.65 18.22 62.31 36.30i ; 5@U = h375.03 43.27 104.29 79.80i 
üE = ¥ 12.90 0.0003 −0.0002−0.0002 7.16 178.37 0.0001 −0.0007−1.72 0.0002 7.16 ¦ ; ü@ = ¥ 12.90 0.0001 0.0003−0.0001 7.16 170.49 −0.0005 0.00050.1288 0.0002 7.16 ¦ 
Two fault scenarios are considered in this Section. In the first, two of the output matrix 

parameters are changed. The result shows that the time allowed to reconfigure the faulty 

plant is about	20�. The parameters of the first fault scenario and the VS gains are: 

&� = �1 0 0 00 0.6 0 00 0 0 0.2� 
üE� = ¥ 12.90 0.0002 −0.0004−0.0008 14.32 4.9978.39 0.0001 −0.0013−1.72 0.0035 35.81 ¦ ; ü@� = ¥ 12.90 −0.0009 0.0006−0.0004 14.32 4.9970.51 −0.0002 0.00100.1288 0.0035 35.81 ¦ 
Figure  4-3 a, b, &c illustrate the closed-loop performance before, during and after the 

sensor fault. It is clear how the VS can continuously generate estimates that reflect the 

real system behaviour. 
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(c) 

Figure  4-3: (a) Actual output states, (b) Virtual measurements, and  

(c) Position tracking performance 

The second fault scenario is more severe than the first one. The loss of the cart speed 

measurement and an attenuation of the cart position measurement are proposed to 

highlight the fact that the allowable reconfiguring time is a function of the fault 

scenario. The output matrix and the VS gain in the new fault scenario are computed as: 

&� = �1 0 0 00 0.85 0 00 0 0 0� ; üE� = ¥ 12.90 0.0006−0.0007 12.9078.38 0.0003−1.72 61.09 ¦ ; ü@� = ¥ 12.90 0.0006−0.0002 12.9070.50 0.00070.1288 61.09 ¦ 
The results for this fault scenario show that the maximum time allowed for 

reconfiguration is about 5sec. 
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(b) 

 
(c) 

Figure  4-4: VS simulation results for severe fault. (a) Actual output states, (b) Virtual 

measurements, and (c) Position tracking performance 

From the simulation results the limitations of this method can be summarised as 

follows: 

1. It is clear how the reconfiguration time depends on the fault severity. This fact is 

highlighted by considering two different fault scenarios.  In the first instance the 

time allowed for reconfiguration is	20�, whereas in the second case severe faults are 

considered that require very fast reconfiguration times. To avoid a long 

reconfiguration time, one way to simplify this problem is to pre-compute the VS 

gains for every probable fault scenario (projection based VS). Hence, following the 

detection of the fault, a reconfiguration algorithm is used to select the appropriate 

off-line design. 

2. The method relies completely on the robustness of the FDD block. Moreover, a new 

parameter computation must be performed in an efficient manner to ensure 
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minimum computation time, especially for critical fault cases (e.g. causing unstable 

open-loop behaviour after the presence of the fault). 

3. The VS approach cannot tolerate the case in which the faulty parameter of the output 

matrix is continuously varying. However, the only possible solution is to turn the 

problem into one of a complete loss of measurement provided that the detectability 

condition is still valid. 

4. The use of VS in the T-S fuzzy model framework is limited by the inefficiently 

handled premise variable sensor fault because the idea of fault hiding is based on the 

use of estimated signals rather than on actual measurements. In fact this will transfer 

the control design problem to the unmeasured premise variable case which in turn 

demands controller robustness against premise variable estimation error. Moreover, 

during the reconfiguration time required to tolerate the premise variable sensor fault, 

the T-S model deviates from the model of the system under control and hence the 

fuzzy blending of the local controllers is no longer suitable for the controlled 

system. 

5. The effect of the initial condition for the VS approach is very significant, especially 

within the T-S framework since the initial states of the faulty plant cannot be 

predicted during the insertion of the VS. Hence, the initial estimation error is not 

guaranteed to satisfy a given bound. This issue is very significant if the T-S fuzzy 

model is derived based on either local sector nonlinearity or a local approximation 

approach. 

4-3. T-S PMIO based model reference sensor FTTC 

AS a consequence of the limitation of the VS approach for sensor FTTC, the PMIO 

based sensor FTTC is proposed in this Section. Although the proposed strategy 

simulates the spirit of the VS strategy through maintaining the nominal controller 

without change, this strategy is an integrated FTC/FDD in which the fault tolerance 

mechanism is performed online without a reconfiguration time delay. Moreover, the 

ability of the PMIO to provide simultaneous state and fault estimation signals can be 

used to gain useful information for fault severity evaluation. Furthermore, the proposed 

observer takes due care of the unpredictable nature of the fault by augmenting the 

nominal proportional observer by a multiple integral (PMIO) feedback so that a variety 

of fault scenarios can be estimated. 
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Figure  4-5 shows the scheme of the proposed strategy. 

 
Figure  4-5: PMIO based sensor FTC 

4-3-1. The LMI design of the T-S fuzzy PMIO 

The aim of this Section is to design a nonlinear observer that has the capability of 

providing simultaneous state and fault estimates to be used in the advantageous sensor 

FTTC loop. In the literature, bounded fault signals are typically handled via PIO 

approaches considering both fault estimation and fault diagnosis (Klinkhieo, 2009). 

Practically, unbounded fault scenarios are very probable (Gao, Ding and Ma, 2007). 

However, the combined literature on fault estimation and fault diagnosis rarely deal 

with the unbounded fault cases. 

The work of this Section is motivated by the unpredictable behaviour of the faults 

affecting a system (e.g. in terms of unknown fault occurrence and unknown fault-

induced system time response). The T-S fuzzy PMIO design strategy is presented as a 

mechanism to provide simultaneous estimation of state and sensor faults to be exploited 

in an observer-based FTTC system capable of handling cases in which fault signals are 

unbounded. For this approach to be valid bounds on the 	��	time derivative of the 

considered fault must be taken into accounted, where the number of derivatives 	 is to 

be chosen by the designer. 

In the literature, the PMIO concept is well known for the design of robust observers for 

linear systems with unknown input disturbances (Guo-Ping, Suo-Ping and Wen-Zhong, 

2000, Ibrir, 2004). The development of a PMIO scheme to provide simultaneous state 

and fault estimates for a linear model of the lateral dynamics of an automobile 

contaminated by yaw rate and acceleration sensor faults has been proposed by (Gao, 

Ding and Ma, 2007). An extension of the PMIO design problem applicable to descriptor 

vú v� 

�
� 

�� 
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systems was proposed by (Koenig, 2005). In this Section a new extension to LMI-based 

PMIO design is proposed, based on T-S fuzzy inference modelling as follows:  

� ! = Nℎ�	3)�M�4a"� �M� +	$���M�b	c
�PE% = 	& �M� + õ,(																																				s ( 4-28) 

where the variables are already defined below Eq. ( 4-5), õ ∈ ℛ_×� and  ,( ∈ℛ�	represents additive sensor faults. Assume that the 	��	derivative of the sensor fault 

signal is bounded, then an augmented state system consisting of the original local linear 

systems state and the 	��	derivatives of ,( can be constructed. 

Let the �th derivate of the sensor fault signal ,(� be represented by a state variable 

formulation as follows:  

�� = ,(�D�		�� = 1,2, … , 	�  ;  �!E = ,(�; �! @ = �E; 	�! { = �@;… ; �!� = ��DE 

Then the system of Eq. ( 4-28)  when augmented with the sensor fault derivatives 

becomes: 

� ̅! = Nℎ�	3)�M�4Ã"̅� ̅�M� +	$Õ���M� + �,(�Ä	c
�PE% = 	 &̅ ̅�M�																																																																								s ( 4-29) 

where:  

 ̅ = § Ï �EÏ �@Ï �{Ï … . ��ÏªÏ ∈ ℛOÕ ; "̅� = xyy
yz"� 0 … 0 00 0 … 0 00 = … 0 0⋮ ⋮ ⋱ ⋮ ⋮0 0 … = 0}~~

~� ∈ ℛOÕ×OÕ  

$Õ� = [$�Ï0	0	 … 0]Ï 				 ∈ ℛOÕ×0 ; �		 = [0	=�		0	 … 0]Ï 			 ∈ ℛOÕ×� &̅ 		= [&	0		0	 …õ] 					 ∈ ℛ_∗OÕ  ; 9Õ = 9 + ø	 

Hence, the following T-S fuzzy PMIO is proposed to simultaneously estimate the 

system states and sensor faults: 

 ̅
! = Nℎ�	3)�M�4a"̅� ̅
�M� +	$Õ���M� + üÕ��% − &̅ ̅
�b	c
�PE  ( 4-30) 

where  ̅
 ∈ ℛOÕ  is the estimation of the augmented state vector  ̅, and üÕ� = [üY�Ï , ü��ÏE, . . , ü��Ï�]Ï ∈ ℛOÕ∗_ is the gain to be designed. 
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Theorem 4-2: The necessary condition for the T-S fuzzy PMIO given in ( 4-30) to exist is 

Z89ø ó"� 0& õô = 9 + ø ( 4-31) 

and 

Z89ø ó�= − "�& ô = 9					∀� ∈ ℂ ( 4-32) 

Additionally, the PMI observer attenuates the effect of the bounded 	��	 sensor fault 

derivative on the augmented estimation error if there exist SPD matrix Ë = ËÏ > 0 and 

matrices .�� that minimise ÊY0� under the following LMI constraints: 

×Ë"̅� + �Ë"̅��Ï − .��&̅ − �.��&̅�Ï Ë� &YÏ�ÏË −ÊY0� 0&Y 0 −ÊY0�
Ø ( 4-33) 

where the gains of the observer are obtained by: 

üÕ� = ËDE.�� ( 4-34) 

Proof: Conditions ( 4-31)&( 4-32) follow directly the observability requirements for the 

states and fault estimates. 

The state estimation error dynamic is obtained by subtracting Eq. ( 4-30) from Eq. ( 4-28) 

to yield 

1!+ = Nℎ�	�)�Ã�"̅� − üÕ�&̅�1+ + �,(�Äc
�PE  ( 4-35) 

To attenuate the effect of the �,(�� on the estimation error and at the same time  

ensuring system stability, the following inequality must hold (Ding, 2008): 

Ô!�1+� + 1ÊY0� 1+Ï 	&YÏ&Y1+ − ÊY0�,(�Ï,(� < 0 ( 4-36) 

where Ô!�1+� is the time derivative of the candidate Lyapunov function (Ô�1+� = 1+ÏË1+) 

and &Y	matrix is introduced to specify the performance output. Using Eq. ( 4-35), 

inequality ( 4-36) becomes: 

Ô!�1+� = Nℎ� �1+Ï�"̅�ÏË	 + Ë"̅� − ËüÕ�&̅ − �ËüÕ�&̅�Ï�1+ +	1+ÏË�,(�c
�PE+ ,(�Ï�ÏË1+Ä ( 4-37) 
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The inequality ( 4-36) (in matrix form) after substituting Ô!� Å�� from Eq. ( 4-37) and 

using the change of variables  .�� = ËüÕ� becomes:  

Nℎ�	 ÖÈ1+,(�É
Ï ×Ë"̅� + �Ë"̅��Ï − .��&̅ − �.��&̅�Ï + 1ÊY0� &YÏ&Y Ë��ÏË −ÊY0�=Ø È

1+,(�ÉÙ
c

�PE< 0 

( 4-38) 

By using the Schur Theorem inequality ( 4-33) can easily be obtained from inequality 

( 4-38). 

4-3-2. The LMI design of T-S PMIO based model reference sensor 

FTTC 

By following the design methodology presented in Section  4-2-1, the augmented system 

combining the tracking error dynamics, the state estimation error, and the reference 

model is given by Eq. ( 4-39) as follows: 

 Å!��M� = NNℎ�	�)�ℎ[	�)�Ã"Æ�[ Å� +	�Ç�[:ÆÄc
[PE

c
�PE  ( 4-39) 

where: 

"Æ�[ = ×"� + $�5[ −$�[5[ 	00×�] $�5[c + "� − "U0 "̅� − üÕ�&̅ 00 0 "c Ø	 
 Å� = �1�1+ U� 	,				�Ç�[ = ×$�5[U − $U 00 �$U 0Ø	 , :Æ = È :,(�É	 

The objective here is to compute the gains üÕ� , 5[c, 5[U , 89:	5[	such that the effect of the 

input		:Æ in Eq. ( 4-39) is attenuated below the desired level	Ê, to ensure robust tracking 

performance. 

Theorem 4-3: for t>0 and ℎ�	�)�ℎ[	�)� ≠ 0, The closed-loop fuzzy system in ( 4-39) is 

asymptotically stable and the H∞ performance is guaranteed with an attenuation 

level		Ê, provided that the signal (:Æ) is bounded, if there exist SPD matrices ËE, Ë@, Ë{,	 
and matrices .� , Ì[ , and scalar	Ê	satisfying the LMI constraints ( 4-40)&( 4-41) as 

follows: 

X�9����1		Ê, ���ℎ	Mℎ8M   
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ËE > 0, Ë@ > 0, Ë{ > 0 ( 4-40) 

xy
yy
yy
yy
yzΨEE ΨE@ ΨE{ ΨE| 0∗ −2LÎÕE 0 0 0∗ ∗ −2L= 0 0∗ ∗ ∗ −2L= 0∗ ∗ ∗ ∗ −2L=∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ÎE ∗ ∗ ∗ ∗

		� �
0 0 0 0 ÎEL= 0 0 0 00 L= 0 0 00 0 L= 0 00 0 0 L= 0

Ψ�� 0 0 Ë@� 0∗ Ψ�� Ë{$U 0 0∗ ∗ −Ê= 0 0∗ ∗ ∗ −Ê= 0∗ ∗ ∗ ∗ −Ê=}~
~~
~~
~~
~�
< 0 ( 4-41) 

where:  5[ = Ì[XEDE, üÕ� = Ë@DE.��		, ÎE = ËEDE, ÎÕE = :�8��98�	(ËEDE, =�×�) 
ΨEE = "�ÎE + ("�ÎE)Ï + $�Ì[ + ($�Ì[)Ï; ΨE@ = h−$�Ì[ 0i; ΨE{ = $�5[c + "� − "U 

ΨE| = $�5[U − $U; Ψ�� = Ë@"̅� + (Ë@"̅�)Ï − .��&̅ − (.��&̅)Ï, Ψ�� = Ë{"U + (Ë{"U)Ï	 
Proof: By due care of the augmented fault derivative signals throughout the design 

formulation, the proof of Theorem 4-3 follows steps that are similar to those involved in 

the proof of Theorem 4-1. Moreover, the derivation of a more general LMI design of 

PMIO-based state feedback FTC is presented in Chapter 5 Sections  5-2-1 &  5-2-3. 

Hence the proof of Theorem 4-3 is omitted here. 

4-3-3. Simulation results 

For comparison purposes, the tutorial example of the nonlinear inverted pendulum 

simulation with a cart (as given in Section  4-2-3) is used once again. It should be noted 

that the linear local models for this nonlinear system are limited by the rank condition 

for the PMIO for cart position sensor fault as shown below: 

"E = ¥ 0 0 1 00 0 0 1						17.29 0 0 0−1.73 0 0 0¦ "@ = ¥ 0 0 1 00 0 0 19.42 0 0 00.13 0 0 0¦ $E = ¥ 00−0.176				0.117¦ 
$@ = ¥ 00−0.115				0.108¦ 

&E = �1 0 0 00 1 0 00 0 0 1� &@ = �1 0 0 00 1 0 00 0 0 1� 
For the cart position sensor fault (2nd measurement), the vector õ that appears in ( 4-28) 

becomes h0 1 0iÏ which in turn implies: 

Z89ø ó"� 0& õô < 9 + ø 
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Hence, for this model, the PMIO derived in Section  4-3-1can provide estimates of only 

the 1st and 3rd sensor faults. 

Remark: It is possible to overcome the observability problem of the cart speed sensor 

fault encountered in this example by transferring the sensor FTC problem to an actuator 

like fault estimation problem. This can be performed by passing the output signals 

through a low-pass filter and then defining a new augmented system aggregating the 

system model and the filter. In doing so, the sensor fault appears as an actuator fault in 

the augmented model. Section  6-3-1 clearly illustrates this methodology for the sensor 

fault problem. 

Using the inequalities presented in ( 4-41) and the local system matrices mentioned 

above, the local controller and observer gains are computed as: 

üÕE =
xyy
yyz

6.5130 −0.0349 −0.0198−0.2413 1.4891 −0.001122.4187 −0.2651 0.0180−1.6845 1.0880 −0.001120.223 −239.734 399.96913.449 −108.598 28.284}~
~~~
�
 üÕ@ =

xyy
yyz

4.8143 −0.1276 −0.00150.0417 1.4899 −0.001115.8594 −0.4966 0.0155−0.6364 1.1047 −0.001042.208 −240.614 399.96913.4202 −108.6 28.284}~
~~~
�
 

5E = h1295.5 357.5 371.1 309.4i 5@ = h2455 657.5 751.4 586.9i 5Ec = h129.4 21.56 44.89 9.709i 5@c = h506.4 14.22 67.34 100.3i 5EU = h−18.498 −8.472i 5@U = h−46.974 −5.586i L = 20	and Ê = 0.158.  

The results show that the T-S PMIO based approach for FTTC has superior fault 

tolerance capability compared with the VS approach for FTTC. Furthermore, the 

argument that the additive fault representation can be considered as a generalised fault 

representation becomes clear as different sensor fault scenarios are considered. 

The results presented are separated into three groups considering different sensor fault 

scenarios.  These are: external additive sensor faults, output matrix parameter change 

faults and loss of measurement faults. The proposed tracking control strategy has the 

capability to completely tolerate all the sensor fault scenarios efficiently. Moreover, the 

method can also identify the new parameters of the faulty measurements.  

External additive sensor fault: The fault considered is of varying frequency and 

amplitude and the observer shows the ability to provide excellent simultaneous 

estimates of system states and the external fault signal. The fault starts at time M = 10�, 

and the fault frequency varies linearly with time. An  abrupt amplitude change occurs at 10� intervals of simulation time. It should be noted that the VS presented in this 
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Chapter cannot handle this fault scenario since the identification of the fault is no longer 

fixed. 

 
(a) 

 
(b) 

 
(c) 

Figure  4-6: PMIO based additive sensor FTC. (a) Fault estimation, (b) tracking 

performance, (c) Measurements. 
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Output matrix parameter change: In this fault scenario the third measurement of the 

output matrix is changed to	(0.3). Hence, the estimated fault in this case represents a 

scaling of the cart speed (in this case	−0.7 ∗ 	 |) which in turn can be used to identify 

the new parameter of the faulty measurement as shown in Figure  4-7.  

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure  4-7: PMIO based output matrix parametric fault FTC. (a) Tracking performance, 

(b) fault estimation, (c) the measurements, and (d) fault evaluation. 

Clearly, the spikes that appear in the fault parameter estimation of Figure  4-7 are due to 

the zero-crossings since the evaluation is taken directly as a result of division of the 

fault estimates by the corresponding estimated state. Alternatively, the fault evaluation 

information can be obtained by tacking the ratio between the measurements and their 

corresponding state estimates. 

Loss of measurements: in this scenario the cart speed measurement is assumed to be 

completely lost at time	50�. In this case the estimated fault is equal to (	− |), based on 

this estimation and the new parameters of the faulty measurement can also be identified 

as shown below. 

 

(a) 

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time(s)

F
a
u
lt
 s
e
v
e
r
it
y

Fault parameter estimation

 

 

Faulty free measuements

0.7 output matrix parameter degraded

Faulty measuements

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time(s)

R
e
fe
r
e
n
c
e
 t
r
a
c
k
in

g

Tracking performance with loss measurement fault

 

 

Reference cart position

Actual cart position

Loss of cart speed measurement



91 

 

 

(b) 

 

(c) 

 

(d) 
Figure  4-8: PMIO based loss measurement FTC. (a) Tracking performance, (b) fault 

estimation, (c) the measurements, and (d) fault evaluation. 
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It should be noted that: 

• The ability to maintain the state estimation without change during the entire range of 

operation is due to the fact that the PMIO performs implicit fault estimation and 

compensation of sensor fault from the input of the PMIO. This fact is clearly 

interpreted from the error signal (% − &̅ ̅
) which can be rewritten as (& − & û −õ,V(). Then as long as there is no sensor fault	,V( = 0. Once a sensor fault occurs 

(& + õ,( − & û − õ,V(), the fault estimation ,V( compensates the effect of the fault 

signal ,( and hence the observer always receives the fault-free error signal. 

• The fault evaluation signal can be used to design an integrated static VS based FTC 

since this information can be utilized to switch between the available redundant 

measurements. As a result, the proposed strategy provides a superior mechanism for 

fault tolerance if compared with the static or dynamic VS. 

• Although the proposed T-S fuzzy PMIO is designed to be robust against the bounded 	�� sensor fault time derivative, it is clear that if the system is subjected to an 

actuator fault alongside the sensor fault this will deteriorate the fault tolerance 

performance. This is because the proposed T-S PMIO can only passively tolerate the 

unknown input effects. This in turn needs to assume some constraints on the actuator 

fault signals (e.g. the actuator fault signal must be bounded). 

4-4. T-S PPIO based model reference actuator FTTC 

This Section presents a new approach to actuator FTTC for non-linear systems, based 

on fault estimation and compensation for time-varying faults. The work involves the 

design of T-S fuzzy PPIO for fault estimation, based on the spirit of the fast adaptive 

fault estimation strategy (Zhang, Jiang and Cocquempot, 2008), to be used in the 

framework of T-S fuzzy observer-based FTTC. Although the investigation presented in 

Chapter 3 states that the nominal controller has some inherent capability to tolerate 

some bounded actuator faults, the real challenges arise when considering more severe 

parametric and/or additive actuator fault scenarios. Moreover, the proposed strategy 

exploits the use of the model reference framework to govern the closed-loop 

performance. 

Suppose the T-S fuzzy model considered in this Chapter, now including the actuator 

fault	,�, is given as follows: 
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� !� = N ℎ�	())Ã"� � +	$�3�� + ,�4Äc
�PE 												

% = &	 �																																																																			 Ù ( 4-42) 

The control objective is to force the nonlinear plant state in both faulty and healthy 

cases to follow the states of the reference model given in Eq. ( 4-6). To achieve this 

objective the following fuzzy controller is proposed: 

�� = N ℎ�	())Ã5�3	 û� −  U4 + 5�@ U + 5�{: − ,�� Äc
�PE  ( 4-43) 

where  û�	is the estimate of the faulty state. 

Subtracting the reference model given in Eq. ( 4-6) from Eq. ( 4-42) and substituting for �� from Eq. ( 4-43) the dynamics of the tracking error (1� =  � −  U) are given by: 

1!� = N N ℎ�	())ℎ[	())c
[PE Ã3"� + $�5[41� − $�5[1+c

�PE + 3$�5[@ + "� − "U4 U + ($�5[{ − $U): + $�1�Ä ( 4-44) 

where 1+	and 1� are the state and fault estimation errors. It can clearly be seen from Eq. 

( 4-43) that the performance of the proposed control strategy is highly related to the 

accuracy of the simultaneous estimation of both the system state and the actuator fault 

signal. It is also of interest to consider “fast fault” scenario cases for which it can be 

assumed that the first time derivative of each fault signal is bounded. Therefore, this 

strategy involves the design of a fuzzy PPIO-based fast fault estimator where the 

observer is designed to estimate the system state and fault signal. 

Assuming that the time derivative of the fault (,!�) is bounded, then the following fuzzy 

observer is proposed to simultaneously estimate the system states and actuator fault 

signal: 

� û!� = N ℎ�	())Ã"� û� + $�(	�� + ,V�) + ü�3% − & û�4Äc
�PE,V!�(M) = N ℎ�	())*�&(1!+ + 1+)c

�PE 																																									df
g

 ( 4-45) 

where  û� ∈ ℛO is the estimate of the state vector  �, ü� ∈ ℛO×_	and	*� ∈ ℛ0×_ are the 

observer gains to be designed and 1+	is the state estimation error defined as: 

1+ =  � −  û� ( 4-46) 
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The state estimation error dynamics are given by: 

1!+ = N ℎ�	())Ã("� − ü�&)1+ + $�1�Äc
�PE  ( 4-47) 

where 1� is the fault estimation error defined as follows: 

1� = ,� − ,V�	 ( 4-48) 

From Eqs. ( 4-9) & ( 4-11) the fault estimation error dynamics can be written as: 

1!� = N N ℎ�	())ℎ[	())Ã,!� − *�&3"[ − ü[& + =41+ − *�&$[1�Äc
[PE

c
�PE  ( 4-49) 

In Eq. ( 4-49) the first time derivative of the fault is considered as a bounded exogenous 

input signal that affects the estimation dynamics. Using Eq. ( 4-6), ( 4-44), ( 4-47) & 

( 4-49), the augmented system takes the form: 

 Å!�(M) = N N ℎ�	())ℎ[	())Ã"Æ�[ Å� +	�Ç�[�̃Äc
[PE

c
�PE  ( 4-50) 

where: 

"Æ�[ = ×"� + $�5[ −$�5[ $�0 "� − ü�& $�0 −*�&3"[ − ü[& + =4 −*�&$[Ø ;  Å� = �1�1+1��	 
�̃ = � U:,! � ; 		�Ç�[ = �$�5[@ + "� − "U $�5[{ − $U 00 0 00 0 =�			 

The objective here is to compute the gains ü� , *� , 89:	5�	such that the input		�̃ in ( 4-50) 

is attenuated below the desired level	Ê̅, to ensure robust tracking performance. The LMI 

design formulation is derived so that the design gains are obtained through a one-step 

solution to the set of LMIs. 

Theorem 4-4: for t>0 and ℎ�	())ℎ[	()) ≠ 0, The closed-loop fuzzy system in ( 4-50) is 

asymptotically stable and the ./ performance is guaranteed with an attenuation 

level		Ê̅, Provided that the signal (�̃) is bounded, and Z89ø(&$�) = �, if there exist 

SPD matrices ËE, Ë@,	 and matrices .� , Ì[ , *�, and a scalar	L satisfying the following LMI 

constraints ( 4-51), ( 4-52), and ( 4-53): 

X�9����1	(	Ê̅ + 	�)	���ℎ	Mℎ8M:   
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ËE > 0, Ë@ > 0 ( 4-51) 

È�= $�ÏË@ − *�&∗ �= É > 0 
( 4-52) 

xyy
yyy
yyy
yyy
zΨEE −$�Ì[ ΨE{ $� ΨE| 0∗ −2LÎE 0 0 0 0∗ ∗ −2L= 0 0 0∗ ∗ ∗ −2L= 0 0∗ ∗ ∗ ∗ −2L= 0∗ ∗ ∗ ∗ ∗ −2L=∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ÎE ∗ ∗ ∗ ∗ ∗

�  

�

0 0 0 0 0 ÎEL= 0 0 0 0 00 L= 0 0 0 00 0 L= 0 0 00 0 0 L= 0 00 0 0 0 L= 0Ψ�� Ψ�� 0 0 0 0∗ Ψ�� 0 0 = 0∗ ∗ −Ê̅= 0 0 0∗ ∗ ∗ −Ê̅= 0 0∗ ∗ ∗ ∗ −Ê̅= 0∗ ∗ ∗ ∗ ∗ −oEDE}~
~~~
~~~
~~~
~�

< 0		 ( 4-53) 

5[ = Ì[XEDE, ü� = Ë@DE.�	, Ê = �Ê̅	, ÎE = ËEDE , ΨEE = "�ÎE + ("�ÎE)Ï + $�Ì[ + 3$�Ì[4Ï 

ΨE{ = $�5[@ + "� − "U, ΨE| = $�5[{ − $U , Ψ�� = Ë@"� + (Ë@"�)Ï − .�& − (.�&)Ï 

Ψ�� = − �$�ÏË@$[ + 3$�ÏË@$[4Ï� + o{ , Ψ�� = ($�Ï.[& − $�ÏË@"[)Ï 

Proof: From Theorem 4-4 the tracking performance objective can be presented 

mathematically as follows (Chen, Lee and Chang, 1996, Tseng, Chen and Uang, 2001, 

Mansouri et al., 2009): 

Ò  Å�Ï�� 	 Å�∞

Ó :M − Ê@Ò �̃Ï�̃∞

Ó 	≤ 0		 ( 4-54) 

where	�� = :�8��98�	(oE, 0, o{).  
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Consider the following candidate Lyapunov function for the augmented system ( 4-50): Ô( Å�) =  Å�Ï	ËÕ	 Å�		, oℎ1Z1	ËÕ > 0	 
To achieve the performance required by ( 4-54) and the required closed-loop stability of 

( 4-50) the following inequality must hold: Ô!( Å�) +  Å�Ï�� 	 Å� − Ê@�̃Ï�̃ < 0 ( 4-55) 

where Ô!( Å�) is the time derivative of the candidate Lyapunov function. Using Eq. 

( 4-50), this becomes: 

Ô!( Å�) = N N ℎ�	ℎ[	Ã Å�Ï3"Æ�[Ï ËÕ 	+ ËÕ"Æ�[4 Å� +	 Å�ÏËÕ�Ç�[�̃ + �̃Ï�Ç�[ÏËÕ Å�Äc
[PE

c
�PE  ( 4-56) 

The inequality (56) (represented in matrix form) after substituting Ô!( Å�) from Eq. 

( 4-56) becomes:  

N N ℎ�	ℎ[	  ó Å��̃ ôÏ È"Æ�[Ï ËÕ 	+ ËÕ"Æ�[ +�� ËÕ�Ç�[�Ç�[ÏËÕ −Ê@=É ó Å��̃ ô'c
[PE

c
�PE < 0 ( 4-57) 

Inequality ( 4-57) satisfied if condition ( 4-58) hold: 

È"Æ�[Ï ËÕ 	+ ËÕ"Æ�[ +�� ËÕ�Ç�[�Ç�[ÏËÕ −Ê@=É < 0 ( 4-58) 

To be consistent with the system model of Eq. ( 4-50) ËÕ is structured as follows: 

ËÕ = �ËE 0 00 Ë@ 00 0 =� > 0 ( 4-59) 

Then after simple manipulation and using the following equality: 

*�& = $�ÏË@ ( 4-60) 

Hence, the inequality ( 4-58) can be re-formulated as: 

Πßà =
xyy
yyy
zÛEE −ËE$�5[ ËE$� ÛE| ËE($�5[{ − $U) 0∗ Û@@ Û@{ 0 0 0∗ ∗ Û{{ 0 0 =∗ ∗ ∗ −Ê@= 0 0∗ ∗ ∗ ∗ −Ê@= 0∗ ∗ ∗ ∗ ∗ −Ê@=}~~

~~~
�
< 0 ( 4-61) 

where: 
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ÛEE = ËE"� + (ËE"�)Ï + ËE$�5[ + 3ËE$�5[4Ï + oE  Û@@ = Ë@"� + (Ë@"�)Ï − .�& − (.�&)Ï,  Û{{ = −3$�ÏË@$[ + ($�ÏË@$[)Ï4 + o{ Û@{ = ($�Ï.[& − $�ÏË@"[)Ï ÛE| = ËE3$�5[@ + "� − "U4 
The matrix inequality ( 4-61) contains several nonlinear terms and the next step is to re-

formulate this as an LMI. The single step design formulation of the LMI in ( 4-61) can 

easily be obtained using the procedure presented in Section  4-2-1. 

The equality constraints given in ( 4-60) add conservatism to the design problem which 

may be reduced through an approximation via a minimization problem. Using the 

strategy proposed by (Corless and Tu, 1998, Zhang, Jiang and Cocquempot, 2008): 

X�9����1	� 

ö�= $�ÏË@ − *�&∗ �= ÷ > 0 
( 4-62) 

This completes the proof. 

4-4-1. Simulation results 

The nonlinear inverted pendulum model and its local approximation T-S fuzzy model is 

used here with friction force affecting the system as a type of actuator fault. 

By using	L = 10, oE = 10D{ ∗ diagonal	(37, 11, 1,1)	, o{ = 10	 and solving the 

optimization design problem in Theorem 1, the minimum attenuation value Ê = 2.2361, 

the following are computed: øE = h801.6 154.1 231.0 162.6i ; øE = h950.3 181.4 282.3 194.4i ø@E = h290.8 19.6 46.4 11.8i ; ø@@ = h376.1 29.4 74.4 17.8i ø{E = h−3.8 −15.7i ; ø{@ = h−5.9 −23.5i *E = h34.8 −177.0 991.3i ; *@ = h5.5 −166.3 914.2i 
üE = ¥65.2 5.5 0.3−0.2 0.9 0.8791.0 69.8 14.5−2.9 −0.1 1.0 ¦ ; ü@ = ¥58.2 5.2 0.06−0.1 0.9 0.8698.7 64.7 11.3−1.3 −0.04 0.7 ¦ 
Figure  4-9 shows the simulation signals illustrating the performance of the proposed 

strategy applied to the system affected by the bearing friction (causing uncertainty). The 
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observer provides good estimation of the friction force. Moreover, the simulation 

signals show how the proposed control strategy can also passively tolerate the effect of 

the friction on the tracking performance.  
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(d) 

Figure  4-9: Results for friction tolerant control. (a) Fault estimation, (b) zoomed fault 

estimation, (c) pendulum angular position, (d) tracking performance. 

It should be noted that the estimation accuracy shown in Figure  4-9 a & b is obtained 

via the proposed T-S PPIO provided that there is no sensor faults that affects the system 

simultaneously with the actuator fault (the friction). This is because the sensor fault 

directly affects the error signal that fed to the PPIO input. Hence the actuator fault 

estimate is vastly deteriorated by any sensor faults (see Eq. ( 4-45)). 

Figure  4-10 shows the case for simulation signals when friction and a parametric fault (0.25$) signal simultaneously affect the system. The results also show how the 

proposed control strategy can passively tolerate the effects of friction and parametric 

faults without compensation with performance degradation. However, the use of fault 

compensation recovers the fault-free tracking performance. 

Figure  4-11 shows the simulation signals resulting from simultaneously acting friction, 

an additive fault, and a parametric fault. Although the system remains stable for this 

severe fault scenario, the tracking performance is degraded by this fault and hence the 

estimation of this combined fault has been used to compensate the effect of the fault. 

Results show how the proposed control strategy can actively tolerate the effects of this 

combined fault scenario. 
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(a) 

 

(b) 

Figure  4-10: Friction and parametric FTC: (a) Pendulum angular position and (b) 

tracking performance 
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(b) 

Figure  4-11: Friction, parametric & additive FTC: (a) Pendulum angular position, and 

(b) tracking performance. 

4-5. Conclusion 

In this Chapter, three new FTTC design strategies based on LRMFC are described. 

These are (i) integrated T-S fuzzy observer/VS based sensor FTTC, (ii) new T-S fuzzy 

PMIO based sensor FTTC, and (iii) new T-S fuzzy PPIO based actuator FTTC. The 

proposed methods have the capability to: (a) tolerate the effect of separate actuator and 

sensor faults within a tracking framework, (b) estimate and compensate for various 

actuator and sensor fault scenarios, and (c) minimise the reliance on an FDD unit as 

much as possible. 

The common limitation of the proposed strategy is that they lack the ability to tolerate 

simultaneous actuator and sensor faults. This limitation is clearly highlighted in 

Sections  4-3-3 &  4-4-1. In fact, the occurrence of simultaneous actuator and sensor 

faults is practically probable, although this scenario represents a real challenge within 

the AFTC framework and is the topic of Chapters 5 & 6. 

  

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5
Tracking performance with friction, parametric, & additive fault

Time (s)

P
o
s
it
io

n
 (
m

)

 

 

Reference position

Actual position

Friction & fault compensation



102 

 

 

Chapter 5 : Simultaneous actuator and sensor T-S fuzzy 

FTTC for nonlinear systems  

5-1. Introduction 

This Chapter focuses on the presentation of two novel AFTC architectures for nonlinear 

systems. The work proposes the use of an estimation and compensation for 

simultaneous actuator and sensor faults, making use of the T-S fuzzy inference 

modelling framework. Although simultaneous actuator and sensor fault occurrence is 

practically probable, this challenging case has not been considered in the FTC literature. 

This results form a trade-off between estimation accuracy and the effect of simultaneous 

faults on each other. In the FTC literature, the PFTC approach is usually adopted 

because this approach does not require the estimation of fault signals (Xuejing and Fen, 

2009, Liang, Chang and Wang, 2011). As a consequence of this PFTC limitation (see 

Section 1-3 for further explanation) an alternative approach is developed in this Chapter 

using an AFTC strategy incorporating an extension to the PMIO estimation, based on 

state feedback control. Then extension is developed (within the T-S fuzzy framework) 

in order to enhance the estimation robustness against the alternative fault, considering 

the simultaneous actuator and sensor fault scenario. The main contributions of this 

Chapter can be summarized as: 

1. The use of the estimation and compensation concept to enhance the robustness of 

the T-S fuzzy PMIO against the simultaneous actuator and sensor faults. 

2. Proposal of a new FTC architecture for nonlinear systems affected by simultaneous 

actuator and sensor faults, as well as the development of the LMI-based design of 

the T-S fuzzy AFTC scheme. The work concentrates on application to nonlinear 

systems affected by sensor and actuator faults using the concept of estimation and 

compensation within regulator control framework. 

3. Proposal of an extension to Proposal 2 developed within a tracking control 

framework. 

The proposed strategies involve the design of two interacting T-S fuzzy PMIOs for 

actuator and sensor fault estimates within an observer-based state estimate feedback 
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control. The strategy can handle the cases in which actuator and sensor faults occur 

simultaneously. Furthermore, the observers used are capable of estimating a variety of 

time-varying fault signals. The stability proof with ./ performance is formulated as an 

LMI problem. 

The Chapter is organized as follows. Section  5-2 enters into a description of the general 

architecture of the proposed T-S fuzzy observer-based AFTC approach followed by 

three Sections illustrating the stability and performance design conditions for (i) T-S 

fuzzy sensor fault estimate PMIO, (ii) the T-S fuzzy observer-based state feedback 

regulator control, (iii) the T-S fuzzy actuator fault estimate PMIO, and (iv) the T-S 

observer-based state feedback tracking control. In Section  5-3, two nonlinear examples 

are used to illustrate the applicability of the proposed strategies (regulator and tracking). 

The T-S fuzzy model of the two examples is derived based on local sector nonlinearity. 

Simulation results have shown the effectiveness of the proposed strategies as well as 

highlighting the importance of using T-S fuzzy PMIO compared with the T-S 

proportional integral observer (PIO) fault estimation, when considering FTC 

performance. 

5-2. Observer-based actuator and sensor FTC for nonlinear systems 

Simultaneous actuator and sensor faults represent a common challenge for all the AFTC 

methods. This motivates the proposal of a strategy to ensure system robustness against 

this challenging and practically probable scenario of simultaneous faults via an 

estimation and compensation approach.  Hence, the goal of this Chapter is to develop a 

novel FTC strategy for regulator and tracking control problems based on robust fault 

estimation and compensation of simultaneous actuator faults (,�) and sensor faults (,() 
whilst maintaining the performance and stability of the nominal control system during 

both faulty and fault-free cases. An FTC scheme is proposed that is based on the 

combination of (a) robust control and (b) independent estimates of the each of the 

actuator faults (,V�) and sensor faults (,V(). The controller is required to be robust against 

expected actuator and sensor fault estimation errors, as well as the bounded reference 

signal (for the tracking problem). It is clear from the architecture shown in Figure  5-1 

that the scheme includes dedicated fault estimation observers in order to ensure accurate 

estimation and compensation of each of the actuator and sensor faults. Moreover, as the 

accuracy of the fault estimation is of paramount importance the T-S fuzzy PMIO has 
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been used in order to cover a variety of fault scenarios. In the sensor fault estimator 

design the actuator fault signal is considered as an unknown input signal that can be 

compensated directly in the sensor fault estimation.  

Conversely, the effect of the sensor fault can be compensated in the estimated actuator 

fault. Hence, based on the architecture of Figure  5-1 the actuator and sensor fault 

estimation errors must each be bounded (as well as the 	�� time derivative of each 

fault). The controller is driven by the state estimates ( û) from the sensor fault PMIO. On 

the other hand, the actuator fault PMIO can be considered as an auxiliary analytical 

redundancy to compensate the effects of actuator faults. 

 

Figure  5-1: Actuator and sensor AFTTC scheme 

In fact, the detailed discussion presented in Chapter 4 gives good motivation for the use 

of the fault estimation and compensation approach. Furthermore, the inability of the 

adaptive control-based FTC to tolerate sensor faults means that fault estimation and 

compensation represents the all round most appropriate method for the sensor fault case 

of FTC. 

Section  5-2-1 describes a verification to the application of the proposed strategy for a 

non-linear system described via T-S fuzzy model.  

5-2-1. PMIO based state feedback FTC 

This Section presents the LMI-based design for a T-S fuzzy observer-based FTC 

strategy. The proposed strategy has the ability to tolerate simultaneous actuator and 

sensor faults online, according to the architecture illustrated in  Figure  5-1. 

Consider a T-S fuzzy model with actuator and sensor faults signals described as 

follows: 

�
� 

�
� 

�� �� 


 "�����T#� 

vú 
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� ! = "()) + 	$())� + �()),�			% = & + õ�,(																																	Ù ( 5-1) 

"()) ∈ ℛO∗O(= ∑ ℎ�	())"�c�PE ), $()) ∈ ℛO∗0(= ∑ ℎ�	())$�c�PE ), �()) ∈ ℛO∗�(=∑ ℎ�	())��c�PE ), & ∈ ℛ_∗O, and õ� ∈ $_∗� are the known system matrices.	,( ∈ $�, and 	,� ∈ $� are sensor and actuator faults, respectively. Z is the number of fuzzy rules and 

the term ℎ�	()) is the weighting function that depends on the premise (or scheduling) 

variable	()). 
Firstly, the aim is to tolerate the effects of sensor faults. An estimator is used to estimate 

the sensor fault signals and implicitly compensate the effects of these faults on the state 

estimate signals delivered to the controller input. Moreover, the robustness against 

actuator fault estimation errors effects have also been taken into account during this 

design stage. 

The proposed fuzzy controller has a state feedback structure. The control signal is given 

by: 

� = 5()) û − 5�()),V� ( 5-2) 

where 5()) ∈ ℛ0∗O(= ∑ ℎ�	())5�c�PE ) and 5�()) ∈ ℛ0∗�(= ∑ ℎ�	())5��c�PE ) are the 

controller gains, and  û 	∈ ℛO	is the estimated state vector. 

Using the design procedure presented in Section  4-3-1, the fuzzy system model in Eq. 

( 5-1) with augmented 	��	time derivative of the sensor fault 	(,()	 can be expressed as:  

� !� = "�()) � + $�())� + ��()),� + �,(�%� = &� �																																																												Ù ( 5-3) 

where �� = ,(�D�				(� = 1,2, … , 	)  ;  �!E = ,(�; �! @ = �E; 	�! { = �@;… ; �!� = ��DE 

 � = § ̅Ï �EÏ �@Ï �{Ï … . ��ÏªÏ ∈ ℛOÕ ,  "� =
xyy
yz" 0 … 0 00 0 … 0 00 = … 0 0⋮ ⋮ ⋱ ⋮ ⋮0 0 … = 0}~~

~� ∈ ℛOÕ×OÕ  

$� = h$ÕÏ0	0	 …0iÏ 			 ∈ ℛOÕ×0  ,  �� = h�ÕÏ0	0	 … 0iÏ 				 ∈ ℛOÕ×� � = h0	=		0	 … 0i 						 ∈ ℛOÕ∗�  , &� = §&̅	0		0	 …õ��ª 					 ∈ ℛ_∗OÕ  ,  9Õ = 9 + �	 



106 

 

Hence, the following T-S fuzzy PMIO is proposed to simultaneously estimate the 

system states and sensor faults: 

� û!� = "�()) û� + $�())� + ��()),V� + ü�())(%� − %û�)%û� = &� �																																																																																	Ù ( 5-4) 

where ,V� in Eq.( 5-4) is the actuator fault estimation signal delivered by the auxiliary 

actuator fault PMIO. 

Remark: The PMIO proposed in Section  4-3-1 is modified in this strategy by adding 

the term ��()),V�	which is, in turn, responsible for ensuring the robustness of this 

observer against the expected actuator fault. In fact, this modification offers a 

considerable advantage since it can ensure observer robustness even for sever actuator 

fault scenarios whilst the well known ./	framework can only deal with bounded faults 

simultaneously with degraded estimation performance.  

Hence, the state estimation error dynamics are obtained by subtracting Eq. ( 5-4) from 

Eq. ( 5-3) to yield: 

1!+ = ("�()) − ü�())&�)1+ + ��())1� + �,(� ( 5-5) 

The augmented system combining the fuzzy state space system in Eq. ( 5-1), the 

controller in Eq. ( 5-2), and the state estimation error ( 5-5) is given by: 

 Å!�(M) = NNℎ�	())ℎ[	())Ã"Æ�[ Å� +	�Ç�[:ÆÄc
[PE

c
�PE  ( 5-6) 

where: 

"Æ�[ = È"()) + $())5()) h−$())5()) 0i0 "�()) − ü�())&�É ,  Å� = È  ̅1+É	, 	:Æ = ×,V�1�,(�Ø  
�Ç�[ = È�()) − $())5�()) �()) 00 ��()) �É 

The objective here is to compute the gains ü�()), 5�())	89:	5())	such that the effect 

of the input		:Æ in Eq. ( 5-6) is attenuated below the desired level	Ê(, to ensure robust 

stabilization performance. 

Theorem 5-1: For t>0 and ℎ�	())ℎ[	()) ≠ 0, The closed-loop fuzzy system in ( 5-6) is 

asymptotically stable and the H∞ performance is guaranteed with an attenuation 
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level		Ê(, provided that the signal (:Æ) is bounded, if there exist SPD matrices ËE, Ë@, 
matrices .�� , Ì[ , and scalar	Ê( satisfying the following LMI constraints ( 5-7)&( 5-8): 

X�9����1	Ê(, ���ℎ	Mℎ8M:  ËE > 0, Ë@ > 0 ( 5-7) 

xy
yy
yy
yy
yzΨEE h−$�Ì[ 0i �� − $�ø�[ �� 0∗ −2LÎÕE 0 0 0∗ ∗ −2L= 0 0∗ ∗ ∗ −2L= 0∗ ∗ ∗ ∗ −2L=∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

� 

�
0 0 0 0 ËEDE&YÏL= 0 0 0 00 L= 0 0 00 0 L= 0 00 0 0 L= 0

Ψ�� 0 Ë@��� Ë@� 0∗ −Ê(= ∗ 0 0∗ ∗ −Ê(= 0 0∗ ∗ ∗ −Ê(= 0∗ ∗ ∗ ∗ −Ê(= }~
~~~
~~~
~~�
< 0 

( 5-8) 

where:  5[ = Ì[XEDE, ü�� = Ë@DE.��		, ÎE = ËEDE, ÎÕE = :�8��98�	(ÎE, =�×�) 
ΨEE = "�ÎE + ("�ÎE)Ï + $Ì[ + ($Ì[)Ï, Ψ�� = Ë@"�� + (Ë@"��)Ï − .��&� − (.��&�)Ï. 

Proof: From Theorem 5-1, to achieve the performance and required closed-loop 

stability of Eq.  ( 5-6) the following inequality must hold: 

Ô!( Å�) + 1Ê(  Å�Ï&YÏ&Y Å� − Ê(:ÆÏ:Æ < 0 ( 5-9) 

where Ô!( Å�) is the time derivative of the candidate Lyapunov function (Ô( Å�) = Å�Ï	ËÕ	 Å�		, oℎ1Z1	ËÕ > 0) for the augmented system in Eq. ( 5-6). 

Using Eq. ( 5-6), the term Ô!( Å�)	in inequality ( 5-9) becomes: 

Ô!( Å�) = NNℎ�	())ℎ[())Ã Å�Ï3"Æ�[Ï ËÕ 	+ ËÕ"Æ�[4 Å� +	 Å�ÏËÕ�Ç�[:Æ + :ÆÏ�Ç�[ÏËÕ Å�Äc
[PE

c
�PE  ( 5-10) 
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After simple manipulation, inequality ( 5-9) implies that following inequality ( 5-11) 

must hold: 

NNℎ�	())ℎ[())%ö Å�:Æ ÷Ï ¥"Æ�[Ï ËÕ 	+ ËÕ"Æ�[ + 1Ê( = ËÕ�Ç�[�Ç�[ÏËÕ −Ê(=¦ ö
 Å�:Æ ÷&

c
[PE

c
�PE < 0 ( 5-11) 

To be consistent with the augmented system in Eq. ( 5-6) ËÕ is structured as follows: 

ËÕ = ÈËE 00 Ë@É > 0 ( 5-12) 

after simple manipulation and using the variable change (.�()) = Ë@ü�())) the 

inequality ( 5-11) can be re-formulated as: 

Ú�[ =
xyy
yzÛEE ËEh−��5[ 	0	i ËE�� − ËE$�ø�[ ËE�� 0∗ Û@@ 0 Ë@��� Ë@�∗ ∗ −Ê(= 0 0∗ ∗ ∗ −Ê(= 0∗ ∗ ∗ ∗ −Ê(=}~

~~� < 0 ( 5-13) 

where: ÛEE = "�ËE + ("�ËE)Ï + ËE$�5[ + (ËE$�5[)Ï + n'(&YÏ&Y	 Û@@ = Ë@"�� + (Ë@"��)Ï − .��&� − (.��&�)Ï 

The matrix inequality given in ( 5-13) contains several nonlinear terms. A single step 

design formulation of the matrix inequality in ( 5-13) is proposed to avoid the 

complexity of separate design steps characterised by repeated iteration to determine the 

required gains. Hence, Ú�[ as shown in ( 5-13) becomes: 

Ú�[ = ÈÚEE ÚE@∗ Ú@@É ( 5-14) 

where ÚEE = ÛEE , ÚE@ =	 h−ËEh$�5[ 		0i ËE�� − ËE$�ø�[ ËE�� 0i, and Ú@@	is the 

lower right block 

To implement a change of variables in an LMI, the Congruence Lemma given in 

Section  3-2 is required for which the Ü matrix has the following form: 

Ü = :�8��98�	(ËEDE, Î)	; 	Î = :�8��98�(ÎÕE, =, =, =)	; 		ÎÕE = :�8��98�	(ËEDE, =�×�) 
Then Ü ∗ Ú�[ ∗ ÜÏ < 0	is also true and can be written as: 
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ÈËEDEÚEEËEDE ËEDEÚE@Î∗ ÎÚ@@Î É < 0 ( 5-15) 

Using the approximation given in Eq. ( 4-25) together with the inequality ( 5-15) and the 

Schur complement Theorem, then ( 5-15) holds if the following inequality holds: 

¥ËEDEÚEEËEDE ËEDEÚE@Î 0ÎÚE@ËEDE −2LÎ L=0 L= Ú@@
¦ < 0 ( 5-16) 

After substitution for ÚEE, ÚE@, ÚE@, Ú@@	from ( 5-14) and by simple manipulation, the 

following LMI is obtained: 

xy
yy
yy
yy
yz)�EE )�E@ )�E{ �� 0∗ −2LÎÕE 0 0 0∗ ∗ −2L= 0 0∗ ∗ ∗ −2L= 0∗ ∗ ∗ ∗ −2L=∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

� �
0 0 0 0 ËEDE&YÏL= 0 0 0 00 L= 0 0 00 0 L= 0 00 0 0 L= 0

Ψ��� 0 Ë@��� Ë@� 0∗ −Ê(= ∗ 0 0∗ ∗ −Ê(= 0 0∗ ∗ ∗ −Ê(= 0∗ ∗ ∗ ∗ −Ê(= }~
~~~
~~~
~~
�

< 0 

( 5-17) 

where: Ψ�EE = "�ËEDE + ("�ËEDE)Ï + $�5[ËEDE + ($�5[ËEDE)Ï ; Ψ�E@ = §−$�5[ËEDE 0ª 
Ψ�E{ = �� − $�ø�[ ; Ψ��� = Ë@"�� + (Ë@"��)Ï − .��&� − (.��&�)Ï 

using the change of variables	(ÎE = ËEDE, Ì[ = 5[ËEDE), the LMI condition ( 5-8) can be 

easily obtained. 

5-2-2. T-S fuzzy PMIO based actuator fault estimation 

The T-S fuzzy PMIO for the actuator fault estimation case is similar to the estimator 

derived in Section  5-2-1. However, in this methodology, the estimator must be designed 

to take good care of the effect of the sensor fault estimation error signal. Therefore, 

from the actuator fault PMIO stand point, the fuzzy model given in Eq. ( 5-1) becomes: 

� ! = "()) + 	$())� + �()),�			% = & + õ�1(																																	Ù ( 5-18) 
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where 1( is the sensor fault estimation error. Hence, following the same methodology 

for the PMIO sensor fault estimator design the system augmented by the 	�� derivative 

of the actuator fault	,�, is given as follows:  

� !� = "̅()) � + $Õ())� + �̅,��%� = &̅ � + õ�1(																							Ù ( 5-19) 

where  �� = ,��D�						(� = 1,2, … , 	)  ,  �!E = ,��; �! @ = �E; 	�! { = �@;… ; �!� = ��DE 

 � = § ̅Ï �EÏ �@Ï … . ��ÏªÏ ∈ ℛOÕ   ,  "̅ =
xyy
yz" 0 … 0 �())0 0 … 0 00 = … 0 0⋮ ⋮ ⋱ ⋮ ⋮0 0 … = 0 }~~

~� ∈ ℛOÕ×OÕ 

$Õ = h$Ï0	0	 … 0iÏ 		 ∈ ℛOÕ×0  ,  �̅ = h0		=		0	 … 0iÏ 		 ∈ ℛOÕ×j &̅ = h&	0		0	 … 0i 					 ∈ ℛ_∗OÕ  ,  9Õ = (9 + o) +�	 

Hence, the following T-S fuzzy PMIO is proposed to simultaneously estimate the 

system states and actuator faults: 

� û!� = "̅()) û� + $Õ())� + üÕ())(%� − %û�)%û� = &̅ û�																																																									' ( 5-20) 

Remark: Following the idea of the sensor fault fuzzy PMIO designed in Section  5-2-1, 

the inclusion of the estimation/compensation signal	,V(	into the actuator fault PMIO 

ensures the robustness against sensor faults. This is clear since the fuzzy PMIO in Eq. 

( 5-21) actually has the following form: 

� û!� = "̅()) û� + $Õ())� + üÕ())3& + õ�,( − & û − õ�,V(4%û� = &̅ û�																																																																																						'  

The state estimation error dynamics are obtained by subtracting Eq. ( 5-20) from Eq. 

( 5-19) to yield: 

1!+ = ("̅()) − üÕ())&̅)1+ − üÕ())õ�1( + �̅,�� ( 5-21) 

where 1+ is the state estimation error. 

Theorem 5-2: The T-S fuzzy PMIO given in ( 5-20) exists if 

Z89ø ó"� ��& 0 ô = 9 + ø											 ( 5-22) 

and 
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Z89ø ó�= − "�& ô = 9					∀� ∈ ℂ ( 5-23) 

Additionally, the PMIO attenuate the effect of the bounded 	�� actuator fault derivative 

and sensor fault estimation error on the augmented estimation error if there exist SPD 

matrix Ë = ËÏ > 0 and matrices .�� that minimise ÊY0� under the following LMI 

constraints: 

xyy
yzË"̅� + (Ë"̅�)Ï − .��&̅ − (.��&̅)Ï −.��õ� Ë�̅ &YÏ∗ −ÊY0�= 0 0∗ ∗ −ÊY0�= 0∗ ∗ ∗ −ÊY0�=}~~

~� < 0 ( 5-24) 

where the observer gains are obtained by: 

üÕ� = ËDE.�� ( 5-25) 

Proof: Conditions ( 5-22)&( 5-23) follow directly the observability requirements for the 

state and fault estimates. 

The state estimation error dynamics can be rewritten from ( 5-21) as follows: 

1!+ = Nℎ�	())Ã("̅� − üÕ�&̅)1+ + ��:̅Äc
�PE  ( 5-26) 

where :̅ = ö1(,��÷ and �� = §−üÕ())õ� �̅ª 
To attenuate the effect simultaneously of (1(&	,��) on the estimation error whilst also 

ensuring the system stability, the following inequality must hold: 

Ô!(1+) + 1ÊY0� 1+Ï	&YÏ&Y1+ − ÊY0�:̅Ï:̅ < 0 ( 5-27) 

where Ô!(1+) is the time derivative of the candidate Lyapunov function (Ô(1+) = 1+ÏË1+) 

and &Y	matrix is introduced to specify the performance output. Using Eq. ( 5-21), the 

inequality ( 5-27) becomes: 

Ô!(1+) = Nℎ�Ã1+Ï("̅�ÏË	 + Ë"̅� − ËüÕ�&̅ − (ËüÕ�&̅)Ï)1+ + 1+ÏË��:̅c
�PE+ :̅Ï��ÏË1+b ( 5-28) 
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The inequality ( 5-27) (in matrix form) after substituting Ô!( Å�) from Eq. ( 5-28) and 

using the variable change .�� = ËüÕ� becomes:  

Nℎ�	 Öö1+:̅ ÷Ï ×"̅�ÏË	 + Ë"̅� − .��&̅ − (.��&̅)Ï + 1ÊY0� &YÏ&Y Ë����ÏË −ÊY0�=Ø ö
1+:̅ ÷Ù

c
�PE < 0 

( 5-29) 

Clearly, by using the Schur Theorem inequality ( 5-24) is easily obtained from inequality 

( 5-29). This completes the proof. 

5-2-3. T-S fuzzy PMIO based state feedback within a tracking problem 

Owing to the challenges involved in the tracking problem within FTC framework ( see 

the investigation presented in Chapter 3), this Section presents the LMI-based design for 

T-S fuzzy PMIO based FTTC for nonlinear system subject to simultaneous actuator and 

sensor faults. 

By considering the T-S fuzzy model with actuator and sensor faults signals given in Eq. 

( 5-1), an augmented system consisting of the system in ( 5-1) and the integral of the 

tracking error 1� = *(%c − �%)	is defined as: 

� ̅! = "�()) ̅ +	$�())� + ��()),� + $�%c%Õ = &�	 ̅ + õ��,(																																												Ù ( 5-30) 

"�()) = È0 −�&0 "())É ,  ̅ = ö1� ÷ , $�()) = È 0$())É, ��()) = È 0�())É ,$� = È=0É 
&� = È=j 00 &É , õ�� = È 0õ�É 

 

where	� ∈ ℛj∗_ is used to define which output variable is considered to track the 

reference signal. The integral of the tracking error is used in the control to minimise the 

steady-state tracking error. The proposed control signal for the state feedback fuzzy 

control tracking problem is: 

� = 5�()) ̅
 − 5��()),V� ( 5-31) 

where 5�()) ∈ ℛ0∗(O¡j)(= ∑ ℎ�	())5��c�PE ) and 5��()) ∈ ℛ0∗�(= ∑ ℎ�	())5���c�PE ) 
are the controller gains, and  ̅
 	 ∈ ℛ(O¡j) is the estimated augmented state vector. 
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Hence, the system ( 5-30) with augmented sensor fault derivatives will become: 

� !� = "��()) � + $��())� + ���()),� + $��%c + ���,(�%� = &�� �																																																																																		Ù ( 5-32) 

where the matrix definitions are similar to those given under Eq. ( 5-3). The T-S fuzzy 

PMIO for the simultaneous states and sensor fault estimation has the following 

dynamics: 

� û!� = "��()) û� + $��())� + ���()),V� + $��%c + ü��())(%� − %û�)%û� = &�� �																																																																																																					Ù ( 5-33) 

Hence, the state estimation error dynamics are obtained by subtracting Eq. ( 5-33) from 

Eq. ( 5-32) to yield: 

1!+ = ("��()) − ü��())&��)1+ + ���())1� + ���,(� ( 5-34) 

The augmented system combining the augmented state space system ( 5-32), the 

controller ( 5-31), and the state estimation error ( 5-34) is given by: 

 Å!�(M) = NNℎ�	())ℎ[	())Ã"Æ�[� Å� +	�Ç�[�:ÆÄc
[PE

c
�PE  ( 5-35) 

where: 

"Æ�[� = È"�()) + $�())5�()) −$�())h5�()) 00×�i0 "��()) − ü��())&�� É ,  Å� = È  ̅1+É	, 	:Æ = xyy
z,V�1�%c,(�}~

~�  
�Ç�[� = È��()) − $�())5��()) ��()) $� 00 ���()) 0 ���É 

The objective here is to compute the gains ü��()), 5�())	89:	5��())	such that the effect 

of the input		:Æ in Eq. ( 5-35) is attenuated below the desired level	Ê�, to ensure robust 

stabilization performance. 

Theorem 5-3: For t>0 and ℎ�	())ℎ[	()) ≠ 0, The closed-loop fuzzy system in ( 5-35) is 

asymptotically stable and the H∞ performance is guaranteed with an attenuation 

level		Ê�, provided that the signal (:Æ) is bounded, if there exist SPD matrices Ë�E, Ë�@, 
and matrices .���, Ì�[ , and scalar	Ê� satisfying the following LMI constraints (37&38): 

X�9����1		Ê� , ���ℎ	Mℎ8M:  Ë�E > 0, Ë�@ > 0 ( 5-36) 
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xyy
yyy
yyy
yyy
zΨEE h−$��Ì�[ 0i ��� − $��ø��[ ��� $� 0∗ −2LÎÕE 0 0 0 0∗ ∗ −2L= 0 0 0∗ ∗ ∗ −2L= 0 0∗ ∗ ∗ ∗ −2L= 0∗ ∗ ∗ ∗ ∗ −2L=∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗

� 

�

0 0 0 0 0 Ë�EDE&Y�ÏL= 0 0 0 0 00 L= 0 0 0 00 0 L= 0 0 00 0 0 L= 0 00 0 0 0 L= 0
Ψ�� 0 Ë�@���� 0 Ë�@��� 0∗ −Ê�= ∗ 0 0 0∗ ∗ −Ê�= 0 0 0∗ ∗ ∗ −Ê�= 0 0∗ ∗ ∗ ∗ −Ê�= 0∗ ∗ ∗ ∗ ∗ −Ê�= }~

~~~
~~~
~~~
~�

< 0 

( 5-37) 

where: 5�[ = Ì�[Î�EDE, ü��� = Ë�@DE.���		, Î�E = Ë�EDE, ÎÕ�E = :�8��98�	(Î�E, =�×�) 
ΨEE = "��ÎE + ("��ÎE)Ï + $��Ì�[ + ($��Ì�[)Ï Ψ�� = Ë�@"��� + (Ë�@"���)Ï − .���&�� − (.���&��)Ï. 

Proof: From Theorem 3, to achieve the performance and required closed-loop stability 

of ( 5-13) the following inequality must hold: 

Ô!( Å�) + 1Ê�  Å�Ï&Y�Ï &Y� Å� − Ê�:ÆÏ:Æ < 0 ( 5-38) 

By following the steps of proof of Theorem 5-1 introduced in Section  5-2-1 the LMI of 

Theorem 5-3 can be easily obtained. 

Remark: The PMIO proposed in Section  5-2-2 can be used as an auxiliary analytical 

redundancy to provide estimation of the actuator fault. 

Remark: It should be noted that the fuzzy control or observer designer does not have 

freedom to assign the local system closed-loop poles anywhere in the stable complex 

plane. This is due to the global stability constraint requirement ( Theorems 5-3 & 5-1 ) 

which may led to infeasible solution for some regions in the stable complex plain. The 
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consequence of this is that the observer-based T-S state feedback control system suffers 

a major drawback in that the observer dynamics may not be assigned freely to satisfy 

closed-loop performance requirements ( i.e. it is difficult to recover the Separation 

Principle). A proposal, based on the use of TSDOFC, is developed in Chapter 6 to 

overcome this limitation. 

5-3. Simulation example 

PMIO based FTC with simultaneous actuator and sensor fault 

The LMI-based fuzzy control proposed in Theorem 5-1 is applied to the following 4th 

order nonlinear system adapted from (Tanaka and Wang, 2001): 

�xyy
yyz
 !E !@ !{ !|}~~
~~� =

xyy
yyz
0 1 ëß++�+� 01 2 0 01  E@ 0 00 0 ëß++�+� 0}~~

~~�
xy
yy
z E { { |}~

~~
� +

xy
yy
z E@ + 1000 }~

~~
� �(M)

% = ¥ E { |¦																																																																			 de
ee
f
eee
g

 ( 5-39) 

the states  E and  { are assumed to be bounded according to: 

 E ∈ h−,, ,i,			 { ∈ h−�, �i  

where , and � are positive values. Based on the concept of local sector nonlinearity (see 

description in Section  2-3-2), the nonlinear terms can be represented as:  

��E =  E@ = XE ∗ �EE +X@ ∗ �E@					�@ = sin  { { = �E ∗ �@E +�@ ∗ �@@Ù ( 5-40) 

where �EE = ,@ and �E@ = 0 are the maximum and minimum values of �E, and  �@E = 1 and  �@@ = ëß+..  are the maximum and minimum values of �@. Since 

�XE +X@ = 1�E +�@ = 1	' ( 5-41) 

By solving Eqs. ( 5-39)&( 5-40), the fuzzy membership functions obtained are as 

follows: 
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�
XE = +n�/�																																																		X@ = 1 − +n�/�																																										�E =  . ëß++�D+� ëß+.+�(.Dëß+.) ,					 { ≠ 01,																											 { = 0�								
�@ =  1 − . ëß++�D+� ëß+.+�(.Dëß+.) ,					 { ≠ 00,																																			 { = 0�

										
dee
ef
eee
g

 ( 5-42) 

Hence the overall fuzzy model is given by: 

¥ !E !@ !{ !|¦ = NNX��[ %xyy
z0 1 �@[ 01 2 0 01 �E� 0 00 0 �@[ 0}~~

� ¥ E @ { |¦ + ¥�E� + 1000 ¦ �(M)&@
[PE

@
�PE  ( 5-43) 

In the following simulation results, the parameter values , = 0.8 and � = 0.6 have been 

used. First the importance of using fuzzy PMIOs (two observers for the sensor actuator 

fault cases) proposed in this strategy in comparison with the single integral observer 

(PIO) is illustrated in Figure  5-2. It is clear from this simulation result that the fault 

estimation accuracy is highly degraded whenever the first time derivative of the fault is 

no longer equal zero. This in turn affects the closed-loop performance since the 

expected fault tolerance is based on the fault estimation and compensation concept. On 

the other hand, the fault estimation signals in Figure  5-2 show the advantage of using 

the PMIOs to obtain accurate estimation even when the first time derivative of the fault 

signal is not equal to zero. 

 
Figure  5-2: Comparison between single integral and multiple integral observers based 

fault estimation 
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The initial conditions for the nonlinear system states and the two PMIOs are selected as 

follows: 

��%�M1�	�9�M�8�	�M8M1� = h0.025 0 0.1 0i,																											"�M�8M�Z	ËX=0 = h0.050 0 0 0 0 0i,					�19��Z	ËX=0						 = h0.200 0 0.2 0 0 0.1i, � 
By solving the LMI condition (8), the fuzzy controller gains are 

�
5E = h−8.3117 −50.7059 12.8933 3.5747i,5@ = h−8.3132 −50.6807 12.8833 3.5648i,5{ = h−8.6720 −53.1586 13.4504 3.7622i,5| = h−8.6679 −53.1493 13.4573 3.7622i,

� 
actuator fault PMIO gains are 

�ü�E =
xyy
yyz
19.2301 2.3456 3.4605158.4437 64.8806 14.436210.6928 17.9279 −2.71910.5607 1.3972 1.1668−17.2415 −7.6481 −1.7211−44.3227 −19.2131 −4.4765}~

~~~
�� , 	�ü�@ =

xyy
yyz
19.2048 2.2658 2.9248158.4016 64.9429 12.730410.6065 17.8819 −1.48700.5108 1.2745 1.2379−17.2434 −7.6520 −1.5006−44.3227 −19.2253 −3.9219}~

~~~
��, 

�ü�{ =
xyy
yyz
20.6456 3.2829 0.4929156.8523 62.6973 −6.67862.2511 13.8381 −2.71920.6295 1.3953 1.2382−17.1933 −7.1979 0.5039−44.0786 −18.1954 1.4195 }~~

~~�� , �ü�| =
xyy
yyz
20.6340 3.1579 0.3749156.9072 62.5444 −5.51882.2350 13.9474 −1.91620.6051 1.3505 1.3405−17.1997 −7.1870 0.3579−44.0935 −18.1556 1.0647 }~~

~~��, 
and sensor fault PMIO gains are 

�üÕE =
xyy
yyz
7.8949 10.0200 66.52179.1832 77.6580 904.29614.2756 10.5964 181.00950.0105 0.9358 17.2317−0.8690 5.4975 −755.4249−0.0005 0.7887 −163.3622}~

~~~
�� , �üÕ@ =

xyy
yyz
7.8579 9.9219 81.15618.7015 7.6053 990.18144.2936 10.5451 185.32930.0098 0.8356 16.7603−0.6734 5.4707 −826.11790.0095 0.7947 −168.5356}~

~~~
�� 

�üÕ{ =
xyy
yyz
10.5051 4.6865 93.695533.9894 32.9176 514.59491.0803 6.1056 144.87910.0059 0.9433 17.30320.2912 3.5326 −762.19720.0287 0.7481 −162.4768}~

~~~
�� , �üÕ| =

xyy
yyz
10.5005 4.5811 97.609433.7719 33.4925 473.98561.0804 6.0868 149.10700.0054 0.8428 16.80980.1886 4.0011 −828.14320.0244 0.7747 −166.8320}~

~~~
��. 

The obtained attenuation coefficients are Ê( = 1.1812 and ÊY0� = 0.832.  

In this simulation, the actuator fault signal affects the nonlinear system in the same 

direction as the control	�(M). The additive sensor fault signal affects the second 

measurement. The proposed actuator and sensor fault signals and their estimates are 

given in Figure  5-3. 
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(a) 

 
(b) 

 
(c) 

Figure  5-3: Fault and their estimation (a) sensor fault, (b) Actuator fault, and (c) 

zoomed sensor fault estimation 

However, the estimation accuracy shown in Figure  5-3 is obtained provided that the two 

simultaneous faults are estimated and compensated online. For example, if the sensor 
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fault has not been compensated the actuator fault estimation accuracy will degrade as 

shown in Figure  5-4. 

 

Figure  5-4: Inaccurate actuator fault estimation due to uncompensated sensor fault 

Moreover, the effect of the uncompensated simultaneous actuator and sensor fault 

signals on the system states and the weighting functions are shown in Figure  5-5.  

 
(a) 

 
(b) 

Figure  5-5: The effect of faults on (a) weighting functions and (b) states. 
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The uncompensated fault signals cause the fuzzy controller to deviate away from the 

nominal system behaviour. Hence, the fuzzy control lacks the ability to drive the 

nonlinear system correctly to the equilibrium.   By using the estimation provided by the 

two PMIOs, the simultaneous faults can be compensated online and the nominal system 

behaviour is maintained. Figure  5-6 shows weighting functions and system states with 

online fault compensation. 

 
(a) 

 
(b) 

Figure  5-6: Effects of the fault compensation on (a) weighting functions and (b) states  

PMIO based FTTC with simultaneous actuator and sensor faults 

In this simulation subsection, the nonlinear inverted pendulum model is used as the case 

for the LMI-based design procedure for PMIO FTTC given in Theorem 5-3. The T-S 

fuzzy model of the inverted pendulum derived in Section (2.3.1.2) is used. The fuzzy 

model represents the nonlinear model exactly in the state intervals  E ∈ h−â, âi 
and	 { ∈ h−�, �i, where  E and  { are the pendulum angular position and angular 

velocity, respectively. Since  { is an unmeasurable signal, any fuzzy controller and/or 
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observer design based on the fuzzy model derived in Section (2.3.1.2) must consider the 

estimation of the variable	 {. However, to avoid the complexity of the unmeasurable 

premise variable design problem, an uncertain fuzzy T-S model can be derived so that 

only  E is used as the premise variable. 

By rewriting the nonlinear model of inverted pendulum given in Section (2.3.1.2) as 

follows: 

xyy
yyz
 !E !@ !{ !|}~~
~~� =

xyy
yz 0 0 1 00 0 0 1� (�O(+n)|_ {⁄ D0_�(��((+n))� n�n 0 0 0D0�� (�O(@+n)	 @⁄| {⁄ D0�(��((+n))� E+n 0 0 0}~~

~�	
xy
yy
z E @ { |}~

~~
� 		+

xyy
yz 00D� ��((+n)|_ {⁄ D0_�(��((+n))�|� {⁄| {⁄ D0�(��((+n))� }~

~~� (�
+ �� {@ ��9( E)) 

( 5-44) 

The term (�� {@ ��9( E)) is now considered as the model uncertainty. Hence, the four 

nonlinear terms defined in Eq. ( 2-22) are reduced to three terms defined as follows: 

��E = 1 (4� 3⁄ − ��8(���( E))@)	⁄�@ = ��9( E)  E⁄ 																																�{ = ���( E)																																										s ( 5-45) 

The maximum and minimum values of each nonlinear term within the specified 

intervals are calculated as shown below: 

Max Min �EE = E|_ {⁄ D0_� �E@ = E|_ {⁄ D0_�(��((1))� �@E = 1 �@@ = (�O(1)1  �{E = 1 �{@ = ���(â) 
From the maximum and minimum values, the nonlinear system can be locally 

represented in term of membership functions and maximum and minimum values as 

follows: 

��E = XE ∗ �EE +X@ ∗ �E@�@ = �E ∗ �@E + �@ ∗ �@@�{ = �E ∗ �{E + �@ ∗ �{@ s ( 5-46) 

Since: 

�XE +X@ = 1			�E + �@ = 1				�E + �@ = 1				 								< ( 5-47) 

By solving Eqs. ( 5-46)&( 5-47), the membership functions can be obtained as: 
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XE = �nD�n��nnD�n� X@ = �nnD�n�nnD�n� �E = ��D�����nD��� �@ = ��nD����nD��� �E = ��D�����nD��� �@ = ��nD����nD��� 
Hence, the T-S fuzzy model for the inverted pendulum can be expressed as: 

xyy
yyz
 !E !@ !{ !|}~~
~~� = NNNX��[��

�
��xyy
z 0 0 1 00 0 0 1��E��@[ 0 0 0−�8���E��@[�{_ 0 0 0}~~

�
xy
yy
z E @ { |}~

~~
� + xy

yz 00−8�E��{_|{8��E� }~
~� (�@

�PE
@

[PE
@

�PE

+�� {@ ��9( E))
�
�� 

( 5-48) 

The fuzzy model derived here is an approximation of the fuzzy model given in Section 

(2.3.1.2). However, the advantages are (1) the model avoids the unmeasurable state 

variable  { and (2) the number of fuzzy models is reduced to 8 (instead of 16). 

The initial conditions for the nonlinear inverted pendulum states and the two PMIOs are 

selected as follows: 

��%�M1�	�9�M�8�	�M8M1� = h0.5 0.25 0.1 0i,																				"�M�8M�Z	ËX=0 = h0.1 0 0 0 0 0.5i,�19��Z	ËX=0						 = h0.2 0 0 0 0 0.1i, � 
By using the LMI conditions given in Theorem 5-3, the following controller gains are 

computed as: 

�
5�E = h−153.12 899.99 274.72 234.74 199.12i,5�@ = h−263.77 1509.8 470.11 393.25 338.15i,5�{ = h−148.30 871.03 266.61 229.32 193.82i,5�| = h−249.64 1434.1 446.26 376.05 322.04i,5�� = h−160.34 939.39 288.01 246.96 209.14i,5�� = h−261.44 1499.3 467.10 392.91 336.87i,5�� = h−151.25 905.04 272.96 239.39 199.91i,5�� = h−252.78 1447.5 452.19 381.65 326.64i,

� 

The actuator fault PMIO gains are computed as: 

�üÕE =
xyy
yyz
17.9719 1.3713 1.98460.4382 2.3846 2.562676.5690 3.2669 −10.168−3.1953 3.6966 21.806113.2098 130.8860 880.2527−35.2113 96.9756 690.5696}~

~~~
�� , �üÕ@ =

xyy
yyz
18.1721 2.0073 2.11160.4201 2.4031 2.528177.6079 6.3168 −7.2430−3.0699 3.7913 21.744814.2634 127.9413 872.6894−35.4459 96.1540 687.1585}~

~~~
��, 



123 

 

�üÕ{ =
xyy
yyz
18.0598 1.7171 2.28520.4246 2.4510 2.562176.0742 4.5639 −8.8825−3.2354 3.7396 21.706710.4977 137.3737 879.9821−37.8209 100.2492 689.7086}~

~~~
�� , �üÕ| =

xyy
yyz
18.2172 1.7894 2.04620.4208 2.5173 2.546276.8136 5.0621 −7.4982−2.9777 4.1167 21.771515.0317 142.2631 871.7578−34.7599 106.1864 686.8007}~

~~~
��, 

�üÕ� =
xyy
yyz
17.7729 3.4114 3.10230.3812 2.6481 2.649075.3755 11.9369 −4.5554−3.6183 3.3087 20.7544−4.8801 154.4795 885.1644−49.5632 100.5654 686.2338}~

~~~
�� , �üÕ� =

xyy
yyz
18.2538 2.4544 2.74270.3831 2.7310 2.641077.3748 7.3975 −4.1088−3.3913 4.0703 20.9993.0889 176.7167 885.3523−44.5795 120.5031 689.1834}~

~~~
��, 

�üÕ� =
xyy
yyz
16.7756 7.2426 4.48060.2255 3.0719 2.723971.1056 27.7907 1.3567−4.3688 3.5923 20.4463−39.4969 186.4794 870.6603−72.6281 108.9144 673.5661}~

~~~
�� , �üÕ� =

xyy
yyz
18.5032 1.7586 4.28230.2445 2.9285 2.742278.2673 4.3304 2.0990−4.1622 4.3161 21.2635−29.4008 183.7983 886.4603−70.0404 127.0138 683.1295}~

~~~
��, 

The sensor fault PMIO gains are computed as: 

�ü��E =
xyy
yyy
z 8.8561 0.0000 −1.0000 0.00000.0583 26.3257 −17.3989 −0.83460.0403 0.0056 38.4432 0.60340.0273 313.7855 −472.2179 −5.49940.7996 −1.3776 624.8847 3.7741−10.5753 −0.3445 −7693.710 102.9326−0.9268 −0.0173 −669.9160 9.2763 }~~

~~~
�
�,

�ü��@ =
xyy
yyy
z 8.9054 0.0000 −1.0000 0.00000.0551 26.3548 −15.6177 −0.81350.0402 −0.0058 38.4279 0.6034−0.0479 315.0935 −420.8164 −4.82030.7991 −1.7791 623.9417 3.7787−10.5595 0.3876 −7692.757 102.9250−0.9264 0.0186 −669.8670 9.2762 }~~

~~~
�
�,

�ü��{ =
xyy
yyy
z 8.9569 0.0000 −1.0000 0.00000.0592 26.3529 −17.3660 −0.83490.0401 0.0056 38.4443 0.60350.0451 313.4076 −471.4646 −5.51720.7969 −1.2712 624.9500 3.7821−10.5696 −0.3488 −7693.815 102.9202−0.9268 −0.0174 −669.9162 9.2763 }~~

~~~
�
�,

�ü��| =
xyy
yyy
z 9.0106 0.0000 −1.0000 0.00000.0561 26.3829 −15.5830 −0.81390.0402 −0.0058 38.4290 0.6036−0.0340 314.7410 −420.0204 −4.83820.8037 −1.6927 624.0101 3.7866−10.5654 0.3909 −7692.857 102.9130−0.9265 0.0187 −669.8669 9.2762 }~~

~~~
�
�, 
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�ü��� =
xyy
yyy
z 9.0665 0.0000 −0.9999 0.00000.0631 26.3867 −16.2456 −0.82470.0369 0.0017 37.9769 0.60160.2401 314.5361 −436.8190 −5.61240.6407 −1.5188 609.2364 4.0280−9.7519 −0.0293 −7452.754 108.7210−0.9038 −0.0058 −663.3437 9.4357 }~~

~~~
�
�, 

�ü��� =
xyy
yyy
z 9.1249 0.0000 −0.9999 0.00000.0629 26.4071 −15.3790 −0.81940.0368 −0.0018 37.9732 0.60180.2401 315.2448 −411.0081 −5.42710.6404 −1.4584 609.0040 4.0392−9.7425 0.0493 −7452.599 108.7191−0.9037 0.0064 −663.3252 9.4358 }~~

~~~
�
�, 

�ü��� =
xyy
yyy
z 9.1858 0.0000 −0.9999 0.00000.0641 26.4181 −16.2051 −0.82520.0367 0.0018 37.9796 0.60190.2589 314.3297 −435.9555 −5.64230.6404 −1.4191 609.4206 4.0507−9.7476 −0.0309 −7452.672 108.7178−0.9038 −0.0058 −663.3404 9.4360 }~~

~~~
�
�, 

�ü��� =
xyy
yyy
z 9.2493 0.0000 −0.9999 0.00000.0640 26.4398 −15.3393 −0.82000.0366 −0.0018 37.9759 0.60210.2597 315.0702 −410.1786 −5.46050.6399 −1.3767 609.1952 4.0629−9.7381 0.0514 −7452.503 108.7162−0.9036 0.0065 −663.3215 9.4361 }~~

~~~
�
�, 

The corresponding attenuation coefficients are Ê� = 1.5812 and	ÊY0� = 1.032.  

In this simulation subsection, the additive actuator fault signal affects the nonlinear 

system in the same direction as 	�(M) and the additive sensor fault signal affects the 

measured cart velocity ( |). The proposed actuator and sensor fault signals and their 

estimates are given in Figure  5-7. Both signals have been selected so that their slope 

differs with time in order to clarify the fault estimation accuracy of each PMIO. 

In a similar manner to the simulation results given in Figure  5-3, here the estimation 

accuracy shown in Figure  5-7 is obtained provided that the two simultaneous faults are 

estimated and compensated online. For example, if the sensor fault has not been 

compensated or equivalently the PIO is used instead of the proposed PMIO the actuator 

and sensor fault estimation accuracy will degrade, as shown in Figure  5-8 for different 

scenarios. 
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(a) 

 

(b) 

 

(c) 

Figure  5-7: Faults and their estimates: (a) sensor fault, (b) Actuator fault, and (c) 
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(a) 

 

(b) 

 

(c) 

Figure  5-8: The advantage of PMIO over PIO for  (a) actuator fault estimation, (b) 

sensor fault estimation, and (c) inaccurate actuator fault estimation due to the 

uncompensated sensor fault. 
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Moreover, the effect of the uncompensated simultaneous actuator and sensor fault 

signals on tracking performance is shown in Figure  5-9. The uncompensated fault 

signals cause the  fuzzy controller to deviate away from the nominal system behaviour, 

so that there is a loss of  ability to drive the tracking error to zero. 

 

Figure  5-9: The effect of uncompensated actuator and sensor faults on tracking 

performance 

By using the estimation provided by the two PMIOs, simultaneous faults can be 

compensated online and the nominal system behaviour maintained. Figure  5-10 shows 

the tracking performance with online fault compensation. 

 

Figure  5-10: Tracking performance with actuator and sensor faults compensated 

5-4. Conclusions 

In this Chapter, an LMI-based design for simultaneous actuator and sensor AFTC of 

nonlinear systems has been presented for both tracking and regulator control problem 

within T-S fuzzy framework. 
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Results show that the proposed T-S fuzzy simultaneous actuator and sensor AFTC 

strategy has the capability to take into account some of the most challenging cases of 

AFTC. (1) It can maintain the closed-loop system performance and keep the nominal 

controller unchanged even in cases for which the sensor and actuator faults affect the 

system simultaneously. (2) It can overcome the effects of time-varying actuator and/or 

sensor faults with bounded 	�� time derivative using the concept of fault estimation and 

compensation. (3) The proposed interaction between the dedicated observers enhances 

the robustness of each of the actuator and sensor fault estimation signals against the 

alternative fault. Furthermore, the limitation of using an iterative form of static output 

feedback control design is obviated completely. These factors represent significant 

contributions to the development of the subject of AFTC. 

The main challenge that has arisen in this proposed method is need to recover the 

separation principle ( see page 116 ). Although the model uncertainty has not been 

considered in this Chapter, the separation principle still represents the main challenge 

for the use of T-S fuzzy observer-based methods even when the controller and observer 

can be designed separately. There is no guarantee to ensure that the observer dynamics 

can be faster than controller dynamics because of the global stability constraints, i.e. the 

controller and the observer eigenvalues cannot be assigned freely in the stable complex 

plane. It thus follows that the separation principle cannot be recovered within a T-S 

fuzzy observer-based state estimate feedback framework. This fact motivates the 

proposal, in Chapter 6 for a more general way to overcome this limitation in the light of 

the architecture proposed in this Chapter. 
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Chapter 6 : Simultaneous actuator and sensor fault 

tolerant TSDOFC of nonlinear systems
2
 

6-1. Introduction 

The goal of this Chapter is to describe a novel FTTC strategy based on robust fault 

estimation and compensation of simultaneous actuator and sensor faults. The strategy 

provides an enhancement to the fuzzy PMIO based state feedback proposed in Chapter 

5. This works by decoupling the dependence of the controller on the state estimates. 

Based on the investigation introduced in Chapter 3, within the framework of FTC the 

challenge is to develop an FTTC design strategy for nonlinear systems to tolerate 

actuator and sensor faults. Hence, only the tracking control problem is considered in this 

Chapter using the architecture proposed in Chapter 5. The proposed strategy involves 

the design of (i) a TSDOFC responsible for minimizing the tracking error between the 

reference and system output signals during nominal operation, and (ii) two T-S fuzzy 

PPIOs dedicated to provide separate estimates of the actuator and sensor faults for the 

purpose of fault compensation. The main contributions of this Chapter compared with 

the literature are: 

1. A proposal for an LMI-based design for FTTC of nonlinear systems affected by 

simultaneous actuator and sensor faults using the estimation and compensation 

concept. 

2. A proposal for an LMI-based design of robust T-S fuzzy PPIO for both the actuator 

and sensor fault cases. Each of the T-S estimators are available separately with an 

important consequence on robust ü@ norm fault estimation, as well as on the use of 

the estimation and compensation concept to enhance the robustness of the T-S fuzzy 

PPIO against simultaneous actuator and sensor faults. 

                                                 
2Part of the work (only sensor fault) presented in this chapter has been published in: 

Sami, M. & Patton, R. J. 2012c. Fault tolerant output feedback tracking control for nonlinear systems via T-S fuzzy modelling. 

8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Mexico City, Mexico, 999-1004. 29-31 

Aug. 

The whole material presented in this Chapter has been submitted to the Int. J. of Adapt. Control and Signal Processing.  
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The non-linear inverted pendulum example with time-varying cart position reference is 

used to illustrate the proposed FTTC strategy. Both additive and parametric fault 

scenarios are considered for simultaneous actuator and sensor faults. The tracking 

system is introduced (a) to induce significant non-linearity in the inverted pendulum 

system and (b) to confirm the importance of tolerance to sensor faults in this type of 

control problem. 

The Chapter is organized as follows. In Section  6-2 the problem description and 

motivation are defined. Section  6-3 presents the LMI-based design of the actuator fault 

fuzzy PPIO, the sensor fault PPIO, and the TSDOFC. In Section  6-4 the design 

approach is tested via the nonlinear inverted pendulum example. Finally, Section  6-5 

concludes the Chapter. 

6-2. Problem description and motivation 

The T-S fuzzy controller and T-S fuzzy observer designs are model-based design 

methods and hence the first design step is the derivation of the fuzzy model via the 

methods presented in Section  2-3. In the fuzzy control design, each “control rule” is 

designed from the corresponding rule of a T-S fuzzy model and the fuzzy controller 

design problem is to determine the local feedback gains within a parallel distributed 

compensation structure (Tanaka and Wang, 2001). Although the fuzzy controller is 

constructed using the local design structure, the feedback gains should be determined 

using global design conditions. It is reported in (Tanaka and Wang, 2001) that for the 

fuzzy state estimate feedback “the global design conditions are needed to guarantee the 

global stability and control performance”. Hence, the fuzzy control designer does not 

have freedom to assign the local system closed-loop poles anywhere in the stable 

complex plane. Therefore, the observer-based T-S state feedback control system suffers 

a major drawback in that the observer dynamics may not be assigned freely to satisfy 

closed-loop performance requirements.  

This inherited problem of T-S the fuzzy observer-based state feedback control method 

motivates us to introduce this Chapter in which the control strategy presented in Chapter 

5 has been modified in order to completely decouple the controller design from the 

redundant observers. The TSDOFC is proposed in this strategy to overcome the 

limitation of T-S observer-based state feedback control. 
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6-3. The proposed fuzzy AFTTC strategy 

This Section describes the proposed strategy for active actuator and sensor fault tolerant 

TSDOFC. The TSDOFC is designed to force specific outputs to follow a given 

reference input (in both faulty and fault-free cases) with robustness against exogenous 

inputs/outputs (actuator/sensor fault estimation error). The T-S PPIOs are used as a 

form of analytical redundancy responsible for robustly compensating the effects of 

actuator and sensor faults from the system inputs and outputs and hence ensure the 

robustness of the overall closed-loop system. This strategy can be considered as a 

“fault-hiding” approach to FTTC where the main aim of fault-hiding is to maintain the 

same controller in both faulty and fault-free system cases. 

The design problem is formulated via LMI with the ability to govern the performance of 

controller and observers separately by assigning their eigenvalues in specific LMI 

region of the complex plan. Moreover, the observers are capable of sufficiently 

estimating fast and time varying actuator and/or sensor fault scenarios with bounded 

first order time derivatives. The schematic diagram shown in Figure  6-1 illustrates the 

proposed strategy. 

 

Figure  6-1: Active actuator and sensor FTC scheme 

6-3-1. PPIO based sensor fault estimation  

Consider a T-S fuzzy model with actuator and sensor fault signals described as follows: 

� ! = "()) + 	$())� + �()),�			% = & + õ�,(																																	Ù ( 6-1) 

"()) ∈ ℛO∗O(= ∑ ℎ�	())"�c�PE ), $()) ∈ ℛO∗0(= ∑ ℎ�	())$�c�PE ), �()) ∈ ℛO∗�(=∑ ℎ�	())��c�PE ), & ∈ ℛ_∗O, and õ� ∈ $_∗� are the known system matrices,	,( ∈ $�, and 

�
� 

�
� 

�� �� 


 

Reference 
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	,� ∈ $� are sensor and actuator faults, respectively. Z is the number of fuzzy rules and 

the term ℎ�	�)� is the weighting function that depends on the measured premise 

variable	�)�.  
To avoid the direct multiplication of the sensor and/or noise by the observer gain, an 

augmented system state with output filter states is constructed (Tan and Edwards, 

2003). The filtered output is given as follows: 

 !( = −"( ( +	"(& + "(õ�,( ( 6-2) 

where −"( ∈ $_∗_	is a stable matrix. The augmented state system is given as: 

� ̅! = "̅�)� ̅ + $Õ�)�� + �Õ�)�,� + õ��,(%Õ = &̅	 ̅																																																									Ù ( 6-3) 

"̅�)� = È"�)� 0"(& −"(É ; 	  ̅ = È   (É ; 	$Õ�)� = È$�)�0 É 
	�Õ�)� = È��)�0 É õ�� = È 0"(õ�É ; 	 &̅ = [0 =_]  

As illustrated in Figure  6-1 the proposed control strategy requires the estimation of the 

fault effects on the closed-loop system. To ensure the ability to deal with time-varying 

fault scenarios for which the first time derivative of each fault is assumed bounded, the 

T-S fuzzy PPIO presented in Section  4-4 is used.  

Assume that the signal (,(! ) is bounded. Then the following fuzzy observer is proposed 

to simultaneously estimate the system states and the sensor fault: 

� ̅
! = "̅�)� ̅
 + $Õ�)�� + �Õ�)�,V� + õ��,V( + üÕ�)��&̅ ̅ − &̅ ̅
�,V!(�M� = *(�)�&̅�1!+ + 1+�																																																											< ( 6-4) 

where  ̅
 ∈ ℛO¡_ is state estimation vector	 ̅, ,V�	is the actuator fault estimate delivered 

by another PPIO dedicated for actuator fault estimation, üÕ�)� ∈ ℛ�O¡_�×_ and *(�)� ∈ℛ�×_ are the observer gains to be designed, and 1+	is the state estimation error defined 

as: 

1+ =  ̅ −  ̅
 ( 6-5) 
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Remark: The T-S fuzzy PPIO proposed in Eq. ( 6-4) introduce an advantageous 

modification to the T-S fuzzy PPIO given in Section  4-4 by feeding the actuator fault 

estimation signal into the sensor fault T-S fuzzy PPIO in order to ensure the robustness 

against actuator faults. 

Clearly, the augmented system is observable provided that the original system is 

observable. This is easily proved from the observability condition: 

Z89ø ��= − " 0"(& �= + "(0 = � = 9 + �			,∀� ∈ ℂ 

Additionally, the rank condition	�Z89ø3&̅õ��4 = �� is also achieved since &̅õ�� = "(õ� 

and "( is invertible, then		Z89ø3&̅õ��4 = Z89ø3"(õ�4 = �. 

The state estimation error dynamics are obtained by subtracting Eq. ( 6-4) from Eq. ( 6-3) 

to yield: 

1!+ = �"̅�)� − üÕ�)�&̅�1+ + õ��1�( + �Õ�)�1�2  ( 6-6) 

Let 1�( ∈ ℛ� and 1�2 ∈ ℛ� are the sensor and actuator faults estimation errors defined 

as: 

	� 1�( = ,( − ,V(1�2 = ,� − ,V�							< ( 6-7) 

Using Eqs. ( 6-4), ( 6-6), &( 6-7) the fault estimation error dynamics are as follows: 

1!�( = ,!( − *(�)�&̅�"̅�)� − üÕ�)�&̅ + =�1+ − *(�)�&̅õ��1�( − *(�)�&̅�Õ�)�1�2 ( 6-8) 

The augmented state estimator will then be of the following form: 

1̃!��M� = "Æ�), )�1̃� +	�Ç�), )��̃ ( 6-9) 

where: 

"Æ�), )� = È"̅�)� − üÕ�)�&̅ õ��−*(�)�&̅�"̅�)� − üÕ�)�&̅ + =� −*(�)�&̅õ��É ,	1̃� = È1+1�(É 
�Ç�), )� = È�Õ�)� 0−*(�)�&̅�Õ�)� =É , �̃ = È1�2,!( É 

The objective now is to compute the gains üÕ�)� and *(�)� such that the effect of 

exogenous input		�̃ on the estimation error is attenuated below the level Ê( to ensure 
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robust estimation performance. The location of the closed-loop system poles affects the 

estimation transient response. Hence, the sensor fault observer can be designed to 

constrain the estimation error system eigenvalues to lie globally in a complex region. 

This is defined by merging different eigenvalue constraints to produce a 3�4, ç, �, â� 
LMI region in which the vertical line at 4 bounds the stability region. ç and � are the 

radius and centre of the disc region, and â is the angle of the sector of the ç and � 

circle. The design requirement for the fuzzy augmented system in Eq. ( 6-9) is given in 

the following Theorem.  

Theorem 6-1: The eigenvalues of the estimation error dynamics are located in a LMI 

region in the complex plane defined by (ç, �,	4, â ), and the error dynamics are stable 

and the H∞ performance is guaranteed with an attenuation level		Ê(, (provided that the 

signal (�̃) is bounded), if there exist a SPD matrix ËE,	 matrices .�� , *(�, and scalar 

parameters	L, ç, �, 4, and	â satisfying the following LMI constraints: 

Minimize (Ê() such that: 

�
5� + 5�Ï + 24ËÕ < 0	

× −çËÕ �ËÕ + 5�(�ËÕ + 5�)Ï −çËÕ Ø < 0	
×��9(â) h5� + 5�Ïi ���(â) h5� + 5�Ïi���(â) h5� + 5�Ïi ��9(â) h5� + 5�ÏiØ < 0

	
dee
f
eeg

 ( 6-10) 

xyy
yyy
z)EE )E@ )E{ 0 &YEÏ 0∗ )@@ )@{ = 0 &Y@Ï∗ ∗ −Ê(= 0 0 0∗ ∗ ∗ −Ê(= 0 0∗ ∗ ∗ ∗ −Ê(= 0∗ ∗ ∗ ∗ ∗ −Ê(=}~

~~~
~� < 0 ( 6-11) 

üÕ()) = ËEDE.�())	, )EE = ËE"̅()) + 3ËE"̅())4Ï − .�())&̅ − (.�())&̅)Ï )E@ = −("̅Ï())ËEõ�� − &̅Ï.�Ï())õ��) )E{ = ËE�Õ()), )@@ = −2õ��ÏËEõ��, )@{ = −õ��ÏËE�Õ()) 
5� = ËÕ"Æ(), )) = � ËE"̅()) − .�())&̅ ËEõ��− �"̅Ï())ËEõ�� − &̅Ï.�Ï())õ�� + õ��ÏËE�Ï −õ��ÏËEõ��� 
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Proof: Let the performance output be defined as follows: 

1̃Y = &̅Y	1̃� where &̅Y = ö&YE 00 &Y@÷ 
&YE ∈ ℛ�∗O¡_ and &Y@ ∈ ℛ�∗�. The estimation performance objective can be presented 

as: ‖1̃Y‖@‖�̃‖@ 	≤ Ê( = 1Ê(Ò 1̃�Ï/
Ó &̅YÏ&̅Y1̃�:M − Ê(Ò �̃Ï/

Ó �̃ 	≤ 0 ( 6-12) 

To achieve the required performance ( 6-12) and the stability of the augmented system 

( 6-9) the following inequality should hold: 

Ô!(1̃�) + 1Ê( 1̃YÏ&̅YÏ&̅Y1̃Y − Ê(�̃Ï�̃ < 0 ( 6-13) 

where Ô!(1̃�) is the derivative of candidate Lyapunov function (Ô(1̃�) = 1̃�Ï	ËÕ	1̃�) in 

terms of Eq. ( 6-9). Inequality ( 6-13) can now be re-written as: 

Ô!(1̃�) = 1̃�Ï �"ÆÏ(), ))ËÕ 	+ ËÕ"Æ(), ))� 1̃� +	 1̃�ÏËÕ�Ç(), ))�̃ + �̃Ï�ÇÏ(), ))ËÕ1̃� ( 6-14) 

By using ( 6-14), and the Schur Complement Theorem, then the inequality ( 6-13) 

implies that the following inequality must hold: 

xyy
yz"ÆÏ(), ))ËÕ 	+ ËÕ"Æ(), )) ËÕ�Ç(), )) &̅YEÏ 0∗ −Ê(= 0 &̅Y@Ï∗ ∗ −Ê(= 0∗ ∗ ∗ −Ê(=}~~

~� < 0 ( 6-15) 

To conform to the format of ( 6-9) ËÕ is structured as follows: 

ËÕ = ÈËE 00 =É > 0 ( 6-16) 

By substituting the corresponding values of	ËÕ, "Æ(), )), �Ç(), )) and using the variable 

change .�()) = ËEüÕ()),	and the equality: 

*(())&̅ = õ��ÏËE ( 6-17) 

The LMI in ( 6-11) is obtained. 
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Remark: Eq. ( 6-17) can be approximated by the  following convex optimization 

problem (Zhang, Jiang and Cocquempot, 2008): 

��9����1		L		���ℎ	Mℎ8M  
	�L= õ��ÏËE − *(())&̅∗ L= � > 0 ( 6-18) 

To prove the validity of the LMI ( 6-10), the following Lemma is presented first. 

Lemma 1 (Chilali and Gahinet, 1996): The matrix 6 is 3(4, ç, �, â)-stable if and only 

if there exists a symmetric matrix 7 > 0 such that:  

�
67 + (67)8 + 2ρ7 < 0

È −α7 β7 +67β7 + (67)8 −α7 É < 0		
×sin(θ) h67 + (67)8i cos(θ) h67 − (67)8i
cos(θ) h67 − (67)8i sin(θ) h67 + (67)8iØ < 0dee

f
eeg

 ( 6-19) 

Hence, via the use of Lemma 1, the estimator gains can be designed to constrain the 

eigenvalues to lie globally in a complex stable region defined by merging different 

eigenvalue constraints to produce a 3(4, ç, �, â) LMI region (see Figure  6-2). 

 

Figure  6-2: An LMI region 

To ensure the convenience of the LMI constraints given in Lemma 1 with the 

constraints given in Theorem 6-1, inequalities ( 6-19) can be rewritten in the following 

equivalent form: 
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�
>6 + (>6)8 + 2ρ> < 0

� −α> β>+ >6
β>+ (>6)8 −α> � < 0		

×sin(θ) h>6 + (>6)8i cos(θ) h>6 − (>6)8i
cos(θ) h>6 − (>6)8i sin(θ) h>6 + (>6)8iØ < 0dee

f
eeg

 ( 6-20) 

where > is a SPD matrix. 

Proof: By using the Congruence Lemma referred to in Section  3-2, pre and post 

multiply the first LMI of ( 6-19) by	7DE, pre and post multiply the remaining two 

constraints by	diagonal(7DE,7DE). Hence, the LMI constraints ( 6-20) are obtained 

after using the variable change	> = 7DE. This completes the proof. 

The observer eigenvalues are assigned using the matrix inequalities given in ( 6-20) by 

using the following change of variables: 

> = ËÕ = ÈËE 00 =É,  6 = "Æ(), )) 
where "Æ(), )) is defined in Eq. ( 6-9), the inequalities of ( 6-10) can be easily obtained. 

This completes the proof of Theorem 6-1. 

6-3-2. T-S PPIO based actuator fault estimate 

This subsection considers the actuator fault estimator design, the observer delivered by 

the corrected (sensor fault compensated) output and the corresponding control signals 

(see Figure  6-1). The system given in Eq. ( 6-1) becomes: 

� ! = "()) + 	$())� + 	�()),�			% = & + õ�1�( 																																Ù ( 6-21) 

Based on same arguments given in Section  5-2-3, the T-S fuzzy PPIO is also used for 

estimating the actuator fault.  

Assume that the first time derivative of the actuator fault (,�! ) and the sensor fault 

estimation error (1�() are bounded. Then the following T-S fuzzy observer is proposed 

to simultaneously estimate the system states and actuator fault: 
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� û! = "()) û + $())� + 	�()),V� + ü�())3& + õ�1�( − & û4
,V!�(M) = *�())&(1!+ + 1+)																																																															Ù ( 6-22) 

where  û ∈ ℛO is the estimation of the state vector	 , ü�()) ∈ ℛO×_	, and	*�()) ∈ ℛ0×_ 
are the observer gains to be designed, and 1+	is the state estimation error. The state 

estimation error dynamics are then: 

1!+ = ("()) − ü�())&)1+ + �())1�2 − ü�())õ�1�(  ( 6-23) 

Using ( 6-21) and ( 6-22) the actuator fault estimation error dynamics are as follows: 

1!�2 = ,!� − *�())&("()) − ü�())& + =)1+ − *�())&�())1�2+ *�())&ü�())õ�1�( ( 6-24) 

The augmented estimator will then be of the following form: 

1̃!�(M) = "Æ(), ))1̃� +	�Ç(), ))�̃ ( 6-25) 

"Æ(), )) = È"()) − ü�())& �())−*�())&("()) − ü�())& + =) −*�())&�())É 
	1̃� = Èeþ1�2É	 , �Ç(), )) = È−ü�())õ� 0*�())&ü�())õ� =É , �̃ = È1�(,!� É 

The objective now is to compute the gains ü�()) and *�()) such that exogenous 

input		�̃ in ( 6-25) are attenuated below the desired level Ê� to ensure robust estimation 

performance, in addition to locating the observer poles within a specified LMI region. 

Theorem 6-2: The eigenvalues of the estimation error are located in a disc region in the 

complex plane defined by (ç�, ��,	4�, â� ), and the error dynamics are stable and the ./ performance is guaranteed with an attenuation level		Ê�, (provided that the signal (�̃) is bounded), if there exist SPD matrices Ë�E, matrices .�� , *��, and scalar 

parameters	L�, ç�,	4�, â�, and	�� satisfying the following LMI constraints: 

Minimize (Ê�) such that: 
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�
5�� + 5��Ï + 24�ËÕ� < 0	

× −ç�ËÕ� ��ËÕ� + 5��(��ËÕ� + 5��)Ï −ç�ËÕ� Ø < 0	
×��9(â�) h5�� + 5��Ï i ���(â�) h5�� + 5��Ï i���(â�) h5�� + 5��Ï i ��9(â�) h5�� + 5��Ï iØ < 0

						
dee
f
eeg

 ( 6-26) 

xyy
yyy
z)EE )E@ )E{ 0 &YEÏ 0∗ )@@ )@{ = 0 &Y@Ï∗ ∗ −Ê�= 0 0 0∗ ∗ ∗ −Ê�= 0 0∗ ∗ ∗ ∗ −Ê�= 0∗ ∗ ∗ ∗ ∗ −Ê�=}~

~~~
~� < 0 ( 6-27) 

ü�()) = Ë�EDE.�())	;  )EE = Ë�E"()) + 3Ë�E"())4Ï − .�())& − (.�())&)Ï )E@ = −("Ï())Ë�E�()) − &Ï.�Ï())�())) ; )E{ = −.�())õ� 

)@@ = −3�Ï())Ë�E�()) + �())Ë�E�Ï())4;	 Ψ@{ = −�Ï()).�())õ� 

5�� = È Ë�E"()) − .())& Ë�E�())−("Ï())Ë�E�()) − &Ï.Ï())�()) + �Ï())Ë�E)Ï −�Ï())Ë�E�())É 
Proof: This proceeds in a similar way to the steps illustrated to prove Theorem 6-1 and 

hence the details are omitted here. To overcome the equality constraint *�())&̅ =�Ï())Ë�E the proof of Theorem 6-2 requires the following optimization: 

��9����1	L� 

ÈL�= �Ï())ËE − *�())&∗ L�= É > 0 

 

( 6-28) 

6-3-3. LMI base design quadratic parameterized TSDOFC  

The control objective here is to design a dynamic output feedback controller capable of 

forcing the specified output of the nonlinear plant to follow a bounded reference signal 

in both the faulty and fault-free cases.  

An augmented system consisting of Eq. ( 6-1) and the integral of the tracking error 

(1�� = *%c − �%) are defined below: 
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�  ̅! = "̅()) ̅ +	$Õ())� + �Õ()),� + $%c + õ�O1�%Õ = &̅	 ̅ + õ��1�																																																									Ù ( 6-29) 

"̅()) = È0 −�&0 "())É ,  ̅ = ö1�� ÷ , $Õ()) = È 0$())É , �Õ()) = È 0�())É 
$ = È=0É , õ�O = È−�õ�0 É , &̅ = È= 00 &É , õ�� = È 0õ�É 

 

where	� ∈ ℛ�∗_ is used to define which output variable is considered to track the 

reference signal. Since the system in ( 6-29) is of common output matrix (&). The 

TSDOFC used to stabilize and perform the tracking objective is of quadratic 

parameterization form and defined below: 

� !� = "�(), )) � + $�())(�c%c − %Õ)																		
� = &�()) � + õ�())(�c%c − %Õ) − 5�()),V�	 Ù ( 6-30) 

where  � is the controller state and "�(), )) ∈ ℛ(O¡�)×(O¡�), $�()) ∈ ℛ(O¡�)×(_¡�), &�()) ∈ ℛ0×(O¡�), õ�()) ∈ ℛ0×(_¡�),$ ∈ ℛ(O¡�)×�, 5�()) ∈ ℛ0×�, 89:	�c ∈ℛ(_¡�)×� is introduced to match the dimensions of %c	89:	%Õ.  

Aggregation of Eq. ( 6-29) and Eq. ( 6-30) gives the following system: 

� !� = "�(), )) � + ��(), )):Æ%Õ 	= &� � + õ�:Æ																						Ù ( 6-31) 

"�(), )) = ×"̅()) − $Õ())õ�())&̅ $Õ())&�())−$�())&̅ "�(), )) Ø ,  � = �  ̅ �� 
�� = È�Õ()) õ�O − $Õ())õ�())õ�� $ + $Õ())õ�())�c �Õ()) − $Õ())5�())0 −$�())õ�� $�())�c 0 É,  

:Æ =
xy
yy
z1�21�(%c,V� }~

~~
� , &� = h&̅ 0i  , õ� = §0 õ�� 0ª 
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Remark: The gain 5�()) is designed so that the effect of ,V� is either completely 

decoupled from the closed-loop system, i.e. when Z89ø	3$()), �())4 = Z89ø	($())) 
which means	=�	(�())) ⊆ =�	($())), or attenuates the norm of >(�Õ()) −$Õ())5�())),V�>@ on the closed-loop performance which is in turn achieved by selecting 5�()) = $∗())�()) (Gao and Antsaklis, 1991) where $∗()) is the pseudo inverse of $()). Hence, 5�()) is considered as a known gain in the derivation of the LMI-based 

FTC design given below. 

Theorem 6-3: If the eigenvalues of the closed-loop system Eq.( 6-31) are located in a 

LMI region of the negative complex plane characterised by radius ç�, ��,	4�, â�, then 

the closed-loop system will be stable. Furthermore, the closed-loop system will track the 

reference signal with guaranteed ./ performance with an attenuation level		Ê�, 

(provided that the signal :Æ is bounded), if there exist SPD matrices	Î, Ì, 

matrices	"�(), )),	$�()),&�()),	õ�()), and scalars Ê� , ç�,	4�, â�, and	�� satisfy the 

following LMI constraints: 

Minimize Ê� such that 

�
@�[ + @�[Ï + 24�Î < 0

× −ç�Î ��Î + @�[��Î + @�[Ï −ç�Î Ø < 0		
×��9(â�) h@�[ + @�[Ï i ���(â�) h@�[ − @�[Ï i���(â�) h@�[ − @�[Ï i ��9(â�) h@�[ + @�[Ï iØ < 0dee

ef
eee
g

 ( 6-32) 

xy
yy
yy
yy
yz)EE� )E@� �Õ()) )E{� )E|�∗ )@@� Ì�Õ()) )@{� )@|�∗ ∗ −Ê�= 0 0∗ ∗ ∗ −Ê�= 0∗ ∗ ∗ ∗ −Ê�=∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

� ( 6-33) 
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�
)E�� Î&YEÏ 0 −Î&YEÏ 0)@�� &YEÏ 0 −&YEÏ 00 0 0 0 00 0 0 0 00 0 �cÏ 0 �cÏ−Ê�= 0 0 0 0∗ −Ê�= 0 0 0∗ ∗ −Ê�= 0 0∗ ∗ ∗ −�DE 0∗ ∗ ∗ ∗ � }~~

~~~
~~~
~�
< 0 

where )EE� = "̅())Î + ("̅())Î)Ï + $Õ())&V()) + 3$Õ())&V())4Ï 

)E@� = "VÏ(), )) + "̅()) − $Õ())õ�())&̅ ; )E{� = õ�O − $Õ())õ�())õ�� 

)@@� = Ì"̅()) + 3Ì"̅())4Ï + $
())&̅ + 3$
())&̅4Ï ; )@{� = Ìõ�O + $
())õ�� 

)E|� = $ + $Õ())õ�())�c ; )@|� = Ì$ − $
())�c )E�� = �Õ()) − $Õ())5�()); 	)E�� = Ì(�Õ()) − $Õ())5�())) 
@�[ = ×"̅())Î + $Õ())&V())	 "̅()) − $Õ())õ�())&̅

"V(), )) Ì"̅()) + $
())&̅())Ø 
The controller gains are thus calculated as follows: õ�()) = õ�())  &�()) = 3&V()) + õ�())&̅Î4XDÏ 

$�()) = �DE(−$
()) − Ì$Õ())õ�())) "�(), )) = �DE("V(), )) − Ì3"̅()) − $Õ())õ�())&̅4Î − Ì$Õ())&�())XÏ
+ �$�())&̅Î)XDÏ 

where X	89:	� satisfy X�Ï = = − ÎÌ 

Proof: Let the system output performance be defined as follows: 

%Y = &̅Y	 � 

where &̅Y is selected depending on the design requirements. The robustness of the 

controller against the augmented input (:Æ) can then be represented by minimising the 

mathematical objective given below: 
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‖%Y‖@>:Æ>@ 	≤ Ê� = 1Ê� Ò  �Ï/
Ó &̅YÏ&̅Y �:M − Ê�Ò :ÆÏ/

Ó :Æ 	≤ 0 ( 6-34) 

Consider Ô( �) =  �Ï	ËÕ	 �		, oℎ1Z1	ËÕ > 0	is the candidate Lyapunov function for the 

augmented system ( 6-31). Hence, as stated in the observer design, to achieve the 

required performance ( 6-34) and stability of augmented system Eq. ( 6-31) the following 

inequality should hold: 

Ô!( �) + 1Ê� %YÏ	%Y − Ê�:ÆÏ:Æ < 0 ( 6-35) 

where: 	%Y = (�c%c − %Õ) ( 6-36) %YÏ	%Y = (�c%c − %Õ)Ï(�c%c − %Õ) %YÏ 	%Y = %cÏ�cÏ�c%c − %ÕÏ�c%c − %ÕcÏ�cÏ%Õ + %ÕÏ%Õ 

Let �c = h0	0	=i then: %YÏ 	%Y = :ÆÏ�cÏ�c:Æ − :ÆÏ�cÏ&� � −  �Ï&�Ï�c:Æ +  �Ï&�Ï&� � 

 

where Ô!( �) is the derivative of the candidate Lyapunov function, based on the state-

space representation of the augmented system Eq. ( 6-31), inequality ( 6-35) then 

becomes: 

Ô!( �) =  �Ï3"�Ï(), ))ËÕ 	+ ËÕ"�(), ))4 � +	 �Ï(ËÕ��()):Æ + :ÆÏ��Ï())ËÕ � ( 6-37) 

By using Eq. ( 6-37) and the Schur Complement Theorem, inequality ( 6-35) implies that 

the following inequality must hold: 

xy
yy
yz"�Ï(), ))ËÕ 	+ ËÕ"�(), )) ËÕ��()) − 1Ê� &�Ï�c &̅�Ï 0∗ −Ê�= 0 �cÏ∗ ∗ −Ê�= 0∗ ∗ ∗ −Ê�=}~

~~
~� < 0 ( 6-38) 

Inequality ( 6-38) can be further decomposed as below: 
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xyy
z"�Ï(), ))ËÕ 	+ ËÕ"�(), )) ËÕ��()) &̅�Ï 0∗ −Ê�= 0 �cÏ∗ ∗ −Ê�= 0∗ ∗ ∗ −Ê�=}~

~�

+ ¥−&�Ï000 ¦ ö0 1Ê� �c 0 0÷ +
xyy
yz 01Ê� �cÏ00 }~~

~� h−&� 0 0 0i < 0 

( 6-39) 

Lemma 2: Given a scalar L > 0 and the SPD matrix G, the following inequality holds: 

ÎÏ$ + $ÏÎ ≤	1L ÎÏ�Î + L$Ï�DE$ ( 6-40) 

where R & X are any compatibly dimensioned matrices. 

Based on Lemma 2 inequality ( 6-38) implies the following inequality: 

xyy
yyy
yz"�Ï(), ))ËÕ 	+ ËÕ"�(), )) ËÕ��()) &̅�Ï 0 −&�Ï 0∗ −Ê�= 0 �cÏ 0 1Ê� �cÏ∗ ∗ −Ê�= 0 0 0∗ ∗ ∗ −Ê�= 0 0∗ ∗ ∗ ∗ −�DE 0∗ ∗ ∗ ∗ ∗ −� }~~

~~~
~� < 0 ( 6-41) 

It can be assumed that ËÕ and	ËÕDE  is structured as follows: 

ËÕ = È Ì ��Ï ∗ É , ËÕDE = È Î XXÏ ∗ É , since ËÕËÕDE = = 
we then have that ËÕ È ÎXÏÉ = È=0É 	⇒ ËÕ È Î =XÏ 0É = È= Ì0 �ÏÉ 
Define ÚE = È Î =XÏ 0É	 ; 	Ú@ = È= Ì0 �ÏÉ 
Pre- and post-multiplying inequality ( 6-41) by hÚEÏ = = = = =i and its transpose 

respectively, the following inequality is obtained: 
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xyy
yyy
yzÚEÏ"�Ï(), ))Ú@ 	+ Ú@Ï"�(), ))ÚE Ú@Ï��()) ÚEÏ&̅�Ï 0 ÚEÏ&̅YÏ 0∗ −Ê�= 0 �cÏ 0 1Ê� �c∗ ∗ −Ê�= 0 0 0∗ ∗ ∗ −Ê�= 0 0∗ ∗ ∗ ∗ −�DE 0∗ ∗ ∗ ∗ ∗ −� }~~

~~~
~�

< 0 

( 6-42) 

After simple mathematical computation and using the following change of variables:  

"V(), )) = Ì("̅()) − $Õ())õ�())&̅)Î + Ì$Õ())&�())XÏ − �$�())&̅Î+ �"�(), ))XÏ 
( 6-43) 

$
()) = −�$�()) − Ì$Õ())õ�()) ( 6-44) &V()) = &�())XÏ − õ�())&̅Î ( 6-45) õ�()) = õ�()) ( 6-46) 

Then inequality ( 6-33) can be obtained easily. 

By using the change of variables	" = "�(), )),	Î = ËÕ, and pre- and post-multiplying 

the first inequality of ( 6-19) by	ÚEÏ, the 2nd and 3rd  inequality of ( 6-19) by	hÚEÏ ÚEÏi 
and its transpose respectively yields:  

�
Ú@Ï"�(), ))ÚE + (Ú@Ï"�(), ))ÚE)Ï + 24ÚEÏÚ@ < 0

È −αÚEÏÚ@ βÚEÏÚ@ +Ú@Ï"�(), ))ÚEβÚEÏÚ@ + (Ú@Ï"�(), ))ÚE)Ï −αÚEÏÚ@ É < 0
È��9(â) hℊ¡i ���(â) hℊDi���(â) hℊDi ��9(â) hℊ¡iÉ < 0 dee

fe
eg	 ( 6-47) 

where  ℊ¡ = Ú@Ï"�(), ))ÚE + (Ú@Ï"�(), ))ÚE)Ï ℊD = Ú@Ï"�(), ))ÚE − (Ú@Ï"�(), ))ÚE)Ï 

then using equality	X�Ï = = − ÎÌ in inequalities ( 6-47), then inequality ( 6-32) 

obtained. 

Remark: The matrices	X,�Ïcan be calculated based on the equality X�Ï = = −ÎÌ	using any matrix decomposition techniques e.g. qr or svd. 



146 

 

• The proposed methodology offers design freedom to combine any estimation 

strategy for actuator and sensor faults. Moreover, the time response of the two 

observers as well as the controller can be adjusted separately. 

• Due to the fact that T-S fuzzy static output feedback controller (SOFC) has a non 

convex Lyapunov stability condition (Chun-Hsiung et al., 2006, Ho Jae and Do Wan, 

2009), in (Chun-Hsiung et al., 2006) a convex Lyapunov stability condition for 

SOFC derived through adding a set of linear matrix equalities, However, the 

proposed design formulation is only feasible in very limited cases (for example, the 

common B matrix case). Therefore, in this Chapter, the fuzzy DOFC is proposed 

instead. 

6-4. Simulation results 

To illustrate the proposed FTC strategy encompassing the possibility of simultaneous 

actuator and sensor faults, the modified non-linear simulation of the inverted pendulum 

and cart with tracking of a time-varying reference cart position is considered in this 

Chapter. The main difference between the T-S model derived in this Chapter and the 

model derived in Chapter 4 are (a) rewriting the non-linear model so that the term �� {@ ��9( E) affects the closed-loop system as a dynamic uncertainty, and (b) the use 

of the local approximation which is very important to reduce the design complexity 

specifically in quadratic parameterisation TSDOFC in which the number of controller 

gains is equal to 2c (where Z is the number of fuzzy rules). For example, the 8 rule 

fuzzy model of the inverted pendulum system derived in Chapter 5 requires 256 

controller gains to be designed and implemented. 

The nonlinear inverted pendulum and cart system model is given as follows: 

 ! =
xyy
yyy
z !E !@ !{ !|}~

~~~
~� =

xyy
yyy
z  { |� ��9( E)4� 3⁄ − ��8(���( E))@−�8� ��9(2 E) 	 2⁄4 3⁄ − ��8(���( E))@ }~

~~~
~� 			+

xyy
yyy
z 00−8 ���( E)4� 3⁄ − ��8(���( E))@48 3⁄4 3⁄ −��8(���( E))@ }~

~~~
~� (� + (,�

+�� {@ ��9( E))) 
( 6-48) 

where the model parameters are as defined in Chapter 5. 

Although, increasing the number of fuzzy rules ensures good approximation of a 

smooth non-linear system, the design conservatism of the T-S fuzzy controller and 
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estimator also increase. Therefore, to take into account this trade-off, three system 

operating points are chosen corresponding to the pendulum angular positions		â =0	89: ± ä/4 . Due to symmetry this results in the choice of two fuzzy rules in the T-S 

model. The control objective is to force the cart position to follow a desired cart 

reference position in the presence of a cart position measurement	&@  fault and actuator 

fault. 

Various results are generated by considering the cart position sensor and cart actuator to 

have both additive and parametric faults. It is assumed here that the actuator fault affect 

the system in the same direction as the control input therefore the controller gain 5�()) 
is selected to be 5�()) = $∗())�()) where $∗()) is the pseudo-inverse of the input 

matrix	$()). On the other hand, different sensor fault signals have been considered in 

the  results such as parametric change sensor faults and abrupt and time varying fault 

scenarios. 

The initial conditions for the nonlinear system states and the two PPIOs are selected as 

follows: 

��%�M1�	�9�M�8�	�M8M1� = h0.25 0 0.5 0i,																											�19��Z	ËË=0 = h0 0 0 0 0 0.5 0i,								"�M�8M�Z	ËË=0		 = h0 0.2 0.1 0i,																			 � 
By solving the LMI conditions given in Theorems 6-1, 6-2, and 6-3 the fuzzy controller 

and observers gains are computed as: 

�"�(E,E) = xyy
yz−1.4900 2.0127 10.3547 −29.3842 806.9533−1.1003 −2.2336 7.6739 −20.9505 591.71760.3461 −0.2708 −2.5631 6.3034 −187.1907−0.0990 0.1105 0.1173 −2.9509 39.95180.0952 −0.3661 −0.3899 0.7360 −17.1688 }~~

~��, 

�"�(E,@) = xyy
yz−1.9375 0.9626 17.1862 −61.8366 2748.8609−1.4309 −3.0093 12.7204 −44.9284 2027.57000.4502 −0.0264 −4.1510 13.8975 −637.3877−0.1202 0.0607 0.4439 −4.5116 128.92190.1031 −0.3470 −0.5143 1.3190 −52.1569 }~~

~��, 

�"�(@,E) = xyy
yz−1.4678 2.2672 10.1970 −28.0973 752.5285−1.1290 −2.0149 5.2321 −13.1154 333.50200.3343 −0.3333 −2.3714 5.5003 −161.4052−0.0828 0.1217 0.1182 −2.9079 42.7229−0.0498 −0.3434 −0.2030 0.2752 −2.2480 }~~

~��, 
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�"�(@,@) = xyy
yz−1.8808 1.2985 16.4977 −58.0281 2543.0726−1.3035 −2.4240 7.8920 −25.7416 1086.62480.4218 −0.1282 −3.7032 11.8800 −538.6093−0.1032 0.0739 0.4315 −4.4027 127.2057−0.0483 −0.3406 −0.2209 0.3631 −8.8193 }~~

~��, 

�$�E = xyy
yz 12.2786 −51.3651 −334.1074 −131.49908.6490 −11.4961 −251.9183 22.222845.0377 −0.0417 49.6370 118.8719141.6355 20.1090 −111.0111 −37.844217.2099 −194.4594 −4.0767 7.9471 }~~

~��, 

�$�E = xyy
yz 5.3415 −27.3864 −330.1390 −132.20592.2919 −8.2930 −146.2328 17.921446.6722 −5.5339 41.8730 118.1318141.2636 21.2783 −111.5509 −36.107416.6982 −182.5085 −9.5418 −9.3453 }~~

~��, 
�&�E = h−0.0121 0.1798 0.7541 −2.1933 59.8626i�, �&�@ = h−0.0414 0.1054 1.2792 −4.5980 203.3789i�, �õ�E = h0.74 −2.78 −24.56 −0.07i�,�õ�@ = h0.26 −1.62 −26.30 −0.02i�, 

The sensor fault PPIO proportional gains are computed as: 

�üÕE =
xyy
yyy
z 39.3213 −0.2670 −8.7955−1.7163 0.0227 0.4694142.9988 −1.0278 −32.1569−5.9948 0.2527 1.861233.2835 −0.2228 −7.4372−13.7189 −17.8893 4.1903−4.6583 0.2447 1.5577 }~~

~~~
�
� , �üÕ@ =

xyy
yyy
z 40.4585 −0.2739 −1.2478−1.8277 0.0230 0.1168147.1432 −1.0524 −4.7097−6.2352 0.2536 0.706834.2455 −0.2287 −1.0484−15.2037 −17.8891 1.1314−4.8602 0.2453 0.6597 }~~

~~~
�
�, 

The actuator fault PMIO proportional gains are computed as: 

�üE� = ¥522.5073 −0.0490 −1.42310.0516 1.6186 0.9999769.4489 0.0875 −3.28690.0137 0.0483 1.9992 ¦� , �ü@� = ¥522.5446 −0.0613 −1.15270.0515 1.6186 0.9999768.2967 0.0994 −0.03321.9984 0.0884 1.7514 ¦�, 
The gains for the sensor and actuator fault estimation PPIOs are computed as: 

*( = h12.3383 7.1075 2.6191i	, *� = h−23.4831 −0.0001 546.3907i 
The attenuation coefficients are determined as	Ê� = 1.3,  Ê( = 0.2722 and	Ê� = 0.1227. 

The controller designed via the LMI D-region is bounded by	ç� = 20, �� = 0,	4� = 0, â� = ä/3. The sensor fault PPIO LMI region is bounded by	ç = 100, � = 0,	4 = −1, â = ä/2, and the fault PPIO LMI region is bounded by ç� = 100, �� = 0,	4� = −1, â� = ä/2. 
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Figure  6-3 shows the tracking performance of the closed-loop system without actuator 

and/or sensor faults. The FTC objective is to maintain this performance (with acceptable 

degradation) during different components fault scenarios. 

 

Figure  6-3: Closed-loop tracking performance without component faults 

Figure  6-4 shows that the sensor faults of 0.5&@, 0.6&@ and 0.8&@ have a direct impact 

on the tracking performance since the faulty sensors provide the nominal controller with 

measurements that no longer represent the actual system variables. As a result, the 

controller lacks the ability to handle even minor sensor faults (0.8&@). On the other 

hand, Figure  6-5 shows that the nominal controller can passively tolerate and maintain 

acceptable tracking performance for up to 40% loss of actuator effectiveness fault 

(i.e.	0.6$). However, (50%) actuator faults lead to great tracking degradation and more 

severe faults with eventual system instability. Figure  6-6 shows that simultaneous 

actuator and sensor faults further degrade tracking performance.  

 

Figure  6-4: Reference position tracking under different position sensor fault  
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Figure  6-5: Reference position tracking under different actuator fault 

 

Figure  6-6: Reference position tracking under simultaneous actuator and position sensor 

loss of effectiveness (50%) fault 

Clearly, the results shown in Figure  6-4, Figure  6-5, and Figure  6-6 validate the 

investigation of the relative impacts of the actuator and sensor faults on the tracking 

control performance presented in Chapter 3. 

The results shown below illustrate how the proposed strategy can maintain the nominal 

control objectives in different simultaneous actuator and sensor fault cases. To cope 

with different fault scenarios, the considered actuator fault signal covers several additive 

fault scenarios of abruptly varying amplitudes and slow to fast (linear time-varying fault 

frequencies). This fault signal with its estimation via T-S fuzzy PPIO is shown in 

Figure  6-7. 
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Figure  6-7: Time-varying actuator fault and fault estimation 

Figure  6-8 clarifies the trade-off between the fault estimation accuracy on one hand, and 

the fault magnitude and frequency on the other hand. It is shown in Section  6-3-1 that 

for the sensor fault estimation observer design problem, due care must be taken for the 

effect of actuator fault estimation error. 

 

Figure  6-8: Actuator fault estimation error 
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abrupt change of the actuator fault signal. However, at 40	�1� the spike has different 

behaviour due to abrupt changes in the reference cart position. This highlights the 

considerable challenge arising from the existence of the reference signal in the tracking 

problem. This should be compared with the simpler situation of the regulator problem 

which requires no reference tracking.  

Figure  6-9 further demonstrates the effectiveness of the use of the T-S PPIO to provide 

fast estimation of the fault signal and hence enhance the closed-loop system 

performance. 
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Figure  6-9: T-S PPIO capability to provide fast fault estimation 
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change fault as a special case of an additive state-dependent fault signal can be useful 

for assessing the fault severity, as shown in Figure  6-12. 

 

Figure  6-10: Simultaneous actuator and sensor fault compensation with the effect of 

uncompensated parameter change sensor fault only 

 

Figure  6-11: Faulty measurement and fault estimation 

 

Figure  6-12: Sensor fault evaluation 
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Figure  6-13 and Figure  6-14 show the result of a further investigation of the proposed 

FTTC system by considering a time-varying and abruptly changing multi-step sensor 

fault signal and its T-S PPIO estimate affecting the system at the same time as the 

actuator fault shown in Figure  6-7.  

 

Figure  6-13: Additive sensor fault and estimation 

 

Figure  6-14: Simultaneous actuator and sensor faults compensation with the effect of 

uncompensated additive sensor fault only 
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Figure  6-15: T-S PPIO capability to provide fast fault estimation 

 

(a) 

 

(b) 

Figure  6-16 : a & b Zoomed-in view of sensor fault signal/estimation 
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6-5. Conclusion 

The Chapter develops a new FTTC strategy for nonlinear systems with simultaneous 

actuator and sensor faults based on fault estimation and compensation. The TSDOFC 

scheme is used as it has a time-varying reference tracking capability and the design of a 

dual pair of actuator and sensor T-S PPIOs. The controller and fault estimators 

individually satisfy appropriate ü@ norm robustness conditions guaranteeing minimum 

tracking error and robust fault estimation. The actuator and sensor fault estimators are 

developed to have low fault interaction and to provide robust fault compensation in the 

output feedback controller. 

The significant attributes gained by using the proposed FTTC system are. (i) It can 

handle cases for which the sensor and actuator faults affect the nonlinear system 

simultaneously. (ii) It can overcome the effects of time-varying actuator and sensor fault 

signals with bounded first time derivatives using the concept of fault estimation and 

compensation AFTC, and hence maintaining the controller performance without control 

system changes. (iii) The use of proportional and integral feedback to estimate the fault 

signal enhances the fault estimation accuracy. (iv) By combining the two T-S PPIOs 

and the TSDOFC, the hurdles imposed by the Separation Principle in the T-S observer-

based state estimate feedback control are removed. Furthermore, the limitation of using 

an iterative form of SOFC design is obviated completely. The significant impact of a 

sensor fault on the tracking control problem is also demonstrated. These factors 

represent significant contributions to the AFTC subject. 

Finally, the complexity of the proposed controller depends on the number of fuzzy rules 

and the input and output matrices. For example, to ensure a high degree of design 

freedom and to achieve good performance for non-common input and output system 

matrices cubic parameterization TSDOFC is required. However, the complexity is 

violated in the case of common input common output fuzzy models since only linear 

parameterization TSDOFC is required. 
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Chapter 7 : Investigation of wind turbine operation and 

control 

7-1. Introduction 

Owing to inherent limitations in different kinds of the well-known fossil fuel and 

nuclear energy sources, e.g. carbon footprint, rapidly increasing fuel prices or 

probability of catastrophic effects of nuclear station malfunction, the last two decades 

have witnessed a rapid growth in the use of wind energy. Although, it is considered a 

promising source of energy, depending on naturally generated wind forces, there are 

several very significant challenges to efficient wind energy conversion for electrical 

power transformation. 

This Chapter focuses on investigations of different aspects of operation and control of 

wind turbine systems. A typical nonlinear state space model of a wind turbine system is 

described and a T-S fuzzy model of this system is also presented. The investigations are 

based on a 5 MW benchmark model proposed by (Odgaard, Stoustrup and Kinnaert, 

2009). 

7-2. Wind turbine modelling 

The principle aim of control in the wind turbine systems operation is to convert wind 

energy to mechanical energy which in turn is used to produce electricity. These systems 

are characterized by nonlinear aerodynamic behaviour and depend on a stochastic 

uncontrollable wind force as a driving signal. To conceptualize the system from analysis 

and control designs to real application, an accurate overall mathematical model of the 

turbine dynamics is required.  Normally, the model is obtained by combining the 

constituent subsystem models that together make up the overall wind turbine dynamics. 

This Section describes the combination of a flexible low speed shaft model together 

with a two-mass conceptual model of a wind turbine. 

The aerodynamic torque (C�) acting within the rotor represents the principal source of 

nonlinearity of the wind turbine. C�	depends on the rotor speed Dc , the blade pitch 
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angle � and the effective rotor wind speed EFGH. The aerodynamic power captured by 

the rotor is given by: 

Ë��Y = 124ä$@&Y(A, �)EFGH{  ( 7-1) 

where 4 is the air density, R is the rotor radius, and &Y is the power coefficient that 

depends on the blade pitch angle (�) and the tip-speed-ratio (A) (TSR) defined as: 

A = Dc$EFGH ( 7-2) 

The aerodynamic torque is thus: 

C� = 124ä${&�(A, �)EFGH@  ( 7-3) 

where &� = ¢£I  is the torque coefficient. 

The drive train is responsible for gearing up the rotor rotational speed to a higher 

generator rotational speed. The drive train model includes low and high speed shafts 

linked together by a gearbox modelled as a gear ratio. The state space model of the wind 

turbine drive train has the form: 

¥D! cD!�â!∆ ¦ = ¥8EE 8E@ 8E{8@E 8@@ 8@{8{E 8{@ 8{{¦ ¥
DcD�â∆ ¦ + ¥tEE 00 t@@0 0 ¦ ÈC�C�É ( 7-4) 

where: 

8EE = −(JKL¡Jl)Ml  8E@ = JKLONMl 8E{ = −OKLMl  8@E = JKLONMN 

8@@ = −3JKL¡ONJN4ON�MN  8@{ = OKLONMN 8{E = 1 8{@ = − EON 

8{{ = 0 tEE = EMl t@@ = − EMN  

where Pc is the rotor inertia, $c is the rotor external damping, P� is the generator inertia, D� and C� are the generator speed and torque, $� is the generator external damping, 9� 

is the gearbox ratio, 5U� is the torsion stiffness, $U� is the torsion damping coefficient, 

and â∆ is the torsion angle. 
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The hydraulic pitch system is modelled as a closed-loop transfer function between the 

pitch angle � and its reference	�c. In principle it is a piston servo system which can be 

modelled well by a second order transfer function namely: 

� = DO@�@ + 2QDO� + DO@ �c ( 7-5) 

where Q is the damping factor and DO is the natural frequency. A transfer function is 

associated with each of the three pitch systems. In cases of no fault the damping factors 

are assumed equal, and the following parameters are used Q = 0.6 and	DO = 11.11. In 

addition, constraints on the pitch actuator are implemented. In particular, the pitch angle 

is restricted to the interval -2 deg - 90 deg. 

Finally, the generator subsystem is given by the following linear relation: 

C!� = − 1�� C� + 1�� C�c ( 7-6) 

Where C�c is the generator torque reference signal and ��is the time constant. 

7-3. Wind and wind turbine operation 

The fact that available wind power is proportional to the wind speed cube, as well as the 

uncertainty of point measurement of wind speed have given good motivate to include an 

introductory section to give basic wind characteristics that are exploited to produce 

electrical power. 

The wind varies geographically and temporally. The geographical variation can be 

understood from both large and local scale points of view. On the large scale, regions 

around the world differs in their climatic properties and so some of them are windier 

than others and considered as attractive regions for wind power projects, such 

geographical variation and  illustration of the most world attractive regions are clearly 

discussed in (Archer and Jacobson, 2005). 

Locally, the wind is affected by the local geography such as the proportion of land and 

sea, the size of land masses, and the presence of mountains. More locally, the wind 

velocities are reduced by obstacles such as trees and buildings. 

The temporal variability of a given local geographical area represents the long term and 

short term variation of the wind. Long term variation study is concerned with wind 
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speed variation for intervals of an hour up to several years or decades, whereas, short 

term variations are considered to operate over a much shorter timescale of minutes 

down to seconds. Short term variations usually involve turbulence components on the 

air flow through the turbine rotor. Prediction of long term variations can be a useful aid 

to determining the most suitable location for developing a wind farm in terms of the 

amount of power that can be produced for a power generation network. Prediction of 

long term variations can also assist in the determination or selection of the most suitable 

wind energy conversion system for a given farm site. Knowledge of the likely extent of 

the turbulence components will facilitate an understanding of the control design 

requirements for reducing the effect of turbulence acting on the turbine structure and 

that also affects the produced power quality (Burton, Sharpe, Jenkins and Bossanyi, 

2001). 

Currently, wind turbine blades are manufactured to a sweep area with a diameter of up 

to 120m. With such a large swept area the wind speed differs substantially over the 

swept area. The modification in the vertical profile of wind speed due to the “surface 

friction” is called wind shear. Wind shear causes the mean wind speed to increase with 

height, a phenomenon that is one of the contributory factors to aerodynamic loading of 

the wind turbine. Figure  7-1 shows the wind speed experienced by a sector of the blade 

a distance Z from the rotational axis (Burton, Sharpe, Jenkins and Bossanyi, 2001, 

Bianchi, de Battista and Mantz, 2007). 

 

Figure  7-1: Variation of wind speed with vertical profile 

Upon rotation the height of this sector (ℎ() will vary according to: ℎ( = ℎ − Z cos� ( 7-7) 
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Where ℎ is the hub height and � is the angle the blade makes with respect to upward 

position. Therefore, the mean wind velocity faced by this blade sector during rotation 

can be obtained by using the relation between wind speeds at two heights (Bianchi, de 

Battista and Mantz, 2007): 

S0(ℎ() = S0(ℎ) ln(ℎ − Z cos ��� )
ln( ℎ��)  ( 7-8) 

where	S0 is the mean wind speed, and	�� is the roughness length that characterizes the 

terrain. Typical values of �� for various types of surfaces are given in Table 1. 

Table  7-1:Typical values of surface roughness length TU for various types of terrain 

(ESDU, 1972) 

Type of terrain TU (m) 

Smooth sea  (2.0 – 3.0) * 10-4  

Sand  (0.2 – 1.0) * 10-3  

Low grass  (1.0 – 4.0) * 10-2  

High grass  (0.4 – 1.0) * 10-1  

Forest  0.1 – 1.0  

City  1.0 – 4.0  
 

Figure  7-2 shows the wind shear at different sites. The influence of the wind profile is to 

cause a thrust force and hence the rotating torque to fluctuate and this clearly has an 

undesirable effect on both structural loading of the turbine tower and also on the 

efficiency of energy conversion. The significance of this component is very important in 

analyzing the effects of blade loads. 

 

Figure  7-2: The modification in the vertical profile of wind speed (Wind Shear). 
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*U � 4"C(Cj�OU − C@� ( 7-10) 

Equivalently, *U can also be defined in term of pressure difference before (Ë¡) and after 

(ËD) the disc. Based on Bernoulli’s equation, the total energy of the flow remains 

constant provided no work is done on the fluid. Hence, this equation can be applied 

upstream and downstream of the actuator disc as follows: 

�E@4Cj�OU@ + Ë/ � E@4C@ + Ë¡
E@4C@@ + Ë/ � E@4C@ + ËD								Ù ( 7-11) 

by taking the difference between expressions in Eq. ( 7-11), *U can be rewritten as 

follows: 

Usually, to represent the	Ë��Y in term of Ëj�OU, the wind speed at the disc and 

downstream wind are given in term of upstream wind as follows: 

� C � (1 − ç�Cj�OU 	C@ � (1 − 2ç�Cj�OU 					< ( 7-13) 

where ç is known as the axial interference factor. Using Eq. ( 7-12)&( 7-13) the power 

captured by the actuator disc is given by: 

Ë��Y � 124"E{(4ç − 8ç@ + 4ç{� ( 7-14) 

the maximum power captured is obtained when 
UVW2£UX � 0, for which ç � E{. Hence, by 

substituting ç in Eq. ( 7-14) the ideal power captured by disc actuator will be: 

Ë��Y � 124"E{ 1627 � 0.59Ëj�OU ( 7-15) 

Clearly, the three blade variable speed-variable pitch wind turbines are a special case of 

the actuator disc. In this special structure of actuator disc the blade pitch angles (��, 
wind speed (CFGH�and the rotor rotational speed (Dc� are the main variables that affect 

the amount of the power captured. See Figure  7-4. 

*U � "(Ë¡ − ËD� � E@4"(Cj�OU@ − C@@� ( 7-12) 
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Suppose the length of the disturbed wind is (�	(��� and (9� is the number of blades, 

then M[	and Mj are obtained as follows: 

�M[ � 2äDc9Mj � �C 					df
g

 ( 7-16) 

by setting M[ equal to Mj, the optimal rotational speed thus given as: 

Dc�Y� � 2äC9�  ( 7-17) 

then A�Y� can be obtained as follows: 

A�Y� � 2ä$9�  ( 7-18) 

Hence, wind turbines must be properly controlled to operate at their optimal wind tip 

speed ratio in order to extract as much wind power as possible. It should be noted that A�Y� is determined empirically by the wind turbine manufacturer since it is clear that all 

the parameters in Eq. ( 7-18) are dependent on the wind turbine structure. Consequently, 

the dependence of A�Y�	on � causes a serious challenge in wind turbine control since � 

is highly dependent on the blade design. Hence, with turbine aging any deformation in 

the blade structure causes permanent uncertainty in the value of 	A�Y�. 
7-5. Wind turbine development and modes of operation 

To be competitive with other energy sources, the main challenges for the deployment of 

wind turbine systems are to maximize the amount of good quality electrical power 

extracted from wind energy over a significantly wide range of weather conditions and 

minimise both manufacturing and maintenance costs (Munteanu, Bratcu, Cutululis and 

Ceanga, 2008). To maximize the amount of the annual power production and minimize 

the maintenance times an increase in wind turbine size is suggested (see Figure  7-7). 

Furthermore, to reduce the effects of obstacles and roughness of terrain (that increases 

wind force turbulence), offshore wind turbines (OWT) are currently being developed 

and installed. 
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3. Variable speed fixed pitch: In this mode of operation at low wind speed it is 

possible to control the rotational speed of wind turbine in order to maximize the 

amount of wind power capture. the main characteristics of this mode are: 

• The generator is not directly connected to the power network and allows 

changing its rotational speed in proportional to wind speed variation in order 

to maximize the amount of wind power captured. 

• Passively regulate the power at high wind speed. 

4. Variable speed variable pitch: This is the recently developed and widely used 

wind turbine since it can offers superior performance during both low and high wind 

speed range of operation. the main characteristics of this mode are: 

• The generator speed is allowed to vary according to the wind speed in order 

to maximize the amount of power captured. 

• Actively regulate the electrical power during high wind speed using blade 

pitch control. 

• Actively mitigate wind turbine loads. 

• Complex control strategy. 

As wind turbines are driven by a naturally generated wind force, in all modes, the 

operation range is divided into four regions according to wind speed. Region 1, this 

region is also called the cut-in region, in which the wind speed is not sufficient to 

overcome the wind turbine inertia and hence there is no electrical power generated. 

Region 2 in which the wind speed is above the cut-in and below the rated wind speed, 

the wind turbine objective here is to maximize the amount of the power harvested from 

the wind and transfer it to electrical power. Region 3 in which the wind speed is high 

and rotational speed is equal or above the rated speed and below the cut-out speed, the 

objective is to regulate the generated electrical power to be equal to the rate power. 

Region 4 in which the wind speed goes above the upper limit of the predefined working 

range. See Figure  7-8. 
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Figure  7-8: Wind turbine region of operation 

Whatever the mode of wind turbine operation, the controller designer must consider 

several facts that characterise the wind turbine systems such as the requirement of 

different control objective for different ranges of wind speed, the nonlinearity of the 

aerodynamic subsystem, the lack of accurate measurement of the effective wind speed, 

and the probability of fault occurrence. Hence, according to the mentioned wind turbine 

system facts, research concerning wind turbine control can be separated into four parts. 

The first part focuses on achieving different control objectives required for each specific 

range of operating wind speeds. Furthermore, due to reasons of practical 

implementation simplicity and relative ease of formulating the design objectives, the 

controllers have been designed based on linearised models of the wind turbine system. 

Such types of controller can be found in (Burton, Sharpe, Jenkins and Bossanyi, 2001, 

Wright and Balas, 2004, Esbensen et al., 2008, Munteanu, Bratcu, Cutululis and 

Ceanga, 2008, Pao and Johnson, 2009, Pao and Johnson, 2011). However, wind turbines 

have a stochastic and uncontrollable driving force as input in the form of effective wind 

speed. This, together with overall system nonlinearity, limits the ability of linear control 

strategies to satisfy the control objectives exactly. 

The second part involves strategies to achieve the different control objectives as well as 

taking into account the system nonlinearity. For example, (Lescher, Zhao and Borne, 

2006, Østergaard, Brath and Stoustrup, 2007b, Østergaard, Stoustrup and Brath, 2009, 

Chadli and El Hajjaji, 2010) uses the multiple-model-based controller design as an 

approach to cover system nonlinearity. 

The third part in which the designers try to consider the control objective, system 

nonlinearity, and tolerate the effects of probable occurrence of the fault. For example, in 
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(Kamal, Aitouche, Ghorbani and Bayart, 2012), the suggested methods are observer-

based control and the sensor fault tolerant strategy is achieved by switching between 

two observers directly after the sensor fault being detected by the decision block. The 

observers are designed based on different sets of output signals that can ensure the 

observability of the system. 

In the fourth part, the designers consider the four requirements of wind turbine control 

systems. (Sloth, Esbensen and Stoustrup, 2010) proposed a design of active and passive 

fault tolerant linear parameter varying (LPV) controllers considering the estimation of 

the effective wind speed. In (Sloth, Esbensen and Stoustrup, 2011) the authors extend 

their previous work by including the design of the nominal controller and robust 

controller taking into account the model uncertainty. 

7-6. Wind turbine sustainability 

Wind turbine systems demand a high degree of reliability and availability 

(sustainability) and at the same time are characterised by expensive and safety critical 

maintenance work (van Bussel and Zaaijer, 2001, Verbruggen, 2003, Odgaard and 

Stoustrup, 2010). The recently developed OWTs are foremost examples since OWT site 

accessibility and system availability is not always ensured during or soon after 

malfunctions, primarily due to changing weather conditions. Indeed, maintenance work 

for OWTs is more expensive than the maintenance of onshore wind turbines by a factor 

of 5-10 times (van Bussel and Zaaijer, 2001). Hence, to be competitive with other 

energy sources, the main challenges for the deployment of wind turbine systems are to 

maximise the amount of good quality electrical power extracted from wind energy over 

a significantly wide range of weather and operation conditions and minimise both 

manufacturing and maintenance costs. 

The significance of wind turbine control on the overall system behaviour is well 

investigated in the literature since the control system allows a superior use of the turbine 

capacity as well as mitigating the effects of mechanical load variation that decrease the 

useful life of the wind turbine (Burton, Sharpe, Jenkins and Bossanyi, 2001, Bianchi, de 

Battista and Mantz, 2007, Munteanu, Bratcu, Cutululis and Ceanga, 2008, Bossanyi, 

Ramtharan and Savini, 2009). However, nominal control systems lack the ability to 

ensure system sustainability during components and/or system faults. Moreover, since 

regular and corrective maintenance are among the factors that increase the overall cost 
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Clearly, improvements in FDD and FTC can play an important role to ensure the 

availability of wind turbines during different normal or abnormal operation conditions, 

minimize the number of unscheduled maintenance operation, and prevent development 

of minor fault into failure especially for OWTs. For example, the wind turbine 

benchmark in (Odgaard, Stoustrup and Kinnaert, 2009) involves rotor and generator 

speed parameter scaling and stuck sensor faults which, from a practical stand point, can 

be attributed to a smudge on a disc surface of the speed encoder. Clearly, these faults 

have a direct effect on the reference torque signal provided by the controller. 

Consequently, the controller will start to drive the wind turbine away from its optimal 

operation, which in turn leads to lower conversion efficiency or may even prevent the 

turbine from convert energy (cut-off). 

7-7. Wind turbine state space and T-S fuzzy modelling 

For controller design purposes the state space model of wind turbine is presented in this 

Section. The nonlinear model of a wind turbine is established by combining the 

individual systems given in Section  7-2. However, it is clear that the main source of 

nonlinearity is the aerodynamic subsystem which is usually linearized in order to 

predict its effects on all model states. Hence, the state space model of wind turbine is 

given as: 

� ! � " (M� + 	$� + �CFGH% � 	& (M�																													< ( 7-19) 
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where C� is the generator torque, � is the pitch angle, Dc and D� are the rotor and 

generator speed respectively, and âc is the torsional angle. It is clear from the state 

space model given in Eq. ( 7-19) that the system matrix "	and the disturbance matrix �	are not fixed matrices and depend on state variables, the uncontrollable input CFGH, 

and the partial derivatives of the usually non-analytical function of A	and		�, &Y. Hence, 

to cope with system nonlinearity, a nonlinear control strategy is required to achieve the 

aim and objectives of wind turbine operation. 

Several reasons lead to satisfaction that a T-S fuzzy nonlinear control can cope with 

wind turbine control requirements, these are: 

• The T-S fuzzy control makes use of a linear control strategy locally to produce a 

nonlinear controller through fuzzy inference modelling, in terms of fuzzy multiple-

modelling. 

• By increasing the number of premise variables, the T-S fuzzy model can cover a 

wider range of operation scenarios which cannot be considered with a linear robust 

controller. For example, a linear robust controller is designed based on the linearized 

model derived at a specific operation point belong to the ideal operation curve given 

in Figure  7-8. Hence, all other operating regions are considered as regions with 

modelling uncertainty, this controller design always degrades the nominal required 

performance in order to take good care of the modelling uncertainty. On the other 

hand, by considering the effective wind speed and the rotor speed as premise 

variables in the low wind speed range (Region2), the T-S fuzzy model can 

approximate the wind turbine model not only during its ideal operation curve but it 
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can additionally cover the operation scenarios in which the system inputs and 

outputs deviated from ideal operation trajectory. This scenario usually happens 

during wind turbine operation, specifically for large inertia wind turbines, since the 

variation of wind speed is faster than rotor speed variations. 

• The structure of the nonlinear state space model given in Eq. ( 7-19) is characterised 

by its common input ($� and common output (&� matrices. This fact plays a vital 

role in simplification and conservatism reduction of T-S fuzzy controller design. For 

example, the quadratic parameterisation of the dynamic output feedback controller 

proposed to control the nonlinear inverted pendulum (see description in Chapter 6) 

can correspondingly be reduced to a linear parameterisation dynamic output 

feedback controller to control the wind turbine. 

As illustrated in Section  7-5 the aim is to develop a controller whose gain varies with 

wind speed. For example, in the low wind speed range of operation the control aim is to 

maximise the amount of power extracted from the available wind power through 

tracking the optimal rotor rotational speed reference signal. Hence, to derive the T-S 

model with minimum uncertainty, the effective wind speed (CFGH) and the rotor speed 

(Dc) are considered as premise variables. 

During the low wind speed of operation (Region 2) the	CFGH	varies within the operating 

range: CFGH ∈ hC0�O, C0�+i	�	�DE 

where in the benchmark wind turbine considered in this thesis C0�O � 4	�	�DE and C0�+ � 12.5	�	�DE. According to these limits the other premise variable (Dc) is 

bounded by: Dc ∈ hD0�O,D0�+i	Z8:	�DE 

where D0�O = 0.56	Z8:	�DE and D0�+ = 1.74	Z8:	�DE. The bounds of Dc are 

determined using Eq. ( 7-2) using A�Y� = 8. 

The membership function is selected as follows: 
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Based on these two premise variables four local linear models of the wind turbine can 

be determined to approximate the nonlinear system at different operating points in the 

low range of wind speed. Hence, Eq. ( 7-21) gives the four rule T-S fuzzy model of the 

nonlinear wind turbine in Eq. ( 7-19): 

� ! � Nℎ�(CFGH,Dc)c
�PE h"� (M) + 	$� + ��CFGHi% � 	& (M�																																																																			s ( 7-21) 

where ℎE � XE ∗ �E, ℎ@ � XE ∗ �@, ℎ{ � X@ ∗ �E, and ℎ| � X@ ∗ �@. 

7-8. Conclusions 

In this Chapter the concept of wind turbine operation, the definition of the control 

problems, modes of operation and the nonlinear and T-S fuzzy model of wind turbine 

are presented. 

Generally, wind turbine control objectives are functions of wind speed. For low wind 

speeds, the objective is to optimise wind power capture through the tracking of optimal 

rotor speed signals. Once the wind speed increases above its nominal value the control 

objective moves to the rated regulating power. 

Specifically, in the low wind speed range of operation, the controller optimises power 

capture through controlling the generator torque so that the wind turbine rotor speed 

follows the optimal rotor speed. 

In fact, from a control stand point, the power optimization problem is a tracking control 

problem. However, several design constraints must be taken into account in the design 

of the wind turbine power maximization controller, these are: 

a. Wind turbines are characterised by their non-linear aerodynamics and have a 

stochastic and uncontrollable driving force as input in the form of EWS. This limits 
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the ability of linear control strategies to maintain acceptable performance over a 

wide range of wind speed. 

b. Due to the common input common output matrices of wind turbine model the 

conservatism of T-S fuzzy estimation and control is highly reduced. 

c. Owing to the direct effect of wind turbine components faults on the wind power 

conversion efficiency, the designed control strategy must be capable of tolerating 

different expected fault effects. 

d. Accurate computation of optimal rotor speeds (using Eq. 2) depends on the 

presence of the EWS estimation. Practically, only point wind speed (anemometer 

based) measurement are available which does not represent the EWS. Therefore, an 

estimation of EWS based on wind turbine dynamics is preferable since this 

estimation overcomes the uncertainty in the measured wind speed. 

e. Exact tracking leads to increased loading on the two drive train shafts and hence 

can shorten the drive train life time. This also produces a highly fluctuating output 

power, and may even produce a varying direction reference torque signal that can 

lead to abnormal generator operation. It is thus very clear that the multi-objective 

approach cannot be avoided for robust wind turbine control design. 
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Chapter 8 : FTC methods for wind turbine operation in 

Region 2   
3
 

8-1. Introduction 

The main challenges for the deployment of wind turbine systems are to maximise the 

amount of good quality electrical power extracted from wind energy. This must be 

ensured over a significantly wide range of weather conditions simultaneously with 

minimising both manufacturing and maintenance costs. In consequence to this, the FTC 

and FDD research have witnessed a steady increase in interest in this application area as 

an approach to maintain system sustainability with more focus on OWTs projects.  

This Chapter focuses on the presentation of three FTTC strategies for OWTs based on 

the T-S fuzzy framework. The proposed strategies are: T-S observer-based sensor 

FTTC, TSDOFC based sensor FTTC, and TSDOFC based sensor FTTC with EWS 

estimation. The FTTC loops are designed to maintain the power capture optimized even 

during the generator and rotor rotational speed sensor faults. The simulation results are 

based on the wind turbine benchmark model presented in (Odgaard, Stoustrup and 

Kinnaert, 2009). 

Recently, T-S fuzzy observer-based sensor AFTC design has been proposed in (Kamal, 

Aitouche, Ghorbani and Bayart, 2012), see Figure  8-1. The method is based on 

evaluation of two residual signals generated using the generalized observer concept of 

(Patton, Frank and Clark, 1989) to switch the estimation from faulty to healthy 

observers with the assumption that no simultaneous sensor faults are occur. It is clear 

that switching between two different observers produces unavoidable spikes that 

                                                 
3Part of the work presented in this Chapter was published in: 

Sami, M. & Patton, R. J. 2012d. An FTC approach to wind turbine power maximisation via T-S fuzzy modelling and control. 8th 

IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Mexico City, Mexico, 349-354. 29-31 Aug. 

Sami, M. & Patton, R. J. 2012e. Global wind turbine FTC via T-S fuzzy modelling and control. 8th IFAC Symposium on Fault 

Detection, Supervision and Safety of Technical Processes, Mexico City, Mexico, 325-330. 29-31 Aug. 

Sami, M. & Patton, R. J. 2012h. Wind turbine sensor fault tolerant control via a multiple-model approach. The 2012 UKACC 

International Conference on Control, Cardiff,  3-5 Sep.  
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specifically affect the drive train torsion of low inertia wind turbines. Also the 

performance of the proposed FTC strategy is highly affected by the robustness and the 

computation time of the residual evaluation unit. Moreover, The T-S model in this 

reference is derived based on measured wind speed which in turn causes clear 

modelling uncertainty since the wind varies stochastically and faster than wind turbine 

dynamic and hence it cannot schedule the controller commands appropriately. 

Furthermore, there is a significant probability of simultaneous occurrence of generator 

and rotor speed sensor faults. 

 

Figure  8-1: Generalized observer-based wind turbine AFTC 

Within the framework of the proposed strategies, the use of wind speed and rotor 

rotational speed as scheduling variables will ensure that the T-S fuzzy model can 

represents a wide range of operation scenario. Specifically, the model can cover cases in 

which the system operates away from the ideal power/wind speed characteristic shown 

in Figure  7-8. In fact, large inertial wind turbines frequently operate away from their 

ideal power/wind characteristics and hence the use of two scheduling variables is the 

best approach to handle this challenge. 

8-2. Investigation of the effects of some fault scenarios  

As stated in Chapter 7, the controller optimises the power captured by controlling the 

rotor rotational speed by varying the reference generator torque C�c so that the wind 

turbine rotor speed Dc follows the optimal rotor speed given by: 

Dc�Y� � A�Y�EFGH$  ( 8-1) 
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where Dc�Y� and A�Y� are the optimal rotor speed and the optimal tip speed ratio. In fact, 

designing a controller for the power optimization problem must achieve the design 

constraints listed in Section  7-8. One of these constraints is to have capability to tolerate 

the effects of faults that affect different system components.  

The following faults are considered and the proposed control strategies need to tolerate 

the fault effects so that good tracking performance to Dc�Y� can be maintained. 

• Rotor speed sensor scaling fault: the sensor scaling fault (decreasing or increasing) 

drive the turbine away from the optimal operation. It is very clear that the controller 

is designed to provide good tracking of Dc�Y� (i.e. 1� � DcD06�(7c6U − D�Y� \ 0). 

However, due to the scale factor fault the controller now tries to force the faulty 

measurement to follow Dc�Y� (i.e. if the scale faults are ±10	% then 1.1 ∗ Dc −D�Y� \ 0 or 0.9 ∗ Dc − D�Y� \ 0) causing a decelerating or accelerating of the 

actual rotor speed and hence causing the wind turbine to operate away from the 

optimal value D�Y�. Additionally, more sever sensor scale faults can affect the 

structure of the wind turbine or guide the wind turbine to the cut-off region. For 

example, severe scale-down sensor faults cause the turbine to rotate faster according 

to the available wind speed. Hence, the fast rotation scenario means that the blade 

passes through the turbulence component of the previous blade before re-

establishing the undisturbed wind speed. This induces excessive vibration of the 

overall structure of the wind turbine. On the other hand, in the scale-up sensor fault 

the control system slows down the rotor rotational speed. This in turn may lead to 

the wind turbine entering the cut-off region. 

• Fixed rotor speed sensor fault: the effect of this fault scenario differs based on the 

fixed measured rotor speed (magnitude of stuck fault) and Dc�Y� which in turn 

depends on wind speed. If Dc�Y� is lower than the fixed rotor speed measurement 

then the controller will force the system to slow-down and this in turn may lead to  

the cut-off rotational speed being reached. On the other hand, if Dc�Y� is higher than 

the fixed rotor speed then the controller will simply release the turbine to rotate 

according to the available wind speed without control. 

• Generator speed sensor bias fault: the sensor bias fault (decreasing or increasing) 

affects the closed-loop performance of the wind turbine and hence the wind power 

conversion efficiency. However, the expected effect of this fault is probably less 
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than the effect of the rotor speed sensor faults since the generator speed signal is part 

of the feedback signal and not compared directly with the reference optimal speed 

(i.e. not the objective signal). 

• Generator torque bias fault: the effect of torque bias fault is similar to the effect of 

the rotor speed sensor fault. In this fault scenario the inner-loop generator controller 

minimises the difference between the	C�c	and the measured generator torque	C�0. In 

fact, C�0 is not directly measured but obtained via soft sensing. Therefore, any bias 

in this measurement results in driving the system away from optimal operation. This 

results in a decrease of the wind turbine power conversion efficiency. Fortunately, 

from a global control stand point this fault appears as a scale actuator fault. This 

interpretation is considered in Chapter 9. 

Figure  8-2 shows the effects of different fault scenarios on the optimal operation of 

wind turbine. 

 

Figure  8-2: The effect of sensor faults on power optimization 

Clearly, the generator and rotor speed sensor scaling faults emulate the effect of the A�Y� uncertainty problem which arises in part due to wind turbine aging and blade 

deformation. Hence, even if the scaling fault is minor and does not lead to structural 

damage, the detection and tolerance of this fault can lead to maintain the harvested 

power at its optimal value. 

Generally, the aim of all proposed FTTC strategies in this Chapter is to maintain the 

same control law during both faulty and fault-free cases. Estimators are used to 

simultaneously estimate the sensor fault signals and tolerate their effects on the output 

signal delivered to the input of the controller.  

While the first two proposed strategies make use of measured wind speed, the fault 

estimator in these strategies is designed to be robust against the expected error between 
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the measured wind speed and the EWS. This is because the measured wind speed signal 

does not exactly represent the EWS signal.   

8-2-1. T-S fuzzy PMIO based sensor FTC 

This Section describes a new T-S fuzzy observer-based sensor FTTC scheme designed 

to optimise the wind energy captured in the presence of generator and rotor speed sensor 

faults. To ensure good estimation of a wider than usual range of sensor faults, the FTTC 

strategy utilises the fuzzy PMIO. The nominal fuzzy controller remains unchanged 

during faulty and fault-free cases. Although the proposed strategy is dedicated to 

controlling the wind turbine within the low range of wind speed (below rated wind 

speed), the proposed controller is useful as a supplementary control to assist the pitch 

control system as a means of regulating the rotor speed above the rated wind speed. 

The main contributions involved in the proposed strategy are: (1) the use of the PMIO 

to hide or implicitly compensate the effect of drive train sensor faults. This obviates the 

need for residual evaluation and observer switching (see (Kamal, Aitouche, Ghorbani 

and Bayart, 2012) for example). (2) The PMIO simultaneously estimates the states and 

the sensor fault signals. Hence, information about the fault severity can also be provided 

through the fault estimation signals. (3) The fuzzy PMIO scheme is shown to give good 

simultaneous state and abrupt sensor fault estimate. Figure  8-3 schematically illustrates 

the proposed strategy. 

 

Figure  8-3: Wind turbine PMIO based sensor FTC scheme 

In this strategy the controller forces the generator rotational speed to follow the optimal 

generator speed. Additionally, this strategy makes use of the measured wind speed as an 

approximation of the EWS. 
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As derived in Chapter 7 (Section  7-7), the T-S fuzzy model of the nonlinear wind 

turbine system given in Eq. ( 7-18) with additive sensor can be expressed as: 

� ! � "()� (M� + 	$� + �()�CFGH% � 	& (M� + õ�,(																												Ù ( 8-2) 

"()� ∈ ℛO∗O(� ∑ ℎ�	()�"�c�PE �,	$ ∈ ℛO∗0, �()� ∈ ℛO∗0¤(� ∑ ℎ�	()���c�PE �,	õ� ∈ℛ_∗�and	& ∈ ℛ_∗O	are known system matrices. Z is the number of fuzzy rules and the 

term ℎ�	()� is the weighting function of the i
th fuzzy rule (as defined in Section 7.7) 

satisfying ∑ ℎ�	()� � 1c�PE , and 1 ≥ ℎ�	()� ≥ 0, for all i. 

An augmented system consisting of the Eq. ( 8-2) and the tracking error integral (1� = *(%c − �%))	is defined as: 

� ̅! = "̅()) ̅ +	$Õ� + �Õ())CFGH + $%c%Õ � &̅	 ̅ + õ��,(																																								Ù ( 8-3) 

"̅()� � È0 −�&0 "()�É ,  ̅ = ö1� ÷ , $Õ = È0$É , �Õ()) = È 0�())É ,$ = È=0É 
&̅ = È=� 00 &É , õ�� = È 0õ�É 

 

where	� ∈ ℛj∗_ is used to define which output variable is considered to track the 

reference signal. Hence, the tracking problem is transferred to a fuzzy state feedback 

control, for which the proposed control signal is: 

� = 5()) ̅
 ( 8-4) 

where 5()) ∈ ℛ0∗(O¡j)(= ∑ ℎ�	())5�c�PE ) is the controller gain and  ̅
 	 ∈ ℛ(O¡j)	is the 

estimated augmented state vector. 

As described in Chapters 4 and 5, if it can be assumed that the q
th derivative of the 

sensor fault signal is bounded, then an augmented state system comprising the states of 

the original local linear system and the qth derivative of the	,(, is given as follows: 

�� = ,(�D�						(� = 1,2, … , 	)  ,  �!E = ,(�; �! @ = �E; 	�! { = �@;… ; �!� = ��DE  

Then the system of Eq. ( 8-2) with the augmented fault derivative states will become: 
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� !� = "�()) � + $�� + ��())CFGH + $�%c + �,(�%� � &� �																																																																										Ù ( 8-5) 

where the augmented matrices are structured as illustrated in Chapters 4 & 5. The 

following T-S fuzzy PMIO is proposed to simultaneously estimate the system states and 

sensor faults: 

� û!� � "�()� û� + $�� + ��()�C + $�%c + ü�()�(%� − %û��%û� � &� �																																																																																								Ù ( 8-6) 

The state estimation error dynamics are obtained by subtracting Eq. ( 8-6) from Eq. ( 8-5) 

to yield: 

1!+ � ("�()� − ü�()�&��1+ + �,(� + ��()�1I ( 8-7) 

where 1I is the difference between the EWS (CFGH) and the measured wind speed (C). 

The augmented system combining the augmented state space system ( 8-5), the 

controller ( 8-4), and the state estimation error ( 8-7) is given by: 

 Å!�(M� � Nℎ�	()�Ã"Æ� Å� +	�Ç�:ÆÄc
�PE  ( 8-8) 

where: "Æ� � È"̅()� + $Õ5()� −$Õh5()�	00×�i0 "�()� − ü�()�&�É	 
 Å� � È  ̅1+É	,				�Ç� = È�Õ()) 0 $ 00 ��()) 0 �É	 , :Æ = ¥CFGH1I%c,(� ¦	 

The objective here is to compute the gains ü�()�	89:	5()�	such that the effect of the 

input		:Æ in Eq. ( 8-8) is attenuated below the desired level	Ê, to ensure robust 

stabilisation performance. 

Theorem 8-1: For t>0 and ℎ�	()�ℎ[	()� ≠ 0, The closed-loop fuzzy system in ( 8-8) is 

asymptotically stable and the ./ performance is guaranteed with an attenuation 

level		Ê, provided that the signal (:Æ� is bounded, if there exist SPD matrices ËE, Ë@, 
matrices .�� , Ì� , and scalar	Ê satisfying the following LMI constraints ( 8-9)&( 8-10): 

X�9����1		Ê, ���ℎ	Mℎ8M:  ËE > 0, Ë@ > 0 ( 8-9) 
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0 0 0 0 0 ÎE&YÏL= 0 0 0 0 00 L= 0 0 0 00 0 L= 0 0 00 0 0 L= 0 00 0 0 0 L= 0Ψ�� 0 ��()) 0 Ë@� 0∗ −Ê= 0 0 0 0∗ ∗ −Ê= 0 0 0∗ ∗ ∗ −Ê= 0 0∗ ∗ ∗ ∗ −Ê= 0∗ ∗ ∗ ∗ ∗ −Ê= }~
~~~
~~~
~~~
~�

 

< 0 

 ( 8-10) 
where: 5� = Ì�XEDE, ü� = Ë@DE.��		, ÎE = ËEDE, ÎÕE = :�8��98�	(ÎE, =�×�) )EE = "̅�ÎE + ("̅�ÎE)Ï + $ÕÌ� + ($ÕÌ�)Ï;  )E@ = h−$ÕÌ� 0i; )�� = Ë@"�� + (Ë@"��)Ï − .��&� − (.��&�)Ï.	 
Proof:  This proceeds in a similar way to the steps illustrated to prove Theorem 5-3 and 

hence the details are omitted here. 

8-2-1-1. Simulation results 

The rotor and generator sensor faults are represented by two scale errors. The scale 

factors of 1.1 & 0.9 are multiplied by the simulated real generator and rotor rotational 

speeds. The expected fault effects represent a deviation of the wind turbine from the 

optimal operation. Figure  8-4 shows how the wind turbine operation is affected by the 

two fault scenarios and helps to illustrate the success of the proposed strategy to tolerate 

the effects of sensor faults and maintain optimal wind turbine operation. 
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(b) 

Figure  8-4: Effect of 1.1 (a) and 0.9 (b) sensor scale faults with(out) fault compensation 

It is clear that the 1.1 scale sensor fault causes a deceleration of	Dc	&	D�. Based on the 

faulty measurement the controller forces the turbine to reduce the rotational speed by 

increasing the reference generator torque (the generator acts with a breaking torque that 

can decelerate or release the aerodynamic subsystem) which in turn increases the drive 

train load. Hence, although the sensor fault is a scale-up fault, the actual rotational 

speeds of the generator and rotor are decelerated as a result of the dependence of the 

controller on the faulty measured signal. The effect of this fault scenario is shown in 

Figure  8-5 without sensor fault compensation. Conversely, the 0.9 scale sensor fault 

causes acceleration of Dc 	&	D� since, based on faulty measurement; the controller 

releases the aerodynamic subsystem to rotate according to the available wind speed. 

Figure  8-6 shows the effect of the 0.9 sensor fault without compensation. 
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(b) 

Figure  8-5: 1.1 sensor scale fault decelerate D�(a) & Dc	(b) 

 
(a) 

  
(b) 

Figure  8-6: 0.9 sensor bias fault accelerate D�(a) & Dc	(b) 
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(a) 

 

(b) 

 

(c) 

Figure  8-7: Actual, optimal, and measured D�(a &b)  

& Dc	(c) using the proposed sensor FTC strategy 
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The generator rotational speed sensor fault estimation signals for both 0.9 and 1.1 scale 

factor fault scenarios are shown in Figure  8-8. 

 

(a) 

 

(b) 

Figure  8-8: Estimation of 1.1 (a) and 0.9 (b) sensor bias faults 

As discussed in Chapter 4, the T-S PMIO can provide information about the fault 

severity via the fault estimation signal. This is achieved through taking the ratio 

between the measured generator speed and the estimated signal. Hence, if there are no 

faults the ratio should be 1 otherwise any deviation from unity indicates the occurrence 

of the fault and the magnitude of the deviation represents the fault severity. Figure  8-9 

shows the fault evaluation signal for both fault scenarios. 
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(a) 

 
(b) 

Figure  8-9: Deviation of 1.1 (a) and 0.9 (b) sensor measurements from unity 

It should be noted that maintaining state estimation without changes during the whole 

range of operation is due to the fact that the fuzzy PMIO performs implicit fault 

estimation and compensation of sensor faults from the input of PMIO. As discussed in 

Chapter 4, this fact is clearly interpreted from the error signal (%� − &� û�) which can be 

rewritten as (&̅ ̅ + õ�,( − &̅ ̅
 − õ�,V(), then as long as there are no sensor faults, ,V( � 0. 

However, once a sensor fault occurs the fault estimation ,V( compensates the effect of the 

fault signal ,( and hence the observer always receives a fault-free error signal. 

8-2-2. TSDOFC based active sensor FTTC 

Due to a global stability requirement for both of the T-S fuzzy control and the T-S fuzzy 

observer, the separation principle cannot be ensured even when the model uncertainty 

is not considered (see Section  6-2 for further details). On the other hand, the sensor 

faults proposed in the benchmark have an abrupt change behaviour for which the use of 
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fast fault estimation observer is of great advantage. To overcome these challenges this 

Section focuses on the presentation of a combination of T-S fuzzy PPIO and TSDOFC 

for wind turbine sensor FTTC. A generic scheme of the proposed strategy is shown in 

Figure  8-10. 

 

Figure  8-10: Active sensor FTC scheme 

8-2-2-1. The T-S fuzzy PPIO design 

For the T-S fuzzy model of a wind turbine given in Eq. ( 8-2), let 1� ∈ ℛ� be the fault 

estimation error defined as: 

1� � ,( − ,V(	 ( 8-11) 

To avoid the direct multiplication of the sensor and/or noise by the PPIO gains, an 

augmented system state with output filter states is constructed. The filtered output is 

given as follows: 

 !( � −"( ( +	"(& + "(õ�,( ( 8-12) 

where −"( ∈ $_∗_	is a stable matrix. The augmented state system is given as: 

�  ̅! � "̅()� ̅ + $Õ� + �Õ()�CFGH + õ��,(%Õ � &̅	 ̅																																																							Ù ( 8-13) 

"̅� � È"()� 0"(& −"(É ,  ̅ = È � (É , $Õ = È$0É, �Õ()) = È�())0 É , õ�� = È 0"(õ�É , &̅ = h0 =_i 
To deal with time-varying fault scenarios the fuzzy fast fault estimation presented in 

Chapter 6 is used with assumed bounds on the first derivative of each fault. Hence, the 
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following fuzzy observer is proposed to simultaneously estimate the system states and 

sensor fault. 

� ̅
! � "̅()� ̅
 + $Õ� + õ��,V( + �Õ()�C + üÕ()�(&̅ ̅ − &̅ ̅
�
,V!((M� � *()�&̅(1!+ + 1+�																																																				Ù ( 8-14) 

where  ̅
 ∈ ℛO¡_ is the estimate of the state vector	 ̅,	C is anemometer measured wind 

speed, üÕ()� ∈ ℛ(O¡_�×_, and	*()� ∈ ℛ�×_ are the observer gains to be designed, and 1+	is the state estimation error defined as: 

1+ �  ̅ −  ̅
 ( 8-15) 

The estimator in Eq. ( 8-14) provides simultaneous estimation of the system state and 

fault signals. The state estimation error dynamic are then: 

1!+ � ("̅()� − üÕ()�&̅�1+ + õ��1� + �Õ()�1I ( 8-16) 

where 1I is the difference between the EWS and the anemometer measured wind speed. 

Using ( 8-14) and ( 8-16) the fault estimation error dynamics are then as follows: 

1!� � ,!( − *()�&̅("̅()� − üÕ()�&̅ + =�1+ − *()�&̅õ��1� − *()�&̅�Õ()�1I ( 8-17) 

The augmented estimator will then be of the following form: 

1̃!�(M� � "Æ(), ))1̃� +	�Ç(), ))�̃ ( 8-18) 

"Æ(), )) = È"̅()) − üÕ())&̅ õ��−*())&̅("̅()) − üÕ())&̅ + =) −*())&̅õ��É 
1̃� = Èeþ1�É	 , �̃ = È1I,!( É , �Ç(), )) = È�Õ()) 0−*())&̅�Õ()) =É			 

The objective is to compute the gains üÕ()) and *()) such that the exogenous input		�̃ in 

Eq. ( 8-18) are attenuated below the desired level Ê to ensure robust regulation 

performance in addition to locating the observer poles within a specified disc region 

characterized by its radius (ç) and centre (�). 

Theorem 8-2: The estimation error system eigenvalues are located in a disc region in 

the complex plane defined by (ç, �) so that the error dynamics are stable. Furthermore, 

the H∞ performance is guaranteed with an attenuation level	Ê, (provided that the 

signal	(,!(� is bounded), if there exist an SPD matrix ËE,	 matrices .�� , *�, and a scalar	L, ç, and � satisfying the following LMI constraints: 
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xy
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z−αËE 0 iE i@0 −ç= i{ i|∗ ∗ −αËE 0∗ ∗ 0 −ç=}~

~~
� < 0 

( 8-19) 

 

xyy
yyy
yyz
)EE )E@ )E{ 0 &YEÏ 0∗ )@@ )@{ = 0 &Y@Ï∗ ∗ −Ê= 0 0 0∗ ∗ ∗ −Ê= 0 0∗ ∗ ∗ ∗ −Ê= 0∗ ∗ ∗ ∗ ∗ −Ê=}~~

~~~
~~� < 0 ( 8-20) 

üÕ()) = ËEDE.�())	, )EE = ËE"̅()) + 3ËE"̅())4Ï − .�())&̅ − (.�())&̅)Ï )E@ = D("̅Ï())ËEõ�� − &̅Ï.�Ï())õ��) ; )E{ = ËE�Õ()), )@@ = −2õ��ÏËEõ�� )@{ = −õ��ÏËE�Õ()) ; iE = ËE"̅()) − .�())&̅ + βËE, i@ = ËEõ��  

i{ = − �"̅Ï())ËEõ�� − &̅Ï.�Ï())õ�� + õ��ÏËE�Ï; i| = Dõ��ÏËEõ�� + �= 
Proof:  Similar to the steps presented in Chapter 6 to prove Theorem 6-1, hence details 

are omitted here. 

8-2-2-2. The TSDOFC design 

The control objective here is to design a dynamic output feedback controller capable of 

forcing the wind turbine rotor rotational speed to follow the optimal rotor speed signal 

in both faulty and fault-free cases. 

An augmented system consisting of the system in ( 8-2) and the integral of the tracking 

error 1�� = *(%c − �%)	is defined as: 

� ̅! = "̅()) ̅ +	$Õ� + �Õ())CFGH + $%c + õ�O1�%Õ � &̅	 ̅ + õ��1�																																																								Ù ( 8-21) 

"̅()� � È0 −�&0 "()�É ,  ̅ = ö1�� ÷ , $Õ = È0$É , õ�O = È−�õ�0 É , �Õ()) = È 0�())É ,$ = È=0É 
&̅ = È= 00 &É , õ�� = È 0õ�É 
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where	� ∈ ℛ�∗_ is used to define which output variables are considered to track the 

reference signal. As stated in Chapter 6, since the system in ( 8-2) has common input and 

output matrices (B & C), the linear parameterization dynamic output feedback controller 

used to stabilize and perform the tracking objective and defined as: 

� !� = "�()) � + $�())(�c%c − %Õ)		
� = &�()) � + õ�())(�c%c − %Õ)			< ( 8-22) 

where  � is the state and "�()) ∈ ℛ(O¡�)×(O¡�), $�()) ∈ ℛ(O¡�)×(_¡�), &�()) ∈ℛ0×(O¡�), õ� ∈ ℛ0×(_¡�)89:	�c ∈ ℛ(_¡�)×� is introduced to match the dimensions of %c	89:	%Õ. 

Aggregation of ( 8-21) and ( 8-22) gives the following system: 

� !� = "�()) � + ��()):%Õ 	= &� � + õ�:														< ( 8-23) 

"�()) = È"̅()) − $Õõ�())&̅ $Õ&�())−$�())&̅ "�()) É ,  � = È  ̅ �É	, : = �CFGH1�%c � , &� = h&̅ 0i	 
õ� = §0 õ�� 0ª , ��()) = È�Õ()) õ�O − $Õõ�())õ�� $ + $Õõ�())�c0 −$�())õ�� $�())�c É 

Theorem 8-3: The eigenvalues of the closed-loop system ( 8-23) are located in the disc 

region of the negative complex plane characterised by the radius (ç) and centre (�), so 

that the closed-loop is stable and tracks the reference signal with guaranteed H∞ 

performance and with an attenuation level Ê, (provided that the signals in : is 

bounded), if there exist SPD matrices	Î, Ì, matrices	"�()),$�()),&�()), and	õ�()) 
satisfying the following LMI constraints: 

xy
yy
z−αÎ −= iE� i@�−= −αY i{� i|�∗ ∗ −αÎ 0∗ ∗ 0 −αY}~

~~
� < 0 ( 8-24) 
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xyy
yyy
yyz
)EE� )E@� �Õ()) )E{� )E|� Î&YEÏ∗ )@@� Ì�Õ()) )@{� )@|� &YEÏ∗ ∗ −Ê= 0 0 0∗ ∗ ∗ −Ê= 0 0∗ ∗ ∗ ∗ −Ê= 0∗ ∗ ∗ ∗ ∗ −Ê= }~~

~~~
~~� < 0 ( 8-25) 

where ΨEE® = "̅())Î + ("̅())Î)Ï + $Õ&V()) + 3$Õ&V())4Ï ; )E@� = "VÏ()) + "̅()) − $Õõ�())&̅ )E{� = õ�O − $Õ())õ�())õ�� ; )@@� = Ì"̅()) + 3Ì"̅())4Ï + $
())&̅ + 3$
())&̅4Ï )@{� = Ìõ�O + $
())õ�� ; )E|� = $ + $Õõ�())�c ; )@|� = Ì$ − $
())�c iE� = "̅())Î + $Õ&V()) + βÎ ; i@� = "̅()) − $Õõ�())&̅ + β= i{� = "V()) + β= ; i|� = Ì"̅()) + $
())&̅()) + βÌ 

The controller gains are thus calculated as follows: õ�()) = õ�(p) ; &�()) = 3&V()) + õ�())&̅Î4XDÏ ; $�()) = �DE(−$
()) − Ì$Õõ�()) "�()) = �DE("V()) − Ì3"̅()) − $Õõ�())&̅4Î − Ì$Õ&�())XÏ + �$�())&̅Î)XDÏ 

where X	89:	� satisfy X�Ï = = − ÎÌ 

Proof:  Similar to the steps presented in Chapter 6 to prove Theorem 6-3, hence details 

are omitted here. 

8-2-2-3. Simulation results 

This proposed controller is also applied to the benchmark model mentioned previously. 

Three fault scenarios are considered in this subsection, these are: 

1. Generator rotational speed scaling fault (,(�): 
The two fault scenarios are 0.9 and 1.1 scale measurements (output matrix parametric 

changes) of generator rotational speed sensor. As stated in previous Chapters, parameter 

changes in the output matrix &	can be considered as a special case of additive faults in 

which the fault signals (,(�) is a scaled version of the measured state. Figure  8-11 shows 

the two fault scenarios and the effectiveness of the proposed strategy to compensate the 

bias from the scaled measurements. Additionally, via the presented fault estimation 

signals, the ability of the proposed fuzzy fast fault estimator to accurately estimate 

abruptly changing fault is also clear. 
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(a) 

 
(b) 

 
(c) 

Figure  8-11: Generator rotational speed sensor faults (b &c) and effectiveness of 

compensation strategy (a). 

Clearly, the two fault scenarios (1.1 or 0.9 scale fault) affect the wind turbine closed-

loop performance and hence the wind power conversion efficiency. However, the 

expected effect of this fault is probably less than the effect of rotor speed sensor fault 
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since the generator speed signal is part of the feedback signals and not compared 

directly with the reference optimal speed.  

 

Figure  8-12: The effect of generator speed scale sensor fault 

2. Rotor rotational speed stuck sensor fault (,(c� (Dc�Y� u Dc	06�(7c6U) 

The second fault scenario is represented by the fixed sensor output of the rotor speed 

sensor at	1.4	Z8:	�1�DE. As stated in Section  8-2, the effect of this fault scenario varies 

according to the fixed measurement of rotor speed and Dc�Y�	which in turn depends on 

the wind speed. In this case Dc�Y� is lower than the fixed rotor speed measurement and 

hence the controller starts to force the system to slow-down the rotor speed. Hence, as 

long as the optimal speed remains below the measured value, the controller keeps 

increasing the reference generator torque C�c which may lead to the rotaion speed Dc 

reaching its cut-off value, i.e. the turbine is shut down due to a rotor rotation speed 

sensor fault. This fault scenario and the effectiveness of the estimation and 

compensation strategy to maintain the required system performance in the presence of 

this severe fault is shown in Figure  8-13. A further investigation of the effect of this 

severe fault scenario and the ability of the proposed strategy to tolerate the effect of this 

fault is shown in Figure  8-14. It is clearly shown that this fault scenario can lead to wind 

turbine shut-down by increasing the breaking action which in turn increases the drive 

train torsional load. 
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(a) 

 

(b) 

Figure  8-13: The effectiveness of the proposed strategy to tolerate stuck rotor speed 

sensor fault (a) and fault estimation (b). 
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(b) 

Figure  8-14: Further investigation of stuck fault effect and the effectiveness of the 

proposed strategy. (a) Rotor speed and (b) generator torque 

3. Rotor rotational speed stuck sensor fault (Dc�Y� q Dc	06�(7c6U) 

In this rotor speed stuck sensor fault scenario Dc�Y� is higher than the stuck 

measurement of the rotor speed. Hence, the controller will simply release the turbine to 

rotate according to the available wind speed without control. The effectiveness of the 

proposed strategy to tolerate this fault scenario is shown in Figure  8-15. On the other 

hand, Figure  8-16 shows the effect of stuck fault scenarios from power capture stand 

point. Additionally, as stated in Section  4-3-3, the fault severity can also be obtained by 

taking the ratio between the measured generator speed and the estimated signal. Clearly 

this ratio deviates from unity during a fault and remains at the unity in fault-free case. 

Figure  8-17. 
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(b) 
Figure  8-15: The effectiveness of the proposed strategy to tolerate stuck rotor speed 

sensor fault. (a) Rotor speed and (b) generator torque 

 

Figure  8-16: The effect of stuck fault scenarios on the power captured 
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(b) 

Figure  8-17: Fault severity evaluation. (a) Scale fault & (b) Additive fault. 

8-2-3. TSDOFC based active sensor FTTC with EWS estimation 

The proposal in this Section offers further enhancement to the strategies presented in 

Sections  8-2-1 & 8-2-2 for wind turbine FTTC methods. The main advantage compares 

with the proposals in Sections  8-2-1& 8-2-2 is the inclusion of the EWS estimation. In 

fact, the wind turbine system has an unknown input signal in the form of EWS which 

should be estimated in order to ensure good wind power transformation efficiency (i.e. 

to ensure accurate compute of the optimal rotor speed). The effect of this unknown 

input signal (i.e. the EWS) is actually emulates the effect of generator torque actuator 

fault on both the control signal (see Sections  8-2 &  7-5) and the sensor fault estimate 

(see Eqs. ( 8-7) & ( 8-16)). Hence, the framework proposed for simultaneous actuator and 

sensor faults is adopted to design sensor FTTC with EWS estimation for OWT problem. 

Figure  8-18 illustrates schematically how the wind turbine control problem represents 

the FTTC strategies proposed in Chapters 5 & 6 (see Sections  5-2 &  6-3 ). 

 
Figure  8-18 : Schematic of the proposed wind turbine AFTC 
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Remarks:  

• It should be noted that the methodology presented in Chapter 6 is used here for 

simultaneous sensor faults and EWS estimation. In fact, this problem is best 

coincides with the framework presented in Chapter 6 since both the EWS (the 

unknown input) and the rotor and generator sensor fault affect the same system 

simultaneously (i.e. the drive train subsystem). On the other hand, the generator 

torque fault estimation and compensation can be achieved locally using the generator 

and converter subsystem (i.e. using Eq. ( 7-6) only). 

• It is already stated in Section  8-2 that although in the wind turbine benchmark the 

generator torque scale fault is considered as an actuator fault, in reality this fault is 

attributed to a scale fault in the soft sensing of C�0 signal. Hence, owing to the fact 

that the generator and converter subsystem is approximated using first order dynamic 

( Eq. ( 7-6)), the final effect of the soft sensor scale fault appears as generator torque 

actuator fault. 

• To overcome model uncertainty in the generator and converter subsystem, as well as 

to minimise the number of analytical redundancy layers, Chapter 9 makes use of the 

robustness of SMC to tolerate the effects of the generator torque scale fault. The use 

of SMC is attributed to two reasons: (1) The inherent robustness of SMC against 

model uncertainty. (2) The SMC inherently provides additional layer of analytical 

redundancy represented by the sliding mode surface and hence obviate the need to 

increase the number of analytical redundancy layers.  

Specifically, the advantages that achieved by this proposal are: 

1. Instead of using the uncertain measurements of wind speed, in this strategy a PMIO 

is used to provide estimation of the aerodynamic torque (as unknown input) based 

on the drive train subsystem. Specifically, this is achieved by dealing with the torque 

as an augmented state to the drive train subsystem and then this estimated signal is 

fed to EWS computation unit to provide estimation of EWS. 

2. Since the aerodynamic torque is a resultant of different wind components such as 

mean, shear, tower shadow, and turbulent wind, the PMIO is selected because it has 

been already stated in the literature that PMIO can provide good estimation for 

signals the contain fast and slowly varying components (Gao, Ding and Ma, 2007). 
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3. Based on the proposed cascade EWS estimation strategy, only the linear PMIO is 

required since in this strategy the aerodynamic torque, which is the source of 

nonlinearity, is augmented to the drive train subsystem states. 

4. In addition to including the estimation of EWS in this strategy (unknown input), the 

effects of rotor and generator speed sensor faults are also taken into account.  

In this strategy, the TSDOFC is used to achieve the decoupling between the controller 

on the estimator dynamics. A detailed schematic of this strategy is shown in 

Figure  8-19. 

 
Figure  8-19: Detailed schematic of the proposed strategy 

8-2-3-1. The EWS estimation 

This Section illustrates the robust strategy for estimating the EWS. This involves two 

steps (1) estimating the aerodynamic torque and (2) computing the EWS. The estimator 

used here is the robust PMIO. 

The drive train state space model in Eq. ( 7-4) with sensor fault compensated by the 

estimation taken from the other PMIO can be rewritten as follows: 

� ! � " + $EC� + $@C�% � & + õ1�(															<	 ( 8-26) 

where " ∈ ℛO∗O, $E ∈ ℛO∗E, $@ ∈ ℛO∗E , & ∈ ℛ_∗O, and õ ∈ ℛ_∗(	are known system 

matrices. Assume that the q
th derivative of the signal (C�� is bounded, then we can 
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construct an augmented state system consisting from the original drive train states and 

the qth derivative of the	C�. 

Now let:  

�� �	C��D�		(� � 1,2, … , 	)  ,  �!E = C��; 		�! @ = �E; 		… ; 		�!� = ��DE  

Then the augmented state will be: 

 ̅ = § Ï �E �@ �{ … . ��ªÏ ∈ ℛOÕ  
where 9Õ = 9 + ø	 and the augmented drive train model becomes: 

� ̅! = "̅ ̅ + $Õ@C� + �C��% = &̅ ̅ + õ1�(																			' ( 8-27) 

where the augmented structure is illustrated in Chapters 4 & 5. Hence, the following 

PMIO is proposed to simultaneously estimate the drive train states and the unknown 

aerodynamic torque component: 

 ̅
! = "̅ ̅
 + $Õ@C� + 5�3% − &̅ ̅
 + õ1�(4 ( 8-28) 

where  ̅
 ∈ ℛOÕ  is the estimation of the augmented state vector  ̅, and 5� = h5YÏ , 5�E, . . , 5��iÏ ∈ ℛOÕ∗_ is the gain to be design. 

Theorem 8-4: The PMIO given in ( 8-28) exists if 

Z89ø ó" $E& 0 ô = 9 + ø ( 8-29) 

and Z89ø ó�= − "& ô = 9					∀� ∈ ℂ ( 8-30) 

Additionally, the PMIO attenuates the effect of the bounded C�@�and 	1�( on the 

augmented estimation error if there exist SPD matrix Ë = ËÏ > 0 and matrix .� that 

minimise Ê under the following LMI constraints: 

xy
yzË"̅ + (Ë"̅)Ï −.�&̅ − (.�&̅)Ï Ë� −.�õ =OÕ×OÕ(Ë�)Ï −Ê= 0 0−(.�õ)Ï 0 −Ê= 0=OÕ×OÕ 0 0 −Ê=}~

~� ( 8-31) 

where the observer gains are obtained by: 

5� = ËDE.� ( 8-32) 
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Proof: Conditions ( 8-29) & ( 8-30) follow directly the observability requirements for the 

states and unknown input estimate. 

The state estimation error dynamics are obtained by subtracting Eq. ( 8-28) from ( 8-27): 

1!+ = ("̅ − 5�&̅)1+ + �C�� − 5�õ1�( ( 8-33) 

To attenuate the effect of C��and 1�( on the estimation error simultaneously whilst also 

ensuring system stability, the following inequality must hold: 

Ô!(1+) + 1Ê 1+Ï 	1+ − Ê(C��ÏC�� + 1�(Ï1�() < 0 ( 8-34) 

where Ô!(1+) is the time derivative of the candidate Lyapunov function (Ô(1+) =1+ÏË1+). Using Eq. ( 8-33), inequality ( 8-34) becomes: 

Ô!(1+) = �1+Ï("̅ÏË	 + Ë"̅ − Ë5�&̅ − (Ë5�&̅)Ï)1+ +	1+ÏË�C�� + C��Ï�ÏË1+− 1+ÏË5�õ1�( − 1�(Ï(Ë5�õ)Ï1+Ä ( 8-35) 

Inequality ( 8-34) (in matrix form) after substituting Ô!( Å�) from Eq. ( 8-35) and using the 

variable change .� = Ë5� becomes:  

¥ 1+C��1�( ¦
Ï

xyy
yzË"̅ + (Ë"̅)Ï − .�&̅ − (.�&̅)Ï + 1Ê =OÕ×OÕ Ë� −.�õ�ÏË −Ê= 0−(.�õ)Ï 0 −Ê= }~~

~� ¥ 1+C��1�( ¦ < 0 ( 8-36) 

Clearly, by using the Schur Theorem inequality ( 8-31) can easily be obtained from 

inequality ( 8-36). 

In the literature there are two methods for calculating the EWS based on the estimated 

aerodynamic torque. The first is based on using the Newton-Raphson method and the 

second is based on the inversion of the aerodynamic torque equation Eq. ( 7-3). The 

aerodynamic inversion method to calculate the EWS is used here. For details see 

(Østergaard, Brath and Stoustrup, 2007a). 

The second PMIO is designed to estimate rotor speed sensor fault. The steps for 

designing PMIO for sensor fault has been already explained in different Sections in this 

thesis and hence omitted here. Furthermore, The TSDOFC proposed in this strategy has 

been already derived previously hence it is also omitted here (see Section  8-2-2-2). 
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8-2-3-2. Simulation results 

Figure  8-21, shows the estimation of the EWS based on the proposed PMIO. This 

estimated signal is used in Eq.(1) to produce the optimal rotor speed for tracking 

purposes. In fact, the estimation involves two steps.  First, the aerodynamic torque 

estimates (Figure  8-20), and second the EWS computing algorithm. 

 

 
Figure  8-20: Aerodynamic torque estimation 
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Figure  8-21: EWS estimation 

The rotor rotational speed 1.1 scale factor fault is taken as a sample fault to show the 

ability of the proposed strategy to tolerate the fault and maintain system performance. 

From Figure  8-22, it is clear that both measurement noise and scale fault are additive 

signals affecting the measured rotor speed. Therefore, unknown output estimation 

contain both signals and hence the strategy compensates both fault and measurement 

noise simultaneously. 

 

 
Figure  8-22: Rotor speed scale fault and the ability of the proposed strategy to 

compensate fault and noise 
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8-3. Conclusions 

The operation of a wind turbine below the rated wind speed is a tracking control 

problem which aims to force the wind turbine rotor to follow an optimal rotation speed 

by controlling the generator torque, through a variable reference torque C�c. To ensure 

good tracking performance, three points must be considered as follows: 

1. The inclusion of a nonlinear control strategy to handle system nonlinearity. 

2. Robustness against generator and rotor speed sensor faults. 

3. Accurate computation of the reference signal. 

In addition to an evaluation of the fault effects, this Chapter presents several 

contributions to the problem of sustainable wind turbine based on FTTC. These can be 

summarized as follows: 

1. The advantages of the use of PMIO based sensor FTTC over the generalized 

observer-based sensor FTC are clearly given as: (i) Obviate the need for residual 

evaluation and observer switching, (ii) Ability to tolerate simultaneous generator 

and rotor rotational speed sensor faults, (iii) The PMIO simultaneously estimates the 

states and the sensor fault signals. Hence, information about the fault severity can 

also be obtained through the fault estimation signals, and (v) The new fuzzy PMIO 

scheme is shown to cover a wide range of sensor fault scenarios. 

2. The proposal of an output feedback control strategy that overcomes the dependence 

of the controller on the observer state estimate and hence overcomes the difficulty of 

recovering the separation principle in the T-S fuzzy observer-based control due to 

global stability constraints. 

3. The proposal of a TSDOFC-based sensor FTTC with EWS estimation. This new 

strategy offers great simplification of the estimators. Moreover, it can deal with the 

cases of simultaneous unknown input (EWS) and unknown output (sensor fault and 

noise) estimation. 

4. The use of the PMIO to estimate the EWS offers a high estimation accuracy since 

this estimator has the ability to provide good estimation of the unknown signals that 

contain fast and slow varying components. 
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Chapter 9 : Sliding mode control based FTTC for wind 

turbine power maximization
4
 

9-1. Introduction 

The main challenge for the closed-loop robustness problem against unknown inputs and 

output signals is highlighted in Chapter 8, namely that the number of unknown input 

and output signals exceed the number of measurements. Specifically, a worst case 

operation scenario of a wind turbine is that the system can be simultaneously affected 

by rotor and generator rotational speed sensor faults and generator torque bias faults. 

Hence, there is a significant challenge to be able to discriminate between these fault 

effects robustly whilst at the same time providing a robust method for estimating the 

EWS. Chapter 8 describes one approach for attempting to overcome this challenge via 

increasing the level of the analytical redundancy (i.e. increasing the number of 

redundant fault estimators). 

This Chapter focuses on exploiting the inherent robustness of SMC when used within an 

AFTC framework for power maximization of a wind turbine. In fact, an approach to 

exploit the SMC to tolerate matched faults without the need for additional analytical 

redundancy is the main motivation for the work presented in this Chapter. 

This Chapter starts from a short explanation of the SMC concepts and an investigation 

of its robustness against different actuator and sensor faults is illustrated via an 

academic example. The main contribution is the proposal of three FTTC strategies 

based on SMC and a combination of SMC with the estimation and compensation 

concept. The proposed strategies have been applied to the wind turbine benchmark 

given in Chapter 7. 

                                                 
4 The work presented in this Chapter was published in: 

Sami, M. & Patton, R. J. 2012a. Fault tolerant adaptive sliding mode controller for wind turbine power maximisation. 7th IFAC 

Symposium on Robust Control Design, Aalborg Congress & Culture Centre, Denmark, 499-504. 20-22 Jun. 

Sami, M. & Patton, R. J. 2012g. Wind turbine power maximisation based on adaptive sensor fault tolerant sliding mode control. 

20th Mediterranean Conference on Control & Automation, Barcelona, 1183-1188. 3-6 July. 

Sami, M. & Patton, R. J. 2012b. A fault tolerant approach to sustainable control of offshore wind turbines. 2nd International 

Symposium On Environment Friendly Energies And Applications, Northumbria University, UK,  25–27 June. 
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The SMC strategies proposed in this Chapter encapsulate a first attempt to utilize SMC 

robustness to ensure sustainable control operation of a wind turbine in the presence of 

control system faults. Moreover, a new approach to SMC design within an FTC 

framework is outlined. The important notion is that the selection and design of the 

sliding surface has an important role to play in the development of an FTC scheme. 

Specifically, by designing a sliding surface with the minimum dimension of the 

feedback signal, the robustness of the SMC is ensured against more than the usual 

faults. This is particularly appropriate if a tracking control approach to SMC is chosen.  

The requirement is to develop a special approach to output feedback within tracking 

SMC which is appropriate for dealing with a system that is contaminated by different 

actuator and sensor faults. 

9-2. SMC within a tracking framework 

The basic concepts of SMC have been illustrated in many books (Utkin, 1992, Edwards 

and Spurgeon, 1998, Wilfrid and Jean, 2002, Bartolini, Fridman, Pisano and Usai, 2008, 

Bandyopadhyay, Deepak and Kim, 2009, Bartoszewicz and Nowacka-Leverton, 2009 , 

Alwi, Edwards and Tan, 2011). Generally, the SMC is characterized by relative 

simplicity of design and invariance to specific modelling uncertainty and external 

perturbations. The SMC design steps include: (1) the construction of the sliding surface 

capable of achieving control goals whenever the system remains into this surface. (2) 

Designing of a control signal that forces the system toward the sliding surface. (3) The 

design of the discontinuous control signal around the sliding surface to ensure the 

remaining of the system dynamics in the sliding surface vicinity. The controller 

performance depends on a sliding surface design, once the state motion reaches the 

sliding surface (manifold) the motion remains within or near the manifold in what is 

effectively a reduced order system with strong insensitivity to parametric variations 

occurring in the space outside the sliding manifold. 

The background material in this Chapter follows closely the tracking control 

presentation in (Slotine and Li, 1991) since it  is well suited to the  wind turbine power 

maximization control problem.  

The common approaches for addressing the tracking controller design problem make 

use of either model reference or state feedback with integral action. Both of these 

methods are presented in the Chapters 4 and 5, respectively. Although the two 
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approaches are also used widely within SMC (Edwards and Spurgeon, 1998) and the 

SMC based FTTC framework (Edwards and Spurgeon, 1998, Edwards, Lombaerts and 

Smaili, 2010, Alwi, Edwards and Tan, 2011), the main limitation is that the sliding 

surface is defined based on all of the available feedback signals (i.e. the objective output 

and other states). As a consequence of this, any sensor fault that affects the objective 

variable and/or other states will directly affect the sliding surface. In this case the 

closed-loop performance and stability are directly affected since the SMC lacks the 

robustness against these faults. Fortunately, by modifying the definition of the sliding 

surface, for example if the sliding surface depends on the objective variable alone, the 

closed-loop performance and stability can be maintained even when there are sensor 

faults that do not affect the sliding surface. This is the main motivation behind the use 

of the design methodology proposed in (Slotine and Li, 1991), based on the principle 

that sliding mode tracking control formulation only uses the objective output signal in 

the sliding surface design.  Although these authors did not describe it, the advantageous 

feature of this approach is that the sensitivity of the sliding surface to faults can be 

minimised.   

Following this concept this Chapter investigates the methodology and benefit of 

ensuring that the sensitivity of the sliding surface to specific faults is minimized.  

According to (Slotine and Li, 1991) the control aim is to force a specific output signal 

of the single-input dynamic system given in terms of the n
th order derivative of the 

objective variable x, as:  �O � 8( � + � ( 9-1) 

The specified output signal of interest  �  tracks the time-varying reference signal	 c�. � is the scalar input,  � h �  !� ⋯  ODE�iÏ, 8(x� is a general nonlinear function, 

and  c � h c�  !c� ⋯  c�ODEiÏ is the time-varying reference vector. 

Suppose that	1� �  � −  c� and 1 �  −  c � h1� 1!� ⋯ 1ODE�iÏ are the tracking 

error signal and vector, respectively. The first SMC design step is to define a time-

varying surface so that the control aim is achieved once the system remains in the 

vicinity of this surface. Hence, for	9 � 2, the sliding surface can be given as: � � 1!� + Ê1� ( 9-2) 

where Ê is positive scalar. It is clear that while the system is in the sliding mode (� � 0� the unique solution of Eq. ( 9-2) occurs for	1 � 0 and for zero initial tracking 



211 

 

error 1(0� �  (0� −  c(0� � 0 the tracking problem is equivalent to maintaining the 

error dynamic on the surface	�. Hence, the first design step is achieved. Moreover, 

while the system trajectory is in the sliding manifold the dynamics are reduced to a first 

order differential equation with time response governed by the positive design 

parameter	(Ê�. 
The second SMC design step proposed by (Slotine and Li, 1991) is to find the control 

signal that ensures the occurrence of ideal sliding motion, alternatively, find the control 

signal that makes the sliding surface attractive. This control signal must satisfy the 

following condition (Slotine and Li, 1991, Edwards and Spurgeon, 1998): 

�!� ≤ −q|�| ( 9-3) 

where q is a small positive constant. The condition given in ( 9-3) is known as ‘sliding 

condition’ or ‘reachability condition’ for which the time (Mc6���� taken to reach (� � 0� satisfies: 

Mc6��� ≤ |�(0�|q  ( 9-4) 

Clearly, if the control signal guarantees the sliding condition then the sliding motion 

will take place even if	1(0� �  (0� −  c(0� ≠ 0 within	Mc6����.  

The expression for the control signal	(�6��, known as ‘equivalent control’, can be 

obtain by solving the dynamics within the sliding motion which can be written as: 

�! � 0 ( 9-5) 

Hence, for the system given in Eq. ( 9-1) with 9 � 2	and sliding surface given in Eq. 

( 9-2), the �6� is given as: 

�6� � −8( � +  sc� − Ê1!� ( 9-6) 

Clearly, �6� would maintain the dynamics in ( 9-5) provided that there is no modelling 

uncertainty. To tackle the probable uncertainty on the system model, a discontinuous 

term across the surface (� � 0�	is added to the linear control component	�6�	so that the 

final control signal becomes: 

� � �6� + �O ( 9-7) �O � ø	��9(�� ( 9-8) 

where ��9	is the sign function: 
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���9(�� � +1			�,		� q 0��9(�� � −1			�,		� u 0						' ( 9-9) 

Now, consider the case when the term 8(x� is not precisely known. In this situation �6�	becomes: �6� � −8û( � +  sc� − Ê1!� ( 9-10) 

where 8û(x�	is an approximation to the actual function 8(x�. Consequently, based on 

Eqs.(( 9-1),( 9-7),( 9-10)), and the sliding condition given in ( 9-3), the gain (ø�	can be 

determined as follows: 

�!� � (8( � − 8û( � − ø	 |�|� �� � (8( � − 8û( ��� − ø|�|	 
suppose the uncertain term (8( � − 8û( �� is upper bounded by H, i.e. |8( � − 8û( �| u .	 ( 9-11) 

Also, by letting: ø � . + 	q ( 9-12) 
It follows that: �!� ≤ −q|�|	 
Therefore, by choosing (ø�	in ( 9-8) sufficiently large, the sliding will take place within 

a specific finite time. 

Remark: The discontinuous feedback component induces a particular dynamic in the 

vicinity of the sliding surface known as ‘chattering’. In general, such a control signal is 

undesirable and hence an approximation to the sign function is considered in the 

literature to maintain the system close to the surface (� � 0�	while avoiding chattering. 

One approximation is based on the use of saturation function (�8M(%��	given below 

(Slotine and Li, 1991): 

��8M u�,v � �, 											�,								 |�|, ≤ 1
�8M u�,v � ��9 u�,v 					�Mℎ1Zo��1						s ( 9-13) 

where , q 0	is the thickness of the boundary layer surrounding the surface (� � 0�. A 

softer approximation is the sigmoid function (Burton and Zinober, 1986, Edwards and 

Spurgeon, 1998): 

��9(�� ≅ |�|� + , ( 9-14) 
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9-3. Investigation of SMC robustness within FTC framework 

Although the robustness of the SMC against bounded uncertainty acting in the input 

channel (matched uncertainty) is widely accepted, an investigation of this robustness 

within the FTTC framework has not been clarified in the SMC literature. Therefore, 

based on the tracking theory presented in Section  9-2, the separate effects of different 

actuator and sensor faults on the sliding mode controller performance are investigated in 

this Section via the following tutorial example taken from (Stefani, Shahian, Savant and 

Hostetter, 2002): 

�  ! � " + $�% � & 																	' ( 9-15) 

where " � ó−4 −41 −2ô ,  = ó E @ô , $ = ó02ô	 , & = ó1 00 1ô 
The controller is designed to force the objective output  E	to follow the bounded 

reference signal	 c. Using the sliding surface defined in Eq. ( 9-2), together with the 

control signal defined in Eq. ( 9-7), and the approximation in Eq. ( 9-14), with the 

tracking error defined as	1 =  E −  c. The control signal can easily be shown to have 

the form: 

It is clear that  @ affects only the linear component of the control signal in (9-19), whilst  E  affects both the linear component as well as the discontinuous component via the 

sliding surface	�. The consequence of this is that  E and  @ have different effects on the 

tracking performance from the FTC stand point. This is clarified more fully in Section 

9-3-2. 

9-3-1.  Investigation of SMC robustness to actuator faults 

1. Parametric actuator fault: This fault represents a scaling (up or down) of the 

control signal gain matrix	$ as follows: 

� ! = " + $(� + x�)% = & 																														' ( 9-17) 

(1 + x) is the scale factor. Clearly, this fault affects the system in the direction of the 

input channel. Hence, with an appropriate choice of the discontinuous control 

� = −12 h(3 − Ê) E + (6 − Ê) @ −  sc − Ê !ci + ø	 |�|� + , ( 9-16) 
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component gain (ø), the SMC can inherently tolerate the effect of this fault as shown in 

Figure  9-1 a & b for	x = −0.7.  

 
(a) 

 
(b) 

Figure  9-1: Tracking performance with parametric actuator fault:  

(a) State tracking & (b) Tracking error 

2. Additive actuator fault: This fault scenario is similar to the matched external 

perturbation effects. The system model in Eq. ( 9-15) with additive actuator fault 

become: 

� ! = " + $(� + ,�)% = & 																							 					' ( 9-18) 

where	,� = sin	(0.25M)	is the additive fault signal shown in Figure  9-2b. In a 

similar manner to the parametric actuator fault, Figure  9-2 a & c shows the ability 

of the SMC to tolerate the effect of this fault scenario and guarantees the 

convergence of the tracking error 1	to the origin. 
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(a) 

 
(b) 

 
(c) 

Figure  9-2: Tracking performance with additive actuator fault. (a) State tracking, (b) 

fault signal, & (c) tracking error 

3. Stuck actuator fault: Although the stuck actuator fault affects the system in the 

direction of the input channel, the actuator lacks the ability to feed the closed-loop 

system with the SMC signal. Hence, as a result, the closed-loop system cannot 
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tolerate the effect of this fault unless the SMC is combined with the appropriate 

control reconfiguration technique to tolerate the fault. The system model in Eq. 

( 9-15) with stuck actuator fault becomes: 

� ! = " + $y% = & 																' ( 9-19) 

where	y	is fixed value. Figure  9-3 a &b shows the tracking performance and the 

tracking error with the stuck actuator fault	y = 0.5. Clearly, this fault scenario is 

similar to a complete actuator fault (y = 0) (i.e. actuator failure) in which the 

faulty actuator hides the SMC signal that direct the operation of the closed-loop 

system. 

 
(a) 

 
(b) 

Figure  9-3: Tracking performance with stuck actuator fault. (a) State tracking & (b) 

tracking error 
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9-3-2. An investigation of SMC robustness to sensor faults 

This Section introduces a new investigation of the effect of sensor faults on tracking 

performance within the SMC framework. Sensor faults can be classified based on their 

function within the control signal �	given in Eq. ( 9-16). So that if the fault affects the 

linear component �6�	(for example the measurement of	 @) then this sensor fault is 

similar to the additive actuator fault and hence it can be tolerated by the SMC. On the 

other hand, if the sensor fault affects the sliding surface (i.e. affects	�O, for example the 

measurement of	 E), the SMC lacks the ability to tolerate this sensor fault since this 

fault causes deviation in the sliding surface. The effect of separate  E and  @ 

measurement faults on the tracking performance within the SMC framework is 

illustrated in the following simulation results. 

1. vR	parametric sensor fault: This fault affects the sliding surface given in Eq. ( 9-2) 

as follows: 

� = ( !E + x !E −  !c) + Ê( E + x E −  c) = 1! + Ê1 + (x !E + Êx E) ( 9-20) 

where x	is a real scalar depends on fault severity. Hence, the SMC system tries to 

force the actual  E to track the reference signal based on the faulty measurement. 

This fault cannot be tolerated via the SMC since the sliding surface is contaminated 

by the fault. Figure  9-4 a & b shows the effect of this fault for	x = −0.7. 
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(b) 

Figure  9-4: Tracking performance with vR parametric sensor fault:  

(a) State tracking & (b) tracking performance. 

2. vR	additive sensor fault: This fault affects the sliding surface as follows: 

� = 3 !E + ,!( −  !c4 + Ê( E + ,( −  c) = 1! + Ê1 + (,!( + Ê,() ( 9-21) 

where ,(	is the additive fault signal. Similar to the parametric sensor fault, this fault 

cannot be tolerated via the SMC. Figure  9-5 a & b shows the effect of this fault 

with	,( = sin	(0.25M). 
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(b) 

Figure  9-5 : Tracking performance with the vR additive sensor fault:  

(a) State tracking & (b) tracking performance. 

3. Stuck fault: This fault affects the sliding surface as follows: 

� = 3 !E + 3y! −  !E4 −  !c4 + Ê( E + (y −  E) −  c) = − !c + Ê(y −  c) ( 9-22) 

where y	is a constant value at which the measurement sticks. This fault cannot be 

tolerated via SMC. Figure  9-6 shows the effect of this fault for	y = 0.5. 
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(b) 

Figure  9-6 : Tracking performance with vR stuck sensor fault:  

(a) State tracking & (b) tracking performance. 

4. vS	parametric sensor fault: In this fault scenario the control signal in Eq. ( 9-16) 

become as follows: 

� = −12 h(3 − Ê) E + (6− Ê) @ −  sc − Ê !ci + ø	 |�|� + , + (−12 ((6− Ê)x @) ( 9-23) 

It is clear that the effect of this fault is similar to (actually emulates) the additive 

actuator fault case. Hence, the SMC has the ability to tolerate this fault provided 

that ø is selected sufficiently high. Figure  9-7a & b shows the robustness of the 

SMC against this fault for	x = −0.7. 
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(b) 

Figure  9-7 : Tracking performance with vS parametric sensor fault: 

 (a) State tracking & (b) tracking performance. 

5. vS	additive sensor fault: In this fault scenario the control signal is given as: 

� = −12 h(3 − Ê) E + (6− Ê) @ −  sc − Ê !ci + ø	 |�|� + , + (−12 ((6− Ê),() ( 9-24) 

Clearly, from the SMC stand point, this fault is similar to the  @ parametric sensor 

fault. Figure  9-8a, &b shows the robustness of the SMC against this fault for	,( =sin	(0.25M). 
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(b) 

Figure  9-8 : Tracking performance with vS additive sensor fault:  

(a) State tracking & (b) tracking performance. 

6. Stuck fault: This fault appear as an additive actuator fault as follows: 

� = −12 h(3 − Ê) E + (6 − Ê) @ −  sc − Ê !ci + ø	 |�|� + ,
+−12 (6 − Ê)(y −  @) ( 9-25) 

Figure  9-9a, &b shows the robustness of the SMC against this fault for	y = 0.5. 
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(b) 

Figure  9-9 : Tracking performance with vS stuck sensor fault:  

(a) State tracking & (b) tracking performance. 

Remarks: 

• Although the faults affect  E	measurement cannot be tolerated by the SMC, within 

the regulator control problem, as stated in Chapter 3, the state itself hides the effect 

of the parametric sensor fault. This is clear from the sliding surface equation: 

� = ( !E + x !E −  !c) + Ê( E + x E −  c) = 1! + Ê1 + (x !E + Êx E) 
which clearly shows the fact that if ( ED06�(7c6U = 0) then � = 1! + Ê1. Hence, the 

robustness in this case is not attributed to SMC but to the state itself. 

• The investigation presented in this Section is a function of sliding surface design 

problem. Hence, for the model reference or state feedback with integral action 

based tracking control, sensor faults might have different effects if all the states are 

included in the definition of the sliding surface. 

• To enhance the robustness of the SMC against some fault scenarios, a combination 

of SMC with other fault FTC techniques could enhance the overall robustness of 

the closed-loop system. 

9-4. SMC based sustainable OWTs 

Owing to the robustness of the SMC against some actuator and sensor fault scenarios, 

this Section presents a new strategy for robust FTTC to maintain the optimisation of the 

wind energy captured by a wind turbine in the presence of generator rotational speed 

sensor faults and generator torque faults using an adaptive gain SMC. Compared with 
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the work in (Boukhezzar, Lupu, Siguerdidjane and Hand, 2007, Boukhezzar and 

Siguerdidjane, 2009, Boukhezzar and Siguerdidjane, 2011), the proposal presents 

significant contribution to the literature of wind turbine control. This is attributed to the 

robustness of the proposed strategy against model uncertainty and some fault scenarios. 

In fact, the existence of an unexpected component fault and model uncertainty requires 

the upper bounds on the norm of these uncertainties to be known, to guarantee the 

stability of the closed-loop system. Unfortunately, sometimes these upper bounds may 

not be easily obtained. Therefore, a simple adaptive gain is used within the SMC 

framework presented in Section  9-2 which can guarantees asymptotic stability of the 

wind turbine system in the presence of bounded norm uncertainties. As stated in 

Chapter 7, to ensure power maximisation the control strategy must force the wind 

turbine to operate in the vicinity of the optimal tip-speed-ratio (A�Y�). Hence, the power 

maximisation control problem is summarised as: 

• Track the optimal rotor rotational speed		Dc�Y� given in Eq. ( 8-1). 

• Tolerate the effect of faulty measurement signals. 

• Tolerate the effect of actuator faults. 

The sliding mode surface must be designed so that when the system enters the sliding 

mode the control objectives are achieved. 

For the wind turbine model presented in Chapter 7, the tracking error is defined as 

follows: 

1� = Dc − D�Y� ( 9-26) 

Then the first, second, and third order differential equations of the tracking error can 

easily be obtained based on Eq. ( 9-26) and Eq. ( 7-4), as: 

�1!� = 8EEDc + 8E@D� + 8E{â∆ + tEEC� − D! �Y�1s� = Ds c − Ds �Y�																																																								1z� = Dzc − Dz�Y�																																																																s ( 9-27) 

For the order three tracking error dynamics the proposed sliding surface is: 

� = 1s� + 2Ê1!� + Ê@1� ( 9-28) 
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Hence, while the system trajectory is in the sliding manifold (� = 0) the dynamics are 

reduced to a second order differential equation with time response governed by the 

positive design parameter (Ê) which can be considered as a tuning parameter that 

governs the response of the system during sliding. The most important challenge then is 

to find the control signal that achieves the sliding condition given in Eq. ( 9-3) so that 

the sliding surface starts to attract the system trajectories to reach and remain in the 

sliding surface vicinity. Hence, when the system reaches the sliding vicinity	� = 0⇒
�! = 0, then the equivalent control signal is: 

�! = 0 = 1z� + 2Ê1s� + Ê@1!� ( 9-29) 

C!� = −1t@@8E@ (tEE8EEC!� + tEECs� + 8ÅEEtEEC� + t@@8ÅE@C� + 8Å{EEDc + 8Å{E@D�
+ 8Å{E{â∆ − Dz�Y� + 2Ê1s� + Ê@1!�) ( 9-30) 

where: 8ÅEE = 8EE8EE + 8E@8@E + 8E{8{E  , 8ÅE@ = 8EE8E@ + 8E@8@@ + 8E{8{@ 8ÅE{ = 8EE8E{ + 8E@8@{ + 8E{8{{  , 8Å{EE = 8ÅEE8EE + 8ÅE@8@E + 8ÅE{8{E 8Å{E@ = 8ÅEE8E@ + 8ÅE@8@@ + 8ÅE{8{@  , 8Å{E{ = 8ÅEE8E{ + 8ÅE@8@{ + 8ÅE{8{{ 

Eq. ( 9-30) represents the actual equivalent control signal required to bring the wind 

turbine system trajectories to the sliding surface. However, several unknown signals 

contribute to an expected uncertainty that prevent the control signal given in Eq. ( 9-30) 

to achieve this task. For example, the estimation error of the unmeasured signals (i.e. C� 

and â∆), the existence of faults, and model parameter uncertainty. Hence, an adaptive 

gain is proposed to overcome the uncertainty in the control signal. Using this and Eq. 

( 7-6), the generator reference torque (C�c) is given by: 

C�c = −��t@@8E@ (8Å{EE(Dc + ,(c) + 8Å{E@(D� + ,(�) + 8Å{E{â
∆ + 2Ê1s� + Ê@1!�
+ 8ÅEEtEEC
� + |t@@8ÅE@ + t@@8E@�� }C� + t@@8E@�� ,� + (ø(M) + q)
∗ ��9(�)) 

( 9-31) 

where ø(M) is the adaptive gain, ,�	is the generator torque bias fault, ,(c	is the rotor 

speed sensor fault, ,(�	is the generator speed sensor fault, and q is a positive constant. 
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The proposed control signal as shown in Eq. ( 9-31) consists of two components, the 

linear and discontinuous controls. In this Section the rotor rotational speed measurement 

is assumed to be fault-free since this fault cannot be tolerated via the inherent robustness 

of the sliding surface. Hence, only ,(�	&	,�	are considered in this Section. 

Substitution of Eq. ( 9-31) in the expression of �! yields: 

�! = tEECs� − Dz�Y� + ℰ − (ø(M) + q) ∗ ��9(�) ( 9-32) 

where ℰ represents the sum of upper bound of ,�, ,(c , ,(� and the total error between the 

original signals and their estimates. Suppose that: 

ℎ(M) = tEECs� − Dz�Y� + ℰ ( 9-33) 

The upper bound of ℎ(M)satisfies: 

|ℎ(M)| ≤ . ( 9-34) 

The assumption on the upper bound of ℎ(M) is not conservative since the operation of 

the wind turbine is governed within the specific range of wind speed (usually between 

4-25 m s-1).  Moreover, this controller is dedicated to maximizing the extracted wind 

power for which the range of operation is further governed in the range (4-12 ms-1). 

Furthermore, since wind turbine operation starts at specific wind speeds the initial 

estimation error can be minimized. 

To analyze the stability, consider the following Lyapunov function: 

S(�) = E@�� + E@(ø(M) − .)@ ( 9-35) 

The time derivative is: 

S! (�) = �!� + (ø(M) − .)ø! (M) ( 9-36) 

Using ( 9-31) and ( 9-32), then Eq. ( 9-36) becomes: 

S! (�) ≤ .� − ø|�|− q|�|+ ø(M)ø! (M) − .ø! (M) ( 9-37) 

To ensure the negativity of ( 9-37) the adaptive gain is designed to be equal to: 

ø! (M) = |�| ( 9-38) 

Hence, the derivative of the Lyapunov function always satisfies: 

S! (�) < −q|�| ( 9-39) 
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Hence, the tracking error converges towards zero. However, to avoid the chattering 

accompanied with sliding motion the approximation to the function ��9(�) given in Eq. 

( 9-14) is used to ensure smooth sliding motion in the vicinity of the line	(� = 0). 
However, the adaptive gain presented in ( 9-38) is continuously increasing as long as � 

is away from		� = 0. Therefore, a slight modification to ( 9-38) is introduced below: 

ø! (M) = 			 �|�|												� > ,0														� ≤ , 				' ( 9-40) 

The fault tolerance performance is to be demonstrated in the simulation results below. It 

becomes clear that the generator rotational speed sensor fault and the actuator fault can 

be considered as matched uncertainties. These faults can be tolerated by the proposed 

control strategy involving the robustness and the adaptive gain of the SMC. 

9-4-1. Simulation results 

The simulation of proposed adaptive SMC design is based on the wind turbine 

benchmark system proposed by (Odgaard, Stoustrup and Kinnaert, 2009). The 

schematic of this strategy is shown in Figure  9-10. 

 
Figure  9-10: Schematic of the proposed strategy 

The two generator sensor faults are represented by scaling factor errors. In the first 

scenario the scaling is 1.1 times the real generator rotational speed, the second fault 

involves another scaling of 0.9. In both cases the expected fault effects cause the 

reference generator torque to deviate from the torque required to achieve optimal power 

conversion.  

As shown in Figure  9-10 the computation of the reference signal in Eq. ( 8-1) is based on 

the measured wind speed signal. Moreover, as stated in Chapter 7 and 8, exact tracking 

of the optimal rotor speed leads to increasing the load on the drive train shafts and hence 
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minimises the drive train life time. This also produces a highly fluctuating output 

power, and may even produce a varying direction reference torque signal that can lead 

to abnormal generator operation. Actually, these effects deteriorate for large inertia 

wind turbines (e.g. of the offshore type). Therefore, the computed optimal rotor 

rotational speed signal is passed through a low-pass filter so that these effects are 

minimised. In addition to filtering the reference optimal rotational speed, another degree 

of freedom for governing the tracking performance during sliding is available by 

adjusting the design parameter	Ê. 

For comparison purposes, the tracking performance of the proposed strategy compared 

with the well-known ‘standard control’ (SC) (C�c � ø�Y�Dc@� proposed in the 

benchmark model (Burton, Sharpe, Jenkins and Bossanyi, 2001, Johnson, 2004, Pao and 

Johnson, 2011). Figure  9-11 shows the optimal rotor speed, the actual rotor speed using 

SMC, and for comparison purposes the rotor speed using SC. These signals show that 

the proposed SMC can track the tendency of the optimal speed much better than SC. 

This difference appears to be significant for the benchmark system used because of the 

large turbine inertia that prevents the tracking of the optimal rotational signal. This is 

the case as long as the SC depends on the turbine dynamics only, i.e. without taking the 

wind dynamics into consideration. Table  9-1 gives some statistical data used to analyse 

the performance of these controllers. The minimum (Min), the maximum (Max), the 

standard deviation (STD), and the mean values show how far away the rotor rotational 

speed is from the optimal value, using the SC. The lowest values of STD and mean 

appear in the SC case which shows the fact that the power conversion efficiency 

decreased significantly during wind turbulence. 

 

Figure  9-11: Tracking performance using SMC and SC 
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Table  9-1: Statistics of the turbine rotational speed. 

�� Min Max STD Mean 

Optimal  0.4803 0.9983 0.0830 0.7256 

With SMC 0.6032 0.8457 0.0520 0.7283 

With SC 0.5195 0.7500 0.0429 0.5962 

Figure  9-12 shows three signals of the generator rotational speed which are the actual 

speed, and with (1.1 and 0.9) scale sensor faults. Clearly, due to the robustness of the 

SMC against these faults, the actual generator speed is not affected by any of the 

proposed fault scenarios. 

 
Figure  9-12: Different cases of generator rotational speed 

Figure  9-13 firstly shows the reference generator torque (C�c� for the nominal and 

faulty cases. Secondly, the power generated by the turbine is also shown in different 

generator rotational speed fault cases. Table  9-2 further clarifies, through statistical 

measurements, the robustness of the proposed strategy against the generator rotational 

speed sensor fault. 
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Figure  9-13: Generator reference torque and turbine generated power in different sensor 

fault scenarios. 

Table  9-2: Statistics of the turbine generated power. 

Pg Min Max Std Mean 

Fault-free 0 3.1267*105 4.4633*104 1.822*105 

1.1 fault 0 3.1222*105 4.4655*104 1.823*105 

0.9 fault 0 3.1244*105 4.4674*104 1.822*105 

Another fault scenario proposed in the benchmark model is the bias of the generator 

torque “soft sensor”. Clearly, this bias will drive the turbine away from the optimal 

operation and minimise the wind power conversion efficiency. This fault scenario 

appears in the control signal as given in Eq. ( 9-31) where ,� � 500	hNmi is the 

generator torque (C�) bias fault which appears between	100	89:	200	�1�. Clearly, this 

fault affects the system in the same direction as the control signal and hence the 

robustness of the proposed adaptive SMC inherently tolerates this fault as shown in 

Figure  9-14 
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Figure  9-14: Reference and actual generator torque with ��	bias fault in the period (100-

200) sec. 

Figure  9-14 also shows clearly how the reference generator torque generated by the 

SMC takes into account the bias fault effect so that the actual torque remains unaffected 

by	,�. 

9-5. SMC based sustainable OWTs within estimation and 

compensation framework 

This Section proposes a new FTTC strategy for sustainable OWTs. Within the SMC 

based FTTC presented in Section  9-4 the challenge is to develop a SMC based FTTC 

for OWTs to tolerate the expected rotor speed measurement fault since this fault has a 

direct effect on the defined sliding surface. Hence, owing to the inherent robustness 

against model matched parameter uncertainty of SMC, the proposed method can first 

tolerate the reference generator torque bias fault using the inherent robustness of SMC. 

In addition, the proposed method involves the design of a robust PMIO that can provide 

robust simultaneous estimation of states and the “unknown outputs” (sensor faults 

and/or noise) in order to guarantee the robustness of the sliding surface against 

unknown output effects. Clearly, the use of SMC within the estimation and 

compensation framework enhances the overall closed-loop robustness and provides 

information about the fault via fault estimation which in turn can be used for scheduling 

of maintenance operations. The schematic of the proposed strategy is shown in 

Figure  9-15 in which Dúc � Dc − ,(c and	Dú� � D� − ,(�. 
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Figure  9-15: Schematic of the proposed strategy 

9-5-1. Sensor fault estimation via PMIO 

This Section illustrates the robust strategy to estimate the generator and rotor speed 

sensor faults using the PMIO. The drive train state space model in Eq. ( 7-4) with sensor 

fault can be rewritten as follows: 

� ! � " + $EC
� + $@C�% � & + õ�,(															Ù	 ( 9-41) 

where  ∈ ℛO and ,( � h,(c ,(�i ∈ ℛ�are the state vector and the sensor fault signals. 

The model matrices are	" ∈ ℛO∗O, $E ∈ ℛO∗E, $@ ∈ ℛO∗E , & ∈ ℛ_∗O, õ ∈ ℛ_∗(	, and C
� 

is the estimation of the unmeasured aerodynamic torque obtained using Eq. ( 7-3). Under 

the assumption that the q
th derivative of the fault ,( is bounded, an augmented state 

system comprising the original drive train state equations and the qth derivative of the ,( 
can be constructed as follows: 

�  ̅! � "̅ ̅ + $ÕEC
� + $Õ@C� + õ�,(�% � &̅ ̅																																											' ( 9-42) 

Hence the following PMIO is proposed to simultaneously estimate the drive train states, 

the sensor fault, and the unknown aerodynamic torque component: 

 ̅
! � "̅ ̅
 + $ÕEC
� + $Õ@C� + 5�(% − &̅ ̅
� ( 9-43) 

where  ̅
 ∈ ℛOÕ  is the estimation of the augmented state vector  ̅, and 5� � h5YÏ , 5�E, . . , 5��iÏ ∈ ℛOÕ∗_ is the gain to be design. 
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Theorem 9-1: The PMIO given in Eq. ( 9-43) exists if: 

Z89ø ö" 0& õ�÷ � 9 + ø ( 9-44) 

and if: Z89ø ó�= − "& ô � 9								∀� ∈ ℂ ( 9-45) 

Additionally, the PMIO attenuates the effect of the bounded ,(�	and 	1Ï on the 

augmented estimation error if there exists SPD matrix Ë � ËÏ q 0 and matrices .� that 

minimise Ê under the following LMI constraints: 

xy
yzË"̅ + (Ë"̅�Ï −.�&̅ − (.�&̅�Ï Ë� Ë$ÕE =OÕ×OÕ(Ë��Ï −Ê= 0 0(Ë$ÕE�Ï 0 −Ê= 0=OÕ×OÕ 0 0 −Ê=}~

~� ( 9-46) 

where the observer gains are obtained by: 

5� = ËDE.� ( 9-47) 

Proof: Conditions ( 9-44)&( 9-45) follow directly the observability requirements for the 

states and unknown input estimate. 

The state estimation error dynamics are obtained by subtracting Eq. ( 9-43) from ( 9-42): 

1!+ = ("̅ − 5�&̅)1+ + õ�,(� − $ÕE1Ï ( 9-48) 

To attenuate the effect of C��and 1�( on the estimation error simultaneously whilst also 

ensuring system stability, the following inequality must hold: 

Ô!(1+) + 1Ê 1+Ï 	1+ − Ê(,(�Ï,(� + 1ÏÏ1Ï) < 0 ( 9-49) 

where Ô!(1+) is the time derivative of the candidate Lyapunov function (Ô(1+) =1+ÏË1+). Using Eq. ( 9-48), inequality ( 9-49) becomes: 

Ô!(1+) = �1+Ï("̅ÏË	 + Ë"̅ − Ë5�&̅ − (Ë5�&̅)Ï)1+ +	1+ÏËõ�,(� + ,(�Ïõ�ÏË1+− 1+ÏË$ÕE1Ï − 1ÏÏ(Ë$ÕE)Ï1+Ä ( 9-50) 

The inequality ( 9-49) (in matrix form) after substituting Ô!( Å�) from Eq. ( 9-50) and 

using the variable change .� = Ë5� becomes:  
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¥1+,(�1Ï¦
Ï

xy
yzË"̅ + (Ë"̅)Ï − .�&̅ − (.�&̅)Ï + 1Ê =OÕ×OÕ Ë� Ë$ÕE�ÏË −Ê= 0(Ë$ÕE)Ï 0 −Ê=}~

~� ¥1+,(�1Ï¦ < 0 ( 9-51) 

Clearly, by using the Schur Theorem inequality ( 9-46) can easily be obtained from 

inequality ( 9-51). This completes the proof. 

The controller design has been already developed in Section  9-4. The following Section 

shows the simulation results of the proposed strategy using the benchmark model 

presented in Chapter 7. 

Remark: To enhance the fault estimation accuracy a separate PMIO for each 

measurement can be designed since the drive-train subsystem is observable using either Dc or D�. 

9-5-2. Simulation results 

In the first fault scenario the generator and rotor speed sensor faults are represented by 

scaling factor errors. The scaling is 1.1 times the real generator and rotor rotational 

speeds. The expected fault effects cause the reference generator torque to deviate from 

the torque required to achieve optimal power generation. Figure  9-16 shows the 

measured, actual and estimated generator and rotor speed signals with scaling fault 1.1. 

The simulation signals show that the rotor rotational speed is highly affected by noise. 

However, the proposed PMIO effectively decouples and estimates the unknown outputs.  

The fault estimation of both generator and rotor sensors are shown in Figure  9-17.  
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Figure  9-16: Generator & rotor rotational speed  

 

 
Figure  9-17: Rotor & generator measurement fault 

The rotor scale fault forces the wind turbine to operate away from the optimal 

conversion efficiency as shown in Figure  9-18. Finally, the reference generator torque 

responds to the rotor scale fault through increasing the torque to break the aerodynamic 

rotation so the faulty measurement tracks the optimal rotational speed (see Figure  9-19). 
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Figure  9-19 is attributed to the abrupt fault that affect the rotor speed measurement 

which in turn affect the sliding surface directly. The scale fault in the generator soft 

sensor can be handled via the inherent robustness of the SMC without the need for the 

estimation and compensation approach (see Figure  9-20). 

 
Figure  9-18: The effect of rotor scale fault on TSR 

 
Figure  9-19: The effect of rotor scale fault on generator torque 

 
Figure  9-20: The ability of SMC to tolerate torque scale fault 
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9-6. SMC based sustainable OWTs within estimation and 

compensation framework with ESW estimation 

The challenge involved within the strategy proposed in Section  9-5 is the uncertainty in 

the measured wind speed which can be overcome via the estimation of the EWS. To 

handle this challenge, the schematic of the proposed architecture is similar to the 

architecture proposed in Chapter 6 and Section 8-2-3 in Chapter 8. The control strategy 

designed to tolerate the effect of simultaneous generator and rotor sensor faults, 

overcome the SMC surface sensitivity to measurement noise and/or faults, tolerate 

generator torque scale fault via the inherent SMC robustness against matched 

uncertainty, and make use of the estimated EWS for optimal rotor speed computation. 

Therefore, to cope with these, the proposed adaptive SMC strategy presented in 

Section  9-4 is assisted by the estimated EWS and sensor fault estimate signals provided 

by three separate observers so that the overall control strategy takes on the structure 

shown in Figure  9-21. 

 

Figure  9-21: Schematic of the proposed strategy 

The SMC have been already developed in Section  9-4. Moreover, the LMI-based design 

for the three estimators used for EWS and sensor faults estimation are given in Sections 

8-2-3 and  9-5-1. 
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9-6-1. Simulation results 

In this Section two severe sensor faults in the form of fixed measurements are 

considered for both D� and Dc sensors simultaneously. The D�	measurement stuck at 

75(rad/s) within the period (200-400s), on the same time, Dc	measurement stuck at 

1.4(rad/s). Moreover, the generator torque scale fault presented in Sections  9-4-1 and  9-

5-2 is also considered in the time period (100-200s). Using the simultaneous state and 

sensor fault signals estimation of the two PMIOs, the third PMIO is designed to provide 

EWS estimation (see Figure  9-22) to be used for optimal rotor rotational speed 

calculation. Figure  9-23a shows the actual, measured, and estimated	D�, whilst 

Figure  9-23b shows the actual, measured, and estimated	Dc. The fault estimation signal 

for both 	D�	and 	Dc	measurements are shown in Figure  9-24 a &b. The scale generator 

torque fault and the ability of the SMC to inherently tolerate this fault is shown in 

Figure  9-25 a &b. 

 
Figure  9-22: EWS estimation 
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(b) 

Figure  9-23: (a) Actual, measured, and estimated D�,  

(b) Actual, measured, and estimated Dc 

 
(a) 

 
(b) 

Figure  9-24 : (a)	df	sensor fault estimation, (b)	Dc	sensor fault estimation 
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(a) 

 
(b) 

Figure  9-25 : (a) Generator torque scale fault, (b)		C�c	tolerate the scale torque fault 

9-7. Conclusion 

In this Chapter different SMC strategies within the FTTC framework for sustainable 

operation of a wind turbine are proposed. SMC is a well-known robust control strategy. 

However, clear investigation of this strategy for different actuator and sensor faults has 

not been given in the literature. Based on the investigation of SMC robustness within 

the FTC framework presented in Section  9-3 the following facts are clarified: 

1. Due to the discontinuous control action which maintains the closed-loop trajectory 

in the vicinity of the sliding surface, the SMC has inherent robustness against 

parametric and additive actuator faults. 

2. Although the stuck actuator fault, from an SMC stand point, is similar to the effect 

of the match uncertainty, the SMC cannot tolerate this fault scenario due to the 

inability of the faulty actuator to deliver the control signal provided by the SMC. 
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3. The robustness of the SMC strategy against sensor faults depends on the 

appearance of the measured variable within the control signal. Specifically, the 

SMC can tolerate the effect of faulty measurement when it affects the linear 

component of the control signal. However, SMC lacks the ability to tolerate the 

effect of faulty measurement when it affect the discontinuous component of the 

control signal i.e. affects the sliding surface. 

4. The sliding surface design is of vital important from FTC stand point. The design of 

this sliding surface with the minimum possible number of feedback signals offers 

advantageous features against some sensor faults. 

Hence, the inherent robustness of the SMC against some actuator and sensor fault 

scenarios can be utilized as an FTC strategy that clearly obviates the need for FDI 

and/or fault estimation. This property of SMC is utilized in the strategy proposed in 

Section  9-4.  

A combination of SMC with other FTC approaches is necessary to enhance the 

robustness of the SMC based closed-loop systems within an FTTC framework. This is 

the case of the strategy proposed in Section  9-5 in which the SMC is combined with the 

estimation and compensation concept in order to enhance the closed-loop robustness of 

OWTs against different fault scenarios. A further enhancement introduced in the 

strategy proposed in Section  9-6 via providing the closed-loop system with an 

estimation of the EWS signal to minimise the uncertainty in the reference optimal rotor 

speed. 
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Chapter 10 : Conclusions and future research 

suggestions 

10-1. Conclusions and summary 

10-1-1. T-S fuzzy estimation and control based AFTC 

This thesis focuses on the development of active FTTC based on the concept of 

estimation and compensation for nonlinear systems via T-S fuzzy inference modelling. 

The main direction of the thesis has been shaped based on the common challenges 

encountered in the FTC for nonlinear systems which are:  

(a) The FTC dependency on both accurate post-fault models provided by the FDD/FDI 

unit and/or accurate fault estimation signal.  

(b) Minimizing the control reconfiguration time which is an important issue in practice 

where the time windows during which the system remains stable in the presence of a 

fault can be very short.  

(c) Tolerate the simultaneous effect of actuators and sensor faults.  

(d) Tackling system nonlinearity.  

(e) Minimizing the complexity of the T-S fuzzy controller design.  

(f) Applying the FTC strategies to application studies and stimulating interest in 

practical implementation. The work presented has made some contribution within each 

of the challenges outlined above. 

The definitions of the fault, failure and faults classifications together with the 

explanation of both FTC and FDD methodologies have been reviewed in Chapter 1. 

Chapter 2 provides an introduction and overview of the traditional/modern AFTC. From 

the controlled system stand point, the current research interest is to develop FTC 

methods that have the capability to tackle the nonlinearity of the closed-loop system. 

Within this research trend, T-S fuzzy modelling and control is preferred over other 

nonlinear control strategies because, (1) T-S fuzzy control offers a systematic approach 

to control nonlinear systems via the a well-developed robust linear control strategy, (2) 
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The T-S fuzzy modelling methods can represent the nonlinear system accurately either 

globally or semi-globally through the use of the sector nonlinearity modelling approach. 

Moreover, (3) for the systems that are too difficult to be embodied in analytical models, 

the fuzzy modelling literature offers identification approaches to derive T-S fuzzy 

model. As a result, the T-S modelling and control method gives an opportunity to 

provide modelling of various nonlinear systems and hence it is decided to use this 

approach to handle system nonlinearity. 

Chapter 3 presents an investigations of (a) the importance of LRMFC within the T-S 

fuzzy framework, and (b) how actuator and sensor faults impacts on the closed-loop 

performance for both regulator and tracking control problems. Via these investigations, 

the advantages of LRMFC and the challenges of FTC design within a regulator and 

tracking framework have been outlined. For example, the advantages gained by the use 

of LRMFC are: (i) The liner reference model has been used to overcome the hurdles 

associated with governing the closed-loop performance of nonlinear systems via 

multiple-modelling control (there is no need to use the LMI based pole-clustering), (ii) 

Offering more precise adjustment to the closed-loop eigenvalues if compared with LMI 

pole-clustering approach, and (iii) By on-line changing of the reference model response 

the impacts of actuator faults on closed-loop performance have been minimised. 

The investigations have also shown that the regulator controllers are more immune 

against sensor parametric faults and can passively tolerate their effects, i.e. the steady-

state value “hides” the parametric faults. Moreover, the importance of the sensor FTTC 

problem is attributed to the fact that, upon fault occurrence, the controller starts to direct 

the system according to the measurements that no longer represents the real system 

case. Hence, the FTTC problem is challenging from a design stand point especially for 

systems that are nonlinear and simultaneously affected by both actuator and sensor 

faults. Furthermore, it has also been shown that additive faults are a generalized fault 

representation that can additionally be used to assess the severity of sensor faults. 

Motivated by the advantages of LRMFC and the design challenges within sensor FTTC, 

Chapter 4 proposed the design of three new FTTC strategies based on LRMFC. These 

are (i) integrated T-S fuzzy observer/VS based sensor FTTC, (ii) new T-S fuzzy PMIO 

based sensor FTTC, and (iii) new T-S fuzzy PPIO based actuator FTTC.  
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The T-S fuzzy observer/VS based sensor FTTC belongs to the control reconfiguration 

approach to AFTC. From the T-S framework stand point, this method cannot deal with 

premise variable sensor fault since handling this fault scenario will turn the design 

problem from measured to unmeasured premise variables design problem which 

requires good care against premise variable estimation error. However, this problem can 

be perfectly cope with by adding redundant sensors for the premise output(s) so that the 

fault tolerance is accomplished by switching the output to the fault-free sensor. 

Additionally, the method cannot tolerate the case in which the faulty parameter of the 

output matrix is continuously varying or similarly the problem of additive and state 

independent sensor faults. Consequently, the only possible solution is to turn the 

problem into a complete loss of measurement case provided that the detectability 

condition is still valid. 

Consequently, the new T-S fuzzy PMIO based sensor FTTC offers more advantages if 

compared with VS approach such as (1) The T-S fuzzy PMIO has the capability to cope 

with unbounded sensor fault signals provided that its 	�� derivative is bounded. (2) The 

method represents an integrated approach in which fault estimation and FTTC is 

performed without the need for an FDD unit. (3) Based on the fault estimation signal, an 

evaluation of fault severity is produce which in turn helps in managing maintenance 

operation. (4) Fault estimation signals can be used to compensate the effect of premise 

variable sensor fault so that the design problem remains as measured premise variable 

design. (5) The method can deal with external and state independent sensor faults as 

well as output matrix parametric change faults. Furthermore, the advantages of the T-S 

fuzzy PMIO based sensor FTTC provide enough motivation to develop similar 

approach for actuator FTTC whilst using T-S fuzzy PPIO instead of the PMIO proposed 

in sensor fault case. 

As a result of the investigation and detailed discussion of the results presented in 

Chapter 4 for the three proposed strategies, the following points are obtained: 

1. FTTC based on fault estimation and compensation approach can overcome the 

reconfiguration time problem arising in control reconfiguration-based FTTC. 

Furthermore, the inability of adaptive control-based FTTC to tolerate sensor faults 

means that fault estimation and compensation represents the best all round method 

for the sensor fault case of FTC. 
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2. The use of the estimation and compensation concept for FTTC represents an 

integrated FDD and FTC strategy. Moreover, information about fault severity is 

also available via the fault estimation signal. 

3. The FTTC problem is challenging from a design stand point especially for systems 

that are nonlinear and simultaneously affected by both actuator and sensor faults. 

Chapter 5 presents a novel FTTC strategy based on robust fault estimation and 

compensation of simultaneous actuator and sensor faults. A new architecture is 

proposed based on a combination of actuator and sensor T-S PMIO fault estimators 

together with a T-S observer-based state feedback control capable of time-varying 

reference tracking. The proposed architecture has the capability of taking into account 

some of the most challenging cases of AFTC. Firstly, it can maintain closed-loop 

system performance and nominal controller unchanged even in the case in which sensor 

and actuator faults simultaneously affect the system. Secondly, it can overcome the 

effects of time varying actuator and/or sensor faults with bounded 	��  derivatives using 

the idea of fault estimation and compensation. 

However, the main challenge encountered in this proposed method is the difficulty to 

satisfy the separation principle. Clearly, although the fuzzy controller is constructed 

using the local design structure, the feedback gains should be determined using global 

design conditions. Hence, the fuzzy control designer does not have freedom to assign 

the local system closed-loop poles anywhere in the stable complex plane (because of the 

global stability constraints). Therefore, the observer-based T-S state feedback control 

system suffers a major drawback in that the observer dynamics may not be assigned 

freely to satisfy closed-loop performance requirements. One of the possible solutions to 

this problem is the use of the model reference framework presented in Chapter 4 to 

govern the controller closed-loop system response whilst using LMI-based pole-

clustering for the observer design. However, the use of LRMFC does not offer complete 

decoupling between the T-S controller and the T-S observer. 

Chapter 6 follows the architecture proposed in Chapter 5. The proposed strategy 

involves the design of (i) a TSDOFC responsible for minimizing the tracking error 

between the reference and system output signals during nominal operation, and (ii) two 

T-S fuzzy observers dedicated to provide separate estimates of the actuator and sensor 

faults for the purpose of fault compensation. Clearly, the TSDOFC is proposed instead 

of the observer-based feedback controller in Chapter 5 to decouple the design of 
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controller and observer. Moreover, a combination of actuator and sensor T-S PPIO fault 

estimators have been designed to provide fast estimation of the actuator and sensor fault 

signals in order to compensate their effects from the input and outputs of the nonlinear 

system. 

The significant attributes gained by using the FTTC system are:  

1. The proposal of an FTTC system that robustly tolerates simultaneous sensor and 

actuator faults.  

2. It provides an estimate time-varying actuator and sensor faults with bounded first 

time-derivatives using proportional and integral feedback PPIOs with T-S model 

structure. 

3. It overcomes the hurdles imposed by the generally accepted use of T-S observer-

based state estimate feedback. 

While the proposed strategies in Chapter 4, 5 and 6 are based on the estimation and 

compensation approach, the main limitation of these strategies are summarized as 

follows: 

• The performance of these methods is highly affected by fault estimation accuracy, 

the presence of any simultaneous faults, and the time behaviour of the fault. 

• While estimation and compensation represents an excellent solution for different 

sensor fault scenarios, some limitations have been recognized in dealing with 

actuator faults specifically stuck fault and failure. In these cases the fault itself hides 

the compensation signal. These limitations open the opportunity to new research 

directions in the framework of simultaneous actuator and sensor faults for example 

the combination of control allocation and fault estimation and compensation. 

Moreover, in parametric actuator faults, adding compensation signals increases the 

faulty actuator load. This might causes the development of fault to failure faster 

than usual. The exception is, when the fault is just interpreted as an actuator fault 

(friction problem) whist in realty the actuator is still healthy. In this case, adding a 

compensation term is a good idea. 

10-1-2. AFTC based sustainable OWTs 

The last two decades have witnessed a fast growth in the use of wind energy due to 

some limitations inherent in the different kinds of well-known fossil fuel and nuclear 
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energy sources. There are several very significant challenges that characterize the 

design of wind turbine control systems such as the non-linearity of the aerodynamic 

subsystem and the dependence on a stochastic and uncontrollable EWS. Moreover, 

wind turbine systems demand a high degree of reliability and availability 

(sustainability) and at the same time are characterised by expensive and safety critical 

maintenance work. Actually, the recently developed OWTs are the foremost example, 

the OWT site accessibility and system availability is not always ensured during or soon 

after malfunctions, primarily due to changing weather conditions. Therefore, in 

Chapters 8 and 9 FTTC strategies have been proposed as a basis for sustainable OWTs. 

The concept of wind turbine operation, the control problem, modes of operation and the 

non-linear and T-S fuzzy models of a wind turbine are presented in Chapter 7. Based on 

the investigation presented in this Chapter, several design constraints must be taken into 

account in the design of the wind turbine power maximization controller, these are: (a) 

Due to the non-linearity of the wind turbine aerodynamics and the stochastic and 

uncontrollable nature of the EWS, linear control strategies are unable to maintain 

acceptable performance over a wide range of wind speed. (b) T-S fuzzy estimation and 

control design complexity is highly reduced for this application due to the common 

input common output matrices of wind turbine model. (c) Accurate computation of 

optimal rotor speeds (the reference signal) requires an estimation of the EWS since this 

estimation overcomes the uncertainty in the measured wind speed. (d) Exact tracking 

leads to increased loading on the two drive train shafts and hence can shorten the drive 

train life time. It is thus very clear that the multi-objective approach cannot be avoided 

for robust wind turbine control design. 

Chapter 8 gives an investigation of the effects of different fault scenarios on wind power 

conversion efficiency. Through this investigation, it has been shown how some sensor 

scaling faults emulate the effect of the A�Y� uncertainty problem due to wind turbine 

aging and blade deformation.  

Three different FTTC strategies have been proposed to tolerate the effect of different 

scenarios of generator and rotor rotational speed sensor faults that affect the system in 

order to maintain maximization of the captured power while minimizing maintenance 

cost. The three proposed strategies are based on T-S fuzzy control and estimation. 

Specifically, the proposed strategies are: T-S observer-based state feedback sensor 
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FTTC, TSDOFC based sensor FTTC, and TSDOFC based sensor FTTC with EWS 

estimation. 

Chapter 8 includes several contributions to the problem of sustainable wind turbine 

operation based on FTC can be summarized as follows: (1) the advantages of the 

proposed PMIO based state feedback sensor FTC over the generalized observer based 

sensor FTC proposed in the literature are (i) Obviate the need for residual evaluation 

and observer switching. (ii) Ability to tolerate simultaneous generator and rotor 

rotational speed sensor faults. (iii) The PMIO simultaneously estimates the states and 

the sensor fault signals. Hence, information about the fault severity can also be provided 

through the fault estimation signals. (2) The proposed TSDOFC based sensor FTTC 

with EWS estimation offers great simplification of the estimators. Moreover, it can deal 

with the cases of simultaneous unknown input (EWS) and unknown output (sensor fault 

and noise) estimation. (3) The use of PMIO to estimate the EWS offers high estimation 

accuracy since this estimator has the ability to provide good estimation of the unknown 

signals that contain fast and slow varying components. 

It has been shown in Chapter 8 that sensor faults can lead to significant effects on 

optimizing the power harvested from wind. Moreover, stuck sensor faults may lead 

either to the turbine being brought to the cut-off or fast aerodynamic rotation which in 

turn stimulates structure vibration. Furthermore, the use of the estimation and 

compensation approach provides some information about fault severity and hence 

minimizes the need to protective, unscheduled and corrective maintenance whilst 

ensuring acceptable closed-loop performance over a wide range of operation conditions. 

As a result, the main challenge highlighted in Chapter 8 is that the number of unknown 

input and output signals that affect the wind turbine system exceed the number of 

measurements making a challenging closed-loop robustness problem against unknown 

input and output signals. Specifically, the worst operation scenario of the wind turbine 

benchmark is that when the system is affected by the rotor and generator rotational 

speed sensor faults, the generator torque bias faults, as well as the recognized need for 

the estimation of the effective wind speed. Chapter 9 focuses on handling this 

challenging operation scenario by utilizing the inherent robustness of the SMC strategy 

within an AFTC framework to be applied to wind turbine benchmark for the power 

maximization problem. Based on the investigation of the robustness of the SMC against 

actuator and sensor faults clarifies the effectiveness of the SMC in tolerating some 
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actuator and sensor faults. It is clearly shown that SMC has the ability to tolerate sensor 

faults provided that the fault appears in the linear component of the control signal. 

Hence, three different FTC strategies have been proposed for sustainable OWTs 

utilizing (1) SMC alone, (2) combination of SMC and estimation and compensation 

concepts, and (3) combination of SMC and estimation and compensation concepts with 

EWS estimation. 

10-2.  Suggestions for future research 

Although in this thesis new strategies have been proposed to overcome several 

challenges involved within the FTC framework, some improvements are still required to 

handle further challenges. Further research suggestions are addressed as follows: 

1. As an approach to handle simultaneous actuator and sensor faults, a combination of 

adaptive control and robust sensor fault estimation and compensation together can 

be used as an alternative to the architecture proposed in Chapters 5 and 6. Clearly, 

the philosophy of adaptive control fits well with the AFTC approach due to the 

ability of adaptive control systems to adjust controller parameters on-line based on 

measured signals. Hence, involving the robust sensor fault estimation and 

compensation within the adaptive control framework enhances the overall closed-

loop performance against actuator and sensor faults. 

2. To cover more the challenges that arise from actuator fault scenarios, some control 

reconfiguration techniques can be included to the architecture presented in Chapters 

5 and 6. For example, the control allocation technique can be utilized to redistribute 

the control action over the remaining healthy actuators during stuck or complete 

actuator fault. 

3. As an alternative option to the interaction between the two observers proposed in 

Chapters 5 and, it is possible to modify the unknown input observer (UIO) type of 

FDD strategy to provide unknown input decoupling and fault estimation. 

4. Owing to the presence of several redundant measurements in wind turbine systems, 

designing an integrated FDD/FTC based static VS is one of the approaches that can 

maintain the nominal performance of wind turbine control over a wide range of 

operation conditions. 

5. The problem of uncertainty of A�Y� due to turbine aging and blade deformation 

together with the uncertainty in the measured wind speed represent real challenges 
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to power optimisation control problem. Therefore, robust estimation of these 

variables based on the wind turbine aerodynamic subsystem can ensure good power 

transformation performance. 
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