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Abstract 

Despite the increasing number of hypersaline discharges associated with desalination and, more 
recently, solute mining activities, there is little existing information relating to the effects such 
environmental disruptions may have on populations of commercially-important crustacean species. 
The present studies aim to redress this information-gap with novel investigations which have 
addressed some hypersalinity-induced behavioural and physiological responses of three 
crustacean species, the European lobster, Homarus gammarus (L), and two crab species, the 
brown crab, Cancer pagurus (L) and the velvet crab, Necora puber (L). 

All three species feature prominently in the East Yorkshire fisheries, and are found typically in full 
salinity seawater environments that show little salinity variability. The development of extensive gas 
storage caverns underground in East Yorkshire, UK, has led to the commencement of the 
discharge offshore of large volumes of hypersaline brine effluent into the local, normally salinity-
stable habitat of the three test species The combined volume and concentration of this discharge 
has the potential to raise the salinity in the local environment and these studies have focused on 
the possible ecological and commercial implications of such changes. 

Each species was found to have a threshold value of hypersalinity above which halotaxic, 
preference behaviour was evoked (salinity 50 for H. gammarus and N. puber and salinity 45 for C. 
pagurus). The relationship between cardioventilatory activity and hypersalinity of H. gammarus and 
N. puber was examined under conditions when escape from the test salinity was prevented. Both 
showed a significantly decreased mean scaphognathite beat rate beyond a critical salinity value 
(salinity of 50 and 45 for H. gammarus and N. puber respectively). These salinities are consistent 
with the onset of the preference behaviour of these species. The heart rate of H. gammarus is also 
negatively related to increased salinity. These significant reductions in cardioventilation resulted in 
increased mortalities at salinities > 50–55.  Significant changes to haemolymph pH and levels of 
haemolymph protein, haemocyanin, glucose and ammonia also occurred when test H. gammarus 
and N. puber were given sufficient time to acclimate to a test salinity. These changes made were 
typical of those under hypoxia in these and other decapod species and are consistent with the 
observed changes to the cardioventilatory behaviour. 

These findings prompt the novel hypothesis that hypersaline exposure beyond limits, which vary 
inter-specifically, elicits a switch to anaerobic respiration, even when the animals are in a fully-
oxygenated medium. Results showed that when exposed to hypersaline conditions, H. gammarus 
was a weak iono-regulator, with the haemolymph ionic concentration increasing directly with that of 
the external medium whilst remaining slightly hypo-ionic to it. Late-postmoult H. gammarus were 
found to be less tolerant of hypersalinity than  intermoult ones and, even when the carapace was 
approaching full hardness, were intolerant of salinities > 40. Contrastingly, C. pagurus with 96h 
LC50 at a salinity of 55.5 was the most tolerant of the three species tested. The lack of significant 
haemolymph change in this species suggests a strong degree of osmo- and iono- regulation. 
Under hypersaline exposure N. puber regulated haemolymph variables within the range of salinity 
35–50. Higher salinities were found to require a more protracted acclimation period. 

The combined effects of haemolymph and cardioventilatory changes found for the test species 
demonstrate that unavoidable exposure to hypersaline conditions results in a lowered fitness and 
eventual death. Inevitably, this will impact negatively on commercial crustacean shellfisheries in 
and around the areas of brine discharge unless the discharge itself is managed and monitored 
appropriately. 
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 Chapter 1 

 General Introduction 

 

1.1 Salinity 

1.1.1 Importance of salinity to aquatic organisms. 

Salinity is one of the main factors affecting aquatic life. Environmental salinity is a master factor in 

the control of the reproduction, larval dispersal and recruitment, and geographical distribution of 

marine crustaceans (Anger 1991; Anger 1996; Spivak and Cuesta 2009) and hence salinity 

changes are likely to impact on community structure. Aquatic organisms that obtain their oxygen 

from the water (e.g. fish, crustaceans) rather than the air (e.g. seals, cetaceans) are adapted to the 

normal salinity of their environment and to taking saline water into their bodies in order to obtain the 

oxygen from it. Thus any change to ambient salinity has the potential to affect the ability of animals 

to carry out vital biological processes. 

Salinity is determined by the amount of dissolved salts in water. The anion chloride is the main 

determinant of salinity in sea water. Traditionally salinity was measured in parts per thousand (ppt) 

or parts per million (ppm) – for example a salinity of 35 ppt is equal to 35 grams of salt dissolved in 

1 litre of water. Now salinity is measured on the practical salinity scale, which has no units and 

hence salinity is just expressed as a number e.g. 35 (Lewis 1980; Lewis and Perkin 1980). These 

numbers equate to those of ppt. Thirty-five is considered as the salinity of normal sea water for the 

UK, however normal salinity can vary depending on factors such as location, currents, evaporation, 

precipitation and ice formation. At colder temperatures oxygen dissolves more readily in water and 

therefore colder waters have a greater oxygen saturation level. Also the higher the salinity of the 

water, the less oxygen it can carry (Table 1.1). 
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Table 1.1 The effect of temperature and salinity on oxygen saturation of sea water. 

Salinity Temperature °C Oxygen saturation 
mg.L-1 

35 5 9.9 
35 10 8.8 
35 15 7.9 
35 20 7.2 

   
45 5 9.1 
45 10 8.1 
45 15 7.3 
45 20 6.7 

   
55 5 8.4 
55 10 7.5 
55 15 6.8 
55 20 6.2 

Created from data in Salinity Nomogram in Richards and Corwin (1956) 

 

1.1.2 How crustaceans cope with salinity 

Osmoregulation is the ability of an aquatic animal to maintain its internal fluid concentrations at an 

acceptable level for biological function, in response to changes in the concentration of the external 

media. This is very important in organisms that are faced with regular salinity challenges, such as 

those in estuarine areas. 

Aquatic animals are either osmoconformers or osmoregulators with regard to salinity change 

(Kinne 1971; Schubart and Deisel 1999; Karleskint et al. 2009): 

1. Osmoconformer: an animal that allows its internal fluid concentrations to change in line 

with those of the environment. They can only control the concentration of their body fluids 

by behavioural means, such as avoidance. Long term exposure to unfavourable salinity will 

often result in the death of an osmoconformer. 

2. Osmoregulator: an animal that maintains its internal fluid concentrations at a level 

acceptable to the animal regardless of environmental changes such as a lowering or rising 

of salinity. In extremes of salinity they may need to supplement their physiological control 

methods by behavioural means. Osmoregulators can regulate hyper or hypo osmotically 
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depending on species, or both (Figure 1.1). Although the animal can regulate its body 

fluids, long term exposure to unfavourable salinity can still result in the death of the animal 

and may have impacts on its ability to grow or reproduce. 

 

Another way of classifying salinity tolerance in aquatic organisms is according to their degree of 

salinity tolerance: 

1. Euryhaline: an animal which can tolerate a range of environmental salinities and salinity 

fluctuations within a specified range. 

2. Stenohaline: an animal which can tolerate only a small range of environmental salinities.  

Often osmoconformers are euryhaline, but this is not always the case. Examples of different 

combinations include: the strong regulator crab Eriocheir sinensis, the weak regulator Carcinus 

maenas, both of them being euryhaline, and the stenohaline osmoconformer Cancer pagurus 

(Péqueux et al 1996). 

 

Figure 1.1 Examples of different osmoregulatory methods. 

Internal fluid 
concentration 

External fluid concentration 

Perfect Osmoregulator Perfect Osmoconformer 

Hyper Osmoregulator  Hyper and hypo regulation 
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There are 5 main groups into which osmoregulation can be classified (Laverack 1985): 

1. reduced permeability of body surface 

2. active uptake or extrusion of ions 

3. regulation of body water volume 

4. conservation of salts or water by the excretory organs 

5. regulation of cellular osmotic concentrations. 

 

When dealing with salinity acclimation, the osmolality of the external medium is generally related to 

that of the internal environment (the haemolymph) (Péqueux 1995). Osmoregulatory capacity is the 

difference between the osmotic pressures of the haemolymph and of the external medium at a 

given salinity. In osmoregulatory crustaceans, exposure to water borne pollutants, environmental 

stressors and pathological agents often results in a decrease of Na+ and Cl- regulation and/or their 

osmoregulatory capacity (Lignot et al. 2000). Osmoregulation is very important in estuarine 

intertidal species but not so in fully marine species.  Primary marine inhabitants (those that evolved 

in the sea) are mainly stenohaline, they live in the open sea and therefore encounter little osmotic 

stress resulting in a poor osmotic regulation ability. This is due to the inability of their cells to cope 

with or adapt to any change in body fluid composition, especially when coupled with their cells’ high 

permeability to ions and water (Péqueux 1995). Their euryhaline relatives are found in the coastal 

zones where salinities can change regularly and hence rely heavily on osmotic control to regulate 

the concentrations of internal body fluids (Davenport 1985). 

Extracellular osmoregulation is employed by fish and euryhaline crustacea and depends on salt 

pumps often located in the gut or gills (Davenport 1985). Many of the euryhaline crustacea and 

teleosts are capable of pumping salts in either direction across the gills so enabling them to expel 

salts when environmental salinities are high and to absorb salts when external salinities are low 

(Davenport 1985). 

In aquatic crustaceans, especially the decapods, the primary sources of osmoregulation are the 

organs of the branchial chambers such as the gills, in other decapod crustaceans differentiated ion 

transporting epithelia are involved in osmoregulation. The tissues in these areas have a large 
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surface area to volume ratio as well as a large flow of water over the ionocytes (ion transporting 

cells) (Haond et al. 1998; Lignot et al. 2000). The gills of crustaceans are well known as having the 

main role in active osmoregulatory and excretory activities, being the main location for 

osmoregulation, acid-base regulation of the haemolymph and the excretion of the end products of 

nitrogen metabolism. In crustaceans that hyperosmoregulate (that is they keep the concentration of 

their blood higher than the external medium), the gills act as a site for active uptake of Cl- and Na+ 

ions (Péqueux 1995).  

When exposed to hypersaline waters, many marine crabs in the families Ocypodidae, Grapsidae, 

and Varunidae regulate haemolymph NaCl at levels below the medium, apparently by excreting 

salts across the gill (Mantel and Farmer 1983). The brine shrimp Artemia is a powerful 

hypoosmoregulator in salinities above 30% seawater, tolerating hypersaline conditions by excreting 

NaCl through specialised salt glands in nauplii and through gills in adults (Croghan 1958).  

There is no evidence of osmoregulatory structures in the gills of the lobster Homarus gammarus, 

but there are differentiated ion transporting epithelia in the branchial cavity, on the branchiostegite 

and on the epipodites which are probably used for osmoregulation (Haond et al. 1998). The 

European lobster Homarus gammarus is closely related to the American lobster Homarus 

americanus which has been shown to be a limited osmoregulator at salinities lower than 20 (Jury et 

al. 1994a; Haond et al. 1998). They allow their haemolymph osmolarity to drop with reducing 

environmental salinity but always maintain it slightly above the environmental osmolarity. At salinity 

10, the metabolic rate of the animals is twice that of ambient conditions (Jury et al. 1994a). 

 

1.1.3 Impacts of salinity change on crustacea. 

Methods for surviving adverse salinity conditions include movement away from the unfavourable 

environment, osmoregulation or osmoconformation, and in the case of sessile and sedentary 

organisms, burrowing or closing shell valves. This behavioural control of internal osmotic 

concentrations is used by many euryhaline decapod crustaceans as a way of reducing their 

exposure to stressful conditions (Davenport 1985; Laverack 1985). 

The effort needed by animals not moving away from unfavourable salinity change to maintain their 

bodies at a suitable osmolarity may have implications for their growth. Growth of an organism may 
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be affected by many factors, including changes to the chemical nature of its environment. Changes 

to the growth rate, or lack of growth completely can affect maturity, ageing and reproductive 

potential, as well as having implications for population structure through changes to birth and death 

rates (Moriarty 1993). The amount of energy left for growth of an organism after all other energy 

requirements are taken into account is known as “scope for growth” and is defined as the 

difference between the energy content of the food consumed and all energy losses apart from 

growth (Moriarty 1993). Environmental stressors such as salinity change may result in aquatic 

species needing to put more of their energy resources into regulating their internal osmolality so 

that their metabolic systems can function properly. It is possible that this would result in a lower 

growth rate and in the case of commercially important crustaceans a lower meat yield. It may also 

mean that it takes longer to reach a marketable size. 

The tolerance of aquatic animals for salinity decreases at temperatures different from optimum, 

thus unfavourable salinities are best tolerated at the temperature optimum (Kinne 1964; 1971).  

Temperature changes may significantly affect the osmoregulatory capability of crustaceans. Hence 

what may be a tolerable salinity in winter months may be intolerable in the summer and vice versa. 

Changes in the ionic concentration of the ambient medium have also been shown to affect the 

tolerance of organisms to cold and heat. 

The degree of physiological stress experienced by crustaceans during exposure to varying 

salinities may also be affected by changes in temperature. The majority of crustacean species 

studied show a greater tolerance to raised salinity levels at lower temperatures (see review in 

Kinne 1971). This effect is due in part to the impact of temperature on the osmoregulatory functions 

of the metabolism (Fincham and Rainbow 1988). It may be expected that at higher salinities there 

will be a higher oxygen demand from the animal as it requires more energy to be able to regulate 

its body fluids at an acceptable level, as it increases its ventilation rate and therefore metabolic 

demand. There is the possibility for the previously discussed (section 1.1.3) scope for growth 

implications over the long term due to energy going into regulation instead of growth and repair of 

the body tissues. 

Salinity ranges encountered in the sea are not necessarily those that are tolerated for prolonged 

periods by animals in the laboratory. The degree of salinity tolerance is dependent upon several 

factors such as temperature, water movement, substratum composition, dissolved gas 
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concentrations, as well as food availability and competition. Deaths related to hypernormal or 

hyponormal salinities are caused by one or more of three main factors (Kinne 1971): 

1. Functional or structural damage via osmotic phenomena manifesting at the protein, cell 

and tissue levels. 

2. Functional or structural damage caused by changes in the relative proportions of body fluid 

solutes. 

3. Damage caused by critical changes in the metabolic rate and/or performance. 

The degree of physiological stress experienced by crustaceans during exposure to varying 

salinities may also be affected by changes in temperature. The majority of crustacean species 

studied show a greater tolerance to raised salinity levels at lower temperatures (see review in 

Kinne 1971). This effect is due in part to the impact of temperature on the osmoregulatory functions 

of the metabolism (Fincham and Rainbow 1988). It may be expected that at higher salinities there 

will be a higher oxygen demand from the animal as it requires more energy to be able to regulate 

its body fluids at an acceptable level, as it increases its ventilation rate and therefore metabolic 

demand.  

As water temperature increases the oxygen saturation decreases. Generally, in crustaceans, an 

increase in temperature causes an increase in respiration (Allan et al. 2006), so this coupled with 

an increase in salinity is likely to cause great physiological stress on animals that do not regularly 

experience the two together. Geddes (1975) found that in Parartemia zietziana (the Australian 

brine shrimp) at high temperature, an increase in the permeability of the body and the resultant 

stress imposed upon active regulatory mechanisms, rather than a shortage of dissolved oxygen, 

was responsible for a limitation in salinity tolerance at high temperatures. Salinity tolerance in the 

amphipod Gmelinoides fasciatus depends on water temperature, with highest tolerance at low 

temperatures (Berezina and Panov 2004). Rome et al (2005) found that in Callinectes sapidus (the 

blue crab), low temperature and salinity conditions yielded the highest mortality rates. They 

summarised that lower temperature tolerance at lower salinity is most likely the result of higher 

physiological demands and lower physiological abilities. McLusky (1969; 1970) studied the effects 

of temperature and salinity on the estuarine amphipod Corophium volutator and found the 

possibility of a shift in the energy requirements of different metabolic processes under osmotic and 

temperature stress from growth into osmoregulation. 
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The lowest (or highest) salinities that can be tolerated may vary within the same species, based on 

its geographical origin. Carcinus maenas (the green crab or green shore crab) from the Baltic sea 

can tolerate much lower salinities than those caught in the Atlantic Ocean (Péqueux 1995) due to 

adaptation/acclimation to the Baltic’s lower salinity environment. After acclimation to hypersaline 

water (175% seawater) for 65 days the crab Hemigrapsus oregonensis (Pacific green shore crab) 

showed significant hypoosmotic regulation when compared to the little regulation shown after just 3 

days (Gross 1963 in Laverack 1985). The effect of stressors on osmoregulation is usually 

detectable at sublethal levels and could be considered as a form of early warning system for 

sublethal stress in crustaceans (Lignot et al. 2000). Quintino et al (2008) studied the effects of brine 

discharges on marine fauna and showed an adverse effect in stenohaline organisms in terms of 

adult survival, larval abnormal development and sperm fertilisation success. 

In the natural environment, osmotic stress caused by hypersaline conditions (those studied in this 

thesis) is normally associated with tropical and subtropical climates where evaporation occurs in 

shallow lagoons, mangrove swamps and salt marshes, causing increased salinity. However it can 

also occur in the polar regions where ice formation can cause the salinities of underlying water to 

increase due to the salts being expelled as water underlying the sea-ice freezes. Less well known 

sources of highly saline brines include deep ground waters, deep stable oceanic pools and near 

salt springs (Anati 1999). Hypersaline conditions can be caused by anthropogenic influences such 

as effluent from desalination plants and around salt pans. The main focus of previous hypersaline 

studies has been on the discharge from desalination plants in African and Middle Eastern areas 

where the scarcity of fresh water has resulted in the need for the desalination process (Meerganz 

von Medeazza 2005; Raventos et al. 2006). 

 

1.1.4 Toxicological implications of salinity change 

Stress is said to occur when changes to physiological (or other) processes occur which render an 

organism less fit for survival (Bayne 1980). When an organism is subjected to a gradient, for 

instance salinity, under experimental conditions, or in the field, there is usually an upper and a 

lower limit, beyond which the organism will not be able to survive. These are known as the upper 

and lower lethal limits (Figure 1.2). In toxicology, the median lethal dose, LD50, or LC50 is the 

amount of substance that is required to kill half the members of a tested population in a given time 
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(usually 96 hours) and is an administrative standard used to describe the tolerances of species. 

LC50 figures are frequently used as a general indicator of a substance's acute toxicity. LC50 does 

not mean that all subjects will die at this concentration. Other standards used include the effective 

concentration used to produce a specific response (e.g. a behavioural movement) or effect in 50% 

of the population over a given time (EC50), the lethal time in which 50% of a population will be killed 

at a specific concentration (LT50) and the effective time at which 50% of a population will 

demonstrate a particular response or effect at a given concentration (ET50) (Timbrell 1989; Moriarty 

1993; Forbes and Forbes 1994). Some examples of different crustaceans’ responses to salinity 

change are given in Table 1.2. 

 

 

Figure 1.2  Generalised representation of tolerance, survival and lethal zones in response to an 

environmental gradient. 
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Table 1.2  Some examples of crustacean species demonstrating different salinity tolerances, responses 
and ranges. 

Species Tolerance / response 

Armases miersii 
(a semi-
terrestrial 
grapsid crab) 

Salinity of 45-55 caused prolonged developmental stages as a juvenile 
(through a delayed metamorphosis) and increased mortality rates (Anger 
1996).  

Homarus 
americanus 
(American 
Lobster) 

Has been show to be a limited osmoregulator at salinities lower than 
20ppt. (Jury et al. 1994b; Haond et al. 1998) 

A 1-2 psu per minute reduction in salinity caused a rapid rise in heart rate 
once salinity decreased to 26.6 and a reduction once the salinity reached 
22.1 (Dufort et al. 2001). 

Pagurus 
bernhardus 
(common hermit 
crab) 

The hermit crab Pagurus bernhardus has an asymmetrical response to 
salinity change. It will isolate itself inside its shell at a certain salinity but 
will not recover as soon as the salinity becomes favourable again such as 
in better adapted species. Instead it as to spend a long period of time in 
more favourable conditions before becoming active again, suggesting the 
body tissues are still suffering osmotic stress (Davenport 1985). 

Palaemon 
peringueyi 
(caridean 
shrimp) 

Although the caridean shrimp Palaemon peringueyi has been shown to be 
capable of growth and activity at salinities between 10 and 50, exposure 
to four different temperatures at salinities greater than 35 all caused an 
increase in the respiration rate, suggesting osmotic stress (Allan et al. 
2006).  

At 15°C Palaemon peringueyi showed an increase in oxygen consumption 
from 0.2 to 0.9 µl/mg/wwt/h when salinity was increased from 5 to 45. This 
increased to nearly 1.1 µl/mg/wwt/h when temperature was increased to 
30°C (Allan et al. 2006). 

Scylla olivacea Salinity had no effects on the catches of the estuarine mud crab Scylla 
olivacea in a Philippine mangrove forest (Walton et al. 2006). 

Scylla 
paramamosain 

Scylla paramamosain is a crab which shows a preference for estuarine 
habitats, and catch-per-unit-effort data indicates stable populations 
despite extended periods of low salinity or even freshwater conditions 
through a large part of the year (Le Vay et al. 2001). 

Tigriopus fulvus, 
(a copepod) 

Above a salinity of 90, the copepod Tigriopus fulvus falls into a state of 
locomotory inactivity and cannot recover after 60 hours at  salinity 98 and 
only 3 hours in 225 salinity (Issel 1914 & Randall 1957 in Kinne 1971). 
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1.1.5 Salinity change as an environmental problem 

Desalination of seawater is common in arid areas as a means of supplying fresh water for 

domestic, agricultural and industrial uses and results in a hypersaline brine discharge (Meerganz 

von Medeazza 2005; Raventos et al. 2006). Growing demand for fresh water and global population 

growth has led to increased demand for fresh water thus resulting in an increase in this process, 

not just in arid areas but in other areas of the globe. Desalination plants are principally located in 

southern areas of the northern hemisphere, where low rainfall means fresh water is less readily 

available (Raventos et al. 2006), for example the Middle East and the Americas. However, it is now 

increasing in more northern areas such as the European side of the Mediterranean Sea, and has 

been taking place on a small scale on the Island of Jersey since the 1970s (Jersey-Water 

undated). The first mainland UK desalination plant opened in London in June 2010 and the £270m 

centre is expected to deliver up to 140 million litres of water to 400,000 homes in times of drought 

(BBC-News 2010).  

Solute mining, for reasons such as the storage of CO2 and the creation of gas storage cavities in 

salt strata adjacent to coasts and is also a major source of brine (Dusseault et al. 2001; Shi and 

Durucan 2005; Quintino et al. 2008). Excavation is carried out by dissolution of the underlying salt 

deposits through the injection of heated seawater, resulting in the production of a hypersaline brine.  

The brine generated by the desalination and solute mining processes is subsequently discharged 

into surrounding coastal or estuarine environments, potentially causing a rise in the ambient salinity 

with the concomitant impacts this may have for marine fauna. 
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1.2 Gas cavern construction in the Holderness area of Yorkshire 

Scottish and Southern Energy Hornsea Ltd (SSE) in conjunction with Statoil Ltd is in the process of 

constructing an underground natural gas storage facility at Aldbrough on the Holderness coast (Fig 

1.3). In Spring 2005, they started the creation of 9 caverns beneath the Holderness coastline at a 

depth of approximately 1800m (Proctor et al. 2006). These caverns are created by the dissolution 

of salt deposits in the Zechstein salt stratum underlying the coastline. Once the salt has been 

removed the space created will allow for the planned storage of natural gas of between 390 and 

420 million m3, supplying eight million homes a day (Reeves 2005; Statoil 2009).  

The site of the caverns is located 2.5 km south-east of Aldbrough and 1.5km inland from the coast 

(Figure 1.3). The nine caverns are created by directional drilling from a central processing area 

down to the underlying salt stratum (approx 2 km deep). Heated seawater is then pumped into the 

boreholes to dissolve the salt and form the caverns in a process known as leaching. The initial 

phase of leaching the caverns will take approximately four years to complete with the first cavern 

expected to be ready to store gas by 2007 (Reeves 2005). Commercial operations began at the 

site on 1st June 2009 with capacity in another three caverns expected to become available by the 

end of 2010 (Statoil 2009). When fully operational (expected to be in 2012) (SSE 2011), the facility 

at Aldbrough will have the capacity to store up to 370 million m3 in nine underground caverns and 

will be the largest onshore gas storage facility in the UK, being be able to deliver gas to the 

National Transmission System at a rate of 40 million m3 per day and have up to 30 million m3 of 

gas per day injected (Statoil 2009).  

The success of this venture has prompted the possibility of further development of the area for gas 

storage and since 2007 the energy company E.ON has been applying to the East Riding of 

Yorkshire council to develop a 10 cavern gas storage site at Whitehall Farm near Aldbrough (EON 

undated).  

Currently the resulting hypersaline effluent from the SSE site is being discharged under consent 

from the Environment Agency into the adjacent coastal waters of the North Sea (Proctor et al. 

2006). The Environment Agency have set limits for the maximum temperature and salinity 

(dissolved solids) at which the brine can be discharged, these are 27 °C and 284 g.L-1 respectively 

(Jacobs 2007) and discharges occur at or close to these limits. In 2006 SSE applied to the East 

Riding of Yorkshire Council to extend the project to include a further 9 caverns increasing the total 
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storage capacity for natural gas to 840 million m3. Consent for this was granted in May 2007 (SSE 

2006; SSE 2007). Salt caverns are typically much smaller than depleted gas field reservoirs and 

depleted aquifers, usually only 1/100 of the volume of a depleted gas reservoir. For this reason they 

are especially suited for short-term storage of natural gas because of their high deliverability as 

well as the ability to quickly switch from injection to withdrawal (Shi and Durucan 2005). The brine 

contains a number of elements (Table 1.3), one of the elements of particular concern is copper 

which naturally occurs in the salt deposits to be leached at <5-10 µg l-1 and in the antifouling 

system used to stop faunal colonisation of the equipment at 12-25 µg l-1 (IECS 2004 unpubl). 

Copper is a naturally occurring part of crustacean physiology as the metallic element in their 

respiratory pigment haemocyanin (White and Rainbow 1985; Depledge 1989) but in high 

concentrations it is toxic to aquatic organisms (Flemming and Trevors 1989; Grosell et al. 2007). 

 

Table 1.3  Composition of the Aldbrough brine discharge. Trace metals found in solution salt taken from 
Aldbrough No 1 borehole (IECS 2004 Unpubl). 

Parameter Concentration in brine discharge (µg l-1) 

Aluminium 
2 - 5     From antifouling system 
< 100   Naturally occurring within salt 

Antimony  < 5.0 
Arsenic < 5  
Boron < 20  
Cadmium < 2.0  
Chromium < 2.0  
Cobalt < 4.0  

Copper  
12 - 25   From antifouling system 
< 5 - 10  Naturally occurring within salt 

Iron   < 20  
Lead  < 25  
Mercury  < 0.25  
Molybdenum  < 5.0  
Nickel   < 5.0  
Phosphorous, PO4 as P  < 160 
Selenium  < 5.0  
Tin   < 10  
Zinc  < 20  
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The E. Yorkshire diffuser is sited within an area important for commercial fishing of Homarus 

gammarus, Cancer pagurus, and Necora puber (Figure 1.3), the catches of which contribute 

significantly to the economy (Walmsley and Pawson 2007). Consequently although hypersalinity is 

not a common phenomenon for this region, its ecological effects may have a significant potential 

commercial relevance. This is true in terms of the success of fishing and post-harvest marketing 

operations as well as having potential impacts on larval recruitment and stock replenishment. The 

effluent is at a salinity of ≈284 and ≈26.3 °C which is considerably warmer than the normal range of 

temperatures for the area (6 °C to 14 °C winter/summer) as well as being over 8 times more saline 

(Cutts et al. 2004). The thermal and saline plume has been shown to extend for over 300m, 

suggesting that in addition to other effects of saline stress seen by animals in the area, they will 

have to contend with a lower level of oxygen availability (Table 1.1). The dimensions and area of 

the water column and seabed affected by the plume are dependent on tidal and wind action. In the 

year of operation 2006-2007, the maximum salinity recorded at 50m from the discharge point 

during routine monitoring was 47.9 psu, and at 250m of 37.1 psu (Jacobs 2007). 

These coastal works have the potential to cause many environmental disturbances; this thesis 

focuses on the impacts of the high salinity brine discharge. This effluent is currently discharged 

through diffuser apparatus that is designed to help the brine disperse as quickly as possible into 

the surrounding waters with the aim of minimising the environmental impact. However as discussed 

in section 1.1, even small changes in ambient salinity can cause stenohaline organisms to alter 

their physiological or behavioural state. If organisms in areas around the brine discharge cannot 

cope with raised environmental salinity, it could result in a change in community structure through 

alterations in breeding patterns, larval dispersal and recruitment, food availability and both inter and 

intra species competition. Settlement, the stage in which a pelagic larvae metamorphose to a 

benthic stage (followed by the period as an early juvenile) is a critical period in the life cycle of 

many benthic organisms (Moksnes et al. 1998). Pressures at this stage include high predation and 

availability of both suitable habitat type and acceptable habitat condition. Due to this high predation 

pressure many crustacean larvae settle (and continue to permanently live) in areas where shelter is 

readily available (Cobb 1971; Smith and Herrkind 1992; Moksnes et al. 1998), for instance mussel 

beds, rocky areas of sea bed or seagrass beds. The area around the Aldbrough diffuser where the 

commercial lobster and crab fishery is located has an irregular bed topography with many small 

rocks and cobbles (underwater camera surveys IECS, University of Hull, unpubl.) which provide 
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shelter for adult specimens of these species. If the brine discharge was to affect this area so that 

the area became less favourable for settlement of both the crustaceans and their prey such as 

molluscs and polychaetes, the fishery could be adversely affected. Del Pilar Ruso et al (2007) 

found a shift in a community structure from a community characterised by polychaetes, 

crustaceans and molluscs to one up to 98% dominated by nematodes (an opportunistic species 

characteristic of high stress areas), in a soft bottomed area affected by a brine discharge.  
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1.3 The Holderness crustacean fishery area 

1.3.1 Crustacean fishing 

Since the Neolithic and Mesolithic eras, hunter gathering humans have probably eaten shellfish 

such as crabs and lobsters collected in the littoral or in shallow sublittoral tidal areas using primitive 

traps made with whatever materials were available such as reeds, wood and grasses (Mannino et 

al. 2007). Cancer pagurus was of domestic importance to the Romans and references to crab 

boats occur in the 12th century records of Whitby Abbey, Yorkshire (Edwards 1979). Today, the 

same species are still important food items, although the way they are collected has changed 

considerably. With the improvements of catching gears, catches have increased in volumes 

sufficient to allow them to be both a source of food and also an important source of income.  

 

1.3.2 The East Yorkshire Shellfishery 

All European marine fisheries are managed within the Common Fisheries Policy (CFP) which was 

agreed between Member States in 1983 and was reviewed and ratified by the Council of Ministers 

in 1992 (EC 3760/92). The Restrictive Shellfish Licensing Scheme came into effect in January 

2006. Under the scheme all vessels of <10 m that have a shellfish entitlement are required to 

submit details of their daily landings of lobsters, crawfish, brown crabs, spider crabs, velvet 

swimming crabs and shore crabs together with the potting or netting effort used and the area fished 

every month, in much the same way as vessels  >10m  already did (Walmsley and Pawson 2007).  

The current Yorkshire fishing fleet has both inshore and offshore fishing vessels. The inshore 

vessels are responsible for much of the crustacean catches. In the Humber estuary and along the 

coast of Lincolnshire there is a small-scale beam trawl fishery for brown shrimp (Crangon crangon) 

and pink shrimp (Pandalus montagui). From March onwards throughout the year potting for crab 

and lobster becomes very important to the static gear inshore fleet and is the main source of 

income for many of the Holderness region’s fishing vessels. Around the Bridlington and Whitby 

areas boats can put down up to 2000 pots each, going up to 40 miles offshore to lay them out. July 

to September is when the highest catches of Homarus gammarus can be obtained in this region 

and Cancer pagurus are fished for all year. Since June 1998, potting for lobsters, brown crabs, 
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velvet crabs and whelks within the North Eastern Sea Fisheries Committee (NESFC) district, has 

been by written permit only (Walmsley and Pawson 2007). 

Table 1.4 gives details of the Yorkshire ports and the number of vessels that operate out of them. 

Bridlington is especially important regionally and nationally in terms of catches and vessel numbers  

(Walmsley and Pawson 2007). The fisheries for both Homarus gammarus and Cancer pagurus are 

the most important financially for both the Yorkshire ports (Table 1.5) and the whole of the UK shell 

fishing industry (Table 1.6).  

Minimum landing size (MLS) is the most widely used measure in crustacean fisheries to manage 

stocks. It is normally set at the size at which the species matures, with the aim of allowing 

individuals to reproduce at least once before harvest (Tallack 2007). Homarus gammarus is an 

important commercially fished crustacean species in the UK (Lizárraga-Cubedo et al. 2003). The 

fishery for H. gammarus is the UK is regulated on the basis of a minimum landing size of 87mm set 

by the Department for Food Environment and Rural Affairs (DEFRA). This measurement is taken 

as the length of the carapace from the rear of the eye socket. Tully et al. (2001) found the size at 

which H. gammarus was 50% mature ranged from 92.5 mm to 96 mm, suggesting that the current  

minimum landing sizes are too small. 

Minimum landing size of Cancer pagurus varies from 130 or 140 mm carapace width depending on 

the area the crab is caught from. These sizes were introduced on a European level in 2000. Soft 

shelled crabs and berried females must not be landed. In the NESFC district which governs the 

East Yorkshire shell fishery of this study, the minimum landing size for Cancer pagurus is 130mm 

carapace width. 

In the NESFC district the minimum landing size for Necora puber is set at 65mm carapace width. 
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Figure 1.3  The fishing ports of the Holderness region, with Aldbrough included for reference. X marks the 
location of the gas caverns. 
 

Table 1.4  Vessels and their principal catches for the Holderness ports. 

Port Number of vessels fishing for shellfish 

Hornsea Up to 8 beach boats of 5–7 m are active throughout the year potting for 
Cancer pagurus and Homarus gammarus. 

Tunstall and 
Withernsea 

Up to 15 beach boats regularly fish from this exposed coastline working 
up to 400 pots each for C. pagurus and H. gammarus. More vessels join 
during the summer. 

Spurn Point, 
Kilnsea and 
Stone Creek 

One beach-launched boat fishes full-time throughout the year, sets pots 
out a few miles offshore for C. pagurus and H. gammarus. Several part-
time boats set pots during the summer months. 

Bridlington Thirty eight vessels target shellfish all year round up to 75 miles from port, 
each setting up to 2000 pots for C. pagurus and H. gammarus, whereas 
the smaller vessels in the fleet, including cobles, mini-keel-boats and fast-
workers, set up to 800 pots each from spring onwards. 

Filey Five full-time cobles, launched from the beach use a variety of fishing 
gears including pots. From April, most work the pot fishery and some 
cobles each set up to 650 pots for H. gammarus. 

Scarborough Up to 20 small static gear boats, 16 of which set pots out to 6 miles all 
year round. Effort aimed at crabs has recently increased, and a few of the 
larger boats set pots further offshore for C. pagurus all year working as far 
south as the Wash. The H. gammarus fishery is busy during the summer. 
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Table 1.5   Volumes and values of the 2006 shellfish 
landings in NESFC district ports (from South Shields 
in the north to Tetney in the south) 
 

Table 1.6   Volumes and values of all UK shellfish 
landings (2005-2006) 
 

 

Shellfish Landed 
weight (t) 

Landed 
value 

(£1000s) 
Whelks 310 164 

Gastropods   
Scallops 20 183 
Cockles   

Other bivalves 0 = 
Brown crab 2,464 2,484 
Other crabs 491 747 

Lobsters 607 6,679 
Nephrops 458 1,359 
Shrimps & 

prawns 23 40 

Cephalopods 34 103 

 
Total 10,786 18,196 

 

Shellfish Landed 
weight (t) 

Landed 
value 

(£1000s) 

Whelks 10,950 6,350 
Gastropods 2 2 

Scallops 5,482 10,745 
Cockles 11,002 4,925 

Other bivalves 10,280 1,821 
Brown crab 9,156 12,406 
Other crabs 2,538 2,828 

Lobsters 1,549 18,397 
Nephrops 2,636 9,957 

Shrimps & 
prawns 498 1,257 

Cephalopods 4,032 6,794 
 

Total 58,125 75,452 
From Walmsley and Pawson 2007                                                From Walmsley and Pawson 2007 
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1.4 Site description 

The coastline adjacent to the Aldbrough brine discharge site is made up of glacial till deposited at 

the end of the last ice-age (Cutts et al. 2004). The glacial till is mainly boulder clay, consisting of 

72% mud, 27% sand and 1% pebbles and boulders. The soft nature and low cohesiveness of this 

material results in an average 2 m.year-1 retreat of the cliff. These same materials make up the sea 

bed of the area, with a mainly boulder clay bottom, with patches of shingle, sand, pebbles and 

boulders. The erosion of this coastline is important for the accretion of sediment into the Humber 

Estuary where it contributes to mudflat creation, as well as for the formation of Spurn Head (Figure 

1.3), the large spit that crosses the mouth of the Humber Estuary. Both the mudflats and Spurn 

Head play a role in flood prevention for the populous of the Humber region (Cutts et al. 2004). 

The area’s benthic community is characterised by species indicative of an environment subject to 

frequent physical disturbance such as the polychaete worm Nephtys cirrosa, where continual 

reworking of the sediments means that a climax community cannot develop. Sixty four benthic 

species were identified in a 2001 survey by the Institute of Estuarine and Coastal Studies (IECS) 

(unpubl. data), but this high diversity was not reflected by high abundance. Allowing for natural 

variability, this number is relatively consistent over time with 55 recorded species in 2004 and 73 in 

2005 (Mazik and Allen 2006). An epifaunal survey (Proctor and Musk 2004) showed 39 species of 

epifaunal invertebrate, 33% were mobile crustacean species that accounted for over 90% of the 

total epifaunal abundance. 

Homarus gammarus is the second most common crustacean species (the first being Crangon 

crangon) in the Aldbrough brine discharge area, making up 24% of the total crustacean 

assemblage (Cutts et al. 2004; Proctor and Musk 2004). Less than 3% were above the minimum 

landing size of 87 mm carapace length, demonstrating the importance of this region’s near-shore 

habitats for sub-adult populations and recruitment for adult populations which support the local 

fishing industry (Cutts et al. 2004). The same survey found that in the study area, Necora puber 

composed 9% of the total crustacean assemblage. The proportion of the assemblage attributed to 

Cancer pagurus is unknown due to the absence of quantitative data, however it is clear from 

personal observations made at local ports such as Bridlington, that the species is a key one for 

commercial fishing operations in the area. 
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1.5 Biology of species studied 

1.5.1 Species to be studied  

This study focuses on the crustacean species Homarus gammarus (the European lobster), Cancer 

pagurus (the brown [or edible] crab) and Necora puber (the velvet crab), as these are the key 

species fished for by vessels in the area around the brine discharge, as well as being the most 

economically important. Chapter 3 also uses Carcinus maenas (the green shore crab) and Pagurus 

bernhardus (the common hermit crab) to provide an intertidal species comparison for salinity 

preference, however these are not important commercially. 

 

1.5.2 Habitat and distribution – Homarus gammarus 

Homarus gammarus (Figure 1.4) (syn: Homarus vulgaris. Common names: European Lobster or 

Common Lobster) is found in waters from the Arctic Circle to the Mediterranean, with the highest 

abundances around Norway, France, Ireland and the UK (for UK distribution see Figure 1.5) with 

the main fishing effort historically taking place along the east coast (Richards and Wickins 1979; 

Spence 1989). 

 
 

Figure 1.4  Homarus gammarus 
 

Figure 1.5   The distribution of 
Homarus gammarus around the 
British Isles (from Marlin.ac.uk) 

 

 

The main habitat of Homarus gammarus is rocky sea beds down to a depth of around 100m. The 

distribution is related to sea bed topography, with distribution being limited to areas with rocky 
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outcrops, wrecks, piers etc. This is commonly attributed to the lobster’s need for shelter during 

vulnerable periods of its life such as the moult but may actually be due to the need to avoid and 

shelter from tidal currents (Howard and Nunny 1983). Lack of shelter in sandy or muddy flat areas 

may be a limiting factor in the distribution of the species (Cobb 1971). Lobsters tend to be nocturnal 

and have been shown to be significantly more active during the hours of darkness (Mehrtens et al. 

2006). During daylight hours, if no shelter is available, captively held lobsters will retreat to the 

most shaded or enclosed areas of tanks such as the corners (O'Farrell 1966), a habit which has 

also been noticed in this study. There are some reports of juvenile H. gammarus utilising the softer 

substrata such as mud and sand to construct tunnels similar to those of Nephrops norvegicus 

(Richards and Wickins 1979). 

Large adult Homarus gammarus tend not to be found towards the edge of the continental shelf, but 

individuals can be found tens of kilometres offshore in areas of suitable habitat such as wrecks 

(Bannister & Addison 1995 in Smith et al 2001.) The reproduction of these may help sustain 

inshore populations. Natural mortality in lobsters > 80mm CL has been estimated at 10 – 22% year 

-1 (Hepper 1978 and Bannister 1986) in Smith et al (2001).  

 

1.5.3 Behaviour and physiology – Homarus gammarus 

Lobsters belong to the phylum Arthropda and they have a hard exoskeleton made of calcified 

chitin. The head and thorax are fused to the carapace, and the abdomen (commonly known as 

lobster tail) posterior to the carapace contains 6 articulated segments (Figure 1.6). The abdomen is 

utilised as a behavioural adaptation for escaping from predators by using rapid tailflips to propel the 

lobster backwards. The antennae are used to sense vibrations in the environment and shorter 

antennules are used to detect chemical changes in the environment (Spence 1989).  

H. gammarus are primarily nocturnal and emerge at night to hunt for food including fish, other 

crustaceans, molluscs, polychaete worms and possibly plankton (Forsyth 1960; Ingram 1985), 

returning to shelter with increased light levels (Richards and Wickins 1979). It has been suggested 

that H. gammarus is a central base forager (Smith et al. 2001), having a home shelter or group of 

shelters and returning to this after excursions to look for a mate, food etc. The limited movement of 

H. gammarus (Smith et al. 2001) may be tied with this need for shelter. This is in contrast to the 

closely related Homarus americanus which is well known to undertake seasonal migrations of 
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hundreds of kilometres. The type of benthic environment available to settling juvenile lobsters in the 

early benthic phase (EBP) of their life cycle appears to have a marked effect on their survival.  In 

field experiments EBP H. gammarus had significantly greater chance of survival from predation 

when presented with shelter providing substrata such as cobbles (Ball et al. 2001). 

The moulting period of a lobster is a critical stage in its life history as during this time the organism 

is soft shelled and therefore susceptible to both predation and physical damage. During this time 

the physiology of the animal changes, which may be extensive enough to alter its resistance to 

environmental stressors. The survival of soft lobsters to lowering of salinity and dissolved oxygen, 

and rising temperatures was found to be lower than that of hard shelled lobsters (McLeese 1956).  
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Figure 1.6   Homarus gammarus showing the main body features. Dorsal view. (drawn by author) 
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1.5.4 Habitat and distribution – Cancer pagurus. 

Cancer pagurus (common names; brown crab, edible crab) (Figure 1.7) has a similar distribution to 

H. gammarus but is found mainly in North West Europe. It is found around the whole coastline of 

the British Isles (Figure 1.8), where it is a common member of the subtidal community (Hall et al. 

1991). The main habitat is rocky or stony sea beds down to a depth of around 100m with higher 

abundance where more shelters are available, although the species can also be found on softer 

grounds such as sand and mud. C. pagurus is able to partially bury itself in unconsolidated 

sediments, offering low resistance to tidal currents (Howard and Nunny 1983).  

 

 

Figure 1.7   Cancer pagurus Figure 1.8   Distribution of Cancer pagurus around 
the British Isles (from marlin.ac.uk). 
 

 

1.5.5 Behaviour and physiology – Cancer pagurus 

In general, the anatomy of C. pagurus is loosely similar to that of H. gammarus in that it has a 

head, thorax and articulated abdomen all covered in a calcified exoskeleton. In C. pagurus 

however, the abdomen is curled underneath and the whole body is therefore protected by the 

carapace, taking an oval, rather than elongated, form (Figure 1.9). Both of the chelae are used for 

crushing and as the crab possesses no other claw appendages, if it loses both claws it is very 

difficult to eat as food cannot be dissected and passed to the mouth.  
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When inhabiting softer benthic habitats, the main prey for this species appears to be large bivalves 

(Shelton et al. 1979), excavating pits in order to obtain them (Hall et al. 1991). C. pagurus is also 

known to feed on other decapod crustaceans including Galathea squamifera, Pilumnus hirtellus, 

Pisidia longicornis and Porcellana platycheles (Lawton 1989). The main moulting period on the 

east coast of England is July-August (Edwards 1966), however on the south coast the moult period 

is less well defined with soft crabs occurring throughout the year (Bennett and Brown 1970). 

Cancer pagurus is a commercially important species in Europe (Tully et al. 2006; Stentiford 2008; 

Barrento et al. 2011). Adult crabs undertake extensive migrations, which may be associated with 

the reproductive cycle (Tully et al. 2006). 

 

 

Figure 1.9   Diagram showing the main features of Cancer pagurus, Dorsal view. (drawn by author). 

  

Chelae (both crushing type) 

Eye Antenna 

1st walking leg 

2nd walking leg 

3rd walking leg 

4th walking leg 

Carapace 



27 
 

1.5.6 Habitat and distribution – Necora puber 

Necora puber (Figure 1.10) (syn: Liocarcinus puber, Portunus puber, Macropipus puber, common 

names: the velvet crab, the velvet swimming crab or the red eyed crab), is a commercially fished 

species, found all over north-west Europe, most commonly found on stony and rocky substrata on 

the lower shore and in shallow sublittoral water. It occurs in its highest abundances on moderately 

sheltered shores all around the British Isles (Wilson 1999) (Figure 1.11) and can be found down to 

depths of about 80 m (Fish and Fish 1996).  There is an absence of published literature stating this 

crab’s presence in the Yorkshire area. According to information compiled by the Marine Life 

Information Network (MARLIN) N. puber is not found off the Holderness coastline (Figure 1.11), 

however many specimens have been found on both the sandy beach and rocky shore at Filey, 

(Pers. obs.) and the crab is fished for commercially from Bridlington southwards to the Aldbrough 

diffuser. This is evidence of increasing numbers locally which is important for the UK fishery and 

also perhaps indicative of warming of the North Sea. N. puber originates from the south-western 

corner of Europe, namely the coastline of Spain and Portugal (Wicks 2004; Pollard 2008). It has 

been considered as an invasive species in UK waters, although whether its presence is due to an 

extension of its range due to changing biogeographic factors or due to unintentional introduction by 

man is unclear (Wicks 2004; Pollard 2008). Changing consumer demand in the 1970s changed this 

species from a pest that stripped pots of their bait and damaged catches (Hearn 2002) to 

commercially fished species (Harwood 2000). Recent catches in the Holderness and Wash regions 

may therefore be evidence of climate change as the water warms up enough for N. puber to be 

establish itself in these previously unfavourable environments. It has already been suggested that 

the increase in swimming crab larvae from the decapod subfamily polybiinae in the North Sea is 

indicative of climate amplification (Lindley et al. 2010)   

Although there is little market for N. puber in the United Kingdom, it is a commonly eaten food in 

Spain, where most of the UK catch is transported to. In the Shetland fishery a much higher meat 

yield is obtained from male N. puber rather than females (Tallack 2007). N. puber is much less 

robust to handling and environmental change than C. pagurus and Carcinus maenas (the shore or 

green crab) (Wyman et al. 1985). 
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Figure 1.10   Necora puber 

 

Figure 1.11   Map showing the 
distribution of Necora puber around the 
British Isles (from marlin.ac.uk) 
 

 

1.5.7 Behaviour and physiology – Necora puber 

N. puber has a generally high metabolic rate compared with brown or spider crabs, which is 

increased further by the stresses of handling and packing. An average sized velvet crab can pump 

around 1 litre of water over its gills per minute  (Cumberlidge and Uglow 1977a), indicating the 

quantity of clean aerated sea water needed to keep an animal in an optimum condition. N. puber 

quickly becomes stressed under conditions which H. gammarus and C. pagurus would readily 

tolerate, such as during shipping and transportation and it is a very aggressive species so holding it 

in large numbers can be additionally difficult due to it attacking others in the tank. Even under 

favourable conditions it is the largest (and therefore the most commercially valuable) specimens of 

N. puber that succumb first to stress (Wyman et al. 1985). The high metabolic rate and 

susceptibility of this species to stress during the commercial harvesting process is indicative that it 

may also respond poorly to natural, environmental stresses such as changes in salinity, pollution, 

disturbance etc. 

N. puber is not considered as an intertidal species, although they may be found low down on rocky 

shores and some sandy shores at low tide they do not tolerate exposure. The anatomy of N. puber 

is very similar to that of C. pagurus. The whole body is protected by the carapace and takes the 

oval shape (Figure 1.12). Both of the chelae are the crushing type and as the crab possesses no 
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other claw appendages, if it loses both claws it is difficult to eat as food cannot be dissected and 

passed to the mouth. The fourth pair of periopods has the dactyls flattened out into paddles which 

the crab uses to swim. The carapace is covered in short hairs which give it a soft texture hence the 

common name “velvet crab”. 

The main time for feeding in N. puber is at night, but to a lesser extent during the day when they 

are covered by the tide. Adult, wild caught N. puber mostly eat brown algae, especially Laminaria 

and Fucus. This is followed by other crustaceans, especially other crabs and barnacles, followed 

by the mussel Mytilus edulis. However when in laboratory conditions the food preference was 

found to be as such crustaceans>mussels>algae with only severely starved (> 5 days) crabs eating 

the algae, however an adult crab of carapace width 70mm could eat a 30x50mm piece of 

Laminaria in <3 minutes (Choy 1986).  Both adult and juvenile N. puber were found by Choy (1986) 

to have empty stomachs during the winter especially berried females from the littoral zone. Also 

recently moulted animals had empty stomachs. 

 

 

Figure 1.12   Diagram of the main features of Necora puber. Dorsal view (drawn by author). 
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1.5.8 Salinity tolerances in the test species 

The adults of the three species tested, H. gammarus, C. pagurus and N. puber are all widely 

considered as being principally subtidal species, with adults only occasionally occurring out of 

water in the lower littoral zone (pers obs.). C. pagurus (Péqueux 1995) and the portunid crab N. 

puber (Dorgelo 1979), are considered to be osmoconformers and there is some evidence to 

suggest that despite being a subtidal species H. gammarus is a limited osmoregulator 

(Charmantier et al. 1984). 

There is a lack of existing data on the salinity preferences and tolerances of these three species in 

the literature, especially for C. pagurus and N. puber. Whilst for H. gammarus there is a some 

information known about its responses to lowered environmental salinity (hyposalinity) 

(Charmantier et al. 1984; Lucu and Devesconi 1999; Torres et al. 2002; Pavicic-Hamer et al. 2003) 

there is almost nothing that describes how these species react in hypersaline waters (Charmantier 

et al. 1984). It is known that H. gammarus has been successfully acclimated down to salinity 20 in 

the lab (Lucu and Devesconi 1999) and in juveniles reared at 15°C, mortality occurs only in 

salinities below 17 and above 46 with regulation being isosmotic in high salinities, and slightly 

hyperosmotic in low salinities (Charmantier et al. 1984). In the related H. americanus there was an 

almost linear increase in oxygen consumption, heart and scaphognathite beat rates in animals 

exposed to dilute seawater, with almost a twofold increase in metabolic rate when animals were 

moved from salinity 20 to 15 to 10. It has been shown that after acclimation to a low salinity of 25 

from salinity 33 N. puber can reduce its apparent water permeability (Rainbow and Black 2001) 

possibly as an adaptive measure for coping with a more dilute environment. 

The combination of salinity change and other environmental factors is also known to have an effect 

on these species. In H. americanus, lead exposure was shown to override some of the normal 

adaptive adjustments to hyposalinity when compared with control animals (Gould and Greig 1983). 

Dall (1970) used H. americanus for osmoregulatory studies because considerable 

hyperosmoregulation had been observed at the lower end of its salinity tolerance range. In the 

same species haemolymph glucose, crustacean hyperglycaemic hormone (CHH), lactate, total 

protein, cholesterol, triglycerides, chloride and calcium concentration, pH and density were all 

influenced negatively by high temperature both in average of alteration from the physiological value 

and in recovering time (Lorenzon et al. 2007). 
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Further adaptations and tolerances for salinity for each species are discussed in detail in 

subsequent chapters. 
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1.6 Crustacean stress, health and metabolism 

Crustaceans have aquatic, terrestrial and semi terrestrial representatives and so have had to adapt 

to the huge physical and chemical diversity of these environments. Brackish, estuarine and 

intertidal environments are probably among the most stressful aquatic habitats, and the 

establishment of crustaceans in these environments implies highly adapted physiological features 

(Péqueux 1995). The stronger the adaptive response, the more likely the detection of stress-

induced change in that response (Gould and Greig 1983). The species used in this study are found 

in a fully marine, sublittoral and therefore normally stable environment, however crustaceans are 

very sensitive to changes in water quality, chemistry, light and temperature. It is important that 

these balances are maintained in order for them to survive in the aquarium or outside their natural 

environment. Each species has its own tolerances to levels of applied stressors such as 

temperature, oxygen saturation, pH and toxins. Cancer pagurus and Carcinus maenas have a 

much higher tolerance to these than Necora puber (Bernasconi 2006). Environmental stressors of 

this nature may rapidly become lethal to some species and can negatively affect their quality and 

hence the market price. Intertidal species generally have a greater range of environmental 

tolerances than subtidal species. When an environmental stressor such as salinity moves outside 

the limits of homeostasis the organism adapts its metabolism to cope and this increase or decrease 

in metabolic processes is what can eventually lead to death, or sublethal impacts decreasing the 

marketability. Sublethal effects may impact the long term sustainability of populations (and 

therefore the commercial market) by affecting growth and reproduction.  

Increases in oxygen consumption as salinity is reduced (or increased maybe) may be due to 

increased energy needed to actively pump ions needed to maintain homeostasis. It is uncertain 

whether animals with higher respiration rates would be able to survive in these unfavourable 

conditions for any length of time and may need to migrate into areas of more ambient salinity to 

survive. This will be one of the factors addressed in this thesis. 

 

1.6.1 Cardioventilatory activity 

Blood circulation in decapod crustaceans is achieved by rhythmic contractions of a single-

chambered, neurogenic heart. Heart rates between 15-150 beats per minute (bpm) are not unusual 

in individuals however rates are normally at levels between these extremes (Cumberlidge and 
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Uglow 1977a). Heart rate is typically elevated in response to physical and environmental stress and 

this ability to increase respiration rate is probably a factor in the ability of crustaceans to escape 

from predators or unfavourable conditions. Variability in cardiac activity has been shown to be an 

indicator of the Darwinian fitness of decapods (Depledge and Lundebye 1996), and therefore their 

physical ability to cope with changing environmental gradients and high variability in any measured 

behaviour or parameter may itself be an indicator of stress as animals do not necessarily respond 

in a uniform way to environmental changes. 

Branchial irrigation in decapod crustaceans is maintained by the pumping action of the 

scaphognathites. The scaphognathites are enlarged blade shaped exopodites of the second 

maxillae, one in each of the left and right branchial chambers. They are capable of both 

synchronous and independent activity (Cumberlidge and Uglow 1977a). In crustaceans the 

scaphognathites pump water over the gills in a forward direction in most species including the 

lobsters, but this is interrupted at irregular intervals by reversed beats which propel water backward 

over the gills (Wilkens and McMahon 1972). The scaphognathite in Homarus americanus moves as 

a rigid blade which does not flex but instead effects water propulsion by changing its angle of 

attack during each half beat (Wilkens and McMahon 1972). Change in the cardioventilatory activity 

of crustaceans is used as a sublethal indicator of the impact of environmental change (Ansell 1973; 

Cumberlidge and Uglow 1977a; Walters and Uglow 1981). 

 

1.6.2 Autotomy 

This is the ability to regrow lost limbs and is an adaptation that is shared by all the crustaceans 

included in this study. Under stressful conditions, a limb can be shed and a new one is grown in 

replacement, e.g. due to injury, or to aid escape from a predator. The limb is lost at a fracture plane 

at its base which is covered in a thin membrane which has a hole in the centre through which blood 

passes into the rest of the limb, but on fracture this hole is quickly sealed by a blood clot. In a 

premoult animal, the new limb grows out of the old stump and is soft and encased in a membrane, 

only becoming hard when the animal moults. The new limb will eventually attain a size that is 

slightly smaller than the previous one (Spence 1989). If an animal is already experiencing 

environmental stress in the form of changes to salinity, pollution etc, it might have an impact on the 

ability of the animal to complete this process successfully, if the fracture plane is not closed quickly 



34 
 

pathogens could enter the body. In addition if energy is going into maintaining homeostasis under 

environmental stress, there will be less available for growth of a new limb at the next moult, if the 

onset of the moult is not delayed by the stressor. As the main feeding appendages of the lobster 

are the subchelate walking legs, loss of the crushing and/or cutting claw (which are used mainly for 

defence and opening hard food) does not mean starvation (Ingram 1985). However in crabs the 

chelae are used for feeding and loss of one or both can lead to malnutrition and eventually death. 

 

1.6.3 Haemolymph O2 affinity and anaerobic metabolism in crustaceans 

Hypersaline conditions have already been shown to affect mobility in both H. gammarus and C. 

pagurus (Macdonald and Elliott 2005). If this reduction of mobility also involves the 

scaphognathites (gill bailers), it could mean that even in a fully oxygenated media, the crustacean 

could face an internal hypoxia as it cannot draw enough water across the gills for respiration, thus 

affecting the acid base balance of the haemolymph. This hypothesis is investigated in Chapter 6. 

Crustaceans are ectothermic, gaining most of their heat from their environment. For most 

ectothermic animals, the colder the environment the less active they are, both in terms of 

behavioural activity and internal processes such as metabolism and respiration. In crustaceans 

metabolic rates are determined largely by external temperatures. Within lethal limits the higher the 

temperature the higher the metabolic rate and the more rapidly animals will become distressed by 

external stressors such as a low oxygen supply (Wyman et al. 1985), water borne pollutants, or 

environmental salinity change (i.e. hypersalinity). Stress of this kind often induces anaerobic 

respiration which results in the production of lactic acid and the build up of lactate in the blood and 

tissues as a shortage of oxygen means the tissues respire inefficiently. Lactate is a toxic substance 

which, if high concentrations persist, will ultimately kill the animal, but before that will reduce its 

survival and its condition so as to make it a less attractive commercial product (Wyman et al. 

1985). Therefore the raised temperature of hypersaline discharges is a concern with regards to the 

metabolic processes of affected species. Lactate can also accumulate under conditions other than 

aerial exposure, such as during exercise.  L-Lactate is the primary metabolic acid product produced 

by decapod crustaceans and exercise induced acidosis is caused almost totally by L-Lactate 

(McDonald et al. 1979; Wood and Randall 1981).  
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1.6.4 Nitrogen metabolism in crustaceans 

Ammonia is the primary nitrogenous waste excreted by aquatic crustaceans and is excreted 

constantly via the gills by a passive diffusion into the water in the branchial chamber. Here the 

water in is continuously renewed, so protecting the animal from the toxic effects of high ammonia 

levels (Durand et al. 1999). Other important waste products are urea and uric acid. Some minor 

excretory products of nitrogen metabolism are guanine, trimethylamine oxide (TMAO), creatine, 

creatinine and amino acids. Increased ammonia production may indicate a higher rate of protein 

metabolism (Emerson 1969)  and elevated ammonia levels in H. americanus in low salinity media 

have been shown to disrupt ionoregulatory functions (Young-Lai et al. 1991). So it is important that 

crustaceans have an effective ammonia excretion or detoxification system in order to iono-

osmoregulate efficiently and respond to changing environmental conditions (i.e. salinity).  

Quantifying the changes in ammonia in crustaceans in response to hyper/hypo salinity, shows the 

initiation of changes in the physiology in response to environmental change and is considered as 

indicative of a sublethal response to stress in aquatic organisms. Therefore assessing ammonia 

production in crustaceans in response to changing environmental variables (i.e. salinity) may be a 

way of assessing not only their tolerance levels, but also the degree of stress imposed. 

For a comprehensive review of the effects of ammonia on the body (though not just applicable to 

crustacea) see Wright (1995), but briefly summarised they are: 

• Modification of the properties of the blood brain barrier and disruption of cerebral blood 

flow. 

• NH4
+ can directly substitute itself for K+ in nerve conduction. 

• Interfere with transport of amino acids and impede the process of amino acid excretion 

• Cause mutations in astrocytes and neurons (nervous system/brain tissues). 

• Alter carbohydrate and fat metabolism 

• Alter ATP levels in the brain and other tissues 

 

Many aquatic species also can be uricotelic (they can produce uric acid as well as ammonia). They 

can switch to an alternative biochemical pathway so that they produce alternate forms of waste to 

ammonia in higher amounts. This is an energetically expensive option but other forms of waste 
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such as urea and uric acid are less toxic to the organism if they build up in the body (Uglow and 

Williams 2001). 

Hence it is important to establish how nitrogen metabolism, especially ammonia production and 

excretion is affected by changing environmental salinity in order to determine the potential 

sublethal impacts that may occur in salinity stressed species. 
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1.7 Aims, objectives, hypotheses and structure of the thesis 

1.7.1 Aims and objectives 

The discharge of any effluent into the marine environment is of concern as any change to what is 

normally a relatively (within the boundaries of normal fluctuation) stable environment has the 

potential to impact on many of the biotic and abiotic components of that ecosystem. As the area 

around the Aldbrough brine discharge site is an important commercial fishery, any impacts the 

brine may have on the commercially fished species need to be assessed. This information is 

required, not only for the local discharge but for helping to predict the impacts of any brine 

discharge in temperate regions. 

The main aim of this investigation is to determine whether, and if so how, commercially important 

crustaceans will respond, both behaviourally and physiologically, to a hypersaline discharge that 

causes an increase in the osmotic concentration of their environment. Both sublethal and lethal 

toxicity testing will also be carried out in which elevated salinity is the toxicant. 

The objectives of this study are as follows: 

1. to assess the behavioural salinity preferences of the animals; 

2. to assess both the behavioural and physiological salinity tolerances of the animals; 

3. to determine the salinity concentrations that cause 50% (LC50) of the animals to die when 

acutely exposed (as may happen in field situations), the time it takes in a given 

hypersalinity to cause a 50% mortality (LT50); 

4. to assess the responses of the study species to hypersaline media, as shown by body 

movements and changes in heart and scaphognathite beat patterns; 

5. to predict the impact on commercially important crustacean species in areas affected by a 

brine discharge.  

 

Individual hypotheses are given in each individual chapter. The brief outline of each chapter is as 

follows: 
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1.7.2 Structure of the thesis 

• Chapter 2 gives an overview of the general methodology used, with more detail given in the 

relevant chapters as needed. 

• Chapter 3 examines at the behavioural responses of the study species when given a choice of 

different environmental salinities. The data have been used to determine behavioural 

preferences and salinity ranges. 

• Chapter 4 examines the mortality rates and times for Homarus gammarus, Cancer pagurus 

and Necora puber in different hypersaline concentrations. 

• Chapter 5 takes the information obtained in chapters 3 and 4 and examines the cause of 

reactions observed by analysing haemolymph samples from animals subjected to both hypo 

and hypersaline environments (focusing mainly on the hypersaline). The crustaceans have 

been both acclimated to hypersalinity and acutely exposed to hypersaline media with no prior 

acclimation – to gauge their physiological reactions. 

• Chapter 6 further investigates the responses to hypersalinity by looking at the concealed 

responses that cannot be seen by eye. The heart and scaphognathite beats of Homarus. 

gammarus and Necora puber were analysed during acclimation to hypersaline conditions. 

• Chapter 7  the data from chapter 6 is related to the results obtained in chapters 3, 4 and 5 to 

give an overall view of what exactly happens to the study species when exposed to hypersaline 

conditions. This is then related to the results of chapter 6 to make predictions of what might 

happen to commercially important crustacean species subjected to raised salinity environments 

(such as the Holderness brine discharge) in temperate regions of the world. 
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 Chapter 2 

 General Methodology 
Methods common to all chapters 

 

2.1 Supply and husbandry of experimental animals. 

Although most crustaceans have a hard exoskeleton that protects them from most surface wounds 

and that helps to prevent the entrance of microorganisms, normal fishing and handling operations 

produce a high risk of damage occurring, including fracturing and puncturing of the exoskeleton 

and more commonly, limb loss. Stress-inducing post capture conditions are experienced by 

crustaceans. The most stressful of these is disturbance, both physical and visual, which can cause 

a large amount of stress (Paterson et al. 1993). 

Hosie (1993) constructed a damage index (Table 2.1) and an activity index (Table 2.2) based on a 

study of Cancer pagurus and the physical damage it sustains during live transport as a way of 

assessing the viability of specimens for experimental use. These indices have been slightly 

modified and used here for the same purpose as well as to assess the health of those undergoing 

treatment. 

Specimens were obtained from the local fishery at Bridlington harbour, or collected from the local 

rocky shore at Filey. Animals were transported dry with damp paper and ice packs to minimise 

temperature fluctuations and to lower their metabolic rates during transport. Intermoult adults, both 

male and non-ovigerous females were used. Homarus gammarus in the late-postmoult stage was 

used additionally in one of the trials (Chapter 5) to assess the impacts of hypersalinity on part of 

the moult cycle. 

On arrival at the laboratory the animals were checked for mortalities and their viability assessed 

using the damage index and activity index described above. Creel or hand-collected rather than 

trawl caught animals were used for this study due to the lower likelihood of damage. Only animals 

scoring a 1 or 2 on the activity index were chosen for this study, with most of animals scoring a 1. 

Damaged animals were used if they scored sufficiently high on the index (1–2) and also scored 

well on the activity index (1). 
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Table 2.1 Damage index used for grading experimental crustaceans  (after Hosie 1993) 

       Damage Index 

1. Broken dactyls - (the final segment on the walking legs) 

2. Damaged or torn joints (including damage to scar tissue where legs have been lost) 

3. Broken or snapped legs and/or claws 

4. Cracked/punctured or otherwise damaged carapace 

5. Damage to other body parts, e.g. abdomen, mouthparts. 

 

Table 2.2 Activity index used for grading experimental crustaceans (modified from Hosie 1993) 

Activity Index Description 

1.    Strong Strong limb movement, no drooping of limbs 

2.    Medium Limb and claw movement, relatively strong but with slight drooping of limbs 

3.    Weak Minimal limb movement, drooping of limbs but slight strength in claws. 
Mouthparts slightly open 

4.    Moribund 
(approaching 
death) 

No limb or claw movement. Complete hanging of all limbs, eyes sunken, 
mouthparts open. Some movement of antennae or mouthparts. Pale 
carapace colour. Blood can still be drawn from walking legs with a syringe. 

5.   Dead As above (4) but no movement at all. Blood impossible to draw from legs 
with a syringe. 

 

Surviving and viable animals were put into tanks to acclimatise and recover from their capture. The 

animals were stored in the aquarium in sea water obtained via tanker lorry from Bridlington which 

has a salinity of 35, in large opaque plastic tanks with between two and eight animals kept in each 

depending on the size of the tank and the animals. The opaque tanks minimised potential stress 

from visual disturbance. Lobsters had their chelae secured with elastic bands to prevent injury to 

both other lobsters and to handlers. The aquarium was maintained in a temperature controlled 

room at 8°C (± 1°C) with a 12:12 hour light:dark photoperiod. Animals were held for a minimum of 

48 hours to a maximum of 5 days before experimentation. This time was allowed to ensure full 

temperature acclimation, recovery from capture and transport and to allow the loss of any tidal 
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rhythms that may have affected metabolism. This temperature and photoperiod were maintained 

throughout the experiments. 

A dispensation was obtained from the North Eastern Sea Fisheries Committee (NESFC), to allow 

the capture of undersized animals to be used in the trials. This was a budgetary requirement that 

allowed travel on a regular fishing vessel without the need to personally charter it as the 

dispensation allowed the collection of specimens that would not detract from the boat crew’s 

livelihoods. Specimens were not selected if more than 5 mm below the minimum landing size. 

Specific size ranges were used for each test species (Table 2.3). 

 

Table 2.3  Sizes of the crustacean specimens used 

Species Sizes used Minimum landing size 
(in 2008) 

Homarus gammarus 82 – 90 mm carapace length 87mm 

Cancer pagurus 125 – 140 mm carapace width 130 mm 

Necora puber 60 – 75 mm carapace width 65mm 

Carcinus maenas 45 – 77 mm carapace width N/A 

Pagurus bernhardus Inside Nucella lapillus and 
Littorina littorea shells of 25-

35mm length 
N/A 

 

Animals were not fed during the holding period before experimentation, in order not to influence the 

metabolism and to ensure all animals were in a similar nutritional state. Animals that survived 

experiments and blood sampling procedures were returned to 35 sea water and fed on Mytilus 

edulis (common blue mussel) once a week, or killed following RSPCA guidelines for mechanical 

killing (RSPCA 2007). Between ½ to 1 mussel was allowed per animal depending on size. Any 

uneaten food was removed the next day and the water changed after two days as feeding 

prompted the production of a large amount of faecal matter, adversely affecting the water quality. 

Mytilus edulis is the preferred food of many decapod crustaceans (Richards and Wickins 1979; 

Mascaró and Seed 2001).  

Determination of death of the animals followed the method of McLeese (1956) in which death was 

indicated by no movement of any body part when observed upon a close examination or even in 
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response to mechanical stimulus, and no “recovery” was recorded when returned to ambient 

conditions. A thorough examination of the animals was required as animals that appeared to be 

dead from salinity could, according to McLeese, recover completely within a few hours of returning 

to ambient conditions. In an addition to this method, death could be determined in more difficult 

cases by attempting to take a small blood sample from the rear walking legs of the animals. From 

preliminary trials it was discovered that in a truly dead animal a blood sample was impossible to 

take, but in animals that were still alive the blood would still flow freely into the syringe despite 

appearing dead. Upon inspection under the microscope, dead blood was either extremely clotted or 

all the cells had lysed. 

 

2.2 Experimentation procedure 

Due to the varying techniques used for assessment of salinity impact on the study species, detailed 

explanations of the experimental methods used for each procedure are given in the relevant 

chapters. 

 

2.3 Making hypersaline brine 

Hypersaline brine was produced using natural sea water at salinity 35 as a base then either adding 

Instant Ocean™ aquarium salts, or brine collected from the gas caverns at Aldbrough to raise the 

salinity to that required for the particular trial. Instant Ocean™ is a clean and sterile product that 

was used for most of the trials so that a salinity only response could be studied, rather than one 

prompted by any other chemicals that may or may not be present in the gas cavern brine. Thus 

enabling predictions for areas other than the local one to be made based on the salinity-dependent 

responses of the study species. Hyposaline water was made by adding Milli-Q™ ultrapure water to 

a natural sea water base. 

 

2.4 Monitoring salinity and water quality 

Salinity was monitored on a daily basis using a refractometer (Bellingham & Stanley 45-119) 

calibrated with Milli-Q™ water at aquarium temperature. Aquarium water quality was monitored 
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before each trial and otherwise on a weekly basis using a saltwater master test kit by Aquarium 

Pharmaceuticals. The bacterial filter was maintained from a starter culture obtained from J. Garland 

at Clearwater Seafoods, Canada. Mechanical filter media were changed as needed. 

 

2.5 Statistical analyses 

Statistical analyses were carried out using SPSS versions 15 to 18, or by hand following the 

methodology in Fowler et al (1998). Graphs were drawn in SPSS, Microsoft Excel or SigmaPlot 

version 11. Normality checking prior to each statistical test was carried out via a Kolmogorov 

Smirnov test. Homogeneity of variance was tested for with a Levene’s test. Details of the specific 

statistical tests are given in the appropriate chapters. 
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 Chapter 3 

 Behavioural assays  

 Behavioural responses of crustaceans to hypersaline exposure 
 

 

3.1 Introduction 

There are four main survival strategies employed by aquatic crustaceans when challenged with 

high stressor intensities in their environments: 

1. locomotory escape or avoidance responses, such as movement of the whole organism, or 

part of it, away from the affected area (e.g. by fleeing, retreating into a burrow, or, as with 

barnacles, withdrawing behind protective opercular plates); 

2. reduction of contact with external media (e.g. by reducing or ceasing ventilatory behaviour, 

or burrowing); normally a temporary measure;  

3. using a physiological response to regulate the immediate effects of the stressor; 

4. adapting to the altered stressor intensity level, either by acclimating to a new steady-state 

response to the stressor (a non-genetic response) or, over several generations, adapting 

genetically to the altered conditions. Often, a combination of both types of response occurs  

(Kinne 1964). 

The species studied here are all active decapod crustaceans and this chapter focuses on their 

locomotor responses to changes of environmental salinity. Locomotor movements (e.g. walking, 

swimming) are important adaptations of crustaceans which link their behaviour and ecology. Thus, 

short term ecological changes can alter population and community structure through motile species 

avoiding any adverse conditions, or congregating because of an abundance of food or mating 

opportunities.  

Altered behaviour is usually the first response to changed salinity and can help organisms to avoid 

adverse conditions (Curtis et al. 2007) and failure of a behavioural response system can lead to 

reduced individual fitness and associated adverse consequences for the population (Miller 1980). 
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Decapod crustaceans are motile species and a rapid avoidance response to adverse conditions 

would therefore have a presumed survival value. A prerequisite of such behavioural modifications, 

however, is the ability to detect the change in salinity. Due to the presence of the exoskeleton, 

crustaceans need specialised sensors to be able to detect environmental change such as salinity. 

These are in the form of hairlike extensions of the cuticle (setae/sensilla) and contain the dendrites 

of sensory neurons (Schmidt 1989; Garm et al. 2004). Sites of salinity detection in decapod 

crustacea have been shown to be in the mouthparts (Garm et al. 2004), legs (Davenport and 

Wankowski 1973; Schmidt 1989), antennae (Tazaki 1975) and branchial chambers (Hume and 

Berlind 1976; Dufort et al. 2001). 

Short term locomotory avoidance responses effectively protect the organism from the higher 

energetic costs associated with increased ion- and osmoregulation. The magnitude of the 

organism’s behavioural responses to a salinity change may be a species-related one that reflects 

its osmoregulatory ability. Thus the porcelain crab, Porcellana platycheles shows salinity 

preference behaviour only at salinities below its tolerance limit of < 40 % seawater (Davenport 

1972a; Davenport and Wankowski 1973) whereas the mud crab, Scylla serrata, shows no 

preference within its normal salinity range of 2 – 42 (Davenport and Wong 1987). When exposed to 

a hyposalinity gradient, the osmoconforming crab Cancer gracilis briefly explores, then moves to 

the highest salinity in the gradient (Curtis et al. 2007). 

Salinity is a limiting factor in the distribution of many aquatic organisms and hypersalinity, whilst not 

as common marine phenomenon as hyposalinity, does have a limiting effect on marine biotic 

distributions (Gunter 1961). Seasonal salinity changes can influence the distribution of coastal and 

estuarine species such as the various penaeid shrimp species (Gunter et al. 1964) and salinity 

gradients result in different species occupying different parts of the gradient (e.g. the portunid crab 

species of the Caribbean (Norse 1978) and the North Sea crab species such as Liocarcinus spp 

and Carcinus maenas (Mathieson and Berry 1997). 

Habitat structure can directly influence the physiological and behavioural mechanisms of organisms 

and must be considered when interpreting the responses of animals in relation to physicochemical 

variables (McGaw 2001). The use of shelters has been widely noted for a number of both lobster 

and crab species with most lobster and many crab species shown to live in rocky areas which 

provide good opportunities for shelter from light, predation and/or currents. Such shelters are rarely 
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found in sandy or muddy substrata. For some species, the presence of shelter may induce a 

crustacean to stay in an area when conditions become sufficiently unfavourable as to cause it to 

otherwise it vacate the area (Table 3.1). Physical factors and seabed topography have been shown 

to affect the size composition of Homarus gammarus and H. americanus populations, with the 

substratum type and current strength also having major influences (Howard and Nunny 1983; 

Robichaud and Campbell 1991).  

 

Table 3.1 Shelter preferences of some lobster and crab species. 

Lobster species Shelter preferences Reference 

Panulirus interruptus Rocky areas  with shaded/dark shelters (Spanier and 

Zimmer-Faust 

1988) 

Panulirus argus Caves, holes in coral or rock. Juveniles can be found 

in sponges 

 

(Smith and 

Herrkind 1992; 

Butler et al. 1995) 

Homarus gammarus Prefers areas where rocks reduce current speeds (Howard and 

Nunny 1983) 

Homarus americanus Rocky bottom, no lobsters found inhabiting sandy or 

muddy bottoms 

(Cobb 1971) 

Scyllarides latus Prefers shaded or opaque shelter to identical 

transparent one in laboratory. In the field specimens 

found in rocky areas or man made reefs 

(Spanier and 

Almog-Shtayer 

1992) 

Crab species Shelter preferences Reference 

Carcinus maenas (juv) Mussel beds, eelgrass, filamentous green algae (Moksnes et al. 

1998) 

Hemigrapsus nudus Display a weak negative phototaxis and prefer 

environments with available shelter. Uncommon 

where areas have high sediment load. Presence of 

shelter means it will tolerate unfavourable salinities 

for longer 

(McGaw 2001) 

Pagurus bernhardus Uses its shell as protection from fluctuating 

environmental salinities 

(Shumway 1978) 
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3.2 Aims, objectives and hypotheses 

The aim of this study is to determine whether hypersalinity causes halokinesis / halotaxis in 

decapod crustaceans (a movement in response to salinity) and if so to what extent? This resulted 

in the following null hypotheses; 

1. Hypersalinity does not cause an obvious behavioural response in the crustacean species 

tested (visible physical movements rather than concealed behavioural response i.e. altered 

scaphognathite beat behaviours). 

2. The crustaceans tested cannot distinguish between normal and hypo/hypersalinity. 

3. When hypersalinity challenged, the crustaceans tested prefer to be in a shelter rather than 

in ambient open water. 

For the purposes of this investigation, hypersalinity is defined as any salinity above, and 

hyposalinity any salinity below, what the species normally experiences in the wild in the Yorkshire 

area (in the case of those tested here, that salinity is 35). In addition to the three key species of this 

study (Homarus gammarus, Cancer pagurus and Necora puber) which are mainly sublittoral in 

nature, two additional species, Carcinus maenas and Pagurus bernhardus have been included to 

provide a comparison with intertidal crustaceans. 
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3.3 Materials and Methods 

3.3.1 Animal husbandry 

Creel-caught, intermoult specimens of Necora puber (carapace width 65-75 mm), Cancer pagurus 

(minimum landing size -5 mm +10 mm) and Homarus gammarus (minimum landing size ± 3 mm) 

were obtained from commercial landings at Bridlington, East Yorkshire, U.K. in the autumn of 2007. 

Carcinus maenas (45 mm - 77 mm) and small Pagurus bernhardus (inside Nucella lapillus and 

Littorina littorea shells of 25-35 mm length) were collected from the shore at Filey Brigg, Yorkshire, 

U.K. N. puber and C. maenas were maintained in opaque plastic tanks at a stocking density of 4 – 

8 animals per tank and an average of 3 litres of water per crab. H. gammarus and C. pagurus were 

held 2 per tank with 6L water per animal. P. bernhardus were held 6 per tank with 1 L of sea water 

per crab. An unobtrusive drain/refill method was used daily to change 50% of the holding water.  

 

3.3.2 Salinity induced behavioural preference test – Two salinity choice trial 

A two way choice chamber was constructed (Figure 3.1) which consisted of two slopes (30°) with a 

flat central apex inside a large opaque plastic tank, (100 cm * 35 cm * 25 cm). This construction 

allowed separate pools of water on each side of the tank. Different choices of salinity were given on 

each side with one side always being at the normal salinity for the study area at 35, then the other 

side being a higher salinity (within the range 35 to 65). The construction of the experimental 

chamber was such that there was no mixing of the two pools, thus maintaining a stable salinity on 

each side, however test specimens could still crawl easily over the central apex. The slopes were 

constructed from rough-textured polystyrene which allowed the animals to maintain purchase so 

they could not simply ‘slip’ into a pool by mistake. Pools were aerated gently, maintained at a 

constant temperature (8 °C ± 1 °C) to ensure that there were a minimum number of variables that 

could affect the choice response of test specimens. The aquarium was maintained at a 12h 

light/dark cycle and all tests were carried out during the light periods. Lights were directly above the 

tank to ensure any behaviour was induced by salinity rather than light conditions. 
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Different species were tested in varying numbers and combinations of gender, dependent on 

availability at time of capture (Table 3.2). Each test involved the placing of a single specimen in the 

chamber at the apex of the slopes thus presenting it with the choice of remaining emersed or 

descending into either pool of water. Each test involved observing the specimen from behind a 

screen and recording the time taken to move into a pool and the pool choice made. Assuming that 

a 6 h emersion period represented the maximum time for which a mid to low shore animal would be 

tidally exposed, those animals that took longer than 6 h to make a choice were deemed as being 

unresponsive. A positive choice was counted when the animal had its legs and mouthparts 

submerged (principal sites of salinity detection in decapods as discussed in section 3.1 and on the 

advice of Dr. R. Uglow, University of Hull). If, after choosing, a subsequent choice was made to 

change pools, only the initial excursion into a pool was recorded. This cut off was chosen as, for 

the purposes of this experiment, only the initial response to salinity was wanted, rather than one 

which may have occurred after a period of acclimation in the chosen pool. A parallel (control) series 

of tests were run alongside where a choice of normal (35 psu) salinity was given on both sides to 

ensure there were no other factors controlling any salinity preferences and indicated there was no 

preference for a particular side of the tank (see the 35-35 choice in tables 3.13 to 3.17). Not all 

species were tested in the hyposaline range as this thesis is about hypersaline mediated 

responses, hyposaline options were tested for, merely as an aside when time allowed, however the 

results are included here for interest. 

On placement on the central apex, crabs tended to orient themselves so that the legs on one side 

of the body could be dipped into one pool, and the legs on the other side of the body could be 

dipped into the other pool. There then proceeded a period in which legs were alternately dipped 

into the normal and hypo/hypersaline pool until a choice was made and the crab submerged itself. 

Water 

Figure 3.1   Two choice testing chamber (not to scale). Separate pools (one hypo/hypersaline 
and one normal salinity) were used to observe salinity preferences. 

Polystyrene slope (30°) 
Water 

Test animal 
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Occasionally in between the dipping behaviour and submergence, crabs would shuffle their bodies 

between the shallowest parts of the pools. Lobsters did not exhibit such marked ‘choosing’ 

behaviour. On submergence, both crabs and lobsters settled at the deepest part of the tank, often 

backing into a corner. Only one single animal (Carcinus maenas) out of all tested switched sides 

after the initial choice. Where numbers tested were sufficient to allow a gender-dependant analysis 

it was shown that there were no gender-dependent differences in behaviour in response to salinity 

(χ2 test, p > 0.05 in all cases) hence gender responses have not been investigated further (Table 

3.3, Table 3.4). 

 

Table 3.2 Details of the animals used in the two way choice tests 

Species Number/Gender details 

Necora puber 16 male, 4 female (minimum) 

Cancer pagurus 15 male, 15 female 

Homarus gammarus 10 male, 10female 

Carcinus maenas 6 male, 6 female 

Pagurus bernhardus 6 male, 6 female 

 

 

Table 3.3   Results of χ2  tests to ascertain if there was a difference in the preference behaviour of Cancer 
pagurus to hypo/hypersalinities based on sex. 1 df. 
Using Fisher’s correction when n<5.  (5% significance threshold = 3.84,  1% = 6.63).  

Salinity choice χ2 value p-value p with Fisher’s correction 
35-35 control 0.133 0.715 1.000 

35-40 0.715 0.705 1.000 
35-45 0.186 0.666 1.000 
35-50 1.154 0.283 0.598 
35-55 0.000 1.000 1.000 
35-60 0.240 0.624 0.068 
35-65 3.333 0.068 0.224 
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Table 3.4   Results of χ2 tests to ascertain if there was a difference in the preference behaviour of 
Homarus gammarus to hypo/hypersalinities based on sex. 
1df. Using Fisher’s correction when n<5. (5% significance threshold = 3.84,  1% = 6.63) 

Salinity 
choice χ2 value p-value p with Fisher’s correction 

25-35 Unable to calculate as all chose salinity 35 n/a n/a 
30-35 0.833 0.361 0.650 

35-35 control 5.051 0.025 0.070 
35-40 1.818 0.178 0.370 
35-45 0.220 0.639 1.000 
35-50 0.392 0.531 1.000 
35-55 0.392 0.531 1.000 
35-60 Unable to calculate as all chose salinity 35 n/a n/a 

 

 

3.3.3 Salinity induced behavioural preference test – Multiple salinity choice trial 

The experimental set up for these tests comprised a circular tank (depth 60 cm, diameter 80 cm), 

filled with sand to a depth of 15 cm into which 4 shelters were buried at a 30° angle (Figure 3.2). 

Each shelter was constructed from a 2L soft plastic bottle with the rounded neck removed to create 

a large opening. Each was strengthened by sections of round guttering and each had a sea water 

delivery pipe fixed at the rear. Shelters were connected via the delivery pipe to a peristaltic pump, 

with 3 hypersaline reservoirs (100, 85 and 65 psu) and one fresh water reservoir (both cf. normal 

seawater salinity of 35) (Figure 3.2).  The pumps were calibrated to each deliver water at 2 ml.min-1 

to the shelters. The salinity of the reservoirs was calibrated so that on mixing with the 35 psu sea 

water in the experimental tank, the salinity of the shelters equated to 85 ± 5, 65 ± 5, 45 ± 5 and 

37.5 ± 2.5.  As hypersaline water is denser than ambient sea water, the low flow rate into the 

shelters ensured that, to a large extent, the hypersaline conditions remained in the shelter only. 

The shelter with a hyposaline flow (which when mixing with the tank water equated to 37.5 ± 2.5 

psu) was included to counteract any major increase in the overall salinity of the tank. 

When each shelter had reached the desired salinity a test animal was introduced to the centre of 

the tank and the set-up left for 24 hours. The tank was inspected every 15 minutes during the first 4 

h and then hourly for 4 h and a final check after 24 h. The position of the test animal was noted 

each time. After 24 h the experiment was complete and the final position of the specimen was 
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recorded and taken as the choice made. Salinity inside the shelters and in the open water was 

monitored using 0.5 ml water samples obtained during the checks via a syringe that was able to 

reach the bottom of the tank and determined using a calibrated refractometer. 

Two species were used in the multi choice test (Homarus gammarus: 10 males / 10 females and 

Cancer pagurus: 8 males / 8 females). The aim of this test was to determine whether the test 

animals would prefer a sheltered location but a challenging salinity or an exposed location of 

normal (35) salinity. A control test was run where the shelters all received a flow of salinity 35 

seawater to ensure there was no preference for a particular shelter or that the flow was not 

affecting the behaviour. 

 

Figure 3.2 Multi choice testing chamber 

 

 

3.3.4 Salinity dependent gender testing for Homarus gammarus 

The results of a χ2 test on the lobster preference data for the test group (Table 3.5, Table 3.6) did 

not show any significant gender-dependent the salinity preferences (χ2 = 1.511, p = 0.470, df = 2). 

Consequently the gender data have been pooled for analyses. No gender-dependent difference 

were found for the control trial either (χ2 = 2.533, p = 0.639, df = 4, Table 3.7, Table 3.8). 

 

 

Peristaltic pump 

Hyper/Hypo saline reservoirs 

Delivery tubing 

Shelter 

Sea water (salinity 35) 

Sand 
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Table 3.5   χ2 test on the Homarus gammarus preference data. Crosstabulation. 
As no lobsters of either sex chose shelter a or b, these were excluded these from the calculation (due to 
calculating an expected value of 0). 

 choice 

Total 
shelter c 

40-50 
shelter d 

35-40 open water 

sex male lobster Count 0 4 6 10 

Expected Count 0.5 4.5 5.0 10.0 

female lobster Count 1 5 4 10 

Expected Count 0.5 4.5 5.0 10.0 

Total Count 1 9 10 20 

Expected Count 1.0 9.0 10.0 20.0 
 

Table 3.6   χ2 test on the Homarus gammarus preference data. χ2results. 
(df 2, 5% critical significance threshold =5.99, 1% = 9.21) 

 χ2 Value df P value 
Pearson Chi-Square 1.511a 2 0.470 
Likelihood Ratio 1.900 2 0.387 
Linear-by-Linear 
Association 

1.230 1 0.267 

No. of Valid Cases 20   
a. 4 cells (66.7%) have expected count less than 5. The minimum expected count is 0.50. 

 

Table 3.7  χ2 test on the Homarus gammarus multi choice control preference data. Crosstabulation. 
Expected values calculated by SPSS v17. 

 choice control 

Total 
shelter a 

35 
shelter b 

35 
shelter c 

35 
shelter d 

35 

Open 
water 

35 

sex control male lobster Count 3 1 2 2 2 10 

Expected 
Count 

3.0 1.5 2.5 1.0 2.0 10.0 

female 
lobster 

Count 3 2 3 0 2 10 

Expected 
Count 

3.0 1.5 2.5 1.0 2.0 10.0 

Total Count 6 3 5 2 4 20 

Expected 
Count 

6.0 3.0 5.0 2.0 4.0 20.0 
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Table 3.8  χ2 test on the Homarus gammarus multi choice preference data. Results. 
Critical significance thresholds, 5% = 9.49, 1% = 13.28) 

 
Value df 

Asymp. Sig. (2-
sided) 

Pearson Chi-Square 2.533a 4 .639 

Likelihood Ratio 3.314 4 .507 

Linear-by-Linear 
Association 

.195 1 .658 

N of Valid Cases 20   
 

 

3.3.5 Salinity dependent gender testing for Cancer pagurus 

There was no significant gender-dependent salinity preference in the test group of C. pagurus (χ2 = 
1.333, p = 0.721, df = 3, Table 3.9, Table 3.10) or in the control group (χ2 = 8.333, p = 0.080, df = 4,  

 

Table 3.11 and Table 3.12). 

Table 3.9  χ2 test on the Cancer pagurus preference data. Crosstabulation. 
Expected values calculated by SPSS v17. As no lobsters of either sex chose shelter a, SPSS excluded it from 
the calculation (due to calculating an expected value of 0). 

 choice 

Total 
shelter b 

60-70 
shelter c 

40-50 
shelter d 

35-40 
open 

water 35 

sex male crab Count 1 1 2 4 8 

Expected Count 0.5 1.5 2.0 4.0 8.0 

female crab Count 0 2 2 4 8 

Expected Count 0.5 1.5 2.0 4.0 8.0 

Total Count 1 3 4 8 16 

Expected Count 1.0 3.0 4.0 8.0 16.0 
 

Table 3.10   χ2 test on the Cancer pagurus preference data. Results. 

 Value df P value 
Pearson Chi-Square 1.333a 3 0.721 
Likelihood Ratio 1.726 3 0.631 
Linear-by-Linear 
Association 

.065 1 0.799 

No. of Valid Cases 16   
a. 8 cells (100.0%) have expected count less than 5. The minimum expected count is  0.50 
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Table 3.11  χ2 test on the Cancer pagurus preference data – control results. Crosstabulation. 
Expected values calculated by SPSS v17. As no lobsters of either sex chose shelter a or b, SPSS excluded 
these from the calculation (due to calculating an expected value of 0). 

  choice control crabs 

Total a 35 b 35 c 35 d 35 open water 

sex_ctrl male 
crab 

Count 3 3 0 1 1 8 

Expected Count 1.5 2.0 2.0 1.5 1.0 8.0 

female 
crab 

Count 0 1 4 2 1 8 

Expected Count 1.5 2.0 2.0 1.5 1.0 8.0 

Total Count 3 4 4 3 2 16 

Expected Count 3.0 4.0 4.0 3.0 2.0 16.0 
 

Table 3.12  χ2 test on the Cancer pagurus preference data control test. Results. 

 

 

 

 

 

 

3.3.6 Statistical analyses 

Behavioural choices were analysed using a G-test (Fowler et al. 1998), with a Ln(x+1) 

transformation for tests in which zero observed values occurred for some choice options (Pers. 

comm Dr Jim Fowler1) or a Chi2 (χ2) test (SPSS v17). The G-test was used due to being unable to 

construct the 2 by 2 table and hence the minimum 1 degree of freedom required for the χ2 test 

when combining the data for the both males and females. When the crustaceans were assessed 

for gender-dependent salinity responses a χ2 was appropriate. Expected values were calculated by 

                                                           
 

1 Dr Jim Fowler. Retired Principal Lecturer, Dept of Biological Sciences, DeMontfort University, Leicester, UK. Author of 
Fowler et al 1998. 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 8.333a 4 .080 
Likelihood Ratio 11.090 4 .026 
Linear-by-Linear 
Association 

2.872 1 .090 

N of Valid Cases 16   
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taking the total number of observations and dividing equally between the number of salinity choices 

available.  
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3.4 Results  

3.4.1 Two choice testing;  Necora puber 

All the species of crustaceans tested clearly showed a strengthened preference for ambient salinity 

in direct relationship with the size of the difference with either the hypo- or hypersalinity options 

available.  

Necora puber showed an increasing preference for the normal salinity of 35 increasing from a 65% 

preference when the choice was 35-40 to a 95% preference when the choice was 35-65. This 

preference for the ambient salinity (35 psu) over hypo/hypersalinities was statistically significant 

once the choice became 35psu/50psu in the hypersaline range and 25psu/35psu in the hyposaline 

range (Table 3.13). 

 

Table 3.13   Preferences of Necora puber when exposed to a choice of normal (35psu), hyposalinity or 
hypersalinity (25-65 psu). 
(N=22 to 26, df = 1, 5% significance threshold = 3.84,  1% = 6.63) 

Salinity Choice 25-35 30-35 35-35 
control 

35-40 35-45 35-50 35-55 35-60 35-65 

Number choosing 
35/hypersalinity 6/16 11/11 13/11 17/9 16/10 17/5 18/4 20/2 21/1 

G value 4.61 
* 

0.00 0.16 2.46 1.37 4.85  
* 

9.42 
** 

14.80
** 

21.90
** 

* = significant at the 5% level,    ** =  significant at the 1% level 

 

 

3.4.2 Two choice testing;  Cancer pagurus  

Cancer pagurus showed a preference for the normal salinity of 35 increasing from a 63.3% 

preference when the choice is 35-40 to a 90% preference when the choice is 35-65. Strong 

preferences for salinity 35 occur from option 35-45 upwards with over 75% choosing salinity 35 

over the hypersaline alternative (Table 3.14). C. pagurus showed a significant (p < 0.01) 

preference for the normal salinity (35) over hypersalinities once the choice became 35/45. There 

was no significant preference between salinities 35 and 40.  
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Table 3.14   Salinity preferences of Cancer pagurus when exposed to a choice of normal (35psu) or 
hypersalinity (40-65 psu). 
(N=30, Degrees of freedom = 1, 5% significance threshold = 3.84,  1% = 6.63) 

Salinity Choice 35-35 
control 

35-40 35-45 35-50 35-55 35-60 35-65 

Number choosing 
35/hypersalinity 15/15 19/11 23/7 27/3 26/4 26/4 27/3 

G value 0 2.12 8.85 
** 

21.72 
** 

17.73 
** 

17.73 
** 

21.72 
** 

* = significant at the 5% level,    ** =  significant at the 1% level 

 

 

3.4.3 Two choice testing;  Homarus gammarus 

Homarus gammarus showed an increasing preference for the normal salinity of 35. This occurred 

both in the hypo and hypersaline range. At a choice of 25-35, 100% chose salinity 35. In the 

hypersaline range the strongest preference occurred at the choice 35-60 with 90% choosing 

salinity 35. Preference for the normal salinity (35) became significant once the salinity choice 

offered with normal reached salinity 50 in the hypersaline range or 25 in the hyposaline range, (p = 

0.01) preference for the ambient salinity (Table 3.15). At salinities between these there was no 

significant behavioural preference. 

 

Table 3.15   Salinity preferences of Homarus gammarus when exposed to a choice of normal (35) or 
hypo/hypersalinity (25-65 psu).  
(N=20, df = 1, 5% significance threshold = 3.84,  1% = 6.63) 

Salinity Choice 25-35 30-35 35-35 
control 

35-40 35-45 35-50 35-55 35-60 

Number choosing 
lower/higher salinity 

0/20 8/12 9/11 11/9 13/7 17/3 17/3 18/2 

G value 
26.91 

** 
2.72 0.20 0.20 1.78 10.55 

** 
10.55 

** 
14.36 

** 
* = significant at the 5% level,    ** = significant at the 1% level 
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3.4.4 Two choice testing;  Carcinus maenas  

Carcinus maenas showed a significant preference for normal salinity (35) over hypersalinities once 

the choice became 35/40 (Table 3.16). Due to the limited number of adult specimens available of 

this species at the time of field collection no attempt was made to ascertain if there was a gender-

dependent response. C. maenas showed the most definitive preference for normal salinity with all 

animals choosing salinity 35 when the other options were 45, 55, 60 and 65. 

 

Table 3.16   Salinity preferences of Carcinus maenas when exposed to a choice of normal (35psu) or 
hypersalinity (40-65). 
(N=12, Degrees of freedom = 1, 5% significance threshold = 3.84,  1% = 6.63)* 

Salinity Choice 35-35 
control 

35-40 35-45 35-50 35-55 35-60 35-65 

Number choosing 
35/hypersalinity 7/7 11/3 13/1 11/3 13/1 13/1 13/1 

G value 
0 4.69 

* 
11.78 

** 
4.69 

* 
11.78 

** 
11.78 

** 
11.78 

** 
* = significant at the 5% level,    ** = significant at the 1% level 

 

3.4.5 Two choice testing;  Pagurus bernhardus  

Pagurus bernhardus showed a significant preference for normal salinity (35) over hypersalinities 

once the choice became 35/55 (Table 3.17). No attempt was made to ascertain if there was a 

difference in the responses of the two sexes due to limited availability of specimens. P. bernhardus 

showed a less defined response, however a greater than 75% preference occurred once the 

hypersaline option reached salinity 50 or above. 

 

Table 3.17   Salinity preferences of Pagurus bernhardus when exposed to a choice of normal (35psu) or 
hypersalinity (40-65 psu). 
(n = 8 to 12, df = 1, 5% significance threshold = 3.84,  1% = 6.63)* 

Salinity Choice 35-35 
control 

35-40 35-45 35-50 35-55 35-60 35-65 

Number choosing 
35/hypersalinity 6/6 7/5 4/4 8/2 12/0 9/2 9/2 

G value 0 0.30 0 3.40 14.86 
** 

4.30 
* 

4.30 
* 

* = significant at the 5% level,    ** = significant at the 1% level 
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3.4.6 Multi choice testing;  Homarus gammarus 

As many decapods have been shown to prefer to inhabit shelters (see section 3.1), with some even 

staying in unfavourable environmental conditions in order to remain in a shelter, this test aimed to 

investigate the trade-off between safety (a shelter) but unfavourable conditions (hypersaline water 

within the shelter) and exposure (no shelter) but more favourable conditions (ambient water 

salinity), as a way of investigating what might potentially happen in the wild if an area inhabited by 

these species underwent hypersaline flooding. 

The results of the control multi choice testing on H. gammarus have shown that the experiment 

was unbiased as there was no significant preference for any shelter, or an exposed location (G = 

1.22, df = 4, Table 3.18).  

 

Table 3.18  G test for salinity preference of Homarus gammarus multi choice control group.  
df = 4. Critical significance threshold:  5% = 9.49,  1%=13.28. Shows no significant preferences (G adj < 
9.49). 

Choice and 

salinity 

shelter a 

35 

shelter b 

35 

shelter c 

35 

shelter d 

35 

Open 

water 

35 

observed 6 3 5 2 4 

expected 4 4 4 4 4 

G step1 2.43 -0.86 1.12 -1.39 0.00 

 
     

G 1.30 
    

correction 

factor 
1.07 

    

G adjusted 1.22 
    

 

In the multi choice test on Homarus gammarus, all but one animal (19 out of 20) avoided the 

hypersaline areas of the tank. Ten lobsters chose open water (6 males, 4 females), nine lobsters 

chose the lowest salinity shelter (shelter d) at 35-40 psu (4 males, 5 females). The exception was a 

female that chose shelter c (40-50 psu) (Table 3.19). Thus lobsters, even when given the choice of 

a shelter within a hypersaline area, will avoid hypersalinity above 40 psu.  
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Table 3.19   Results of the multi choice test for Homarus gammarus.  
Position in tank recorded after 24 hours. Positions:  a=shelter at 80-90 psu, b=60-70, c=40-50, d=35-40, 
open water =35 psu. 

Lobster Sex Position after 1 h Position after 24h Choice 
1 male d open water open water 
2 male open water open water open water 
3 male open water open water open water 
4 male open water open water open water 
5 male b d d 
6 male c d d 
7 male open water d d 
8 male open water open water open water 
9 male d open water open water 

10 male d d d 
11 female d d d 
12 female c d d 
13 female b c c 
14 female c d d 
15 female open water open water open water 
16 female open water open water open 
17 female b d d 
18 female open water open water open water 
19 female open water open water open water 
20 female a d d 

 

The results of the multi-choice lobster experiment have shown that lobsters preferred (p < 0.01 in 

each case) both shelters or open water of normal salinity (G = 10.15, df = 4, Table 3.20). Since the 

control trial found no preferences, these findings therefore suggest that it is the effects of salinity 

that are causing the preference behaviour exhibited in this species. 
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Table 3.20   G test for salinity preference of Homarus gammarus.  
Ln x+1 transformation used on all observed values due to 0 values. df = 4. Critical significance threshold:  
5% = 9.49,  1%=13.28.  

Choice and 
salinity 

shelter a 
80-90 

shelter b 
60-70 

shelter c 
40-50 

shelter d 
35-40 

Open water 
35 

observed 1 1 2 10 11 

expected 5 5 5 5 5 

G step1 -1.61 -1.61 -1.83 6.93 8.67 

      
G value for whole 

test 
10.55 

    

correction factor 1.04 
    

G adjusted 10.15 
**     

 ** = significant at the 1% level 

 

 

3.4.7 Multi choice testing;  Cancer pagurus  

The control multi choice testing on C. pagurus below showed that the experiment was unbiased as 

there was no significant preference for any shelter, or an exposed location (G = 0.43, df = 4, Table 

3.21), with all areas of the tank being used evenly. 

 

Table 3.21  G-test on the Cancer pagurus – control results preference data. 
df = 4. Critical significance threshold:  5% = 9.49,  1%=13.28 

Control 

Choice and salinity 

shelter a 

35 

shelter b 

35 

shelter c 

35 

shelter d 

35 

Open water 

35 

Obs 3 4 4 3 2 

Exp 3.2 3.2 3.2 3.2 3.2 

G step1 -0.194 0.893 0.893 -0.194 -0.940 

      G vale for whole test 0.458 

    correction factor 1.063 

    G adjusted 0.43 
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In the trial using hypersaline water, all but 4 of the C. pagurus chose the 35-40 salinity shelter or 

open water at salinity 35. Eight crabs chose the open water (4 males, 4 females), four crabs chose 

shelter ‘d’ at 35-40 psu (2 males, 2 females), three crabs chose shelter ‘c’ at 40-50 psu (1 male, 2 

females) and one crab chose shelter ‘b’ at 60-70 psu (male) (Table 3.22). Therefore, in total, 75% 

of crabs avoided the hypersaline areas of the tank, which suggests that they will show avoidance 

behaviour when exposed to a hypersaline environment. The results highlighted in bold and italics 

also potentially indicate that crabs chose a location then stayed there regardless of prevailing 

salinity. Seven crabs chose a shelter/open water then stayed there for 24 hours regardless of 

whether it was hypersaline. 

When analysed statistically however, this 75% preference for the lowest salinity areas of the tank 

was proved not to be statistically significant (G = 4.407, df = 4, p > 0.05, Table 3.23). 

 

Table 3.22   Results of the multi choice test for Cancer pagurus. 
Position in tank recorded after 24 hours. Positions:  a=shelter at salinity 80-90, b=60-70, c=40-50, d=35-40, 
open water =35. Bold and italics highlight where a choice was made and then no further movements 
occurred in 24 hours. 

Lobster Sex Carapace width Position after 1 h 
Position after 

24h Choice 
1 1 13 c c c 
2 1 13.5 b b b 
3 1 12.7 open water open water open water 
4 1 13.4 a open water open 
5 1 14.2 a open water open 
6 1 13.5 a d d 
7 1 13 open water open water open water 
8 1 14.2 b d d 
9 2 15.8 a d d 

10 2 15.5 open water open water open water 
11 2 13.6 d d d 
12 2 14.1 b c c 
13 2 13.4 a open water open water 
14 2 13.9 c c c 
15 2 13.4 c d open water 
16 2 15.1 open water d open water 
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Table 3.23   G-test on the Cancer pagurus preference data. 
df = 4. Critical significance threshold:  5% = 9.49,  1%=13.28.  

Choice and salinity 
shelter a 

80-90 
shelter b 

60-70 
shelter c 

40-50 
shelter d 

35-40 
Open water 

35 

Observed 
1.000 2.000 4.000 5.000 9.000 

Expected 
4.200 4.200 4.200 4.200 4.200 

G step1 
-1.435 -1.484 -0.195 0.872 6.859 

 
     

G  
4.617 

    
correction factor 

1.048 

    
G adjusted 

4.407 
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3.5 Discussion 

In the two choice tests, all species tested were able to distinguish between salinities and all made a 

choice of the normal seawater once their particular threshold was reached (Table 3.24). For both 

Cancer pagurus and Homarus gammarus there was no significant gender-related salinity 

preference. In the multi-choice tests H. gammarus showed a significant preference for either a 

shelter of ambient to low hypersalinity (35-40) or to be in open water, (potentially exposed to 

predators), at salinity 35. C. pagurus also showed a strong (75%) (though not statistically 

significant) orientation towards the lowest salinity areas of the tank. There was no difference in the 

salinity preferences of males and females. In both the two choice and multi choice control groups 

there was no significant preference for any location in the experimental tanks, suggesting the 

preferences shown by the test groups were prompted by salinity alone and not any other variables. 

 

Table 3.24   Summary of salinities which prompt a movement into ambient (35 psu) water. 
Two choice experiment. Statistically significant at the 5% * or 1% ** level using a G-test. 

Species Hypersaline threshold a Hyposaline threshold a 

Necora puber 50 psu * 25 psu * 

Cancer pagurus 45 psu ** Not tested 

Homarus gammarus 50 psu ** 25 psu ** 

Carcinus maenas 40 psu * Not tested 

Pagurus bernhardus 55 psu ** Not tested 

a measured in increments of 5 salinity units (psu) 

 

Null hypothesis: Hypersalinity does not cause an obvious behavioural response in the crustacean 

species tested. REJECTED as all species show a preference for avoiding high/low salinities at 

certain choice thresholds (Table 3.24). 

Null hypothesis: Crustaceans tested cannot distinguish between normal and hypo/hypersalinity. 

REJECTED as all species have shown avoidance of high salinities at certain choice thresholds 

(Table 3.24). A multi-choice test on Cancer pagurus and Homarus gammarus has shown that even 

when presented with a range of hypersalinities, the normal 35 psu is still preferential. 
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Null hypothesis: Crustaceans will prefer to be in a shelter of hypersalinity rather than in normal 

salinity open water. REJECTED Homarus gammarus has been shown in the multi-choice test to 

significantly prefer either a shelter at 35-40 psu or open water at 35 psu. Hypersaline shelters are 

not preferred. Cancer pagurus also showed a preference (though not statistically significant) for 

salinities closer to ambient. 

 

The most intertidal species Carcinus maenas was found to have an upper salinity behavioural 

threshold of salinity 40, the lowest of the 5 species tested. Pagurus bernhardus, the common 

hermit crab and another intertidal species, has a hypersalinity threshold of salinity 55. No 

behavioural preference was shown in the control tests. It could be expected that due to the littoral 

environment experiencing a range of both hypo and hypersalinities brought about through 

precipitation, runoff and evaporation, that these species would tolerate the largest range of 

hypersalinity and therefore be less selective in their choice due to this adaptation. This was not the 

case for C. maenas. The upper threshold of salinity 40 is consistent with the results found by other 

authors who found that C. maenas has a preference for salinities 27-41 (Thomas et al. 1981) and 

27-40 with a lower threshold of 17 (Ameyaw-Akumfi and Naylor 1987).  C. maenas is sensitive to 

salinity change and known to distinguish between salinities with as little difference between them 

as 0.5 psu (McGaw and Naylor 1992). In the UK, in the mid to low littoral environment where C. 

maenas is found, hypersalinity (brought about by evaporation from tidal pools during hot weather) 

is infrequent compared with diluting phenomena such as rainfall and runoff (Morris and Taylor 

1983), therefore these results do not seem unusual. However, in high-shore rock pools, salinities 

can vary between 4 and 150 psu (McAllen et al. 1998) so it is plausible that under neap tides C. 

maenas on the mid shore could experience some increase in the salinity of its environment due to 

natural evaporation and followed by the water in tidal pools not being completely refreshed on the 

high tides. 

There is a current lack of information on the effects of hypersalinity on P. bernhardus, although 

studies on the effects of hyposaline media have shown it to be an osmoconforming species which 

shows increasing locomotor activity in dilute media (Shumway 1978; Davenport et al. 1980) and in 

the field it is restricted to tidal pools of 25 psu minimum, although under laboratory conditions it can 

be acclimated to 15.5 psu over a two week period (Davenport et al. 1980). This laboratory 
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response is a physiological tolerance rather than the behavioural one observed for the field 

specimens, and may not be the sort of physiological tolerance that would be naturally present due 

to the non-natural nature of laboratory studies. 

The adults of the other three species tested, Homarus gammarus, Cancer pagurus and Necora 

puber are all widely considered as being principally sublittoral species, with adults only occasionally 

occurring in the lower littoral zone (pers obs.), probably stranded in pools by the receding tide. 

Subtidal/sublittoral species generally are considered as ion- and osmoconformers as, due to the 

unlikelihood of being challenged by salinities other than 100% sea water, they do not have as much 

need for regulatory mechanisms. Consequently, the upper threshold values found for these three 

species are unexpected. Here, both N. puber and C. pagurus chose equally to be in normal 

seawater and hypersalinities up to but not including 50 psu - 15 psu above ambient.  H. gammarus 

also showed no preference between normal and hypersalinities up to its behavioural threshold of 

45 psu. As no preference was shown in the control tests, these findings suggest that all three 

species may be able to ion- and osmoregulate efficiently up to their threshold point even though 

naturally occurring hypersaline challenges are rare in their natural environments. Choice of a 

certain salinity hints that physiologically that salinity may be tolerable, at least for a certain amount 

of time. This tolerance can then lead to acclimation which is the point at which an organism is 

considered to have adapted physiologically to survive in the new environment. A median lethal time 

of above 500 hours in a challenging environment was taken as indicating survival (Davenport 

1972b), see Chapter 4. 

As with Pagurus bernhardus the salinity-based responses of Homarus gammarus, Cancer pagurus 

and Necora puber are poorly investigated in the literature, with the both the lower and upper salinity 

preferences and tolerances of these three species lacking. However H. gammarus has been 

successfully acclimated down to salinity 20 in the lab (Lucu and Devesconi 1999) and in juveniles 

reared at 15°C, mortality occurs only in salinities below 17 psu and above 46 psu with regulation 

being isosmotic in high salinities, and slightly hyperosmotic in low salinities (Charmantier et al. 

1984). 

The avoidance of both hypo and hypersalinities shown by H. gammarus in the two-choice salinity 

tests described here are not experimental abnormalities. Homarus americanus (the American 

lobster), shows similar avoidance behaviour, with seasonal salinity-dependent migrations to deeper 
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water in response to lowered salinity in its estuarine habitat (Robichaud and Campbell 1991; Jury 

et al. 1994a; Jury et al. 1994b). This species has also been shown to differentiate between ambient 

and hyposalinities with a lower limit of 12.6 psu that prompts avoidance behaviour (Jury et al. 

1994b). H. gammarus and H. americanus are very closely related species that separated in the 

Pleistocene era. Slight morphological differences have been substantiated by biochemical studies 

but there is a low level of interspecific genetic variation and little intraspecific genetic differentiation 

between populations, with the species being able to hybridise with each other (Hedgecock et al. 

1977).  

Cancer pagurus is considered to be an osmoconformer (Péqueux 1995) and the related species C. 

borealis and C. irroratus are also sublittoral osmoconforming crabs (Charmantier and Charmantier-

Daures 1991). The latter two species prefer rocky or gravelly bottoms, but can be found also on 

muddy/silty substrata (Robichaud and Frail 2006). Adult C. irroratus have a 48 h Lethal Salinity 

(LS50) salinity tolerance range of 8.5 - 65 psu. In C. borealis, the corresponding LS50 values are 12 

psu - 65 psu. The adults of both species were isosmotic in high salinities and weak hyper-

regulators in low salinities (Charmantier and Charmantier-Daures 1991). The Dungeness crab, 

Cancer magister, can detect changes in salinity at 29.9 and 32.7 psu, values which correspond 

with 96% and 105% of its mean ambient of 31 psu (Sugarman et al. 1983). It is unknown whether 

these crabs also show preference behaviour associated with these LS50 values, however it is 

known that the osmoconforming Cancer gracilis when exposed to a hyposaline gradient, moves 

towards the higher salinities (Curtis et al. 2007), moving itself away from the unfavourable salinity. 

The only portunid studied here, N. puber, is also considered to be an osmoconforming crab 

(Dorgelo 1979). Other portunid crabs that have been studied by other authors for their salinity 

responses include the swimming crabs Liocarcinus (Macropipus) holastus which enters the water 

column and allows water movements to carry it away from areas of adverse salinities (Venema and 

Creutzberg 1973) and Callinectes ornartus which shows limited tolerances for salinities below 25% 

sea water. Other portunids, Arenaeus cribrarius and Portunus sebae also show limited survival in 

salinities below 50% sea water (Norse 1978).  

All species tested here in the two choice tests were able to distinguish between salinities and all 

made a choice of the 35 psu salinity once their particular threshold was reached. There was no 

significantly different salinity-dependent gender preferences of Cancer pagurus and Homarus 
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gammarus. Smith et al (2001) found no gender-dependent behaviour difference in lobsters relating 

to their general movements in their natural environment.  

In the multi-choice tests H. gammarus showed a significant likelihood of choosing either a shelter of 

normal to low hypersalinity (35-40) or open water, (potentially exposed to predators), at salinity 35. 

C. pagurus appeared to indicate some preference behaviour with 75% choosing the lowest salinity 

areas of the tank, however this was not statistically significant. No preference behaviour was 

exhibited or indicated in the control tests for either species. This indicates a general preference for 

normal salinity over hypersaline areas. As with the two-choice tests, the multi-choice test results 

showed there was no gender-related difference in the salinity preference. The present finding, that 

lobsters choose equally to be either in a shelter at 35-40 psu or in open water at 35 psu, suggests 

they would actively avoid hypersalinity in their environment, therefore indicating that such 

behaviour may have a consequent influence on distributions of lobsters within areas affected by a 

brine plume. This preference for ambient salinity may have implications for fisheries located in 

brine discharge areas (e.g. the E. Yorkshire fishery), if adult (i.e. commercially valuable) lobsters 

relocate to more favourable habitats. It is known that the distribution of lobsters around the British 

Isles is related to sea bed topography, with distribution being limited to areas with rocky outcrops, 

wrecks, piers etc (Howard and Nunny 1983). During spring and summer H. gammarus in Poole 

Bay, England, only undertake excursions from their shelters during the night (Smith et al. 1999). 

These findings suggest a strong preference for shelter in this species as well as a possible 

negative phototaxis. 

The species studied in this chapter are all also known for their shelter use and, in the multi-choice 

test, this behavioural preference for shelter was overridden by hypersalinity with both H. gammarus 

and C. pagurus choosing either a shelter of 35-40 psu or open water of 35 psu over shelters of 

hypersalinities. This suggests that in the field crab populations may avoid areas of the sea bed  

affected by a brine plume from any solute mining, regardless of whether there are opportunities for 

shelter in that area. The converse is true for Hemigrapsus nudus; when shelter is available it will 

endure longer exposure to salinities below its normal than when shelter is not available (McGaw 

2001). In the case of H. nudus the benefits of shelter appear to outweigh the energetic costs of 

increased iono-osmoregulation when exposed to hyposaline conditions. The results of the multi-

choice test suggest that avoidance of hypersaline environments overrides any negative phototaxis. 

Energetically, it is probably less costly to be in open ambient water than in a shelter which will 
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require a greater effort in iono-osmoregulation, especially as salinities over 48.9 are known to 

cause a 50% mortality in H. gammarus and 55.5 in C. pagurus (see Chapter 4). Jury et al (1994b) 

suggest that Homarus americanus uses behavioural adaptation to avoid potentially lethal low 

salinities. Females in particular seem more sensitive to changes and act first. The species displays 

a negative phototaxis with the lobsters consistently choosing an opaque shelter over a transparent 

one (Cobb 1971). Cancer borealis is also known to inhabit rocky crevices or burrows (Richards and 

Cobb 1986). 

Laboratory behavioural responses occur in a small space and over a short period of time, often, as 

is the case here, with abrupt changes in tested parameters such as salinity, and caution is required 

in extrapolating such laboratory-based responses to the field. Salinity changes in the natural 

environment may be gradual and will most likely occur over a large area subjected to natural 

currents and wave action. Under such conditions, it is possible that behavioural choices are less 

marked than the results obtained here but, given sufficient time for a salinity change to develop, it 

is expected that behaviours as described will occur. 
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3.6 Conclusions  

In summary, the species tested detected changes in salinity of magnitudes that are comparable to 

those that may be found in areas affected by brine discharges, such as the Aldbrough brine 

discharge discussed in Chapter 1. When exposed to high or low salinities the species tested 

avoided them, even when shelter was available.  

Although behavioural responses to salinity change in the existing literature are extremely limited for 

the species studied and for related species, there was a decreasing tolerance as salinities depart 

from normal and a clear preference for ambient over hypersalinities once a threshold point is 

reached. This appears to be consistent with the related species for which information is available. 

Use of a shelter which is common to all studied species does not override the adverse properties of 

high salinities.  

If the salinity of commercial effluents exceed the behavioural thresholds found here, it is likely that 

areas of the sea bed affected will become devoid of adult (fishable) specimens as they relocate to 

more favourable areas. In management terms it is advisable to ensure any hypersaline discharges 

are limited to the lowest tolerance of all the economically valuable species in the area to avoid loss 

of revenue in fishery areas. 

As there is a notably little information on the salinity preferences of the species studied here, this 

work adds to our knowledge about these species. This aids a better understanding of their range in 

the wild, potential issues for lab husbandry and their importance in their community assemblages.  
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 Chapter 4 
 

 The effects of hypersalinity on mortality of some commercially 
important crustaceans of the North Sea 

 

4.1 Introduction 

A toxicant may be defined as an agent that can produce a significant, adverse response in a 

biological system. The response itself may be induced damage to the structure and function in the 

organism or, in extreme cases, its death (Connell et al. 1999). In the present context, the particular 

toxicant studied is hyposaline seawater and, in particular, the effects that hypersalinity have on 

some species of crustaceans that feature prominently in the UK commercial shellfish landings.  

A well known and straightforward method for assessing the impact of a change to an environmental 

variable on the inhabitants of an aquatic environment is to predict and calculate the mortality it 

causes to these animals. One of the simplest ways of doing this is to determine the lethal 

concentration or intensity of the variable (substance or toxicant) that is required to kill 50% of a 

population (or collection of test organisms). This value is the LC50 or ‘median lethal concentration’ 

(Moriarty 1993; Forbes and Forbes 1994; Connell et al. 1999) and examples of its use include 

those of pesticides: (Whale et al. 1988; Forget et al. 1998), heavy metals: (Gillis et al. 2006; Felten 

et al. 2008), hydrocarbons (Tatem et al. 1978); salinity changes (Leonard et al. 2011) and other 

natural substances at unnatural levels (Eklund et al. 2005).  

The large majority of natural, aquatic environments have salinity levels which range between 0 

(freshwater) and 35 (normal seawater). Hypersalinity may thus refer to the range of salinity above 

that experienced normally by an animal or above that to which it is acclimated at the time of test. 

The present studies refer to sublittoral, fully marine species and hypersalinity in this case refers to 

salinities >35. Such salinities can arise naturally, mainly in areas where supranormal evaporation 

levels occur e.g. in shallow, tropical estuaries and lagoons. Additionally, and of relevance in the 

current context, they occur also as ‘unusual’ events such as when hypersaline brine is discharged 

at sea or as ‘inadvertent happenings’ in the commercial environment of post-harvest, live 

crustaceans, again related often to evaporation. Due to the comparative rarity of natural, temperate 
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marine hypersalinity occurrence, compared with salinity changes within the ‘normal’ environmental 

salinity range, there is a consequent scarcity of information relating to the effects of hypersalinity on 

decapod crustaceans. Various ontogenetic stages of a variety of crustacean species have been 

used as test organisms for the study of the effects of hypersalinity. Examples include the embryos 

of Hemigrapsus edwardsii and H. crenulatus, larval stages of Armases miersii (Anger 1996), 

Ucides cordatus (Diele and Simith 2006), Carcinus maenas (Anger et al. 1998). That which 

pertains to the effects of hypersaline media, (up to salinity 65) on adult decapods, includes studies 

on Cancer irroratus and C. borealis (Charmantier and Charmantier-Daures 1991) and Penaeus 

latisulcatus (Minh Sang and Fotedar 2004).   

As with any stressor, environmental salinities above the normal range of a species or population, 

necessitates the animals being able to resist impairment to their physiological fitness in order to 

survive, and, should the prevailing conditions persist, they need to be able to develop a new 

stabilised response, an acclimated response. If the salinity proves to be too high for the animal to 

reach an acclimated response, then its death is inevitable. Tolerance, however, does not 

necessarily imply that all of the animals remain unimpaired by the conditions and some important 

vital functions (e.g. growth rate, gonadal maturation or moult behaviour) possibly will become 

impaired. Furthermore, there may be sub-lethal, ontogenetic effects such as the impairment or 

delay of normal larval metamorphosis.   

Because of the importance of the species studied here to the local environmental and commercial 

community, these studies were made in response to commercial, brine discharge activities offshore 

from the East Yorkshire coast. Some of the largest volumes of crustacean shellfish landed in the 

UK are made at the local ports (Walmsley and Pawson 2007) and the species tested (Homarus 

gammarus, Cancer pagurus and Necora puber) comprise major elements of these landings. 

Because there may be variability in moult-dependent severity of the effects of hypersalinity, the 

opportunity was taken to include post-moult and intermoult specimens of H. gammarus as these 

were available when the experiments were being made.   
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4.2 Aims and objectives 

The aim of this study was to determine both the median lethal concentration (LC50) of hypersaline 

sea water (median lethal salinity), and the median lethal time in a given hypersalinity (LT50), 

required to kill 50% of a sample of  Homarus gammarus, Cancer pagurus and Necora puber  under 

acute hypersaline stress. 
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4.3 Materials and Methods 

Mortality data were used to determine LC50 (median lethal concentration) and LT50 (median lethal 

time) figures for each species and moult stage tested. For the purposes of this investigation, 

hypersalinity is defined as any salinity above, and hyposalinity any salinity below, what the species 

normally experiences in the wild in the Yorkshire area. In the case of those tested here, that salinity 

is 35. 

Animals were collected and held as described in Chapter 2. Upon experimentation, the 

crustaceans were subjected to an abrupt salinity change from the normal salinity 35 to a randomly 

chosen hypersalinity between 40 and 60 (in increments of 5). Eight intermoult H. gammarus, eight 

post-moult H. gammarus, ten to fourteen C. pagurus (ten crabs were used at salinity 35 and 14 

crabs were used at salinities 40, 45 and 50) and ten N. puber were used at each salinity level. H. 

gammarus, and C. pagurus were held 2 per tank in opaque plastic tanks with 6L water per animal, 

N. puber were held at a stocking density of up to 5 animals per tank and 3 litres of water per crab. 

At the end of a 96 hour period in the hypersaline brine, mortality and survival figures were used to 

calculate LC50 and LT50 values for each species using probit analysis in SPSS. A parallel control 

test was also run in which the animals were moved from salinity 35 to salinity 35 to determine if any 

mortalities were caused by the stress of handling rather than salinity. 
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4.4 Results 

4.4.1 Hypersalinity based mortality calculations for Homarus gammarus 

Data obtained on median lethal times and associated hypersaline concentrations as calculated for 

intermoult and late postmoult Homarus gammarus respectively, exposed to an abrupt change in 

salinity, is summarised below (Table 4.1 and Table 4.2). 

At salinities 35 and 40 all the intermoult specimens survived the 96 h time period but 3 of this group 

at salinity 45, and 4 at salinity 50 died within the experimental period. The calculated 96 h LC50 

salinity for adult intermoult lobsters was 48.9, with a time required to kill 50% of the population (in 

the laboratory) of 111 h at salinity 45 and 98.32 h at salinity 50. The narrowing of the confidence 

limits with salinity increases indicates a more consistent effect on the lobsters at the higher 

salinities tested. As no animals died during the trial al salinities 35 and 40, the LT values at these 

salinities (for both intermoult and late postmoult lobsters) are calculated by the probit analysis from 

raw data and lethal values provided therein and are purely theoretical in this case. As salinity 35 is 

the normal environmental salinity for H. gammarus what can be explained from these results is that 

at salinities > 40 there is a positive relationship between salinity and mortality. 

At both salinity 35 and salinity 40, only one late postmoult H. gammarus had died by the end of the 

96 h time period. This contrasted with the findings at salinity 45 and salinity 50, in which all had 

died well within the 96 h time period. Specifically, at salinity 45 all were dead by 72 h and at salinity 

50 all had died by 24 h. These results indicate that there is a critical salinity somewhere between 

salinity 40 and 45 at which late postmoult lobsters fail to withstand such a hypersaline challenge. 

This seems not to occur with the intermoult animals. The statistically calculated 96 h LC50 value for 

late-postmoult lobsters at salinity 40.9 was a lower value than that attained for their intermoult 

counterparts. The statistically predicted time required to kill 50% of the population (in the 

laboratory) was 235.6 at salinities 35 and 40. 
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Table 4.1  Median lethal concentrations and times for adult intermoult Homarus gammarus acutely exposed to 
hypersalinity in a laboratory environment. n = 8 per salinity. 

Test Lethal point  Confidence limits 

96 hour LC50 (50% expected mortality) Salinity 48.9 45.8 – 61.1 

96 hour LC10 (10% expected mortality) Salinity 42.1 23.9 – 45.3 

96 hour LC90 (90% expected mortality) Salinity 55.7 50.9 – 93.7 

24 hour LC50 Salinity  58.2 51.5 – 74.7 

48 hour LC50 Salinity 55.3 50.1 – 68.4 

72 hour LC50 Salinity 52.3 48.2 – 62.2 

Salinity 35 LT50 297.3hours -1547.9– 638.1 

Salinity 40 LT50 297.3 hours -1547.9 – 638.1 

Salinity 45 LT50 111.5 hours 82.9 – 238.2 

Salinity 50 LT50 98.4 hours 72.9 – 199.8 
 

 

Table 4.2 Median lethal concentrations and times for late postmoult Homarus gammarus acutely exposed to 
hypersalinity in a laboratory environment. n = 8 per salinity. 

Test Lethal point Confidence limits 

96 hour LC50 (50% expected mortality) Salinity 40.9 n/a 

96 hour LC10 (10% expected mortality) Salinity 36.8 n/a 

96 hour LC90 (90% expected mortality) Salinity 45.0 n/a 

24 hour LC50 Salinity  42.2 38.9―45.7 

48 hour LC50 Salinity 41.6 38.3―45.1 

72 hour LC50 Salinity 40.9 37.6―44.5 

96 hour LC50 Salinity 40.9 37.6―44.5 

Salinity 35 LT50 235.6 hours n/a 

Salinity 40 LT50 235.6 hours n/a 

Salinity 45 LT50 Not calculable* n/a 

Salinity 50 LT50 Not calculable* n/a 
* All of the animals died at salinity 45 and 50, before the experiment was concluded. 

n/a – SPSS was unable to calculate confidence limits in these instances because of the large variability in the data and the 

excessive mortalities. 
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4.4.2 Hypersalinity-based mortality calculations for  Cancer pagurus 

Probit analysis was used to calculate the median lethal times and concentrations for Cancer 

pagurus exposed to an abrupt change in salinity and the data obtained are summarised in Table 

4.3. These data show that salinities 35 and 45 were not lethal within the 96 h time period but, at 

salinity 40, two crabs had died by the end of the trial and, at salinity 50, five crabs had died by the 

end of the trial. The calculated data showed the salinity required to kill 50% of the population after 

96 hours was 55.5 (CL: 48.6 – 57.9). Ten percent of the population would be expected to die after 

96 h at salinity 42.9 and 90% of the population are expected to die after 96 hours in salinity 68 

(Table 4.3). The direct relationship between high mortality and high salinity are supported by the 

predicted LT50 values which show the time taken to kill 50% of the population decreases from 431.7 

hours at normal environmental salinity (35 psu) to 121.6 hours at salinity 50. It must be noted 

however, that salinity 35 is not a lethal salinity for any of the species here, as it is in fact the salinity 

in which they spend their lives. The lethal LT50 value of 431.7 hours is a figure the probit analysis 

extrapolates from the raw data. With this in mind, it can be understood from the results, that 

salinities < 40 are not lethal but higher salinities show a trend of increasing lethality, as evidenced 

by the LT50 data. 

 

Table 4.3  Median lethal concentrations and times for Cancer pagurus acutely exposed to hypersalinity in a 
laboratory environment. n = 10-14 per salinity. 
(ten crabs were used at salinity 35 and 14 crabs were used at salinities 40, 45 and 50). 

Test Lethal point  Confidence limits 

96 hour LC50 (50% expected mortality) Salinity 55.5 48.6 – 57.9 

96 hour LC10 (10% expected mortality) Salinity 42.9 n/a 

96 hour LC90 (90% expected mortality) Salinity 68.1 n/a 

24 hour LC50 Salinity 55.6 51.5 – 64.4 

48 hour LC50 Salinity 55.6 51.5 – 64.4 

72 hour LC50 Salinity 54.5 50.8 – 62.5 

Salinity 35 LT50 431.7 hours n/a 

Salinity 40 LT50 242.8 hours n/a 

Salinity 45 LT50 428.1 hours n/a 

Salinity 50 LT50 121.6 hours n/a 
n/a - SPSS was unable to calculate confidence limits in this instance due to high variability of data 
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4.4.3 Hypersalinity based mortality calculations for Necora puber 

As for the other species studied, probit analysis of the mortality results from acute exposure trials 

with Necora puber exposed to an abrupt salinity change was used to calculate median lethal times 

and concentrations. The resulting data are summarised in Table 4.4 and reveal that a 50% 

mortality after 96 h can be expected at a salinity of 41.9. Theoretically, 10% of the population would 

be expected to die after 96 h at salinity 32.3 and 90% to die at a salinity of 51.5 after 96 h. The time 

taken to kill 50% of the population decreases with increasing salinity from 126.1 hours at salinity 35 

to 12.3 hours at salinity 60. 

 

Table 4.4  Median lethal concentrations and times for Necora puber acutely exposed to hypersalinity in a laboratory 
environment. n = 10 per salinity. 

Test Lethal point  Confidence limits 

96 hour LC50 (50% expected mortality) Salinity 41.9 32.6 ― 48.1 

96 hour LC10 (10% expected mortality) Salinity 32.3 n/a 

96 hour LC90 (90% expected mortality) Salinity 51.5 n/a 

24 hour LC50 Salinity  61.4  52.9 ― 73.9 

48 hour LC50 Salinity 49.5  42.5 ― 57.2 

72 hour LC50 Salinity 44.3 36.6 ― 51.2 

Salinity 35 LT50 126.1 hours 99.4 ― 163.4 

Salinity 40 LT50 71.8 hours 56.3 ― 89.4 

Salinity 45 LT50 99.9 hours 79.5 ― 121.2 

Salinity 50 LT50 42.8 hours 23.0 ― 59.7 

Salinity 55 LT50 45.2 hours 27.2 ― 61.1 

Salinity 60 LT50 12.3 hours 21.7 ― 39.4 
n/a – SPSS could not calculate confidence limits in this instance due to high variability in the raw data 

 

  



83 
 

4.5 Discussion 

These studies show clearly that there is interspecific variability of hypersaline sensitivity amongst 

the species studied. On the evidence of calculated 96 h LC50 data, Cancer pagurus is the most 

tolerant and Necora puber the least tolerant species. The data also suggest that there is a moult-

stage-dependence of hypersaline tolerance as intermoult Homarus gammarus was much more 

tolerant than late intermoult specimens with 96 h LC50 values of 48.9 and 40.9 salinity respectively 

The susceptibility of the postmoult specimens (with a 96 h LC50 salinity only 5 salinity units above 

ambient) probably is indicative of the osmotic-ionic-regulatory problems moulting species have in 

maintaining homeostasis in hypersaline media. This perceived order of tolerance for hypersalinity is 

supported by the results of chapter 5 where an examination of the blood chemistry of these three 

species when under both chronic and acute hypersaline stress has shown that C. pagurus 

appeared to be the best regulator, with the fewest haemolymph variables changing in response to 

hypersalinity and N. puber demonstrating a much greater number of variables changing with 

salinity increases (see chapter 5).   

Necora puber yielded a 96 h LC50 salinity value of 41.9, only 6 salinity units above that of normal 

seawater and, if the assumption is made that the value would be substantially lower with postmoult 

animals as seen in H. gammarus, then it is unlikely that populations of this species would be able 

thrive in a hypersaline environment such as the vicinity of a brine discharge. Contrastingly, 

intermoult Cancer pagurus showed a high tolerance of hypersalinity as evidenced by its 96 h LC50 

salinity value of 55.5, over 20 units above that of normal seawater. However this value is also the 

same as its 24 h LC50 value. This may be indicative of variation in response within the species (an 

intra specific difference) where the less robust specimens die very quickly, but the stronger ones 

then can survive the same conditions for a much longer time. 

The results from chapter 3 have shown that all species tested preferentially choose normal salinity 

over both hyper- and hyposalinities, with this choice becoming more marked as the deviation from 

normal increases. Clearly there is therefore an optimum salinity range at, or very near to, 35 which 

these species prefer to inhabit. It is well understood in the literature that, like the effects studied 

here, deviations from the normal salinity a crustacean inhabits can cause implications for grown 

and maturation, which in turn have the potential to affect populations. The rock crab (Cancer 

irroratus) also shows higher levels of osmotic stress and increased mortality when experiencing an 
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acute deviation from normal salinity (in this case in the hyposaline direction) rather than when 

acclimated to lower salinities (Cantelmo et al. 1975). The effects of acute salinity changes (in the 

range 5-55 psu) were studied for the larval and first juvenile stages of the tropical crab Armases 

miersii. Extremes of salinity (5 and 45-55) caused prolonged development, and during prolonged 

exposure effects of severe osmotic stress outweighed any evidence of acclimation, additionally 

mortality was more frequent at these extremes (Anger 1996). Salinities below normal (20psu) 

caused delays to the metamorphosis of Carcinus maenas larvae, reduced growth and respiration 

rates and enhanced number of mortalities when compared with higher salinities closer to the norm 

of salinity 35 (Anger et al. 1998). Hypersalinities and low temperatures can delay development in 

the larvae of the tropical crucifix crab Charybdis feriatus (Baylong and Suzuki 2007). With these 

results in mind, it is possible that even if an adult crustacean can survive in an anthropgenically 

produced hypersaline brine plume, it may have reduced potential for successful reproduction and 

the maturation of any surviving larvae. 

These studies were made in response to brine discharge activities in an area of the North Sea that 

is particularly important in terms of its value as a source of high catches of crustacean shellfish. It 

would appear that all 3 species studied are tolerant of the range of salinities that occur within the 

majority of the discharge plume, which has under routine monitoring (year 2006-7) been shown to 

not increase further than 47.9 psu at 50m from the discharge point and 37.1 psu at 250m, however 

the discharge consent does allow the raw brine to be discharged at 284 g.L-1 which equates to a 

salinity of 284 (Jacobs 2007). Physiological tolerances, such as those measured here, give some 

measure of the ability of a species to tolerate and survive a period of emersion in a hypersaline 

environment but tell little of the long-term health of the populations should the hypersaline 

conditions persist. Animals must feed, meet and mate and should any behavioural functioning 

relating to these activities be impaired by the prevailing conditions, then this will impact negatively 

on the health of those populations. 

Deviations from normal environmental salinity can also affect how well crustaceans cope with other 

environmental changes. For example, the blue crab Callinectes sapidus is known to suffer 

population decline during particularly cold winters, and this mortality was enhanced when 

environmental salinity was lower (Rome et al. 2005). Similarly, Hardy et al (1994) conducted 96h 

mortality tests on both hard and soft shelled snow crab (Chionoectes opilio) in response to 

changing salinity and temperature. In contrast to the findings of this thesis, there was no difference 
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in the salinity tolerance of the crabs when comparing the two different moult stages. However soft 

shelled crabs did have a very variable osmotic balance when compared to their hard-shelled 

counterparts and this osmotic concentration was decreased by increases in temperature which was 

an effect absent from the hard shelled crabs. The overall conclusion of their study was that the 

interaction of salinity and temperature made the soft shelled crabs more susceptible to high 

temperatures when salinity was low, when compared to hard shelled crabs. 

Changed susceptibility to infection is another possible effect of abnormal salinity exposure. For 

example, hypersalinities (compared the normal of 0) in combination with temperature changes and 

increases in ammonic concentration, caused a reduction in the resistance to the pathogen 

Lactococcus garvieae in the freshwater giant prawn Macrobranchium rosenbergii (Cheng et al. 

2003). The white shrimp (Litopenaeus vannamei) was more susceptible to infection and mortality 

arising from Vibrio alginolyticus when reared under hyposaline conditions (Wang and Chen 2005) 

and tiger shrimp Penaeus monodon transferred from salinity 25 to low salinity levels (5 and 15) and 

high salinity (35) had reduced immune ability and decreased resistance against Photobacterium 

damselae subsp. damselae infection (Wang and Chen 2006). 

What these examples indicate is that as well as deviations from the normal salinity affecting 

mortality of crustaceans, they also induce other effects such as reduced resistance to infection, 

delays to development of larval stages and that salinity can affect the tolerance of other 

environmental variables such as temperature changes. Therefore as well as addressing purely 

salinity based mortalities as a quick way of how any brine discharge is potentially affecting a 

crustacean population, it is also prudent to look at how salinity can work with other environmental 

parameters, potentially affecting the tolerance of these too. 
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4.6 Conclusions 

In conclusion, these experiments were designed to be preliminary in nature and were intended to 

indicate whether they should be supported by subsequent, more in-depth studies relating to the 

complete moult cycle of the animals. The preliminary findings indicate that, in addition to 

considerable interspecific variability in hypersalinity tolerance, there is evidence that considerable 

intraspecific, moult-stage-dependent variability also exists. Because population health can be 

impaired by lack of tolerance shown by any individual stage of the moult cycle, and that deviations 

from normal salinity are known in other decapod species to affect metamorphosis, growth, 

maturation and ability to cope with change to other environmental variables, it is considered here 

that further, in-depth studies of moult-dependent hypersaline stress are needed for these 3 

species, including the embryonic, larval and juvenile life stages. It may also be prudent to 

investigate the effects of hypersalinity on important food items in their diets.  
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 Chapter 5 

 Acute and chronic effects of hypersaline exposure and 

consequences for haemolymph condition in the lobster Homarus 

gammarus (L.) and the crabs Cancer pagurus (L.) and Necora 

puber (L.) 
 

 

5.1 Introduction 

Homarus gammarus (Linnaeus 1758), Cancer pagurus (Linnaeus 1758), and Necora puber 

(Linnaeus 1767) are stenohaline, osmoconforming species. There are few studies made on their 

salinity tolerances and these relate to their responses to hyposaline conditions with little, if any, 

knowledge of their responses to hypersaline challenge. In their natural environments, subtidal 

marine, temperate crustacean species rarely, if ever, experience hypersaline challenges hence the 

limited number of papers dealing with this subject. The principal focus of studies that have been 

made on high salinities relate to the effect of desalination plant discharges in hot climates 

(Meerganz von Medeazza 2005; Raventos et al. 2006; Smith et al. 2007), saltpan and saline lake 

species which experience high evaporation effects in their environment (Nunes et al. 2006; Clegg 

and Gajardo 2009) and mangrove crustacean species (Anger and Charmantier 2000; Gillikin et al. 

2004). 

Salinity is an environmental master factor in control of the reproduction, larval dispersal and 

recruitment, and geographical distribution of marine crustaceans (Anger 1991; Anger 1996; Spivak 

and Cuesta 2009) and hence salinity changes are likely to impact on community structure. Salinity 

also directly affects osmotic and ionic regulation and indirectly affects acid-base balance and 

various components of the respiratory system including ventilation, gas exchange, perfusion, O2 

transport by the respiratory pigment and utilisation at the tissues (Wheatley 1988). The E. 

Yorkshire brine diffuser is sited within an area important for commercial fishing of H. gammarus, C. 

pagurus, and N. puber, the catches of which contribute significantly to the economy (Walmsley and 

Pawson 2007). Consequently although hypersalinity is not a common phenomenon for this region, 

its ecological effects may have a significant potential commercial relevance. This is true in terms of 
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the success of fishing and post-harvest marketing operations as well as having potential impacts 

on larval recruitment and stock replenishment.  

It has already been discovered that the study species can differentiate between hypersalinities and 

ambient salinity and that they show a behavioural preference for ambient salinity. The objective of 

this chapter is to discover whether the internal physiology of crustaceans is affected by 

hypersalinity, hence potentially causing problems for their survival in the field. Stressors such as 

aerial exposure (Durand et al. 2000; Danford 2001; Bernasconi and Uglow 2008), exposure to 

contaminants (Nonotte et al. 1993; Depledge and Lundebye 1996; Vitale et al. 1999), exercise 

(Wood and Randall 1981) and salinity (Spicer and Taylor 1987; Wheatley 1988) are all represented 

by haemolymph changes so it is probable that the stressor of hypersalinity induces similar 

measureable changes. To assess whether such changes occur it is hypothesised here that there 

are quantifiable changes to a variety of haemolymph variables of H. gammarus, C. pagurus and N. 

puber in response to acute and chronic changes to ambient hypersaline media. The objective of 

testing the haemolymph was to determine whether such brine discharges impact negatively on 

these commercially important species in terms of sublethal impacts and physiological changes. 

Lactate, pH and haemocyanin changes are indicative of anaerobiosis, glucose and protein can be 

indicative of nutritional state, with proteins also being related to stress level in the form of 

heatshock proteins. Ammonia is a measure of metabolic state and how effectively an organism is 

discharging waste. The ionic composition of the blood also has the potential to influence the 

metabolism and physiological processes. Levels of haemolymph sodium, potassium, magnesium 

and calcium (all constituents of seawater) can also indicate the degree of both ion and osmotic 

regulation happening, if any, in hypersaline conditions. Copper, as well as being the metal in the 

respiratory pigment haemocyanin, can in high concentrations be damaging or lethal to aquatic 

organisms (Flemming and Trevors 1989; Grosell et al. 2007). 

Analysis of these parameters shows whether, under stressed conditions, an organism can still 

feed, respire and metabolise efficiently and ultimately allows predictions to be made on the survival 

potential of populations facing such stresses. Such studies are important given the imminent 

increased gas cavern and desalination plant construction projects and the need to determine their 

potential impacts on international commercial crustacean fisheries. 

 



90 
 

5.2 Aims and objectives 

The aim of this study is to determine whether hypersalinity causes changes in selected properties 

of decapod crustacean haemolymph (as described above) and if so to what extent? To answer 

these questions changes to the haemolymph were assessed under two salinity regimes: 

1)  acclimation to hypersaline conditions (chronic hypersaline exposure). This was done for H. 

gammarus and N. puber only. 

2) abrupt salinity change from ambient to hypersaline (acute hypersaline exposure). This was 

carried out on H. gammarus, N. puber and C. pagurus. C. pagurus was used for the acute 

response trial only due to limited numbers available at the time of study (see section 5.3.2).  
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5.3 Materials and Methods 

5.3.1 Animal husbandry 

Creel-caught, intermoult specimens of Necora puber, Homarus gammarus and Cancer pagurus 

were obtained from commercial landings at Bridlington, East Yorkshire, U.K. and held as described 

in Chapter 2. 

 

5.3.2 Experimental set up, observation and recording. Chronic hypersaline exposure 

For the chronic tests, tanks were set up as follows: H. gammarus was held 2 per tank in opaque 

plastic tanks with 6L water per animal.  N. puber was given opaque plastic tanks at a stocking 

density of up to 5 animals per tank and 3 litres of water per crab. At the start of the test, the crabs 

were in natural seawater (salinity 35) and, after every 96 h period, the seawater was increased by 5 

salinity units until eventually all the animals had died. The seawater was obtained from the East 

Yorkshire coast and the salinity increases effected with the addition of Instant Ocean™ aquarium 

salts. Instant Ocean™ was used as it is likely that brine discharges from different geographical 

locations will have different chemical compositions due to the variable nature of natural mineral 

resources. Hence this compromise of using artificial seawater to raise salinity instead of brine 

discharge effluent allows the possibility of translating any responses seen to other temperate 

latitude brine discharges due to the production of generic, salinity-only, responses rather than 

responses influenced by any other chemicals that may be present in brine collected from a 

discharge site. 

All test specimens were kept under observation during the first hour following a change of medium 

and were checked twice daily for mortalities. Torpid animals (those that did not respond to direct 

physical stimulus from a glass rod) were removed and, where possible, a haemolymph sample was 

collected to test for death as in the two most concentrated media tested (salinities 55 and 60) it was 

apparent that the animals had weakened and the difficulty/inability to collect a haemolymph sample 

was used to distinguish between torpid and dead animals. Haemolymph would still flow easily into 

the syringe in a torpid animal but not a dead one. Microscopic examination showed the blood in 

dead animals was either extremely clotted or all the cells had lysed (see Chapter 2). 
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Immediately prior to a scheduled salinity change, 6 H. gammarus and 7 N. puber were selected 

randomly and removed from the experimental chambers for haemolymph sampling. C. pagurus 

was not used in this trial due to the poor quality of specimens from the local fishery at the time of 

experimentation. Crabs from that year (2009) were of very poor meat yield for their size and were 

not surviving after capture and there was a complete ban on landing C. pagurus imposed by the 

North Eastern Sea Fisheries Committee (NESFC). This led to a total of 30 H. gammarus, and 42 N. 

puber specimens sampled. Blood samples (2 ml each) were obtained through the arthrodial 

membrane at the base of the 4th or 5th periopod on the crabs and through the underside of the 

second abdominal segment of the lobsters, using a hypodermic needle. Each individual was bled 

once only and particular care was taken to ensure minimal stress during sampling as this may have 

affected the blood properties. Each haemolymph sample was subdivided into 7 individual, labelled 

micro-centrifuge tubes which (depending on the analysis needed, see below) were treated and 

frozen (-20 °C) until analysed.  

 To account for potential handling effects a duplicated series of experiments was run in parallel in 

which the same stepwise setup and method was undertaken but only with ambient salinity 35. 
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5.3.3 Experimental set up, observation and recording.  Acute hypersaline exposure 

For the acute response tests, the same strength media were used as in the chronic response tests 

(salinity 35, 40, 45, 50, 55 and 60) and the same stocking densities and water volumes. H. 

gammarus, and C. pagurus were held 2 per tank in opaque plastic tanks with 6L water per animal. 

N. puber were held at a stocking density of up to 5 animals per tank and 3 litres of water per crab. 

The lobsters and crabs were taken from the holding tanks (salinity 35) and introduced to a 

randomly chosen higher salinity test medium without prior acclimation. As in the chronic response 

experiments, the animals were observed for the first hour then checked twice daily for mortalities. 

The specimens remained in the test medium for 96 h after which a 2 ml haemolymph sample was 

obtained for subsequent analysis from between 9 and 10 H. gammarus (total 39), between 10 and 

14 C. pagurus (total 52) and 7 N. puber (total 42). The control experiment was run in parallel and, 

again, only one test medium was used (salinity 35) and a haemolymph sample taken from each 

individual after 96h exposure.   

A further trial was carried out on lobsters in the late-post-moult soft-shelled stage.  The same set 

up was used as described above for the acute trial on adult intermoult H. gammarus with the aim of 

assessing whether lobsters in a hypersaline area could survive the moult stages of their life cycle. It 

is well known that the moult is a dangerous time for all crustaceans and that in the soft stage, 

tolerances to environmental variables can change (McLeese 1956; Jury et al. 1994b). The lobsters 

used were not the completely soft-bodied ones directly after the moult but in the late-postmoult 

stage where the shell was hardening yet still supple under pressure. The only salinities used were 

35, 40 and 45, however at salinity 45 all lobsters died before the end of the 96 hour period so were 

excluded from haemolymph collection and analysis. Seven lobsters were tested at each salinity 

increment. 

In a further trial, the same set up was used as described above for the acute trial on H. gammarus 

but the hypersaline media was made up with brine from a local hypersaline discharge to compare 

to the generic response produced by artificial aquarium salts. Eleven lobsters were used at salinity 

50 only, for 96h before haemolymph samples were analysed. 
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5.3.4 Haemolymph analysis 

Collected haemolymph samples were analysed following Danford (2001) and Bernasconi and 

Uglow (2008), methods are described in sections i to vii. After haemolymph sampling, animals were 

not returned to the experiment but were returned to ambient sea water conditions for recovery. 

Samples were analysed for serum protein, glucose, lactate, haemocyanin, pH and ionic properties. 

Where technique or assay kit accuracy was available it is given here. 

 

i. HAEMOLYMPH PREPARATION 

Analysis for serum (plasma) protein levels required centrifuging of the sample at 3500 rpm for 10 

minutes. The supernatant was then drawn off using a Pasteur pipette and the protein levels 

analysed as described in section iii. Glucose, lactate and haemocyanin analysis required the 

deproteinisation of each sample. This was to ensure there were no changes in the haemolymph 

following sampling and that nothing would interfere with haemocyanin at the diagnostic 

wavelengths in the spectrophotometer. For deproteinisation, samples were diluted 1:1 with chilled 

0.6M perchloric acid (PCA) and then centrifuged at 7200 rmp for 5 minutes before the supernatant 

was drawn off using a Pasteur pipette and stored in a new eppendorf (Danford 2001; Bernasconi 

and Uglow 2008). Serum protein levels and pH values were calculated immediately on blood 

collection. Remaining blood was treated if needed using the methods described above then frozen 

at ≤ 20°C until needed. Ammonia was measured using a flow injection/gas diffusion method 

(Hunter and Uglow 1993) with the detector output analysed with chart-recording software (Chart5, 

AD Instruments) on a PC (see section iv below). 

 

ii. PH MEASUREMENT 

Readings of haemolymph pH were taken immediately following sampling and at aquarium 

temperature. Immediate measurement of pH was necessary to minimise any changes in pH that 

may occur subsequent to sampling. A pH probe (BDH combination micro-electrode) connected to a 

pH meter (Jencon PHM2) was used for all determinations. This probe had a small diameter rod that 

was able to reach the base of 1.5 ml eppendorf centrifuge tubes. The probe was calibrated to pH 4 

and pH 7 using buffer solutions before each set of measurements, and was calibrated at aquarium 
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temperature. The probe was dipped in each sample for 20 seconds and the reading shown at 20 

seconds was taken as the pH if it had not settled before this time. 

 

iii. SERUM PROTEIN MEASUREMENT 

Centrifuged haemolymph supernatant protein concentrations were determined using a hand held 

clinical protein refractometer (ATAGO Clinical refractometer SUR-NE Cat. No. 2734). Calibration 

was achieved as per the instructions by adding 200µl distilled water to cover the lower prism slide 

and adjusting the calibration screw as necessary. For each sample 200µl of haemolymph was 

added to the slide and the protein concentration (g/100ml) read where the coloured zone changed 

to white. This method is accurate from 0.0 to 12.0 g/100ml. 

 

iv. TOTAL AMMONIA MEASUREMENTS BY FLOW INJECTION ANALYSIS 

Measurement of total ammonia levels (mmol) in the haemolymph was carried out using flow 

injection analysis (FIA) (Figure 5.1). 
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NaOH (sodium hydroxide) stream goes from the source bottle, through the pump 

(1), through the injection valve and loop (2) and into the diffusion block (4) - it is the 

carrier fluid for the samples to be tested. 

The BTB (bromothymol blue - an indicator) goes from the source bottle, through the 

pump (1), into the spectrophotometer (3a) into the diffusion block (4) and back into 

the spectrophotometer (3b) 

Samples are injected into the NaOH stream through the injection valve (2). The 

NaOH stream converts any NH4
+ ions in the sample to NH3 gas. The loop ensures 

that exactly the same amount of sample is used, regardless of how much you inject 

(over inject not under inject), any waste/excess is removed.  

In the spectrophotometer the change between the colour of the BTB solution (3a) 

before and after (3b) it has passed through the diffusion block is detected and is 

recorded as a peak on the chart recorder (5) 

 

 

             

              

       

Figure 5.1 – Schematic diagram showing the setup and operation of the Flow Injection Analysis 
system for ammonia measurement in water and haemolymph samples. 
After Hunter and Uglow (1993). 
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Samples are injected into the NaOH (0.1M) carrier stream causing the conversion of ammonium 

ions (NH4
+) to ammonia gas (NH3). This passes through the spectrophotometer and as it is 

colourless does not produce an output. The gas then passes through the diffusion block where it 

joins a new carrier stream of 0.6 gL-1 bromothymol blue (BTB) which has a dark green colour. The 

presence of ammonia causes a change in the colour of the BTB solution towards the more alkaline 

blue. The solution passes again through the spectrophotometer and this time is recorded as a 

peak. The heights of the peaks recorded by the FIA system are linearly related to the ammonia 

concentration. Ammonia standards of 25, 50, 100, 200, 300, 400, 500 µmol/L were made from a 

stock solution of ammonium sulphate 0.5 mM using Milli-Q™ water. Standards were made prior to 

the haemolymph analysis and were tested in the FIA apparatus. The peaks of these standards 

were used to produce a linear calibration curve and the regression equation of this line was used to 

calculate the amount of ammonia in the haemolymph samples. A set of standards was injected 

after every 20 haemolymph samples to allow for any change in the sensitivity of the apparatus. 

This correction was done as precipitates can form along the tubing and on the 

polytetrafluoroethylene (PTFE) membrane which can impair the transfer of ammonia and result in 

an underestimation of the concentration. Precipitates were removed by flushing with 10% HCl acid 

for 1-2 minutes, followed by distilled water and a replacement of the PTFE membrane. The FIA 

ammonia technique has a lower limit of detection of 0.02 µmol ammonia L-1 and a precision in the 

range of 0.9-3.3% (Hunter and Uglow 1993). 

 

v. HAEMOCYANIN MEASUREMENTS 

Haemocyanins have three major absorption maxima in an oxygenated state at 280, 335 and 580 

nm. The latter two peaks disappear upon deoxygenation. As haemocyanin is rapidly oxygenated in 

vitro, the absorption peak can be used as an effective measure of pigment concentration using a 

1cm extinction coefficient (εmM) of 17.26. The εmM value is calculated from an ε1% value of 2.83 

given by (Nickerson and Van Holde 1971; Antonini and Brunori 1974)  

 

concentration haemocyanin (mM)= 
A335 * dilution factor

extinction coefficient (17.26)
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Haemolymph samples were diluted 1:49 with distilled water and their absorbancies measured in a 

cuvette against a distilled water blank at 335 nm on a UV spectrophotometer (Biochrom Libra S11 

UV spectrophotometer). 

 

vi. IONIC CONCENTRATION MEASUREMENTS 

The haemolymph of H. gammarus, C. pagurus, and N. puber were analysed using Inductively 

Coupled Plasma Optical Emission Spectrometry (ICP-OES) for their ionic content (Na, Mg, K, Ca, 

Cu). This was then compared to the same analysis done on water samples. Water samples were 

either made from a hypersaline brine from a gas cavern discharge diluted to 35, 40, 45, 50, 55 and 

60 salinity units using Milli-Q ultra pure water, or from natural sea water at salinity 35 made up to 

the same units using Instant Ocean™ aquarium salts. Natural sea water and pure hypersaline 

brine were also analysed for their ionic contents. 

Ionic elements of the haemolymph were analysed to help assess the potential influence 

hypersalinity has on crustacean metabolism and physiological processes. Ionic composition also 

indicates the degree of regulation happening, if any, in hypersaline conditions.  

In ICP-OES, a sample is usually transported into the instrument as a stream of liquid sample. 

Inside the instrument, the liquid is converted into an aerosol through nebulisation. The sample 

aerosol is then transported to the plasma where it is desolvated, vaporised, atomised, and excited 

and/or ionised by the plasma due to temperatures being high enough to cause not only dissociation 

of any compounds into atoms but to cause significant amounts of collisional excitation (and 

ionisation) of the atoms to take place. The excited atoms and ions emit their characteristic radiation 

which is collected by a device that ranks the radiation by wavelength. Detected radiation is turned 

into electronic signals and converted into concentrations. In OES, the intensity of the light emitted 

at specific wavelengths is measured and used to determine the concentrations of the elements in 

the sample. One of the most important advantages of OES results from the excitation properties of 

the high temperature sources used in OES. These thermal excitation sources can populate a large 

number of different energy levels for several different elements at the same time. All of the excited 
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atoms and ions can then emit their characteristic radiation at nearly the same time. This allows the 

operator to choose from several different emission wavelengths for an element and in the ability to 

measure emission from several different elements at the same time (Boss and Fredeen 1997). 

Samples were analysed using this technique by the Hull University chemistry department for their 

content of copper (Cu), sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca). 

 

vii. LACTATE MEASUREMENTS 

Lactic acid levels in deproteinised, centrifuged haemolymph were determined using a colourimetric 

kit (Trinity biotech cat no 735). Lactate is converted to pyruvate and hydrogen peroxide (H2O2) by 

lactate oxidase. In the presence of hydrogen peroxide, peroxidase catalyses the oxidative 

condensation of chromogen precursors to produce a coloured dye with an absorbency at 540 nm. 

The increase in absorbency is directly proportional to L-lactate concentration in the sample. 

The lactate reagent was prepared by reconstitution with 10ml distilled water. This was then pipetted 

(1 ml) into numbered/labelled test tubes for each of the samples plus a blank and a standard. To 

the standard tube 10µl of lactate standard was added and to the sample tubes 10µl of haemolymph 

supernatant were added. Each tube was carefully mixed by inversion and incubated at room 

temperature (20 °C ± 2 °C) for 10 minutes. The samples were then read for absorbency at 540 nm 

against the blank and standard in a Biochrom Libra S11 UV spectrophotometer. Unknown samples 

were converted to L-lactate concentration using the following equation. 

 

Lactate (mg/dl)= 
(A540 of test) * 40
A540 of standard

 

 

To convert the results to mmol l-1 the result was multiplied by 0.111 as per the kit instructions. The 

lactate assay precision has a standard deviation of 0.15-0.96 mg dL-1 and a lower limit of detection 

of 2 mg dL-1 = 0.222 mmol l-1. 
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viii. GLUCOSE MEASUREMENTS 

Deproteinised centrifuged haemolymph supernatant samples were taken from the freezer, thawed 

then tested for their glucose content using the colourimetric Sigma Kit No. GAG0-20. This method 

of measuring glucose is based upon the following enzymatic reactions: 

 

i) D Glucose + H2O + O2          Glucose oxidase           D Gluconic acid +  H2O2 

 

 

ii) H2O2 + O-Dianisidine             Peroxidase                  Oxidised O-Dianisidine 

       (colourless)                               (brown) 

 

                                                              H2SO4 

iii)         Oxidised o-Dianisidine                                             Oxidised o-Dianisidine 

                       (brown)                                                                       (pink) 

 

As per the sigma kit instructions, one capsule of o-Dianisidine reagent was dissolved in 1 ml of 

distilled water and refrigerated in darkness. 0.8 ml of this reagent was added to 39.2ml of glucose 

oxidase/peroxidase reagent and again refrigerated in darkness. To measure the glucose 

concentration of the haemolymph samples, 0.5 ml of sample was added to 1 ml of the assay 

reagent in a test tube and mixed. Samples were incubated in a water bath at 37 °C for exactly 30 

minutes, then the reaction stopped by adding 1 ml of 12M H2SO4. This caused the samples to turn 

from brown to pink in colour. The absorbance of each sample was then read at 540 nm in a 

spectrophotometer (Biochrom Libra S11 UV spectrophotometer). The absorbance was measured 

against a distilled water blank and a 0.05 mg glucose standard solution that was treated in the 

same way as the haemolymph samples. The intensity of the colour at 540 nm is proportional to the 

original glucose concentration. Glucose concentrations of unknown samples were calculated using 

the following equation: 
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Glucose (mg)= 
(A540 of test)*(mg glucose in standard)

A540 of standard
 

 

Glucose (mg)= 
(A540 of test)*(0.05)

A540 of standard
 

 

 

5.3.5 Activity scoring 

Where possible at the end of each trial the crustaceans were scored based on the mobility index 

given in Chapter 2. This gives a qualitative assessment of how salinity affected the mobility of the 

animals. 

 

5.3.6 Statistical analyses 

Ninety-six hour median lethal concentration and median lethal times (LC50 and LT50) were 

calculated for both testing regimes using probit analysis. Haemolymph chemistry data were 

analysed using one way analysis of variance (ANOVA) for normally distributed data or a Kruskal-

Wallis test for abnormal distribution. a posteriori testing was carried out using Tukey, Scheffe’s or 

Games-Howell tests as appropriate depending on homogeneity of sample size and whether 

parametric or non parametric statistics were used (SPSS v15 to 18). Significant results are 

described in section 5.4. 

Unless specifically mentioned in the text, no significant results were found in the control trials. 

Analysis of ammonia using the FIA apparatus was initially done by hand using a paper chart 

recorder but as the technology became available peaks were analysed using AD Instruments Chart 

5 peak analysis software.  
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5.4 Results: Ionic properties of sea water and crustacean haemolymph. 

 

5.4.1 Ionic properties of sea water 

Samples of both natural sea water made up to hypersalinities with artificial aquarium salts (Instant 

Ocean™) and brine from a gas cavern discharge diluted down to the same hypersalinities using 

ultra pure Milli-Q water were analysed using the same ICP-OES technique as for the haemolymph 

samples. Due to budgetary constraints it was not possible to do replicates for this analysis, hence 

standard deviations and errors were not calculable. However, Table 5.1 gives an indication of how 

the composition of the water changes with the increasing salinity and hence metallic load of the 

water. It has also enabled comparisons between the holding water and the haemolymph of the 

crustaceans to be made to see whether the animals in question are able to osmoregulate at the 

salinities tested and if so, whether this ability breaks down at any point. 

In general the differences in the levels of potassium, calcium and copper were small (Table 5.2).  

The largest difference in potassium was 9.2 mmol at salinity 70 which is well above the maximum 

salinity recorded at the E. Yorkshire discharge site near Aldbrough.  The same is true for calcium 

with a maximum difference of 3.7 mmol at 70 psu.  The largest difference in copper levels occurred 

at a salinity of 60 with a difference of 0.0017 mmol between the aquarium salt brine (Aqb) and the 

gas cavern brine (Gcb). 

Larger differences were seen in the levels of sodium and magnesium, which are the most abundant 

metals in sea water generally between around 450 – 650 mmol (Na) and 30 – 70 mmol (Ca) at the 

normal salinity for that geographical location (Table 5.3). Sodium showed a maximum of 475.93 

mmol difference between the Gcb and the Aqb and again this is at 70 salinity units. This is a 

difference of almost half a mole. This is a high value compared to the other salinities and is not 

necessarily indicative of the real difference between the mineral blends as there is a much lower 

difference in sodium levels at salinities 60 and 65, which is why it would have been preferable if 

replicate samples could have been analysed. The smallest difference occurs at salinity 45 (63.90 

mmol). 

Magnesium showed similar values at the lower end of the hypersaline range, at 40 psu there was 

only a difference of 4.5 between the Aqb and the Gcb at 31.94 mmol and 36.50 mmol respectively. 
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When comparing the higher hypersalinities there was a greater difference between the magnesium 

concentrations, but this only reached a difference of 15.9 mmol at a salinity of 70. The largest 

difference occurred at salinity 50 (32.81 mmol) and the smallest at salinities 40 and 45 (4.5 mmol).  

Since, in general, these differences are so small, it is unlikely that they will have any effect on the 

survivability of crustacean species around the discharge point. This has been confirmed by the 

lobster brine test (section 5.4.6) which has shown that only pH and haemocyanin levels are 

affected when comparing the haemolymph of lobsters in salinity 50 Gcb and salinity 50 Aqb. 

 

Table 5.1   Composition of sea water (mmol l-1); comparing sea water collected from Bridlington, commercial 
artificial sea water for aquarium use and brine from the Aldbrough gas discharge. 

Salinity Source Na (mmol l-1) Mg (mmol l-1) K (mmol l-1) Ca (mmol l-1) Cu (mmol l-1) 

25 a 328.44 19.53 3.71 4.26 0.0003 

30 a 409.50 25.90 4.77 5.68 0.0005 

35 n 477.27 31.60 5.84 6.76 0.0006 

40 i 593.43 31.94 6.97 7.37 0.0005 

45 i 659.35 47.99 9.51 10.2004 0.0008 

50 i 697.61 70.47 14.14 13.28 0.0010 

55 i 403.45 65.86 15.66 9.36 0.0006 

60 i 890.50 61.43 13.16 10.38 0.0006 

65 i 1157.52 82.99 15.58 16.03 0.0007 

70 i 1196.86 73.26 15.65 16.61 0.0006 

40 b 685.55 36.50 9.70 7.45 0.0018 

45 b 723.23 43.47 10.70 8.95 0.0006 

50 b 834.48 37.66 11.81 8.55 0.0018 

55 b 879.38 58.90 19.34 12.50 0.0016 

60 b 991.48 58.77 20.38 12.74 0.0022 

65 b 972.24 empty tube empty tube empty tube 0.0012 

70 b 1417.38 57.37 24.88 12.91 0.0007 

Undiluted 

Gcb 

 
3710.39 90.80 80.91 22.49 0.0004 

Key:  a = normal sea water diluted with Milli-Q water 

         n = normal sea water from Bridlington 

         i = Instant Ocean™ aquarium salts used to make hypersaline water from a natural sw base 

         b = gas cavern brine used to make concentration, diluted with Milli-Q water 
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Table 5.2   Differences in concentration (mmol l-1) of metal ions between Gcb and Aqb at each salinity tested. 
(negative number indicates the aquarium salt had the lower level of the ion). 

Salinity Na difference Mg difference K difference Ca difference Cu difference 

40 -92.117 -4.5559 -2.7173 -0.0835 -0.0013 

45 -63.902 4.5202 -1.1857 1.2539 0.0002 

50 -136.874 32.8078 2.3359 4.7325 -0.0008 

55 -475.93 6.9685 -3.678 -3.1278 -0.001 

60 -100.971 2.6552 -7.2196 -2.3645 -0.0016 

65 185.2874 empty tube empty tube empty tube -0.0005 

70 -220.512 15.8922 -9.2353 3.7054 -0.0001 

 

 

Table 5.3   Composition of sea water (mmol l-1), comparison of global examples. 

Element Bridlington SW 
at 35 psu 

General SW 
at 35 psu 

New Zealand 
at 35 psu General 

Na (mmol l-1) 477.274 467.69 469.77 456.72 
Mg 

(mmol l-1) 31.6032 53.28 53.06 55.54 

K (mmol l-1) 5.8389 9.98 10.03 9.97 
Ca (mmol) 6.7585 10.38 10.26 10.23 

Cu (mmol l-1) 0.0006 Not available 0.00001 0.00004 

Source 
Chemistry dept at 
University of Hull 

(Castro and Huber 
1992) (Anthoni 2006) (Hem 1986) 

Element 
Typical SW  

 35 psu 
E. Mediterranean 

sw at 35 psu 
Arabian Gulf at 

Kuwait sw at 35 psu 
Red Sea at Jeddah 

sw at 35 psu 
Na (mmol l-1) 459.16 513.27 689.44 618.75 
Mg (mmol l-1) 51.92 57.72 72.62 30.56 
K (mmol l-1) 9.72 11.84 11.77 5.37 
Ca (mmol) 9.98 10.55 12.48 5.61 

Cu (mmol l-1) Not available Not available Not available Not available 
Source Modified from Cotruvo (1995) 
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5.4.2 Ionic properties of Homarus gammarus haemolymph, chronic trial test group 

There were significant differences in all the haemolymph ionic components tested in the chronic 

exposure trial on H. gammarus. It appears that K and Ca may be exhibiting a decrease in 

concentration as salinity is increased. Cu and Mg may be exhibiting an increase with increasing 

salinity. Na appears not to be showing much of a change with increasing salinity. 

Haemolymph sodium (Na) differed significantly during the experiment (p < 0.001, F = 19.414, df = 

4). The sodium concentration at salinity 40 was significantly different to that at all other salinities. 

There were no other significant differences. The means for each salinity did not differ, except for 

salinity 40 which was over 100 mmol higher than the others: 35 = 166.39 mmol, 40 = 323.01, 45 = 

203.89, 50 = 207.32, 55 = 203.51 (Figure 5.2a), showing no discernible trend in the sodium 

concentration during acclimation to high salinities. The fact that the higher salinities were not 

significantly different to salinity 35 suggests that there was no iono-conformation in the lobsters. 

Evidence of elevated sodium concentration would be present in the haemolymph but this was not 

the case. This suggests there is a degree of osmoregulation occurring in the lobsters. This is 

confirmed by the results in section 0, Table 5.1 which indicate a Na level of 477 to 1196 mmol from 

salinity 35 to 70, whilst the above results have already indicated the lobsters maintaining 

haemolymph Na levels at around 200 mmol.  

There were significant differences in the levels of haemolymph copper (Cu) over the duration of the 

experiment (p < 0.001, F = 13.530, df = 4). Post-hoc testing (Scheffe) has shown that as with 

sodium, the copper concentration in lobster haemolymph at salinity 40 was significantly different to 

that at all other salinities. There were no other significant differences. All means were similar, 

except for haemolymph Cu at salinity 40 which was higher than the others: salinity 35 = 0.110 

mmol Cu, 40 = 0.14, 45 = 0.11, 50 = 0.12, 55 = 0.13 (Figure 5.2b). Therefore there was no 

discernible trend in the copper concentration during acclimation to high salinities. 

Potassium levels in the blood differed significantly over the range of experimental salinities (p < 

0.001, df = 4, χ2 = 20.030). Haemolymph potassium concentration from lobsters at salinity 40 was 

significantly different to those from salinities 45 and 50, levels at 55 were different to 45 and 50, 

and 35 was 0.001 units away from being significantly different to salinity 55. The mean mmol 

potassium for each salinity showed no discernible trend: 35 = 10.73 mmol, 40 = 26.81, 45 = 7.17, 

50 = 4.38, 55 = 43.40 (Figure 5.2c). 
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Significant differences in the levels of haemolymph Magnesium (Mg) were observed (p < 0.001, F = 

13.530, df = 4) with the haemolymph magnesium concentration at salinity 55 being significantly 

higher to that at 35 and 40. There was a trend for increasing haemolymph magnesium levels 

(mmol) with increasing salinity from 4.04 mmol at salinity 35 to 8.00 mmol at salinity 55 (Figure 

5.2e). The significant differences between salinities 35 and 55, and 40 and 55 suggest that at 

salinity 55 the amount of magnesium in the haemolymph is significantly different to that at ambient 

35 psu. It could be at this point the mechanisms for hypo-ionoregulating the Mg below that of the 

medium (see section 0) break down and the amount of Mg increases significantly. Magnesium in 

the water samples was between 19 and 82 mmol, so is definitely being hypo-ionoregulated in H. 

gammarus but with the concentration increasing with increasing salinity. It is possible that is 

contributing to the death of the lobsters in hypersalinities (see discussion, section 5.6). 

Haemolymph calcium (Ca) levels showed significant differences (p = 0.012, F = 4.015, df = 4), with 

the calcium concentration of the blood of the lobsters at salinity 55 being significantly different to 

that at 40. There were no other significant differences. Mean calcium values indicated a possible 

trend for decreasing haemolymph calcium with increasing salinity, from 9.05 mmol at salinity 35 to 

5.71 mmol at salinity 55 (Figure 5.2d). Values at 40 psu were consistently different throughout the 

analysis of H. gammarus haemolymph ionic data and may be indicative of an error in the analysis 

by the chemistry dept, or in the mixing of the aquarium salts.  
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Figure 5.2   Ionic analysis of H. gammarus haemolymph in response to hypersalinities. Chronic exposure 
test group. Only parameters where significant changes occurred are displayed on the figure. Means (+/- 
SE). n = 30 total. Only haemolymph magnesium shows a consistent trend with hypersalinity. 
* indicates different levels in haemolymph to all other salinities. 
a,b,c indicates significant differences between differing letters.  
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5.4.3 Ionic properties of Homarus gammarus haemolymph, chronic trial control 

group 

For the control portion of the chronic exposure trial, sodium (Na), potassium (K), magnesium (Mg) 

and calcium (Ca) showed no significant changes in the levels in the haemolymph over the duration 

of the experiment. Therefore for these elements, handling and water change regimes did not affect 

the blood chemistry of the animals, any significant changes found in the test portion of the 

experiment were caused by salinity alone.  

The only ionic property of the blood to show significant changes over the duration of the experiment 

was copper (Cu) (p = 0.033, df = 4, χ2 = 10.495). Post hoc testing (Games Howell) has shown that 

four days (4 days) in salinity 35 was significantly different to twenty days (20 days) in salinity 35 (p 

= 0.023) in terms of Cu content of the haemolymph (Figure 5.9). There were no other significant 

differences. The means of the data for each time period, show that 4 days = 0.14 mmol Cu, 8 days 

= 0.57 mmol,  12 days = 0.50 mmol, 16 days = 0.63 mmol, 20 days = 0.51 mmol. It is not obvious 

why this difference occurs here as although 4 days has the lowest Cu level, 20 days does not have 

the highest. This difference may be due to large differences in standard error, however the error 

bars in Figure 5.9 suggest that there is no real trend or change over the experiment with the 

exception of day 4 and therefore this may be an experimentally anomalous result. 
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Figure 5.3   Effect of experiment duration on copper levels in Homarus gammarus haemolymph during hypersaline 
acclimation. Control group. Means ±SE.  n = 30 total. 
Post hoc test revealed that only day 4 and day 20 were significantly different to each other in terms of haemolymph 
copper level (a, b) n = 39 total. 

 

 

5.4.4 Ionic properties of Homarus gammarus haemolymph, acute trial test group 

There were significant differences in the haemolymph sodium (Na) levels at different salinities (p < 

0.001, df = 3, χ2 = 18.585). Post hoc testing (Games Howell) has shown that haemolymph sodium 

from lobsters at salinity 35 (normal sea water) was not significantly different to that at 40, 45 or 50 

(probably due to the high standard error at salinity 35), (see Figure 5.4a), however salinity 40 was 

significantly different to salinity 45 and 50 with regards to haemolymph Na and salinity 45 was 

different to 50. Overall the trend shown was for increasing levels of Na in the haemolymph as 

salinity increased, from a minimum of 166.4 mmol at salinity 35 to a maximum of 237.9 mmol at 

salinity 50. There were no other significant differences. This sodium increase is due to higher 

sodium levels in the water. This is in contrast to the chronic exposure trial, where there was 

evidence of osmoregulation happening due to no significant change in Na when the lobsters were 

able to acclimate to hypersalinity. 
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There were significant differences in the haemolymph potassium levels at different salinities in the 

acute exposure trial on adult intermoult H. gammarus (p = 0.003, df = 3, χ2 = 14.304) (Figure 5.4b), 

with the significant difference in potassium occurring between salinity 40 and salinity 50 only. Mean 

haemolymph potassium levels for each salinity showed that the standard deviation ranged from 

0.47 to 8.91 over the salinities so this may account for the lack of difference. At salinity 40 the SD 

was the lowest at 0.47 and at 50 the SD is the highest in potassium at 8.91. This may account for 

the significant difference found. 

There was a significant difference in the magnesium level of the haemolymph at different salinities 

(p < 0.001, df = 3, χ2 = 22.923). These significant differences in haemolymph Mg occurred between 

lobsters from salinities 40 and 45, and 40 and 50. There were no other significant differences. 

Mean haemolymph magnesium levels for each salinity showed an increase with acute exposure to 

the higher salinities. 35 = 4.04 mmol, 40 = 2.33 mmol, 45 = 5.32 mmol and 50 = 6.49 mmol (Figure 

5.4c). 

Haemolymph copper (Cu) also showed significantly different levels between different salinities (p < 

0.001, F = 13.227, df = 3). A post hoc Scheffe test has shown that haemolymph Cu from lobsters in 

salinity 35 (normal sea water) was significantly different to that at salinities 40, 45 and 50 in terms 

of Cu level, and that haemolymph Cu at salinity 45 was also significantly different to that at salinity 

50. There were no other significant differences. A homogeneous subsets analysis has shown that 

the salinities can be split into 3 groups: 1 = 35, 2 = 40 and 50, 3 = 40 and 45. Mean copper levels 

(mmol) for each salinity indicated an increase in the concentration of copper in the haemolymph as 

the salinity increased (Figure 5.4d). This increase does not appear to be related to copper levels in 

the water as there is no real increase in copper with hypersalinity in the seawater samples tested 

(see section 0) Calcium showed no salinity dependent haemolymph response in the acute 

exposure experiment. 
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5.4.5 Ionic properties of Homarus gammarus haemolymph, postmoult trial 

Lobsters in the late-postmoult stage of the moult cycle were used to assess if the moult stage had 

an impact on the animals’ tolerance to hypersaline conditions. Only salinities 35 to 40 were 

comparable due to the soft nature of the shells meaning all test animals died at salinity 45. T-tests 

were used for analysis as data was normally distributed and variances were homogeneous. 

Independent samples t-tests on haemolymph of late-postmoult lobsters under a 96h acute 

hypersaline exposure showed significant increases in the sodium levels and calcium levels (p < 
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Figure 5.4   Homarus gammarus acute trial ionic results. (Means ± SE). n = 39 total. 
Post hoc analysis has indicated that some salinities differ from the others in terms of blood parameter 
concentration, but not all. These significant differences have been shown in superscripts where: a is 
different to b, and c is different to d. Bars without superscripts have no significant differences to the other 
bars. 
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0.01) and potassium and magnesium levels (p < 0.05) as salinity increased from 35 to 40. The 

increases are shown by the mean values in Table 5.4. Copper levels in late-postmoult lobsters 

showed no significant difference between these salinities. 

In summary there were significant differences in sodium (Na), potassium (K), magnesium (Mg) and 

calcium (Ca) between salinities 35 and 40 in soft (late post moult) lobsters. There were no 

significant differences in copper (Cu) levels. Since all the soft lobsters in this 96h shock test died 

before the end of the 96h when tested at 45 psu, no blood could be obtained to be analysed at that 

salinity. However as the late post moult soft lobsters died at a lower salinity than intermoult lobsters 

under the same testing regime, it can be assumed that newly moulted lobsters would have an even 

lower tolerance to the higher salinities.  

 

Table 5.4   Mean values for ionic properties of late-postmoult Homarus gammarus haemolymph, under acute 
hypersaline stress. Only parameters showing significant differences (indicated by *) between the two salinity 
regimes are displayed. n = 30 

Element Mean level (mmol) 
at salinity 35 

Standard error of 
the mean at 
salinity 35 

Mean level 
(mmol) at salinity 

40 

Standard error of 
the mean at 
salinity 40 

Na* 178.57 0.95 211.44 2.74 

K* 4.00 0.03 5.00 0.23 

Mg* 3.10 0.22 4.82 0.56 

Ca* 6.04 0.15 7.13 0.12 

 

 

 

5.4.6 Ionic properties of Homarus gammarus haemolymph, gas cavern discharge to 

aquarium salt comparison 

Independent samples t-tests on haemolymph properties of intermoult adult lobsters at the end of a 

96h acute exposure test (one group at 50 psu created by Instant Ocean™ aquarium salts, one 

group at 50 psu created with brine from a gas cavern discharge), showed significant differences in 

the haemolymph sodium, magnesium, calcium and potassium levels (p < 0.001). Copper however 

showed no significant difference dependent on the origin of the brine. The haemolymph collected 
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from lobsters tested in brine from the gas cavern discharge had consistently lower levels of all of 

the metals (except copper) than that of lobsters housed in brine created from artificial aquarium 

salts (Table 5.5). 

 

Table 5.5   Mean values for ionic properties of Homarus gammarus under hypersaline stress. Only parameters 
showing significant differences (indicated by *) between the two salinity regimes are displayed. n = 30. 

Parameter 
Gas cavern 

brine at salinity 
50 (mmol) 

Standard error of the 
mean for gas cavern 
brine at salinity 50 

Aquarium 
salts at 

salinity 50 
(mmol) 

Standard error of the 
mean for aquarium 
salts at salinity 50 

Sodium (Na)* 184.10 3.85 237.87 7.61 

Potassium (K)* 3.72 0.25 6.49 2.97 

Magnesium 

(Mg)* 
6.30 0.56 8.68 0.56 

Calcium (Ca)* 4.20 0.22 11.35 0.60 

 

 

5.4.7 Ionic properties of Homarus gammarus haemolymph, normal sea water to gas 

cavern discharge comparison 

When comparing the ionic constituents of the haemolymph of adult intermoult H. gammarus under 

acute exposure to either natural sea water (salinity 35) or a hypersaline brine from a gas cavern 

dissolution project (salinity 50), there were a number of differences found.  

Significant differences occurred between sodium, potassium and copper concentration at the 

different salinities tested (p < 0.05). Mean values showed this difference was an increase in 

concentration with increasing salinity for Na and Cu, and a decrease for K (Table 5.6). There were 

no significant differences in the haemolymph magnesium or calcium levels. 
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Table 5.6  Mean concentration of haemolymph ions in Homarus gammarus at salinities 35 (normal sea 

water) and 50 (hypersaline brine effluent). Only parameters showing significant differences (indicated by *) 

between the two salinity regimes are displayed. n = 30. 

Parameter Concentration 
(mmol) in 
normal sea 
water (salinity 
35) 

Standard error of 
the mean for 
normal sea water at 
salinity 35  

Concentration 
(mmol) in brine 
discharge effluent 
(salinity 50) 

Standard 
error of the 
mean for 
brine effluent 
at salinity 50 

Sodium 
(Na)* 

166.39 26.12 184.10 3.85 

Potassium 
(K)* 10.73 3.31 4.20 0.25 

Copper 
(Cu)* 0.14 0.044 0.27 0.24 

 

The lower potassium level in salinity 50 compared to salinity 35 is unexpected but the 50 psu 

effluent brine also had a lower potassium level than the 50 psu aquarium salt hypersaline water so 

may be due to the mineral balance the goes together to make the overall salinity.  

 

5.4.8 Ionic properties of Cancer pagurus haemolymph 

Haemolymph sodium levels in adult intermoult Cancer pagurus under acute hypersaline exposure 

showed significant salinity-dependent differences (p < 0.001, ANOVA F = 20.068, df = 4). A post 

hoc Scheffe's test was performed and showed that the sodium level in the haemolymph of the 

crabs at salinities 35 was significantly different to that at salinity 45, 50 and 55. Haemolymph Na at 

salinity 40 was different to 45 and 55, salinity 45 was different to 50 and salinity 50 was different to 

55, overall indicating increasing haemolymph Na with increasing salinity. Homogeneous subsets 

analysis has shown that the salinity data can be separated into 3 groups: group 1 = 35 and 40, 

group 2 = 40 and 45, group 3 = 50 and 55, with both this and the means of the data confirming an 

increase in the sodium level in the haemolymph as the salinity increases from 201.01 mmol at 

salinity 35, to 243.45 mmol at salinity 55 (Figure 5.5a). 

Significant salinity-dependent differences occurred for copper concentration (p = 0.049, df = 4, χ2 = 

9.533). Haemolymph copper levels at salinity 35 were significantly different to levels at salinity 45 

(Figure 5.5b). There were no other significant differences. Copper is the pigment in haemocyanin 

and changes in the haemolymph levels may be representative of changes in the levels of this 

respiratory pigment and therefore blood cells. The significance level of 0.049 is extremely close to 
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the threshold of significance of 0.05, therefore it is possible the there is no real difference in the Cu 

levels at all. 

Haemolymph potassium also showed significant salinity dependent differences (p < 0.001, F = 

8.340, df = 4). Haemolymph potassium concentration at salinities 35 and 40 was significantly 

different to 45 (Figure 5.5d). There were no other significant differences. 

There were significant differences in the magnesium levels of the crabs’ haemolymph at different 

salinities (p = 0.038, df = 4, χ2 = 10.139) (Figure 5.5c), however a post hoc Games Howell test has 

failed to find where these differences occur. Despite attempting a number of transformations to 

normalise the spread of the data, all post hoc tests attempted failed to find at which salinities the 

significant differences in magnesium occurred. 

A one way ANOVA on log10 transformed calcium levels (to normalise the data spread) in C. 

pagurus haemolymph after a 96h hypersaline shock showed significant differences in the 

haemolymph calcium (Ca) levels at different salinities (p = 0.003, F = 4.709, df = 4). Calcium 

concentration at salinities 35 and 40 was significantly different to 45 (Figure 5.5e). There were no 

other significant differences. Of note is that despite the ANOVA indicating significant differences in 

Ca, both the normal and transformed data homogeneous subsets tables calculated as part of the 

post-hoc analysis grouped all salinities as one, suggesting that possibly there were no real 

differences in the calcium levels during the acute test.  
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Figure 5.5   Cancer pagurus acute hypersaline exposure test group. Ionic parameters where significant 
changes occurred. Mean ±SE. n = 52 total. 
1,2,3 = homogeneous subsets. 
a,b = significant difference in haemolymph level of ion between the points. 
Magnesium post-hoc testing could not point out the significant differences hence no annotation on 
figure. 
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5.4.9 Ionic properties of Necora puber haemolymph, chronic trial test and control 

groups 

In Necora puber acclimated to hypersalinities (from 35 to 60), significant salinity-dependent 

differences in magnesium (Mg) occurred (p = 0.001, df = 5, χ2 = 20.074), with several salinities 

differing in terms of haemolymph Mg level: salinity 35 was significantly different to 45 and 60. 

Salinity 40 was significantly different to 60. Salinity 45 was significantly different to 55 (and 35 as 

said before). 50 showed no significant differences at all. 55 was significantly different to 60 (and 45 

as said before). 60 was significantly different to (35, 40 and 55 as said before). Hence there may 

be some increase with increasing salinity, specifically at salinity 50 (Figure 5.6b), although from the 

figure there is no consistent linear trend indicated.  

Potassium (Figure 5.6a) and sodium (Figure 5.6d) data from the N. puber chronic exposure test 

group showed that both haemolymph potassium (p < 0.001, df = 5, χ2 = 27.211) and sodium (p = 

0.001, df = 5, χ2 = 20.384) had significant differences in their concentrations over the salinities 

tested. In the case of potassium (K), salinity 35 was significantly different to salinity 55 and 60. 

There were no other significant differences. The control group showed no significant salinity 

dependent change in K level with the duration of the experiment, so the changes in the test group 

are due to the salinity alone. In the case of haemolymph sodium (Na), salinity 35 was different to 

45, 55 and 60 psu, but not to salinities 40 or 50. There were no other differences. However since 

salinity 35 and salinity 60 are not significantly different to each other it appears that there was an 

initial increase in sodium concentration which then levelled off as salinity increased further.  

Significant differences in the haemolymph calcium concentration also occurred as indicated by the 

Kruskal Wallis analysis (p = 0.032, df = 5, χ2 = 12.212) (Figure 5.6c). However, post hoc testing 

(Games Howell) has shown could not find the source of these significant differences in the data. 

The differences found by the Kruskal Wallis test could be due to the wide ranging standard errors 

indicated for Ca in Figure 5.6c. A further post hoc test was performed (Least Significant Difference) 

and showed significant differences in haemolymph calcium between crabs at salinity 50 and 40, 45, 

55. There were no other significant differences suggesting that salinity 50 may be an anomaly of 

sorts. Two t-tests were performed to assist in the confirmation of the suspected differences picked 

out by the LSD test. They showed that salinities 35 and 50 had no significant differences, as also 

seen in the LSD. 50 and 55 did have significant differences (p = 0.025, t = 2.466, df = 16). Further 
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t-testing was avoided as it is inappropriate to perform multiple t -tests as a way of doing post hoc 

analysis. Transformation of the Ca data via Lg10, Ln, 1/X, sqrt etc had no influence on the KW test. 

Overall the analysis of the Ca data indicated no trends related to salinity in terms of haemolymph 

Ca level in the way that was seen for K and Na.  

There were no significant salinity-dependent differences in copper levels in the haemolymph.  

 

 

 

 

In the control portion of the study, there were significant differences in calcium (Ca) levels over the 

duration of the experiment (p < 0.001, F = 7.286, df = 5), with the difference occurring between 4 
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Figure 5.6   Necora puber hypersaline chronic exposure test group. Ionic parameters where significant changes 
occurred. Mean (+/- SE). n = 42 total. 
a,b = statistically significant concentration of haemolymph parameter between the two letters/salinities. 
Please see section 4.4.9 for which salinities differ specifically with regards to magnesium as the differences are 
too numerous and complex to show on the figure. 
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days and 16 days only (Figure 5.7a). This is the equivalent of 35 and 50 psu in the test group. 

Since no other changes occurred it is unlikely that this change is due to the duration of the 

experiment. In the test group, salinity 50 was lower than the rest and may be something of an 

anomaly. 

Haemolymph magnesium (Mg) levels in the control test showed significant differences over the 

duration of the experiment (p = 0.001, df = 5, χ2 = 20.330), with these significant differences 

occurring between 4 days duration and all other days duration (Figure 5.7b). It is therefore unlikely 

that the experiment duration is having an effect on the crabs as the latter portions of the trial show 

no other differences. The changes seen in the test group are likely due to salinity alone. Copper, 

sodium and potassium showed no significant time dependent changes over the duration of the 

experiment.   
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5.4.10 Ionic properties of Necora puber haemolymph, acute trial test and control 

groups 

No salinity dependent differences were found for the salinities tested (35 to 50) for any of the 

metals in the acute trial (p > 0.05 in all cases).   

Fig 5.7a Fig 5.7b 

Figure 5.7   Necora puber chronic exposure control group. Ionic parameters where significant changes occurred. 
Mean (+/- SE). n = 42 total. 
* denotes significant difference from others. a,b = significant difference between the two letters/days. 

* a 
b 
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5.5 Results: Effects of salinity on haemolymph variables of crustaceans 

 

5.5.1 Acute and chronic hypersaline exposure in intermoult Homarus gammarus  

Significant differences in the levels of haemolymph serum protein occurred at the salinities used in 

the chronic trial (p < 0.001, F = 11.433, df =4) (Figure 5.8a). A post hoc Scheffe test has shown 

that salinities 50 and 55 are not different to each other in terms of haemolymph protein level, but 50 

has significantly lower protein levels than all below, suggesting a change in protein occurs at 

salinity 50. In the acute exposure trial no salinity-dependent significant difference in the 

haemolymph protein of intermoult adult lobsters was found, this was the same for the control acute 

group. In the chronic exposure control group, the amount of time the lobsters spent in the 

experiment had some significant effect on the protein levels in the blood (p = 0.020, df = 4, F = 

3.550) (Figure 5.8a), however post hoc analysis (Scheffe) indicated a difference between 20 days 

and 12 days only. 

Haemolymph pH changed significantly throughout the chronic exposure experiment (p < 0.001, F = 

34.357, df = 4). Post hoc testing (Tukey) has shown that blood pH at salinities 35 and 40 was 

significantly different from 45 and 50.  Salinities 45 and 40 are also different from 55 (Figure 5.8b). 

This is more clearly indicated by Figure 5.10 which shows the clear division between groups. Two 

outliers were present in this analysis at salinity 55 which otherwise showed a very close range of 

pH values. 

 In the acute exposure trial significant differences in haemolymph pH with regard to salinity were 

also found (p < 0.001, χ2 = 29.253, df = 3). A post hoc Games Howell test showed that salinity 35 is 

different to 40 and 50 in terms of haemolymph pH level. pH at salinity 40 is different to all salinities.  

As the controls of both the chronic and acute trials showed significant differences in pH it indicates 

that salinity alone may not be the determining factor in changes to haemolymph pH. 
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Figure 5.8  Haemolymph parameters exhibiting significant differences in the chronic exposure trial for 
Homarus gammarus. Mean (+/- SE), n = 30 total. 
Lobsters spent 96h in each salinity before being stepped up to the next increment. * indicates significantly 
different haemolymph levels to all lower salinities. Where differences were not clear cut, significant 
differences in haemolymph levels of each parameter are indicated as occurring between differing letters.  
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Figure 5.9 Haemolymph parameters that showed significant differences in the chronic exposure trial 
(control group) f or Homarus gammarus. Mean (+/- SE), n = 30 total. 
Significant differences  in haemolymph levels of each parameter are indicated as occurring between 
differing letters.  

 

 

 

 

Figure 5.10 Significant changes in pH chronic exposure to hypersalinity experiment on adult intermoult Homarus 

gammarus. Three distinct subsets are indicated by the results displayed in the box plot (a, b, c). n = 30 total. 
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Glucose increased significantly in concentration in the haemolymph of test group chronic exposure 

H. gammarus (p < 0.000, F = 10.749, df = 4), with the haemolymph glucose level at salinity 55 

differing to all those below except for salinity 40. Glucose at salinity 40 is not different to any other 

salinity (Figure 5.8c). No differences in glucose levels were observed in the control portion of the 

chronic trial. In the acute exposure to hypersalinity trial there are differences in the glucose of the 

haemolymph dependent on salinity (p = 0.003, F = 5.570, df = 3), with blood glucose at salinity 35 

being significantly different to 50, suggesting that once the salinity of the surrounding media 

reaches 50 psu, there will be a change in glucose levels in the haemolymph of intermoult adult 

lobsters. The mean glucose for each salinity shows an increase as salinity increases (salinity 35 = 

mean 0.675 mmol glucose, 40 = 0.941 mmol, 45 = 1.049 mmol, 50 = 1.324 mmol), with this 

increase becoming statistically significant at salinity 50. 

There were significant salinity related differences in the levels of lactate in the haemolymph of the 

lobsters (p = 0.003, F = 5.186, df = 4) in the chronically exposed group. Only haemolymph lactate 

from lobsters at salinity 55 is significantly different to those at salinities 45 and 40 (Figure 5.8d). 

The control group also show some salinity dependent significant differences in lactate levels (p < 

0.001, F = 34.103, df = 4) with post hoc testing (Scheffe) indicating that these differences occur 

throughout the duration of the experiment with all days different to all other days except day 8 with 

the exception of day 20, which is different only to day 8 in terms of lactate concentration in the 

blood. There is no clear trend of change in lactate level during the control trial for except for a 

notable increase in lactate concentration after 20 days in salinity 35 are reached (Figure 5.11).  

Salinity had no significant effect on lactate levels in the acute trial or acute control trial. 
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Figure 5.11   Effects of experiment duration (chronic control trial) on lactate levels in the haemolymph of Homarus 

gammarus (n = 39 total). Control group. Mean (+/- SE). n = 30 total. 

Significant differences occur throughout the duration of the experiment with all days different to all other days 

except day 8. The exception is day 20, which is different only to day 8.  

  

Haemolymph ammonia levels increased significantly in the chronic exposure test group (p = 0.001, 

F =7.200, df = 4) during the trial, with blood ammonia at salinity 35 being significantly different to 

salinity 40 and salinity 55 (Figure 5.8e). For the acute trial, significant differences in haemolymph 

ammonia with regards to salinity were observed (p < 0.001, χ2 = 17.962, df = 3) and showed that 

ammonia concentration at salinity 35 is different to 40 and 45. 

No significant changes to haemolymph haemocyanin levels were noted for either the test or control 

portions of the chronic exposure trial. However when acutely exposed, significant salinity 

dependent differences were observed (p < 0.001, χ2 = 27.607, df = 3) that showed a general 

increase in haemocyanin with increasing salinity. Salinity 35 differed from 40 and 50 in terms of 

haemocyanin concentration. Haemocyanin levels in the blood from lobsters at salinity 40 were also 

significantly different to those at 45 and 50. The means of the original data sets for each salinity 

show that there was a general increase in haemolymph haemocyanin as the salinity increased:  

salinity 35 = 11.767 mmol, 40 = 37.713 mmol, 45 = 151.025 mmol), 50 = 95.026 mmol.  
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The activity level of the lobsters was also scored from 1-5 (with 1 being active and 5 not responsive 

to stimulus) and analysed as a quantitative assessment of how salinity affects mobility. Activity is 

dependent on the salinity (p = 0.004, df  = 3, χ2 = 13.113). Post hoc Games Howell testing revealed 

that salinity 35 was significantly different from 45 and 50 with activity significantly decreasing as 

salinity increases. 

During the acute trials, significant behavioural changes were observed that were not seen in the 

chronic exposure test: many lobsters that were introduced to salinities of 55 and above immediately 

became quiescent with no movement of legs, eyestalks, antennae or mouthparts. Even after 96h 

was complete they were still exhibiting this response and had not moved from where initially placed 

in the tank, failing to respond to direct stimulus. It was also noted that when animals that had been 

weak but alive at salinities of 55 and above at the end of the trial were returned to normal 

conditions after the experiment, there was no recovery and death followed within a short time (< 24 

hours). 

 

5.5.2 Acute and chronic hypersaline exposure in late-postmoult  Homarus gammarus  

As the 96h LC50 test indicated that late-postmoult lobsters could not survive for 96 hours in salinity 

45 (all died by 72 hours, see Chapter 4), the blood chemistry testing was only attempted up to 

salinity 40, hence salinity 35 and 40 were the only salinities comparable. There were no significant 

differences in protein, pH, lactate, ammonia or haemocyanin concentrations in the haemolymph of 

late postmoult H. gammarus at salinity 40 when compared with the normal salinity 35 (using either 

an independent samples t-test or a Mann Whitney U test depending on the normality of the data 

distribution). Haemolymph glucose concentration was significantly different between salinity 35 and 

salinity 40 (p = 0.08, t = -3.16, df = 12). Mean glucose levels for each salinity (1.087 mmol at 

salinity 35 and 1.287 mmol at salinity 40) suggest that haemolymph glucose increased as salinity 

increased. As none of the test lobsters survived the 96h trial at the next stepwise salinity (salinity 

45), this trend could not be investigated further.  
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5.5.3 Haemolymph effects of hypersaline exposure in intermoult Homarus gammarus 

using brine from a discharge site 

As the testing above has indicated that salinity 50 is where most of the changes in the haemolymph 

of H. gammarus became significantly different and where 50% of the test population died in the 

LC50 trial (although the probit analysis gave the salinity point 48.9 [45.8– 61.1]), it was decided to 

test the haemolymph condition of lobsters housed in brine from a gas cavern discharge site at this 

salinity against artificial aquarium salt at this salinity as well as at normal sea water at salinity 35. 

This would then indicate if gas cavern discharge had a different effect on the physical condition of 

the lobsters to generic hypersalinity with regards to differences in specific ionic composition 

between brine and artificial sea water. 

i. SALINITY 50 (BRINE) TO SALINITY 50 (AQUARIUM SALT) HAEMOLYMPH COMPARISON 

IN H. GAMMARUS 

The only parameters to have significant differences between lobsters tested in seawater with the 

salinity increased via aquarium salt or with brine effluent from the Aldbrough gas caverns, were pH 

(p < 0.001, z = -3.582) and haemocyanin (p = 0.015, z = -2.428). The mean values for each salinity 

type show that the pH of the haemolymph was higher when the lobster was in brine effluent (pH =  

7.721) than in "Instant Ocean" (pH = 7.392). Haemocyanin levels in the haemolymph were much 

higher in lobsters from brine effluent (HCY = 245.187) than from "Instant Ocean" (HCY = 95.025). 

All the haemolymph HCY values for lobsters housed in brine effluent were proportionately higher 

than the values for lobsters housed in sea water made with Instant Ocean™. In contrast, the 

haemolymph metals (as indicated by section 5.4.6) all are lower in concentration in the effluent 

brine than in the equivalent aquarium salt based media. 

ii. SALINITY 50 (BRINE) TO SALINITY 35 (NORMAL SEA WATER) HAEMOLYMPH 

COMPARISON IN H. GAMMARUS 

An independent samples t-test showed no significant differences between lobsters acutely exposed 

to 50 psu brine created with effluent from the gas caverns and lobsters held in normal 35 psu sea 

water for glucose, lactate, protein and pH (p>0.05). Haemocyanin and ammonia showed 

significantly higher levels in lobsters from brine effluent (p = 0.002, df = 8, t = -4.667 for 

haemocyanin, p = 0.008, df = 17, t = -3.002 for ammonia).  The activity of the lobsters was not 

significantly different between brine effluent and aquarium salts.  
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Haemolymph haemocyanin had a much higher mean value (245.2 mmol) at 50 psu brine effluent, 

than in normal seawater at 35 psu under otherwise identical conditions (11.8 mmol), ammonia also 

showed higher concentration in haemolymph of lobsters exposed to brine effluent 50 psu (6.5 

mmol) than in normal seawater at 35 psu under otherwise identical conditions (3.2 mmol).   

When comparing the results of artificial aquarium salt at 50 psu to artificial aquarium salt at 35 psu, 

in lobster haemolymph from artificial aquarium salt at 50 psu there was no significant difference 

between ammonia at 50 psu and 35 psu (p > 0.05). Under artificial aquarium salt only there was a 

significant difference in haemocyanin at 35 and 50 psu (p < 0.001). The mean haemocyanin level 

in the haemolymph from 50 psu was 95.0 mmol. This concentration is considerably less than that 

found in lobster haemolymph when effluent brine was used (245.2 mmol). The difference at 50 psu 

between artificial and effluent brine is statistically significant (p = 0.05). 

 

5.5.4 Effects of hypersalinity on lobster haemolymph.  Intermoult H.  gammarus to 

late postmoult  H. gammarus comparison 

As described previously in Chapter 4, the late-postmoult lobsters only survived the trial up to 

salinity 40. So here, the properties of their haemolymph at this salinity were compared to those of 

intermoult lobsters at the same salinity to see if the moult stage may be having an effect on their 

physiology’s response to supranormal salinities. For example, if the lobster can survive in the 

intermoult stage at e.g. salinity 40 or 45, but cannot survive this when it enters the moult, it is useful 

to know what changes may have prompted the reduction in survivability. Hypersaline solution was 

made using Instant Ocean™ aquarium salts. 

Protein (p = 0.001, z = -3.354), haemocyanin (p = 0.047, t =t 2.177, df = 14), ammonia (p = 0.001, z 

= -3.334), and pH (p < 0.001, t = -8.864, df = 14) and mobility of the lobsters (p = 0.037, t = 2.301, 

df = 14) all showed significant differences between different stages of the moult cycle at the same 

salinity (salinity 50). Glucose and lactate showed no significant differences between intermoult and 

late-postmoult status. Mean values for these parameters indicate higher concentrations of 

haemocyanin and ammonia in late-postmoult lobsters, with protein, pH and activity levels all higher 

in the intermoult lobsters (Table 5.7). 
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Table 5.7 Mean haemolymph concentrations of significantly different parameters (indicated by*) 

between intermoult and postmoult lobsters at salinity 40. n = 39 total. 

Mean values indicate higher concentrations of haemocyanin and ammonia in late-postmoult lobsters, 

with protein, pH and activity levels all higher in the intermoult lobsters. SE = standard error of the mean. 

Parameters showing 
significant 
differences between 
moult stage 

Mean level in 
intermoult 
lobsters 

SE for 
intermoult 
lobsters 

Mean level 
in postmoult 
lobsters 

SE for 
postmoult 
lobsters 

Protein* 9.24 mg l-1 0.47 5.514 mg l-1 0.28 

Haemocyanin* 28.38 mmol 8.46 53.63 mmol 7.34 

Ammonia* 5.42 mmol 0.50 13.41 mmol 1.55 

pH* 7.814 0.02 7.56 0.02 

Activity level* (1 high 

activity, 5 no activity) 
1.66  0.29 2.71  0.36 
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5.5.5 Acute hypersaline exposure in intermoult  Cancer pagurus  

Only acute hypersalinity testing was carried out for C. pagurus due to limited availability of crabs as 

previously explained. Significant salinity-dependent differences were found in the glucose levels of 

the blood at different salinities (p = 0.003, df = 3, χ2 = 13.69). Post hoc testing (Games Howell) 

revealed that salinity 35 was significantly different to salinity 45 in terms of haemolymph glucose 

level. Means of the haemolymph glucose levels for each salinity did not indicate an obvious linear 

change as salinity increased from the normal 35 psu through the hypersalinities (Table 5.8) 

There were significant salinity dependent differences in the blood ammonia (p < 0.001, df = 3, χ2 = 

39.46) of C. pagurus, with ammonia concentration from lobsters at salinity 35 being significantly 

different from those at salinity 45 and 50. Haemolymph ammonia concentration at salinity 40 was 

also significantly different to that at salinity 50. Mean blood ammonia values at each salinity level 

indicated a decrease in ammonia as salinity increased (Table 5.8). Therefore it can be concluded 

that when exposed to hypersaline shock of salinity 45 and above (from the normal of 35), C. 

pagurus produces significantly less ammonia than normal. 

The activity level of the crabs was also scored from 1-5 (with 1 being active and 5 not responsive to 

stimulus) and analysed as a quantitative assessment of how salinity affects mobility. Activity is 

dependent on the salinity (p < 0.001, df = 3, χ2 = 27.77). Post hoc Games Howell testing revealed 

that the activity level of crabs at salinity 50 was significantly different from those below and that the 

activity level at salinity 35 is also significantly different from that at salinity 45. Mean activity values 

indicated that activity decreased as salinity increased (at salinity 50 all crabs died before the 96h 

experiment was completed) (Table 5.8). 

Haemocyanin, protein, pH and lactate showed no salinity-dependent differences in Cancer pagurus 

acutely exposed to hypersalinity. 

 

 

 



130 
 

Table 5.8  Mean values and standard erros of the mean for haemolymph parameters that showed 

significant (indicated by *) salinity dependent differences in intermoult C. pagurus, n =52 total. 

Parameters 
showing salinity 
dependent 
differences 

Mean level: 

Salinity 
35 

SE at 
35 

Salinity 
40 

SE at 
40 

Salinity 
45 

SE at 
45 

Salinity 
50 

SE at 
50 

Glucose (mmol)* 0.59 0.03 0.26 0.12 0.27 0.08 0.50 0.16 

Ammonia (mmol)* 311.14 50.34 381.22 119.57 61.12 6.21 16.93 2.75 

Activity level* (1 

high activity, 5 no 

activity) 

1.20 0.13 1.71 0.38 2.79 0.24 5.00 0.22 
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5.5.6 Acute and chronic hypersaline exposure in intermoult  Necora puber  

Haemolymph protein levels showed a significant change in the chronic exposure trial for Necora 

puber (p < 0.001) (Figure 5.12a) and was the only parameter to show a significant change in the 

acute exposure trial (p = 0.002). In the chronic exposure trial the significant increase occurred once 

the salinity reached 55. In the acute exposure trial salinities 45 and 50 are significantly higher than 

35 in terms of haemolymph protein (p = 0.002). These changes were not observed for either of the 

control groups. 

Haemolymph pH decreased significantly in the chronic exposure trial in crabs at salinity 55 (p < 

0.001) (Figure 5.12b) and also in the chronic exposure trial control group, where haemolymph pH 

after 4 days had a significantly lower pH than after 16 days (p = 0.001) (Figure 5.13a). Unlike the 

test animals which showed a change at a salinity of 55, the control results show differences in pH 

between 16 days and 4 days alone, hence suggesting that it is salinity rather than the time spent in 

the experiment that is causing the change in the blood pH seen in the test group. The acute trial 

showed no significant change in pH for both the test and control groups. 

Glucose was significantly higher in the haemolymph (p < 0.001) at salinity 55 for the chronic 

exposure test group than in blood from lobsters in salinities lower than this (Figure 5.12c), when 

compared to haemolymph glucose levels in crabs from lower salinities. In the control group glucose 

levels were significantly higher after 4 days exposure than those recorded after 24 days (Figure 

5.13b). This suggests differences in the haemolymph glucose are caused by the salinity change 

alone and not the experimental procedure or handling activities. The acute exposure test group and 

control showed no significant changes in glucose levels. 

For the chronic exposure group, haemolymph lactate increased significantly at salinity 55 (p < 

0.001) (Figure 5.12d) and no significant changes occurred in the control group. In the acute 

exposure test and control groups there were no significant changes in lactate. 

Haemolymph ammonia levels increased significantly (p < 0.001) in the chronic exposure test group 

once the salinity reached 55 (Figure 5.12e). This change was not seen in the control group or in the 

acute exposure trial or control. 

Haemocyanin (HCY) levels exhibited a significant decrease in the chronic exposure trial (p = 0.040) 

with haemolymph HCY concentration in N. puber from salinity 60 being significantly different to the 
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others (Figure 5.12f). No significant differences in HCY were observed in the chronic control, or in 

the acute exposure test and control groups. 

In the chronic exposure test group there were no significant changes between the mean 

haemolymph values at salinity 55 and 60 for any of the variables measured with the exception of 

HCY which exhibited a continued significant decrease between salinities 55 and 60 (p = 0.040). 

No crabs died during the chronic tests but, in the acute tests, animals at salinity 55 and 60 died 

before the end of the experiment, hence haemolymph changes were not observed as the crabs 

died quickly in these salinities before any blood could be drawn. During the acute test, significant 

behavioural changes were observed that were not seen in the chronic exposure test. Crabs that 

were introduced to salinities of 50 and above immediately drew their legs in tightly underneath the 

abdomen and appeared to cease all visually observable activity completely with no movement of 

legs, eyestalks, antennae or mouthparts. Even after several hours they were still exhibiting this 

closure response and had not moved from where initially placed in the tank, failing to respond to 

direct stimulus. It was also noted that animals that had been weak but alive at salinities of 55 and 

above were returned to ambient conditions after the experiment, there was no recovery and death 

followed within a short time (< 24 hours).   
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Figure 5.12  Necora puber, chronic hypersaline exposure test group. Showing haemolymph parameters 
where significant, salinity-dependent changes occurred. Means (+/- SE). n = 42 total.  
* indicates the haemolymph variable had significantly different levels when compared with levels from 
crabs kept at all salinities below (significance is at the 0.01 level). 
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Figure 5.13 Necora puber, chronic exposure control group. Showing haemolymph parameters where 
significant, time-dependent changes occurred. Means (+/- SE). n = 42 total.  
Fig 4.7a – 16 days is significantly different to 4 days (p = 0.001) 
Fig 4.7b – post hoc testing indicated two subgroups (a and b) with only 4 days and 24 days being 
significantly different with no overlap between the groups (p = 0.002) 

 

 

 

All animals died in salinities 55 and 60 in the acute exposure group so these salinities were not 

included in the statistical analysis as no blood could be sampled from dead animals. 

  

Days in Salinity 35

4 days 8 days 12 days 16 days 20 days 24 days

pH
 fo

r c
on

tro
l g

ro
up

0

2

4

6

8

10

Days in Salinity 35

4 days 8 days 12 days 16 days 20 days 24 days

G
lu

co
se

 fo
r c

on
tro

l g
ro

up
 m

g 
l-1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

a
  

Fig 5.13a Fig 5.13b 

a b 

a b a b a b b 



135 
 

5.6 Discussion 

5.6.1 Summary of findings 

The crustacean species tested all showed significant changes to haemolymph constituents when 

salinity exceeded 40. Necora puber was the least sensitive in terms of haemolymph changes with 

significant changes in haemolymph properties occurring at salinities 55 and 60. Cancer pagurus 

was also was insensitive to hypersalinity in terms of haemolymph constituents with significant 

changes observed only in ammonia production and their overall activity level.  

The poorer ability to cope with hypersaline conditions when recently moulted was further 

highlighted by the difference in the blood chemistry demonstrated when comparing the intermoult 

lobsters to the late postmoult lobsters at salinity 40. The softer shelled animals had statistically 

lower activity levels, haemolymph pH and protein levels, and statistically higher haemolymph 

ammonia and haemocyanin levels than the intermoult lobsters under identical testing regimes. 

When comparing the effects of Gcb to Aqb at the same salinity, both pH and haemocyanin were 

significantly higher in the blood of lobsters situated in the Gcb than in brine created from aquarium 

Aqb. However all the metallic ions tested for were lower in the Gcb.  

As all of the Necora puber in the acute exposure trial died before the end of the salinity 55 and 60 

sections (leading to an LC50 of salinity 41.9, see chapter 4), there were minimal changes observed 

in the haemolymph parameters, with only protein showing a significant response at the lower 

salinities as salinities 55 and 60 could not be included in the statistical analysis. All of the 

haemolymph parameters tested for the chronic exposure group showed a significant change, with 

most of the haemolymph levels showing an increase with increasing salinity. As these changes 

were not replicated in the controls, any significant differences seen at higher salinities in the test 

group are considered to be caused by the salt not the handling.   

Of the three species tested, Cancer pagurus had the highest tolerance to hypersalinity, with an 

LC50 under acute hypersaline stress of salinity 55.5.  Like the other crustaceans, C. pagurus  also 

experienced salinity dependent changes to the blood chemistry, although only ammonia and the 

mobility/activity of the crabs were affected with significant decreases in both of these parameters 

once salinity reaches 45, indicating that this is the point at which the crabs begin to be affected by 

the hypersaline conditions. 
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Of note is that the analysis of the seawater performed by the University of Hull’s chemistry 

department has produced values for Mg, K and Ca that are approximately 30%-50% lower than in 

the other global examples shown in Table 5.3. This may be purely down to the lack of repetition 

resulting in means not being able to be calculated for any of the elements, but may also be 

indicative of an error with the ICP-OES machine or the dilutions prepared by the operator. 

Statistical calculations were performed correctly with the data provided from the ICP analysis. 

Nevertheless, what was being compared in this study was how these elements in the haemolymph 

of crustaceans change with changing salinity, hence where crustaceans appear to show a 

conformer or regulator type of pattern for the blood composition, because the same machine and 

the same technique was used for all analysis within this thesis, the general trends are therefore 

valid. These lower figures for Mg, K and Ca must be borne in mind however by anyone using the 

information herein to directly compare these elements to their own results for crustacean 

haemolymph or water analysis. 

 

5.6.2 Ionic haemolymph  

In the adult Necora puber intermoult chronic trial sodium (Na) appears to show no change with 

increasing salinity. In the chronic trial and the acute trials on Homarus gammarus, late postmoult H. 

gammarus and Cancer pagurus sodium in the haemolymph increases significantly with increasing 

salinity suggesting that when acutely exposed these species do not have the same ability to 

regulate that is seen when given time to acclimate (as seen in the chronic trial for H. gammarus). 

N. puber appears to maintain the haemolymph levels of Na a little lower than the external 

concentration. The major contributor to blood osmolality in euryhaline crabs is sodium-chloride, and 

thus the regulation of the fluxes and permeability of these two ions is central to the animals' ability 

to tolerate salinity gradients (Towle 1997). The magnitude of Na+ gradients appears to be the key 

parameter influencing relative sensitivity to copper in osmoregulating organisms (Grosell et al. 

2007). Several transport systems have been suggested for the transport of sodium across the gill 

epithelium, each possibly participating in the transepithelial uptake of sodium ions into the 

haemolymph (Figure 5.14) (Towle 1997).  

Of note is that the levels of approximately 200 mmol l-1  found in the chronic trial for haemolymph 

Na in H. gammarus are much lower than those observed in Homarus americanus in normal 
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seawater conditions: approximately 470 mmol l-1 (Taylor and Whiteley 1989) or in H. gammarus at 

approximately 490 mmol l-1 (Lucu and Devesconi 1999). Whether the low figure found here in the 

chronic trial is an error in the ICP-OES analysis, or due to a factor such as starvation is unknown. 

However, sodium was noted as decreasing in Gammarus duebeni under hyposaline stress, and 

under hypersaline stress the same species showed a lower level of sodium in the body when 

starved when compared to fed animals (Sutcliffe 1971) so the results herein may not be unusual.  

 

Figure 5.14   Candidate transport systems involved in Na+ uptake across epithelial cells of euryhaline crab gill. The 

basolateral sodium pump is believed to couple the hydrolysis of ATP to NA+ extrusion into the blood in exchange 

for K+ or NH4+. Suggested apical uptake systems include (left to right) the Na+/H+ antiporter, the epithelial Na+ 

channel, and the Na+/K+/2C1~ cotransporter. After Towle (1997).  
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In the adult lobster intermoult chronic trial magnesium (Mg) increased with increasing salinity that 

was not observed in the control. The same increase was seen in the acute trial and in late 

postmoult H. gammarus, as well as in the chronic trial for N. puber. These results suggest there is 

a lack of a firm regulatory mechanism for this element in these species however, the levels 

although increasing with increasing salinity, are still maintained lower than those found externally. 

In C. pagurus, magnesium was significantly different at different salinities, but there was no similar 

trend in the holding water, so for C. pagurus there was no clear pattern of hypo/hyper–

ionoregulation or ionocomformation. Hyporegulation of magnesium, as seen in the present study, is 

the most common feature of ionic regulation in crustacean blood (Brown and Terwilliger 1992). All 

crustaceans tested in the present study showed decreased activity levels with increasing salinity 

and the anaesthetic effects of Mg are therefore likely to be a factor in the quiescence. In the crab 

Pachygrapsus crassipes the blood magnesium concentration is lowered when the crab is 

immersed in a medium absent of Mg and raised when the medium Mg is abnormally high (Gross 

and Marshall 1960). Regulation of magnesium is necessary to facilitate neuromuscular 

transmission and is a characteristic feature of ionoregulation in active decapod crustacea (Dehnel 

1964). The role played by Mg in neuromuscular transmission is shown by low haemolymph 

magnesium levels being often associated with high levels of activity or a greater degree of 

terrestrial behaviour in crustaceans (Brown and Terwilliger 1992) and high magnesium levels are 

often used to anaesthetise marine invertebrates for laboratory analysis.  

In the adult lobster intermoult chronic trial it appears that calcium (Ca) may be exhibiting a 

decrease in concentration as external salinity is increased that was not replicated in the control or 

the acute trial. In late postmoult H. gammarus Ca increased in correspondence with increasing 

environmental salinity. No change was seen in N. puber in either the acute or chronic trial and in C. 

pagurus although significant differences in concentration were observed there was no clear trend 

and hence no evidence of iono-regulation or conformation. Ca has different effects on different 

crustaceans, in the Australian yabbie Cherax destructor, apparent water permeability (AWP) is not 

affected by either salinity change or Ca levels, however in the crayfish Astacus astacus, salinity 

affects AWP but Ca on its own does not. Carcinus maenas lowers its AWP with decreasing salinity, 

especially when Ca levels are low, but the ability is lost somewhat when Ca levels are higher 

(Rasmussen and Bjerregaard 1995). This suggests that Ca may play a role in osmotic regulation in 

some crustaceans. C. destructor and A. astacus are freshwater species and therefore the lack of 
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Ca in their natural environment may explain why the presence of it in laboratory trials has little 

effect on AWP when compared to the marine C. maenas. In fresh water, where the external media 

is likely to be at a lower osmotic concentration than the body, it may be more energetically 

advantageous to maintain a constant low AWP and instead regulate cell volume through 

mechanisms such as increased urine production. 

Potassium (K) did not consistently increase with increasing salinity as shown by the other elements 

in all three species tested. In the adult lobster intermoult chronic trial it appears that K may be 

exhibiting a decrease in concentration as external salinity is increased that was not replicated in the 

control. In the acute trial on H. gammarus, haemolymph potassium shows peak levels at salinities 

35 and 50 with lower concentrations in between, however the error bars at the extreme ends are 

large and indicate high intraspecific differences in response. Salinity 40 and salinity 50 were where 

the only significant differences occurred indicating no salinity-dependent trend. In late postmoult H. 

gammarus K increased in correspondence with increasing environmental salinity. There was no 

change in the acute trials on C. pagurus or N. puber with increasing salinity. In the chronic trial on 

N. puber, K increased with increasing salinity with haemolymph levels always at a higher 

concentration than the external media. Blood K concentrations are affected by varying 

concentrations of Mg in the external medium of both dilute and concentrated salinities but with no 

definite trend (Gross and Marshall 1960). 

In the adult lobster intermoult chronic trial haemolymph copper (Cu) may increase with increasing 

salinity. In the control, copper was significantly higher but only by the end of the experiment (4 days 

to 20 days) and therefore may have more to do with the starvation than with any handling and 

water change effects. In the acute trial on H. gammarus haemolymph copper shows a peak in 

concentration at salinity 45. In C. pagurus although significant differences in Cu concentration were 

observed there was no clear trend and hence no evidence of iono-regulation or conformation. None 

of the other trials showed significant changes in Cu. Copper (Cu) is an essential micronutrient and 

acts as a co-factor in multiple enzymatic processes, however it is potentially toxic to aquatic 

organisms in higher concentrations (Grosell et al. 2007). In freshwater animals, disruption to 

respiration or osmoregulatory disturbance is often the cause of mortality when high concentrations 

of copper are experienced (Grosell et al. 2002).  
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When comparing the responses of Gcb to artificial Aqb, both at salinity 50, there are significant 

differences in the sodium levels, magnesium levels, calcium levels and potassium levels which 

reflects the degree of osmoregulation/osmoconformation happening in the crustaceans. For the H. 

gammarus chronic trial, it appears that the lobsters are conforming with regards to Mg, hypo-

ionoregulating K and Ca and also regulating Na below the external levels. The increases in the ions 

in the late postmoult lobsters in line with salinity suggest that when acutely exposed, at this stage 

of the moult cycle, there are no physiological methods in place in H. gammarus for regulating Na, 

Mg, K and Ca. When in the intermoult stage it may be that the hard shell acts as a barrier 

protecting the animal, to a certain extent, from any environmental changes. When in the postmoult 

stage, before the shell is fully hardened, this physical barrier is not in place and may help to explain 

why mortality occurs at a lower salinity in softer specimens (as seen in chapter 4). The N. puber the 

chronic trial was the only trial to show any ionic change with increasing salinity and only Ca and Mg 

show change in the control group and do not follow any trend in the water. Hence the changes 

seen in the experiment are likely to be caused by the salinity challenge and not by the handling and 

water change regime. Osmoregulatory crustaceans maintain their haemolymph hyperosmotic to 

the external water by having an exoskeleton, which resists osmotic swelling and has a reduced 

permeability to ions to prevent ion leakage (Lignon and Péqueux, 1990 in Whiteley et al 2001), and 

by active and passive uptake mechanisms for specific ions. During the moult and postmoult stages 

tolerances to environmental variables can change (McLeese 1956; Jury et al. 1994b). Post moult 

(stages A and B) Crangon crangon were more susceptible to mortality caused by Cu and Zn 

exposure than intermoult stages (Price and Uglow 1979). 

The ionic analysis on the water samples clearly shows that there is an increase in the water of 

sodium (Na), magnesium (Mg), potassium (K) and calcium (Ca) as the salinity increases. Copper 

(Cu) is the only element not to show an increase. All three species of crustacean tested showed 

salinity dependent changes in some or all of these parameters, but the majority of the time, even 

though the haemolymph concentrations increased in line with the external increases, the levels 

were consistently maintained somewhat lower than externally available. This increase, but in a 

controlled way, suggests that there is both an element of hypo-iono-conformation and iono-

regulation happening. If there was pure conformation, internal concentrations would match the 

external ones, and if there was full iono-regulation happening, levels would be constant. At the 
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salinities tested, the responses suggest that the crustaceans are affected by the hypersaline 

media, but are not at a point where they are overwhelmed by it.  

 

5.6.3 Osmotic control of internal fluids 

Whereas in N. puber most of the haemolymph parameters increased significantly with increasing 

salinity and were not observed in the control trials, the results for H. gammarus are less clear, with 

the control trials also showing some significant changes.  

The low variability (shown by the error bars in Figure 5.12 for N. puber) at salinities 35 to 50, then 

the sudden increase in standard error at 55 and 60, especially for glucose, lactate and ammonia 

indicates the high ability of N. puber to regulate its internal blood chemistry at the lower 

hypersalinities. However once the test media reaches salinity 55 the mechanisms for regulation 

begin to fail and will occur at different rates in different specimens hence the sudden increase in 

inherent variability in the data. This is in contrast with the findings of Dorgelo (1979) who found that 

N. puber is an osmoconforming species, although this was at a lower salinity range than used here. 

As an osmoconforming species, in the more hypersaline test media used here, it is expected to 

lose water to the external medium and gain salt, (therefore maintaining a similar internal fluid 

osmolarity to the external) thereby increasing concentrations of haemolymph metabolites unless 

these were strictly regulated at such times. 

Some metabolites are not carried naturally in the blood for example lactate, which only occurs with 

anaerobic respiration, so the increases seen here suggest that a physiological stress on the crabs 

caused by hypersalinity is effecting a change in the composition of the haemolymph in addition to 

purely osmotic changes. N. puber may therefore be an osmoconformer in the salinities around 

ambient, but an efficient osmoregulator in hypersalinities, up to 55, at which point the regulatory 

mechanisms fail. A similar phenomenon appears to be happening for H. gammarus although not to 

such a clear extent as seen in N. puber. The larvae of H. gammarus are known to be 

osmoconformers, whilst the adults are (in low salinity) osmoregulators (Charmantier et al. 2001). 

The less clear responses to high salinity in H. gammarus than for N. puber suggests that whilst the 

lobsters are able to regulate in hypersaline media, that this ability is less than for the velvet crab 

and this may be due to a higher intra-species variability in responses (cf error bars in Figure 5.8 

and Figure 5.9 for example, which are greater throughout the whole trial than those for N. puber 
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under the same conditions (e.g. Figure 5.12). Variability may itself be an indicator of stress as 

animals do not respond in a uniform way to environmental changes, and so varying responses can 

indicate that whilst some individuals of a species or population are coping with stressors, others are 

not. As occurred for the species studied here, the concentration of organic molecules (such as 

proteins and sugars) in the haemolymph of the crab Carcinus maenas has also been shown to 

increase at high salinities, mainly by net supply from the tissues. This suggests that organic 

molecules play a role in regulation of the permeability for salts (Spaargaren 1975). 

As C. pagurus was only used in the acute trial and only activity/mobility and ammonia showed a 

salinity dependent response, it is possible that the other parameters that showed no response are 

being well regulated at the salinities in the test. This is in contrast with the results of previous 

studies indicating that C. pagurus is (in low salinities) an osmoconforming crab with limited ability to 

regulate cell volume, but can survive due to being able to tolerate osmotic cell size change 

(Wanson et al. 1983). The significant decrease in ammonia seen in the current trial may indicate a 

shift to another pathway of nitrogen metabolism. This adaptation is seen in C. pagurus under 

emersion stress, where aerial exposure causes a decrease in ammonia production and an increase 

in glutamate production, with the nitrogenous waste being stored in the tissues of the cheliped 

(Regnault 1992). 

 Activity/mobility of the lobsters was also shown to decrease significantly as salinity increased. This 

may be as a result of putting more energy into regulating and coping with the external salinity.  

Hypersalinity is effectively a toxicant, in that it is a factor at levels that are not normally present in 

the environment. Hypersalinities of 45 psu retard limb regeneration in the fiddler crab Uca pugilator 

(Weis 1976) and changes to the physico-chemical proeperties of seawater are known to affect 

metabolism, growth, moult rate/stages and ultimately survival (Staples 1991; Chen et al. 1995).  

Contamination by zinc, 3,4-dichloroaniline, oxygen and ammonia stress has been shown to reduce 

the scope for growth in the freshwater shrimp Gammarus pulex (Maltby et al. 1990) and in the 

Baltic Sea amphipod Gammarus oceanicus, increasing salinity stress lead to a reduced metabolic 

rate, a reduced feeding rate, reduced faeces production and reduced ammonia excretion (Normant 

and Lamprecht 2006). Salinity is also known to affect the toxicity of other substances in seawater. 

In the fiddler crab Uca pugilator low salinity seawater increases the susceptibility of the crabs to 

cadmium poisoning (O'Hara 1973) and in various estuarine and marine isopods the toxicity of 
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mercury is increased by both lower than normal salinities and higher than normal temperatures 

(Jones 1973). Additionally, toxicants that have little or no effect on crustaceans in unstressed 

conditions can, under stressed conditions, affect their ability to cope and adapt to a changing 

environment and so affecting the environmental range and decreasing their chance for survival 

(Bamber and Depledge 1997). 

 

5.6.4 Acid base balance 

After exercise or periods of hypoxia, lactate accumulates in the tissues and haemolymph of 

crustaceans, seen here as a significant increase in lactate in both the N. puber and H. gammarus 

chronic exposure groups at salinity 55. Lactate is produced under these conditions as the main end 

product of anaerobiosis (Fincham and Rainbow 1988; Sneddon et al. 1998) leading to an acidosis 

of the blood evidenced by the significant decrease in pH seen in the chronic test group of N. puber. 

These changes at the higher salinities were not replicated in the controls, suggesting for N. puber, 

that the experimental set up and protocol was not responsible for the differences. This is consistent 

with Wyman et al (1985) who also found that handling and bleeding procedures did not cause 

elevated blood glucose and lactate levels in captive N. puber. The chronic control portion of the trial 

for H. gammarus also showed significant changes in the lactate levels over time however there was 

no evident linear trend, except for a massive increase on the final day of the trial. This increase in 

the control group may again reflect starvation or hypoxic effects rather than any handling or 

disturbance effects as in general in the control group, lactate levels ranged between 0 and 1 mmol 

and in the salinity stressed group ranged between 1 and 7 mmol. 

N. puber has a high aerobic demand with the highest circulating oxygen levels and oxygen carrying 

capacities when compared to other sublittoral crabs such as C. pagurus and Maja squinado (Watt 

et al. 1999). Of these three species, haemolymph PCO2 values and lactate levels were also lowest 

in N. puber, indicating high ventilation rates and a lower anaerobic component to the metabolism 

(Watt et al. 1999). This high aerobic demand is likely to be the reason why N. puber (and also the 

other two species used in this study) cease all observable activities in the highest salinities tested 

here. A build up of acidic metabolites is confirmed by the significant increase in lactate levels in the 

blood. The lactate accumulation accompanied by the significant reduction in blood pH found here 

as well as the additional high oxygen demand found by Watt et al (1999), suggest that N. puber is 
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poorly adapted to respire anaerobically, with the switch to anaerobic respiration occurring in the 

range of salinity 50 – 55.  

The pH of H. gammarus haemolymph showed the opposite response to that seen in N. puber, with 

significant increases in pH with increasing salinity, whereas N. puber showed significant decreases. 

In both the chronic test and control groups, the pH showed an increase with increasing salinity/time 

in the trial, then on the last day (day 24), a decrease in pH. Haemolymph pH is affected by acid 

metabolites such as lactic acid and carbon dioxide. Whereas in N. puber the significant acidification 

of the blood was as expected due to increases in lactate levels associated with hypoxia, the 

alkalisation of the blood of the lobsters is more difficult to explain when they also showed a 

significant increase in lactate levels which would be expected to prompt a drop in pH. 

The Bohr Effect is a property of blood pigments such as haemocyanin where in the presence of 

CO2 and/or a decrease in pH, the oxygen affinity of the pigment decreases meaning that it binds  to 

oxygen with less affinity (Riggs 1988). As a product of the Bohr Effect the significant decrease in 

pH seen in this study for N. puber effected by the significant increase of L-Lactate in the blood, 

caused haemocyanin to carry oxygen to the tissues less effectively, increasing further 

anaerobiosis, and further decreasing the effectiveness of the haemocyanin pigment. The significant 

decrease of haemocyanin pigment found here for N. puber relates to a decrease in the oxygen 

bound haemocyanin rather than the total haemocyanin. This decrease in the O2 bound portion is 

consistent with the lactic acidosis and anaerobic metabolism that has been shown above. The 

decrease in pH may also be the result of a build up of carbon dioxide in the tissues and 

bloodstream due to the closure effect exhibited by the crabs in the highest two salinities (whereby 

the crustaceans stop all observable behaviours and curl their legs beneath themselves, a 

behaviour suggested by Curtis et al (2007) that has the effect of preventing exchange across the 

gills), further enhancing the Bohr shift. When given time to acclimate to hypersalinity (as in the 

chronic exposure trial) there were no significant changes observed for haemocyanin levels in H. 

gammarus. However, when acutely exposed to an abrupt increase to ambient salinity, significant 

increases were observed in HCY levels with increasing salinity, which is in contrast to the findings 

for N.puber as is the significant increase in pH. Therefore it appears that salinity is having the 

opposite effect on H. gammarus as it does on N. puber. N. puber also appears to react differently in 

hypersaline conditions cf hyposaline. The results here suggest N. puber is in fact an effective 

regulator up to salinity 55 which is in contrast to the findings of Whiteley et al (2001) who 
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suggested that N. puber lacks ion and osmoregulatory mechanisms and this is why thirty percent 

seawater (10 psu) had no effect on haemolymph acid–base adjustments.  

Some crustaceans can increase the alkalinity of their blood to counter the Bohr shift (Taylor 1982; 

Hagerman and Uglow 1985; Truchot 1993) mainly through hyperventilation under hypoxic 

conditions. This may be an adaptation designed to counter the potential reduction in the oxygen 

affinity of haemocyanin caused by changes in the ionic concentration of the blood when exposed to 

changing salinities, therefore ensuring that under endurable salinity changes the O2 transport of the 

blood can be maintained at least for a limited time. This adaptation may, under normal field 

conditions such as during a tidal cycle, be sufficient to help the animal survive environmental 

salinity fluctuations. However this adaptation was not seen here in N. puber suggesting that N. 

puber is poorly adapted to long term hypersaline exposure. It may be possible that the increases in 

pH seen for H. gammarus are indicative of a mechanism like this for compensating for acidosis. 

Under aerial exposure 75% of the buffering capacity of H. gammarus against haemolymph acidosis 

was accounted for by bicarbonate ions at 10 °C (Whiteley and Taylor 1990). In Crangon crangon 

haemocyanin production was increased in mild hypoxic conditions but under starvation, 

haemolymph haemocyanin levels decreased (Hagerman 1986), the same was found for starved H. 

gammarus (Hagerman 1983). These findings may explain the significant decrease in haemocyanin 

seen in N. puber, as in addition to acidosis of the blood causing a drop in the O2 bound portion of 

haemocyanin, animals that survived to the end of the chronic experiment were not fed for 24 days 

(no changes in haemocyanin were found for H. gammarus and C. pagurus).  However, if high 

environmental salinity is experienced in the field, inducing the closure response observed here in 

all three test species, then starvation would be likely to occur as the crabs do not move and so 

quickly die, there is no adaptation to salinities of 55 and above even after 96h have elapsed.  This 

closure response induced by hypersaline exposure means there will be no aerobic respiration and 

no feeding; leading to a lower O2 bound portion of haemocyanin and less haemocyanin production.  

 

5.6.5 Glucose metabolism 

The significant decrease in glucose (hypoglycaemia) seen in the N. puber chronic control group 

between the first 4 days and the final 4 days is caused by the long period of starvation (24 days) 

experienced during this test, as the control group had an absence of any other stressors (such as 
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the hypersaline media). The additional stress caused by the hypersalinity experienced in the test 

group had a stronger effect on the crabs than starvation, effectively overriding the hypoglycaemia 

caused by starvation with a resultant significant increase in glucose (hyperglycaemia) in the group 

exposed to the hypersalinity. In both the chronic and acute trials for H. gammarus, glucose also 

showed significant increases with increasing salinity, which were not shown in the control animals, 

therefore as with N. puber, salinity had an effect on the glucose concentration in the lobsters. In the 

late postmoult trial, glucose was the only parameter of the haemolymph tested which showed any 

salinity dependent changes, showing a significant increase between salinity 35 and 40. 

 As all C. pagurus in the 55 psu 96h test died before the 96 hours were completed no blood results 

could be gained from them. However the fact that 100% mortality occurred at salinity 55, and the 

significant decrease in activity as salinity increases, suggests that should they be exposed to such 

a high hypersaline shock in their natural environments for more than a short period it may cause 

high mortality of specimens around the minimum landing size. This could be potentially very 

detrimental to commercial fisheries.  

Hyperglycaemia, as seen in the test crabs and lobsters as a significant increase in glucose at 

salinities of 55 and above in the chronic trial, is recognised as an indicator of stress in crabs 

(Lorenzon 2005). Starvation is a common cause of hypoglycaemia in crustaceans. In a similar 

experimental timescale, Hervant et al (1999) found that 28 day nutritional stress caused 

hypoglycaemia in the amphipod Gammarus fossarum. A strong hyperglycaemic condition 

developed in the first 12 h of emersion of Maja squinado during a switch to anaerobic metabolism 

(Durand et al. 1999). In Libinia emarginata asphyxia caused a significant degree of 

hyperglycaemia, thus further supporting the suggestion in this study that hypersalinity causes an 

internal hypoxia in N. puber. It is also known that emersion stress resulted in hyperglycaemia and 

increased lactate levels in C. pagurus with an associated significant increase in crustacean 

hyperglycaemic hormone (CHH) (Webster 1999). It is thought that hyperglycaemia in crustaceans 

under stress is caused by the release of glycogen from stored polysaccharides (mainly in the 

hepatopancreas) which in turn is converted to glucose (Hall and van Ham 1998). 
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5.6.6 Ammonia metabolism 

Ammonia is the principal nitrogenous waste product in aquatic crustaceans and is excreted via the 

gills. In H. gammarus haemolymph ammonia showed significant increases in both the acute and 

chronic trials that were not replicated in the controls. Both showed that the normal salinity 35 was 

significantly different to those above indicating that the hypersaline challenge is having an effect on 

the ammonia production in this species. Ammonia has also been shown in this study to significantly 

increase at salinity 55 in N. puber chronically exposed to hypersalinity. This change was not 

observed in the control group. The increases in ammonia in H. gammarus and N. puber are in 

contrast to what was found for C. pagurus which shows a significant decrease with increasing 

salinity. Significant increases of ammonia suggest that it is being retained in the haemolymph 

rather than being excreted via the gills. High salinity stress has been shown to decrease the rate of 

ammonia excretion in the shrimps Metapenaeus monaceros (Pillai and Diwan 2002) and Penaeus 

mondon (Chen et al. 1994). 

In addition to the changes in glucose discussed above, changes in ammonia excretion rates or 

haemolymph levels are also widely recognised as indicators of stress in crustaceans (Aarset and 

Aunaas 1990; Schmitt and Uglow 1997; Bergmann et al. 2001). In several decapod crustaceans, 

ammonia excretion tends to increase when animals are hyperosmoregulating and decrease when 

they are hypoosmoregulating (Lee and Chen 2003). 

The retention of ammonia in the haemolymph of chronically exposed N. puber and H. gammarus is 

a product of a decrease in cardioventilatory activity (see chapter 6) and the closure response 

observed in the test specimens (explained in section 5.6.4) and suggests that the crabs are trying 

to maintain an internal osmolarity that is lower than that of the external media by stopping the 

fluxes across the gills. With the gills and heart not functioning effectively there will be a build up of 

ammonia in the haemolymph and the significant increases in the bloodstream seen here suggests 

that the crab is inadequately discharging waste. From the responses of C. pagurus it appears that 

these crabs are not reacting in response to hypersalinity with either aerobic or anaerobic 

metabolism. The metabolism has slowed down to such an extent that there is no change in the 

parameters. The crabs are evidently reducing production of ammonia as it is not present in the 

haemolymph. It is possible that when faced with hypersaline challenge, a metabolic switch 

happens and ammonia stops being the end product of nitrogen metabolism. The crabs could be 
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instead producing urea or uric acid as the salinity increases. Under emersion stress the spider crab 

Maja squinado reduced ammonia excretion and stored ammonia in both the blood and tissues. It 

also increased urate production, indirectly decreasing ammonia production (Durand et al. 2000), 

and under similar conditions C. pagurus decreased ammonia production and increased glutamate 

production, again storing nitrogenous metabolic products in the tissues (Regnault 1992).   

 

5.6.7 Haemolymph protein 

In the chronic exposure group, significant increases in serum protein levels at salinity 55 were 

observed for N. puber that were not seen in the control. In the chronic exposure trial of H. 

gammarus intermoult adults the opposite was seen, with protein showing a decrease with 

increasing salinity which became significant at salinity 50. These changes were not seen in the 

acute trial.  

The significant increases in blood protein seen in both the acute and chronic exposure tests for N. 

puber could be indicative of internal dehydration of the tissues caused by increased 

external>internal osmotic gradient at the higher salinities. However it may also be indicative of an 

increase in the stress proteins (heat shock proteins). Environmental stressors such as changes in 

temperature and oxygen levels can induce the production of stress proteins which act to prevent 

protein aggregation and to maintain functionality of the organism (Chang et al. 1999). Salt stress 

has been shown to induce the production of stress proteins (heat shock proteins) and 

metallothionein-like proteins in a range of organisms  including the crustaceans  Eurytemora affinis 

(an estuarine copepod)  (Gonzalez and Bradley 1994; 1995) Homarus americanus (Chang 2005) 

and Callinectes sapidus (De Martinez Gaspar Martins and Bianchini 2009). In C. sapidus it was 

found that stress protein production was a branchial response induced by the calcium 

concentration in the environment. It is not clear why the protein decreases significantly in lobsters 

under the same hypersaline challenge as N. puber. 

In C. sapidus, increased gill metallothionein like protein concentration in low salinity is an adaptive 

response to hypo-osmotic stress. This response is mediated, at least in part, by the calcium 

concentration in the gill bath medium (De Martinez Gaspar Martins and Bianchini 2009). In the 

larvae of many decapod crustaceans, when under severe nutritional stress, there is usually a 

preferential degradation of lipids. Under moderate malnutrition internal lipid reserves may partially 
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be invested to complement insufficient nutrients available for growth and morphogenesis (Anger 

1998). The regulation of intracellular osmotic effectors affects the amino-acid metabolism and 

hence the protein composition under osmotic stress. Extracellular osmoregulation, is associated 

with energy expenditure for active ion transport, involving the breakdown of energy-rich compounds 

such as lipids. These mechanisms produce biochemical changes in terms of lipids and proteins in 

response to salinity variation (Torres et al. 2002). In the decapod shrimp Penaeus setiferus, in 

unfed animals ammonia excretion diminished in direct proportion to the decrease of dissolved 

oxygen (DO), whilst fed animals were ammonia-regulators. In low salinity the animals maintained 

proteins as their energy substrate at all levels of DO, while in the case of full seawater (salinity 35) 

the shrimp changed the metabolic substrate from lipids-proteins to proteins suggesting that 

juveniles are capable of changing their energy substrate in response to salinity and DO changes 

and that a pool of free amino acids, whether of muscular or nutritional origin, are the key to this 

strategy (Rosas et al. 1999).  

Serum protein levels are decreased by starvation and can be affected by temperature. It can also 

be an indicator of body weight and quality of diet (for review see Lynch and Webb 1973). In the 

amphipod Orchestia gammarellus there was an inverse relationship between haemolymph protein 

and acclimation salinity (Spicer and Taylor 1987). Lynch and Webb (1973) found that in female 

specimens of estuarine Callinectes sapidus there was a positive correlation between salinity and 

total serum protein levels attributed to increased synthesis of intracellular amino acids related to 

the spawning cycle. As N. puber is a marine rather than estuarine species, it is unlikely that this is 

the case here, and that the increases in protein are due to another biological mechanism. As long 

as hypersaline discharges are limited to within the tolerance range of N. puber there should not be 

any variation in survival between winter and summer months with regard to the parameters tested 

here, as long as any heat present in the discharge from the mining activity dissipates quickly. 

Dorgelo (1979) found that in N. puber temperature does not influence the blood osmolarity within 

the non-lethal salinity range. 
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5.6.8 Final points 

The blood parameters tested for here cannot be considered separately, there are many studies 

showing that there are links between them and that alterations in one parameter, both organic and 

inorganic can lead to changes in another. For instance, carbonic anhydrase is an enzyme in 

aquatic invertebrates that facilitates rapid equilibration between molecular CO2 and HCO3
- and 

serves in gas exchange and acid–base balance regulation (reflected in pH and lactate values). In 

the crabs Chasmagnathus granulata and Callinectes sapidus this enzyme is sensitive to copper 

(Vitale et al. 1999; Skaggs and Henry 2002) suggesting that it may play a role in copper induced 

disturbances to the acid–base balance. HCO3
- and H+ not only affect acid–base equilibria but also 

act as counterions in the transfer of Cl- and Na+ across plasma membranes via electroneutral ion 

transporters between the extracellular space and either the ambient water or the intracellular 

compartment (Whiteley et al. 2001). Brown and Terwilliger (1992) hypothesised that in Cancer 

magister, Ca and Mg may be involved in modulating the oxygen binding properties of haemocyanin 

as these elements have already been implicated in affecting the oxygen affinity of haemocyanin 

from a number of crustacean species (Larimer and Riggs 1964; Truchot 1975). In Carcinus 

maenas both ions decrease the O2 partial pressure at 50% saturation, and Mg2+ increases the Bohr 

factor (Truchot 1975). In osmoregulating crabs, transfer from marine to low salinity results in a 

metabolic alkalosis in the haemolymph that can be transient or persistent (Whiteley et al. 2001). 

For some animals living in hypersaline waters, what appears to be the upper limit of salinity 

tolerance may in fact be the lower limit of dissolved oxygen tolerance as the solubility of oxygen 

decreases with increasing salinity (Bayley 1972). 

The differences found in C. pagurus may be due to high intraspecific variability in this species, or 

rather the fact that there are few significant differences in C. pagurus (and none in the N. puber 

acute trial) may also suggest that there is a strong degree of regulation happening as nothing 

changes significantly with salinity. This is likely to be the case for C. pagurus as it has a high 96h 

LC50 (salinity 55.5) despite being the acute trial, however in the case of the acute N. puber trial, the 

96h LC50 (salinity 41.9) was low and the reason there are no significant changes in the 

haemolymph parameters may be due to death occurring so quickly that the changes could not be 

seen. It may be therefore that is not the changes in the blood chemistry in this case that led to the 

death of the organism (at least those blood chemistry changes that were recorded) but rather 
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something else happening e.g. the cessation of respiration/cardioventilatory behaviour, although it 

would be expected that this would prompt some sort of change to the haemolymph. 

The salinities where 100% mortality occurred (as evidenced in chapter 4) indicate that at this point, 

regardless of what is happening in the body, the animals are unable to handle hypersalinities. This 

is especially true for the late-postmoult lobsters which could not survive hypersalinity at all past 

salinity 40. It is envisaged from these results and those of the intermoult adult lobsters (which could 

tolerate higher salinities than the soft) that early-postmoult lobsters would be even less tolerant of 

changes to environmental salinity, due to having no hard shell to act as a barrier and the 

implications of this finding for population survival in areas of brine discharge is a concern.  
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5.7 Conclusions  

Elevated salinity is toxic, both lethal and sublethal, to the species studied. When given sufficient 

time to acclimate, significant changes in protein, pH, glucose, ammonia and haemocyanin levels 

occur in Homarus gammarus and Necora puber which are characteristic of those found during 

periods of hypoxia in other decapod species. In general, the responses seen here indicate that 

when in higher than normal salinities, H. gammarus is a weak regulator, with the ionic composition 

of the blood increasing with the external increases in ion concentration, although maintaining the 

haemolymph at a slightly lower level than externally. Lobsters in the late-postmoult stage have 

been shown to be less tolerant of salinity change than their intermoult counterparts, and even when 

the carapace is approaching full hardness the animals cannot tolerate salinities over 40. Cancer 

pagurus has the highest tolerance of the three species studied at salinity 55.5 (96h LC50). The 

fewer indicators of haemolymph change in this species when compared with the other test species 

suggests a stronger degree of osmo and iono regulation in C. pagurus which is supported by the 

highest mortality point of the species tested. When exposed to a hypersaline environment this 

study has shown that N. puber is able to strictly regulate the haemolymph variables within the 

salinity range 35 – 50 units. Subsequent changes require a more prolonged acclimation period 

otherwise they are lethal. The inability of N. puber to survive at salinities of 55 and 60 in the acute 

trial indicates that they cannot cope with the sudden changes that this induces. 

The changes shown in haemolymph variables may be eventually lethal or, given additional time 

may be restored to normal (normoxic values/normal salinity values). Ultimately for the purposes of 

keeping commercial fisheries sustainable, brine discharges should be limited at tolerance level of 

the species with the lowest tolerance, in this case N. puber, hence by limiting the discharge to keep 

this species alive in the affected area, it therefore keeps the other commercially important species 

which have higher tolerance levels alive too. 
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 Chapter 6 

 Behavioural assays, concealed behavioural responses of 

crustaceans to hypersaline exposure. Heart and scaphognathite 

activity changes. 
 

 

6.1 Introduction 

The quantitative and qualitative cardioventilatory beat behaviours of various species of decapod 

crustaceans have been used in many studies of their physiological responses to changes in the 

intensity of environmental variables (Ansell 1973; Cumberlidge and Uglow 1977a; Walters and 

Uglow 1981). It is understood that one of the ways in establishing if stress has occurred is a 

change in the rate of a physiological process (Bayne 1980), e.g. cardioventilation. Consequently, 

tests which involved recording the cardio-ventilatory activities of the test species were made whilst 

they were under hypersaline challenge.  

Heart and ventilation responses are often coupled, although they are to some degree subject to 

independent control or can change in opposite directions in response to the same stimulus (Hume 

and Berlind 1976). Cardioventilatory behaviour is closely associated with the fluxes of oxygen and 

carbon dioxide into and out of the body across the branchial wall. An altered oxygen demand such 

as occurs at the onset or cessation of movement or following a change in the intensity of an 

environmental stressor (e.g. salinity) may evoke an altered beat frequency or some other aspect of 

beat behaviour. Not all such changes are related to the fluxes of gases as the exchanges of many 

ions are also mediated via branchial transepithelial fluxes. Flux itself is dependent on the rate of 

flow of the fluids external (branchial chamber flow) to and internal (blood flow) to the permeable 

branchial epithelium (Spaargaren 1974; Spaargaren 1976; McDonald et al. 1980).  

The variability of flux that such a system confers is indicative of a sensitive means of fine tuning 

flux in step with changes to environmental variables. This variability in cardiac activity has been 

described as an indicator of the Darwinian fitness of decapods (Depledge and Lundebye 1996), in 

terms of their physical ability to cope with changing environmental gradients.  
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The validity of using cardioventilatory behaviour data in the present context is dependent on the 

techniques used to obtain them not being a stressor to the animals. Historically, methods of 

collecting such data have been destructive e.g. Wilkens & McMahon (1972), Pilkington & Simmers 

(1973) or intrusive e.g. Cumberlidge and Uglow (1977a, 1977b), Paterson & Thorne (1995), Dufort 

et al (2001). Heart rates were commonly collected using impedance pneumography, initially using 

paired electrodes (Cumberlidge & Uglow, 1977a, 1977b) and subsequently using a single electrode 

(Dyer and Uglow 1977). With these techniques, organ rate measurement usually depended on 

electrode(s) being inserted through the carapace in the cardiac region of the dorsal carapace or in 

the region of the scaphognathite on each side of the animal. Macruran decapod anatomy is such 

that scaphognathite activity could be measured with electrodes hooked around the branchiostegite 

margin and anchored to the dorsal carapace (i.e. without carapace puncture).  The present data 

were collected using infra red sensors which do not require puncturing of the carapace or intrusion 

into the body.  

It has been suggested that a non-lethal physiological approach to toxicity testing is advantageous 

as unlike the common LD50 and LC50 tests, the physiological approach generates data at the 

sublethal level, (impacts can be detected early, before death occurs). In this way it can be seen 

that toxicants that have little or no effect on crustaceans in unstressed conditions may then affect 

their ability to cope and adapt to a changing environment and so affecting the environmental range 

and decreasing their chance for survival (Bamber and Depledge 1997). Responses such as this 

have potential to be used as an early indicator of change and could be useful for management of 

environments and fisheries. In Homarus americanus there is an almost linear increase in oxygen 

consumption, heart and scaphognathite rates in animals exposed to reduced salinity seawater, with 

an almost double increase in metabolic rate when animals were moved from salinity 20 to 15 to 10  

(Jury et al. 1994a). The effects of parameters other than salinity can also affect the animals in a 

similar way, for instance Depledge (1984b) showed that in shore crabs both circulatory and 

respiratory activity was disrupted when crabs were exposed to selected trace metals.  

Preliminary tolerance tests at 8 °C in the laboratory revealed that the lobster, Homarus gammarus 

and the velvet crab, Necora puber were both tolerant of hypersaline conditions to give upper LC50 

values of salinity 48.9 and 41.9 respectively (see chapter 4). The laboratory tests also revealed that 

as salinities approached lethal values both species became immobile but gave no other 

observable, quantifiable indication of possible physiological impairment. This behaviour has 
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prompted an examination of cardioventilatory beat activities to determine whether such concealed 

behaviour (behaviour not observable to the naked eye in the way a movement of the legs for 

example would be) may be associated with the blood chemistry changes already discovered to 

occur at such times and therefore help explain the mortality of these animals when challenged by a 

hypersaline environment.  The causes of death in extreme low or high salinity appear to be 

primarily related to a number of physiological factors, this chapter will focus on indirect damages 

caused by lowering of metabolic rate or activity, leading to a failure of ability to escape an 

unfavourable situation or failure to pump/filter effectively (Kinne 1966). 
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6.2 Aims, objectives and hypotheses 

The main aim of this study was to determine whether sub-lethal effects of hypersaline exposure 

could be detected in Necora puber and Homarus gammarus in terms of changes to the activity of 

the heart and scaphognathites when the crustaceans were subjected to environmentally based 

physiological challenges (hypersalinity) in the laboratory. A number of null hypotheses were posed 

to test these unknowns in these studies:- 

1. hypersalinity does not cause any change to heart beat behaviour in the crustacean species 

tested; 

2. hypersalinity does not cause any change to scaphognathite beat behaviour in the 

crustacean species tested; 

3. the crustaceans tested cannot distinguish between normal and hypersalinity; 

 

Hypersalinity is defined here as any salinity above what the species’ normally experience in the 

natural environment (in the case of those tested here, that salinity is 35). The species studied are 

mainly sublittoral in nature and so would rarely experience any change to ambient salinity. 

Responses of Cancer pagurus were not studied due to the ban on landing this species at the time 

of research (as previously explained). 
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6.3 Materials and Methods 

6.3.1 Animal husbandry 

Locally creel caught individuals of Homarus gammarus (minimum landing size ±3 mm) and Necora 

puber (carapace width 65-75mm) were kept for five days before experimentation in a filtered 

recirculation system at salinity 35 and at 8°C ± 1°C.  They were not fed during this time. Decreases 

in salinity and dissolved oxygen along with increases in temperature caused a lower survival rate of 

soft shelled lobsters (McLeese 1956) and Jury et al (1994b) only used intermoult individuals for this 

reason. As the same may be true for high salinities, these hypersalinity trials were conducted on 

intermoult lobsters and crabs only. 

 

6.3.2 Experimental procedure 

Organ beat behaviours were detected using non-invasive near infra red sensors (VISHAY 

semiconductors No CNY07) attached to the carapace adjacent to the organ under study (heart, left 

scaphognathite and right scaphognathite) with cyanoacrylate glue (Figure 6.1). Both 

scaphognathites and the heart were recorded simultaneously in all specimens, hence 3 sensors 

were used per animal. Heart and scaphognathite rates of intermoult adult H. gammarus (n = 8) and 

N. puber (n = 5) were measured initially on exposure to a new salinity regime (in increasing 

increments of 5 psu from the normal of 35) and subsequently following acclimation for 24 hours 

(tank size 30 cm * 30 cm * 10 cm). As the shape of these organs changes with each beat, the 

intensity of light reflected back to the detector fluctuates. The detected signal was amplified and fed 

to a Power Lab data acquisition unit (PowerLab/8SP, ADInstruments Pty Ltd, Castle Hill, Australia), 

the digitised outputs of which of which were displayed, recorded and subsequently analysed using 

‘Chart 5’ software (AdInstruments) on a laptop PC (Figure 6.2). The animals were introduced to 

ambient salinity (salinity 35) then every 24 hours the salinity was increased by 5 until death 

occurred. Beat activity was recorded for three alternative thirty minute sessions following first 

introduction to a new salinity, and for a further three thirty minute periods after 24 hours had 

elapsed. The salinity was then increased again by another 5 units and the procedure repeated. 
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Fig 6.1a Fig 6.1b 

  

Figure 6.1  Cardioventilatory organ beat recording. Sensor positioned over heart (6.1a) and 

scaphognathite (6.1b) with cyanoacrylate glue before immersion. 

 

In animals where beats were interspersed with periods of inactivity, the average beats per minute 

(bpm) during the active time was calculated and the % of time when the activity occurred was 

calculated as a qualifier. This was in addition to the total bpm over the 30 minutes including the 

inactive periods. A control was included where the animals were fitted with the same sensors and 

attached to the same recording apparatus, but only at salinity 35, the salinity of the natural 

environment. This accounted for the effects that the handling procedure may have had on the beat 

regime at higher salinities. Both left and right scaphognathite rates were recorded, then later a 

combined beat rate was calculated for each individual by adding the rates for the left and right 

together and dividing by two for each salinity tested. 

Crabs were tested in a closed room with the signal wires passing through a door to the adjacent 

room so that there was no visual disturbance that may affect the beat rate. In general the beat 

rates showed that there was no evidence of stress caused by handling after 15 minutes. This time 

period was not included in the analysis.  

The semiconductor sensor was cubic (7 mm) and fitted to a 2.5 mm diameter wire. Animals were 

removed from the water, the carapace dried and the sensor fitted. The maximum amount of time 

the animals were out of the water for was five minutes whilst the cyanoacrylate glue dried. Wires 

were loosely suspended above the tanks where the animals were individually housed and did not 
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appear to impair movement at all, however both the lobsters and crabs had to have their chelae 

banded so as to prevent removal of the sensors placed over the scaphognathites. 

The sensors were used to record beat frequency only. Signal amplitude which can be used as an 

indicator of the beat strength was not used as slight mispositioning of a sensor between specimens 

could result in a severe change in the strength of the signal whilst still producing the same beat 

frequency. 

 

 

 

Figure 6.2   Schematic diagram of the experimental set up for recording heart and scaphognathite rates. 
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6.3.3 Statistical analyses 

Differences in beat activity between salinities were analysed using a one way ANOVA or a Kruskal 

Wallis test depending on normality of the data, followed by a post hoc Scheffe or Games Howell 

preferably, or if not possible (due to the Scheffe or Games Howell finding no differences despite the 

Kruskal Wallis or ANOVA indicating there were), a Least Significant Difference test. Correlations 

between organ activity were analysed with either Pearson or Spearman Rank correlation 

depending on normality of distribution.   

The heart and scaphognathite activities of each animal were recorded continuously for 30 minutes 

at each recording session. Beat rates have been expressed as number of beats per minute but it 

should be noted that, at the higher salinities particularly, the 30 minute mean values were inclusive 

of periods when the beat rate was considerably higher or lower than the session mean rate. Data 

relating to T = 0 h and 24 h beats were analysed to gain an overall view of the organ behaviour 

responses to hypersalinity. In addition, where possible, the organ beat activities at T = 24 h was 

compared with those that prevailed shortly after the initial exposure to a new salinity. This was 

possible for H. gammarus only as the high mortality of N. puber with these treatments resulted in 

very few valid data being collected at the higher salinities tested and this precluded the same 

statistical analysis being made. 
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6.4 Results  

6.4.1 Homarus gammarus 

Example data selections taken over a two minute period are given to highlight the difference in beat 

rates. Heart beat rate at salinity 50 is slower than at salinity 35 as indicated by the greater distance 

between peaks (Figure 6.3). The difference in beat activity is further highlighted in Figure 6.4 which 

shows that the scaphognathites show periods of inactivity between periods of beating (salinities 45 

and 60 in Figure 6.4) and show variation not only in the duration of each beat, but in the beat 

frequency.  

The relationships between Homarus gammarus beat behaviour and prevailing salinity, in terms of 

mean beat frequency and the mean relative period of beating activity showed a general decline in 

both beat rate and the % of time spent beating for both the heart and scaphognathites (Table 6.1). 

Clearly, there is some variability associated with each mean (shown by the standard error (SE)), 

and for the scaphognathites, expressing the data purely as a simplistic mean beat rate obscures 

the change in beating from constant to arrhythmic over the salinities. Table 6.1 therefore gives the 

period of relative (%) activity per unit time for each group at each test salinity. 

The mean heart rate of H. gammarus decreased from a maximum of 36.8 bpm at the normal 

salinity 35, to a minimum of 12.6 bpm at salinity 60 during active periods (Table 6.1). When the 

bpm was calculated over the whole recording period, thus inclusive of inactive periods, there was 

still a noticeable decrease, from a high of 36.6 bpm at salinity 35 to a low of 10.7 bpm at salinity 60. 

In general between salinities 35 to 55 the heart activity of H. gammarus was relatively constant, 

actively beating for 90% - 100% of the time, however once salinity reached 60, the heart was active 

for only 55.5% of the time. The associated standard error of this figure (±20.115) is very large (c.f. 

the lower salinities) and is indicative of the large intra-species variation once salinity reaches this 

point, suggesting the conditions have induced a marked bradycardia in some of, but not the entire 

test group.  

The scaphognathite behaviour was also altered in the test salinities and showed a decrease in the 

mean bpm as salinity increased, although the trend does not appear to be as strong as that for the 

heart rate as there was a slight increase in bpm before the rate decreases again. The highest 

scaphognathite rate occurred at salinity 40 where when active, the scaphognathites beat at an 
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average of 80.9 bpm and when averaged over the whole recording period they beat at 78.7 bpm. 

The lowest bpm occurred at salinity 45, averaging 46.3 bpm when active and 27.9 when 

accounting for the periods of inactivity. The percentage of time the scaphognathites beat varied 

from a maximum of almost 100% at salinity 35 to a minimum of 72% at salinity 45, coincidently 

where the lowest bpm occurred.  

 

Figure 6.3  Example heart rate traces from Homarus gammarus at different salinities 
 (35, 40 and 50 salinity units). Traces are taken over a two minute period. Spikes are indicative of a 
stronger beat, however only beat frequency and not the amplitude was included in the analysis 

  

 

 



164 
 

 

Figure 6.4  Example scaphognathite rate traces from Homarus gammarus at different salinities 

(45, 35 and 60 salinity units). Traces are taken over a two minute period. Spikes are indicative of a 

stronger beat, however only beat frequency and not the amplitude was included in the analysis. 

  



165 
 

 

Table 6.1   Mean heart and scaphognathite beat rates for Homarus gammarus per salinity tested (n=8). 

Salinity 

Mean heart 
BPM when 
beating 

SE of mean 
heart BPM 
when beating 

% time 
heart 
beating 

SE of % 
time heart 
beating 

bpm heart 
incl 
inactivity 

SE of 
bpm heart 
incl 
inactivity 

35 36.762 4.536 99.750 0.250 36.608 4.418 
40 30.882 2.507 96.250 3.750 29.550 2.690 
45 27.978 1.955 92.159 5.610 25.873 2.516 
50 22.739 1.722 100.000 0.000 18.701 2.780 
55 24.296 1.927 90.000 6.831 21.757 2.379 
60 12.551 3.820 55.453 20.115 10.679 4.417 

Salinity 

Mean scaph 
BPM when 
beating 

SE of mean 
scaph BPM 
when beating 

% time 
scaph 
beating 

SE of % 
time scaph 
beating 

bpm 
scaph incl 
inactivity 

SE of 
bpm 
scaph incl 
inactivity 

35 63.139 5.377 99.773 0.227 63.786 5.867 
40 80.984 11.279 95.000 4.510 78.657 12.147 
45 46.281 4.340 71.971 12.730 27.943 7.815 
50 53.263 4.351 76.939 8.126 43.518 6.426 
55 59.661 9.325 85.417 10.133 55.057 10.815 
60 56.740 5.628 81.156 10.835 48.527 8.667 

 

 

The results of a series of statistical tests on the heart and scaphognathite activity of H. gammarus 

are summarised in Table 6.2 and explained below. Both the mean bpm over the recording period 

were analysed as well as the bpm only for the periods the organs were beating (with the % time 

actively beating included for qualification). 

There were significant differences in the heart bpm between different salinities in H. gammarus 

(Table 6.2). Salinity 60 was different to those below in terms of BPM and 35 differed from 50. When 

the bpm was averaged out over the whole recording period there was still a significant difference in 

the heart rate with regards to salinity. These significant differences in BPM were found between 

salinities 35 – 50, 35 – 60, 40 – 60. The means of the data for each salinity show that there was an 

almost linear decrease in the heart rate of the lobster as salinity is increased (Figure 6.5 and Figure 

6.6). With the periods of heart inactivity taken into account, the linear relationship (r2) becomes 

stronger by 0.062 but the error bars increase somewhat (Figure 6.6), however there is still the 

same marked decrease in the heart rate as salinity increases.  
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Although close to the 95% point, there was no significant difference in the percentage of time the 

heart was active for over the salinities tested (p = 0.054)  (Figure 6.7), meaning that salinity has no 

effect on the amount of time the heart beats for (within the range tested). H. gammarus can 

regulate the heart’s activity well in the salinity range 35-50, and after this point there is a decrease 

prompted by the high salinity (Figure 6.7). The increase in SE at this point is indicative of high intra-

specific differences, suggesting that some individuals are still maintaining a relatively constant 

activity whilst some are experiencing marked periods of inactivity. 

Although when inactive periods were excluded there was no correlation between the percentage 

time the heart is actively beating for and the average heart bpm, when the bpm was calculated to 

include inactivity there was a significant correlation between the heart rate and the percentage of 

time it beats (rs = 0.470, p < 0.001, n = 64) (Table 5.2). 

When inactive periods were excluded there was no significant difference in the bpm of the total 

combined scaphognathites (left and right analysed together) of H. gammarus in relation to salinity 

change, however when the bpm was calculated over the whole recording time and therefore 

included inactivity, significant differences were found (Table 6.2). These differences in beat rate 

occurred between the following salinities: 35 – 45 and 40 – 45. The lowest mean scaphognathite 

beat rate occurred at salinity 45 (bpm = 27.9) whereas  salinities 35 and 40 had the highest bpm at 

78.7 and 63.8 respectively. 

The right scaphognathite showed significant differences in the percentage time beating for at 

different salinities. These occur between salinities: 35 – 60 and 40 – 60 (Table 6.2). The means for 

each salinity show that there is no real trend in the percentage of time the right scaphognathite is 

active for with regards to salinity due to the overlap of the SE bars (Figure 6.8). 

There was a significant correlation between the total mean scaphognathite bpm and the total mean 

% time the scaphognathites were active (rs = 0.550, p < 0.001, n = 56) (Table 6.2). There was also 

a significant correlation between the average left scaphognathite bpm and the mean % time the left 

scaphognathite was active (rs = 0.597, p < 0.001, n = 49), and also the mean right scaphognathite 

bpm and the mean % time the right scaphognathite was active (rs = 0.381, p = 0.013, n = 42) 

(Table 6.2). The same correlations occurred when the scaphognathite bpm took the periods of 

inactivity into account (Table 6.2). This indicates a definite connection between the activity of the 

scaphognathite and the beat rate. 
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Table 6.2   Statistical analysis of the organ beat data for Homarus gammarus. n = 8. 

Null hypothesis Test used Results Answer Post hoc 
differences 

There is no change in heart BPM 
with salinity (excluding inactivity) 

One way 
ANOVA 

F = 6.876, df = 5, p 
< 0.0010 

Reject null 
hypothesis 

Scheffe: 
35 – 60, 40 – 
60, 45 – 60 
also 35 – 50 

There is no change in heart BPM 
with salinity (including inactivity) 

One way 
ANOVA 

F = 6.400, df = 5, p 
< 0.0010 

Reject null 
hypothesis 

Scheffe: 
35 – 50, 35 – 
60, 40 – 60 

There is no significant difference in 
the % time the heart was active for 
dependent on salinity 

Kruskal 
Wallis 

χ2 = 10.559, df = 5, 
p = 0.054 

Accept null 
hypothesis n/a 

There is no correlation between the 
% time the heart is actively beating 
for and the mean heart bpm 
(excluding inactivity) 

Spearman 
Rank 

correlation 
coefficient = 0.121, 
p = 0.340, n = 64 

Accept null 
hypothesis n/a 

There is no correlation between the 
% time the heart is actively beating 
for and the mean heart bpm 
(including inactivity) 

Spearman 
Rank 

correlation 
coefficient = 0.470, 
p < 0.001, n = 64 

Reject null 
hypothesis n/a 

There is no significant difference in 
the bpm of the left scaphognathite 
of Homarus gammarus  in relation 
to salinity change (excluding 
inactivity) 

One way 
ANOVA 

F = 1.539, df = 6, p 
= 0.188 

Accept null 
hypothesis n/a 

There is no significant difference in 
the bpm of the left scaphognathite 
of Homarus gammarus  in relation 
to salinity change (including 
inactivity) 

One way 
ANOVA 

F = 1.945, df = 6, p 
= 0.091 

Accept null 
hypothesis n/a 

There is no significant difference in 
the bpm of the right  
scaphognathite of Homarus 
gammarus in relation to salinity 
change (excluding inactivity) 

One way 
ANOVA 

F = 1.862, df = 6, p 
= 0.144 

Accept null 
hypothesis n/a 

There is no significant difference in 
the bpm of the right  
scaphognathite of Homarus 
gammarus in relation to salinity 
change (including inactivity) 

One way 
ANOVA 

F = 1.292, df = 6, p 
= 0.277 

Accept null 
hypothesis n/a 

There is no significant difference in 
the bpm of the total combined 
mean scaphognathites of Homarus 
gammarus in relation to salinity 
change (excluding inactivity) 

Kruskal 
Wallis 

χ2 = 8.046, df = 5, 
p = 0.154 

Accept null 
hypothesis n/a 

There is no significant difference in 
the bpm of the total combined 
mean scaphognathites of Homarus 
gammarus in relation to salinity 
change (including inactivity) 

Kruskal 
Wallis 

χ2 = 13.070, df = 5, 
p = 0.023 

Reject null 
hypothesis 

Games Howell: 
35-45, 40-45 

There is no significant difference in 
the percentage of time the left 
scaphognathite was active for with 
regards to salinity. 

Kruskal 
Wallis 

χ2 = 8.683, df = 5, 
p = 0.122 

Accept null 
hypothesis n/a 

There is no significant difference in 
the percentage of time the right  
scaphognathite was active for with 
regards to salinity. 

Kruskal 
Wallis 

χ2 = 12.578, df = 5, 
p = 0.028 

Reject null 
hypothesis 

LSD test*: 
35-60, 40-60 

There is no significant difference in 
the percentage of time the total 
combined scaphognathites were 
active for with regards to salinity. 

One way 
ANOVA 

χ2 = 10.133, df = 5, 
p = 0.072 

Accept null 
hypothesis n/a 
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Null hypothesis (continued) Test used Results Answer Post hoc 
differences 

There is no significant correlation 
between the mean left 
scaphognathite bpm (excluding 
inactivity) and the percentage of 
time the left scaphognathite was 
active for. 

Spearman 
Rank 

rs = 0.597, p < 
0.001, n = 49 

Reject null 
hypothesis n/a 

There is no significant correlation 
between the mean left 
scaphognathite bpm (including 
inactivity) and the percentage of 
time the left scaphognathite was 
active for. 

Spearman 
Rank 

rs = 0.714, p < 
0.001, n = 49 

Reject null 
hypothesis n/a 

There is no significant correlation 
between the mean right 
scaphognathite bpm (excluding 
inactivity) and the percentage of 
time the right scaphognathite was 
active for. 

Spearman 
Rank 

rs = 0.381 p = 
0.013, n = 42 

Reject null 
hypothesis n/a 

There is no significant correlation 
between the mean right 
scaphognathite bpm (including 
inactivity) and the percentage of 
time the right scaphognathite was 
active for. 

Spearman 
Rank 

rs = 0.652 p < 
0.001, n = 43 

Reject null 
hypothesis n/a 

There is no significant correlation 
between the mean total 
scaphognathite bpm (left and right 
combined) (excluding inactivity) and 
the percentage of time the 
scaphognathites were active for. 

Spearman 
Rank 

rs = 0.550, p < 
0.001, n = 56 

Reject null 
hypothesis n/a 

There is no significant correlation 
between the mean total 
scaphognathite bpm (left and right 
combined) (including inactivity) and 
the percentage of time the 
scaphognathites were active for. 

Spearman 
Rank 

rs = 0.760, p < 
0.001, n = 56 

Reject null 
hypothesis n/a 

There is no significant correlation 
between the mean heart beat of 
Homarus gammarus (excluding 
inactivity) and the total mean 
scaphognathite beats (excluding 
inactivity). 

Pearson 
correlation 

r = 0.123, p = 
0.476, n = 36 

Accept null 
hypothesis n/a 

There is no significant correlation 
between the mean heart beat of 
Homarus gammarus (including 
inactivity) and the total mean 
scaphognathite beats (including 
inactivity). 

Pearson 
correlation 

r = 0.209, p = 
0.220, n = 36 

Accept null 
hypothesis n/a 

*Despite attempting a number of transformations on the data to normalise the spread, the only 
posteriori test that could pick up any of the differences was the Least Significant Difference (LSD) 
test. 
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Figure 6.5  Mean (± SE) heart rate of Homarus gammarus (bpm) at different salinities during periods of 
active beating (excludes periods of inactivity). 
The following pairs of salinities are significantly different in terms of bpm: 35 – 60, 40 – 60, 45 – 60 also 35 – 
50. 
 

 

 

Figure 6.6  Mean (± SE) heart rate of Homarus gammarus (bpm) at different salinities during periods of 
active beating (includes periods of inactivity).  
The following pairs of salinities are significantly different in terms of bpm: 35 – 50, 35 – 60, 40 – 60. 
 

36.762 

30.882 

27.978 

22.739 24.296 

12.551 

y = -0.8346x + 65.51 
R² = 0.9019 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

30 35 40 45 50 55 60 65 

M
ea

n 
he

ar
t B

PM
 d

ur
in

g 
ac

tiv
e 

pe
rio

ds
 (e

xc
lu

de
s 

in
ac

tiv
e 

pe
rio

ds
) i

n 
Ho

m
ar

us
 g

am
m

ar
us

 

Salinity 

36.608 

29.550 

25.873 

18.701 
21.757 

10.679 

y = -0.9154x + 67.343 
R² = 0.9081 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

30 35 40 45 50 55 60 65 

M
ea

n 
he

ar
t B

PM
 (i

nc
lu

de
s i

na
ct

iv
e 

pe
rio

ds
) i

n 
Ho

m
ar

us
 g

am
m

ar
us

 

Salinity 



170 
 

 

 

Figure 6.7  Effect of raised salinity on the % of time the heart is actively beating for in Homarus 
gammarus. 
Mean % time active (± SE). No significant differences in activity between salinities (p=0.054). 
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Figure 6.8  The effect of raised salinity on the % of time the right scaphognathite is active for in Homarus 
gammarus (means ± SE). 
Significant differences occur between salinities 35-60, 40-60 in terms of activity (p<0.05). No consistent 
trend of salinity dependent change in scaphognathite activity evident. 
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6.4.2 Necora puber 

Figure 6.9 and Figure 6.10 show examples of the heart and scaphognathite beats of Necora puber 

at various salinities taken over a typical two minute period. To ascertain if the differences seen in 

these beat rates was due to the change in salinity, the mean bpm and the % time active were 

calculated for both the heart beat and scaphognathite beats of N. puber (Table 6.3). When 

compared with H. gammarus, clearly there is a larger variability associated with each mean in 

terms of the standard error (SE). For the scaphognathites, expressing the data purely as a 

simplistic mean beat rate again obscures the change in arrhythmic beating over the salinities. To 

account for this, Table 6.3 gives the period of relative (%) activity per unit time for each group at 

each test salinity. There is an apparent decrease in both the heart and scaphognathite beat rate as 

salinity increases. 

For N. puber there is an apparent decrease in the mean heart bpm during the active periods from a 

high of 43.5 bpm at the salinity 40, to a low of 29.9 bpm at salinity 55. When the bpm is calculated 

over the whole recording period and therefore takes into account the periods of inactivity, there is 

still a decrease in mean bpm, from a high of 41.9 bpm at salinity 35 to a low of 27.1 bpm at salinity 

55. The difference between the values that exclude and include inactivity only occurs at salinity 55 

and is very small. Salinity 55 was the only period when the heart of the crab was not beating for 

100% of the time. This may be indicative that the velvet crabs’ hearts cope better than the lobsters’ 

during exposure to hypersalinity, though this does not take into account the mortalities. 

The scaphognathites show a decrease in the mean bpm as salinity increases and this trend 

appears to be stronger than for the heart rate, however just as with H. gammarus, there is an 

increase in bpm before the rate decreases again. The highest scaphognathite rate occurs at 

salinity 45 where when active, the scaphognathites beat at a mean of 116.8 bpm and when 

calculated over the whole recording period they beat at a mean of 79.2 bpm. The lowest bpm 

occurs at salinity 60, averaging just 12.9 bpm when active and at salinity 55 when accounting for 

the periods of inactivity averaging 6.3 bpm. The percentage of time the scaphognathites beat 

varies from a high of 61% at salinity 35 to a low of 22.5% at salinity 55.  
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Figure 6.9 Example heart rate traces from Necora puber at different salinities (35, 45 and 60 salinity 

units). The example traces shown are taken over a two minute period. 

 

Figure 6.10  Example scaphognathite rate traces from Necora puber at different salinities (35, 50 and 60 

salinity units). Traces shown are taken over a two minute period. 
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Table 6.3  Mean heart and scaphognathite beat rates for Necora puber per salinity tested (n=5). 

Salinity 

Mean heart 
BPM when 

beating 

SE of mean 
heart BPM 

when beating 

% time 
heart 

beating 

SE of % 
time heart 

beating 

bpm heart 
incl 

inactivity 

SE of 
bpm heart 

incl 
inactivity 

35 41.878 5.191 100.000 0.000 41.878 5.191 
40 43.258 9.939 100.000 0.000 43.258 9.939 
45 32.730 4.952 100.000 0.000 32.730 4.952 
50 34.523 6.826 100.000 0.000 34.523 6.826 
55 29.893 4.039 90.000 2.887 27.136 4.472 
60 33.767 3.583 100.000 0.000 33.767 3.583 

Salinity 

Mean scaph 
BPM when 

beating 

SE of mean 
scaph BPM 

when beating 

% time 
scaph 

beating 

SE of % 
time scaph 

beating 

bpm 
scaph incl 
inactivity 

SE of 
bpm 

scaph incl 
inactivity 

35 89.475 11.585 60.966 14.257 55.703  13.780  
40 77.845 13.078 52.181 7.608 43.046 10.270 
45 116.800 27.487 57.955 16.589 79.213 21.035 
50 59.264 14.163 57.414 10.474 39.426 10.041 
55 17.739 14.075 22.497 16.392 6.298 6.074 
60 12.489 1.806 77.187 22.813 10.052 4.243 

 

The results of a series of statistical tests on the heart and scaphognathite activity of N. puber are 

summarised in Table 6.4 and explained in the text below. The mean bpm over the recording period 

was analysed as well as the bpm only for the periods the organs were beating (with the % time 

actively beating included for qualification). 

The percentage of time that the heart was active for showed significant differences at salinity 55 (χ2 

= 17.843, p = 0.003, df = 5), specifically, these occur between salinities 40 – 55, 45 – 55, 50 – 55, 

and 60 – 55 (Table 6.4).  Mean values for each salinity showed that at all salinities the hearts of N. 

puber were active for 100% of the time with the exception of salinity 55 where the hearts were 

active on average for 90% of the time. 

There was no significant correlation between the heart bpm (excluding inactivity) and the % time 

the heart was active, but when the inactive periods were included in the calculation there was a 

significant correlation between the heart bpm and the % of time it was active for (rs = 0.468, p = 

0.043) (Table 6.4).  

The significant difference in the total average scaphognathite beats per minute with regards to 

salinity indicates that salinity is having an overall affect on the activity of the scaphognathites of 
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Necora puber.  Salinities 35 – 55, 35 – 60, 45 – 50, 45 – 55, 45 – 60 were significantly different in 

terms of bpm (Table 6.4). This indicates that there is a change in beat activity as salinity increases. 

Mean bpm decreased from 89.48 bpm at salinity 35 to 12.49 bpm at salinity 60 (Figure 6.10). This 

level of activity may be insufficient to sustain the life of N. puber for a long period of time and may 

be the cause of high mortality at this salinity level.  No significant differences were found when the 

bpm took into account the periods of inactivity however. 

In comparison to the results for H. gammarus which showed a linear decrease in heart bpm with 

increasing salinity (Figure 6.5 Figure 6.6), the heart rate of N. puber does not follow the same trend 

with no significant change in relation to salinity found. 

The right scaphognathite of N. puber showed significant differences in the % of time it is active for 

over the salinities tested (Kruskal Wallis; χ2 = 12.889, df = 5, p = 0.024), with significant differences 

occurring at the following salinities: 35 – 40, 35 – 55, 40 – 50, 40 – 60, 55 – 60. The mean % 

activity of the scaphognathites of N. puber is very variable over the salinities (Figure 6.12). The 

significant difference in the right scaphognathite may be due to the left one taking over at salinity 

40, however from salinity 45 both scaphognathites show the same trend, with the left showing 

around 20% more activity. Interestingly the scaphognathites start at salinity 35 with the same level 

of activity then beat differently until coming together again at salinity 60. However there is overlap 

in the standard error of the activity at salinities 45, 50 and 55, so there may be not so much of a 

difference in beat activity as the figure suggests. 

There was a decrease in the amount of time that the scaphognathites beat for as salinity increases 

for both the left and the total average. This decrease may not be enough to sustain the life of N. 

puber when salinity increases beyond their normal range.  

There was a significant correlation between the average left scaphognathite bpm and the 

percentage of time the left scaphognathite was active for and also the average right scaphognathite 

bpm and the percentage of time the right scaphognathite was active for (Table 6.4). These 

significant correlations were also all present when the periods of inactivity were taken into account 

(Table 6.4). Although very close to the 0.05 point (p = 0.054)  and despite the left and right 

individually showing a correlation, there is no significant correlation for the total combined 

scaphognathite bpm and the % of time the scaphognathites were active for. However this becomes 

significant when the periods of inactivity are taken into account. These correlations suggest there is 
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a strong connection between the bpm and the percentage of time the scaphognathites were active 

for.  

 

Table 6.4 - Statistical analysis of the organ beat data for Necora puber. n = 5. 

Null hypothesis Test used Results Answer Post hoc 
differences 

There is no change in heart BPM with 
salinity (inactivity excluded) 

One way 
ANOVA 

F = 1.568, df = 5. 
p = 0.237 

Accept null 
hypothesis n/a 

There is no change in heart BPM with 
salinity (inactivity included) 

One way 
ANOVA 

F = 1.975, df = 5. 
p = 0.150 

Accept null 
hypothesis n/a 

There is no significant difference in 
the % time the heart was active for 
dependent on salinity 

Kruskal 
Wallis 

χ2 = 17.843, df = 
5, p = 0.003 

Reject null 
hypothesis 

LSD test*:  
35-550 40-
55, 45-55, 
50-55, and 

60-55 
There is no correlation between the 
% time the heart is actively beating 
for and the average heart bpm 
(excluding inactivity) 

Spearman 
Rank 

rs = 0.389, p = 
0.099, n = 19 

Accept null 
hypothesis n/a 

There is no correlation between the 
% time the heart is actively beating 
for and the average heart bpm 
(including inactivity) 

Spearman 
Rank 

rs = 0.468, p = 
0.043, n = 19 

Reject null 
hypothesis n/a 

There is no significant difference in 
the bpm of the left scaphognathite of 
Necora puber in relation to salinity 
change (excluding inactivity) 

One way 
ANOVA 

F = 2.158, df = 5, 
p = 0.087 

Accept null 
hypothesis n/a 

There is no significant difference in 
the bpm of the left scaphognathite of 
Necora puber in relation to salinity 
change (including inactivity) 

One way 
ANOVA 

F = 1.861, df = 5, 
p = 0.132 

Accept null 
hypothesis n/a 

There is no significant difference in 
the bpm of the right  scaphognathite 
of Necora puber in relation to salinity 
change (excluding inactivity) 

Kruskal 
Wallis 

χ2 = 10.140, df = 
5, p = 0.071 

Accept null 
hypothesis n/a 

There is no significant difference in 
the bpm of the right  scaphognathite 
of Necora puber in relation to salinity 
change (including inactivity) 

Kruskal 
Wallis 

χ2 = 10.876, df = 
5, p = 0.054 

Close but 
accept null 
hypothesis 

n/a 

There is no significant difference in 
the bpm of the total combined 
scaphognathites of Necora puber in 
relation to salinity change (excluding 
inactivity) 

One way 
ANOVA 

F = 2.931, df= 5, 
p = 0.029 

Reject null 
hypothesis 

LSD test*: 
35-55, 35-60, 
45-50, 45-55, 

45-60 

There is no significant difference in 
the bpm of the total combined 
scaphognathites of Necora puber in 
relation to salinity change (including 
inactivity) 

One way 
ANOVA 

F = 2.151, df= 5, 
p = 0.087 

Accept null 
hypothesis n/a 

There is no significant difference in 
the percentage of time the left 
scaphognathite was active for with 
regards to salinity. 

Kruskal 
Wallis 

χ2 = 3.924, df = 
5, p = 0.560 

Accept null 
hypothesis n/a 

There is no significant difference in 
the percentage of time the right  
scaphognathite was active for with 
regards to salinity. 

Kruskal 
Wallis 

χ2 = 12.889, df = 
5, p = 0.024 

Reject null 
hypothesis 

LSD test*: 
35-40, 35-55, 
40-50, 40-60, 

55-60 
There is no significant difference in 
the percentage of time the total 
combined scaphognathites were 
active for with regards to salinity. 

One way 
ANOVA 

F = 0.713, df = 5, 
p = 0.619 

Accept null 
hypothesis n/a 
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Null hypothesis (continued) Test used Results Answer Post hoc 
differences 

There is no significant correlation 
between the average left 
scaphognathite bpm (excluding 
inactivity) and the percentage of time 
the left scaphognathite was active 
for. 

Spearman 
Rank 

rs = 0.449, p = 
0.007, n = 35 

Reject null 
hypothesis n/a 

There is no significant correlation 
between the average left 
scaphognathite bpm (including 
inactivity) and the percentage of time 
the left scaphognathite was active 
for. 

Spearman 
Rank 

rs = 0.790, p < 
0.001, n = 35 

Reject null 
hypothesis n/a 

There is no significant correlation 
between the average right 
scaphognathite bpm (excluding 
inactivity).and the percentage of time 
the right scaphognathite was active 
for  

Pearson 
Correlation 

r = 0.396, p = 
0.021, n = 34 

Reject null 
hypothesis n/a 

There is no significant correlation 
between the average right 
scaphognathite bpm (including 
inactivity).and the percentage of time 
the right scaphognathite was active 
for 

Pearson 
Correlation 

r = 0.804, p < 
0.001, n = 34 

Reject null 
hypothesis n/a 

There is no significant correlation 
between the average total 
scaphognathite bpm (left and right 
combined) (excluding inactivity) and 
the percentage of time the 
scaphognathites were active for. 

Pearson 
Correlation 

r = 0.328, p = 
0.054, n = 35 

 
Close but 

accept null 
hypothesis 

n/a 

There is no significant correlation 
between the average total 
scaphognathite bpm (left and right 
combined) (including inactivity) and 
the percentage of time the 
scaphognathites were active for. 

Pearson 
Correlation 

r = 0.665, p < 
0.001, n = 35 

Reject null 
hypothesis n/a 

*Despite attempting a number of transformations on the data to normalise the spread, the only 
posteriori test that could pick up any of the differences was the Least Significant Difference (LSD) 
test 
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Figure 6.11. Effect of raised salinity on scaphognathite beat rate in Necora puber (bpm excludes periods 
of inactivity). Means ± SE.  
Salinities 35-55, 35-60, 45-50, 45-55, 45-60 are significantly different in terms of bpm. 
 

 
 
Figure 6.12   Effect of salinity on scaphognathite activity in Necora puber. Mean activity ± SE.  
Note the considerable overlap in error at salinities 45, 50 and 55.  
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6.4.3 Comparison  between cardioventilatory activity after 0h and 24h hypersaline 

exposure in Homarus gammarus. 

The previous results have been based on a combined mean of the beats from the 3 recording 

sessions following introduction to hypersalinity and the 3 recording sessions after 24 hours had 

passed. To assess whether there was any degree of acclimation to the hypersalinity used in the 

trial, the same tests have been performed but separately on the 0h and 24h data. Both heart data 

and scaphognathite data were analysed but when regarding scaphognathites, only the values for 

total combined scaphognathite beats have been analysed. The individual scaphognathite 

responses have not been looked at due to the high variability indicated by the previous statistical 

analyses. The analyses have shown that there is no difference between the beat rates and organ 

activity between 0 hours and 24 hours. The only exception is for heart bpm where there appears to 

be some degree of acclimation to the hypersalinities when tested after 24 hours, where the bpm at 

salinities 50 and 55 fail to become significantly different from 35. 

The difference in N. puber between 0 hours and 24 hours was not analysed due to large mortalities 

at the higher test salinities resulting in a sample size too small to divide and still produce reliable 

results. 

  



180 
 

6.4.4 Summary of results 

For Homarus gammarus: 

• Salinity had a significant effect on the mean heart bpm of H. gammarus with the impact 

becoming different from the normal rate once salinity reaches 50 psu. 

• The activity of the heart was consistent across all test salinities and was not affected by 

hypersalinity (within the test range 35-60 psu). 

• Overall there was a positive correlation between the mean heart bpm and the activity of the 

heart, hence a higher beat frequency correlated with a higher % of time active. 

• The total bpm of the scaphognathites showed a significant decrease with increasing salinity at 

salinity 45. Individually the right scaphognathite showed a difference once salinity reaches 60 

psu. 

• The scaphognathites showed a positive correlation between the percentage of time active for 

and the mean bpm both when left and right scaphognathites were considered individually and 

when combined. 

• There was no relationship evident between the mean heart bpm and the mean scaphognathite 

bpm suggesting that cardio and ventilatory activities in H. gammarus are not related. 

• There appears to be some degree of acclimation in terms of heart bpm after 24 hours in high 

salinity media. The beat rate at salinities 50 and 55 changes from being statistically lower than 

the bpm at salinity 35, to not different from the bpm at salinity 35 after 24 hours has elapsed.   
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For Necora puber: 

• Increasing salinity has no significant effect on the mean heart rate of N. puber.  

• Salinity does have a significant effect on the percentage of time the heart of N. puber beats, 

with the heart only beating for less than 100% of the time at salinity 55. 

• Overall there was a positive correlation between the mean heart bpm and the percentage of 

time the heart was active for, hence a higher beat frequency correlated with a higher % of time 

active.  

• Once salinity reaches 55 psu there was a significant decrease in the total scaphognathite bpm 

when compared to the normal 35 psu bpm. This only occurred when apnoeic periods are 

excluded.  

• Only the right scaphognathite of N. puber showed a significant difference in the percentage of 

time it is active for, this occurred at salinity 40. 

• Salinity affects the scaphognathites, the scaphognathites showed a positive correlation 

between the percentage of time active for and the mean scaphognathite bpm both when 

considered individually and combined. Rates decreased with increasing salinity. 
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6.5 Discussion 

The cardioventilatory activities of both the lobster Homarus gammarus and the velvet crab Necora 

puber were found to be salinity-dependent within the range of salinity 35 to 60. This represents 

potential qualitative and quantitative ways with which to evaluate the impact of salinity challenges 

on species that present few, or no, overt (visible to the eye) behavioural responses to such 

environmental events.  

Although the obvious behavioural responses of H. gammarus and N. puber to hypersaline 

challenges are very similar (Chapter 3), their cardioventilatory behavioural responses to the same 

challenges show several differences. The mean heart rate of H. gammarus showed an almost 

linear, direct relationship with test salinity (r2 = 0.91) but that of N. puber showed an initial increase 

at salinity 40 and then decreased with the subsequent test salinities. However there was no 

statistically significant difference in the beat rate of N. puber over any of the salinities tested. The 

variable heart beat rate of N. puber is highlighted by the high standard errors associated with the 

mean values which may have effectively disguised any salinity-dependence that may have been 

present.  In fact, intraspecific (and interspecific) variability that is associated with movements of the 

animals has been considered to seriously reduce the value of absolute rate data (as maximum, 

minimum or mean values) in comparative studies (Walters and Uglow 1981) and high variability 

may itself be an indicator of stress as animals do not necessarily respond in a uniform way to 

environmental changes. 

Transfer from 100% to 15% sea water causes an increase in the heart beat rate of the euryhaline 

Carcinus maenas (Hume and Berlind 1976), suggesting that the degree of euryhalinity/stenohalinity 

of crustaceans could affect their response to salinity change. Both H. gammarus (Gilles 1973) and 

N. puber (Ingle 1980; Rainbow and Black 2001; Rainbow and Black 2005) are considered to be 

stenohaline, though N. puber can make some physiological responses to ambient salinity change 

(Rainbow and Black 2001). Although there is limited information available on the effects of 

hypersalinity on crustaceans, the effects of hyposalinity are relatively well studied. In a review of 

cardioventilatory responses of other crustaceans in Hume and Berlind (1976), it has been noted 

that the euryhaline amphipod Gammarus duebeni and the euryhaline shrimp Crangon crangon also 

show a increased heart bpm in response to reduced salinity. The stenohaline crab Libinia 

emarginata, however, shows a decrease in heart rate when transferred from 100% to 80% sea 
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water. The results for H. gammarus and N. puber are consistent with these findings in terms of 

departure from the normal beat rate as salinity departs from ambient, therefore indicating salinity 

change is a stressor to crustaceans in the hypersaline (as well as the hyposaline as shown by the 

authors above) direction. 

Initially, both species tested showed a direct increase of mean scaphognathite beat rate with 

salinity and both reached a maximum mean value in the middle of the test salinity range after which 

ventilatory activity was negatively related with test salinity. Such a pattern of salinity-induced 

scaphognathite change suggests a critical salinity (psucr) exists beyond which maximum beat rates 

cannot be sustained and that this varies interspecifically with values of 50 and 45 respectively for 

H. gammarus and N. puber. The retardation of the mean scaphognathite beat rate was due 

principally to the increased occurrence and duration of inactive periods that were not compensated 

for by any increases in beat rate. Cessation of scaphognathite behaviour is seen in other studies of 

the responses of crustaceans to a variety of environmental stressor challenges (Uglow 1973; 

Cumberlidge 1986; Paterson and Thorne 1995).  

Cardiac or ventilatory output is the result of a combination of stroke or beat rate, stroke volume and 

stroke frequency. Due to technical limitations the present data set does not include information on 

possible changes to the stroke efficiency of the heart or scaphognathites and so precludes 

information on outputs. However, a direct relationship between salinity and cardiac stroke volume 

has been shown to occur in Callinectes sapidus but, in dilute media, this was more than 

compensated for with an increased cardiac output caused by an increase in beat rate (McGaw and 

Reiber 1998). What seems clear is the positive relationship between cardioventilatory activities and 

metabolic rate with heart rate being shown to be a reliable indicator of oxygen consumption in 

Carcinus maenas  (Rovero et al. 2000) and a general lowering of heart rate with quiescence in a 

variety of marine decapod species (Walters and Uglow 1981). Figure 6.12 suggested that in N. 

puber, the right scaphognathite was consistently less active than the right. Once cause of this could 

be the way the crab was oriented within the experimental tank. If the right side of the crab was 

consistently closer the wall of the tank, it is possible that this scaphognathite may be used less. 

However light conditions were carefully controlled so as not to induce any phototaxic response that 

could prompt such orientation and during the trial there appeared to be no consistent favouring of 

any particular location in the tank (pers obs). 
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When ventilation ceases, the effect will be to retain a reservoir of water in the branchial chambers 

(Curtis et al. 2007). The absence of ventilation means that the salinity of these reservoirs will 

remain relatively stable and independent of any deterioration of external conditions. At the same 

time, the accompanying general lowering of metabolism will result in a decreased efflux of 

ammonia and carbon dioxide into, and a decreased influx of oxygen out of these reservoirs. The 

sites of salinity detection in Homarus americanus (the American lobster) are believed to be located 

within the branchial chambers (Dufort et al. 2001). When branchial chamber salinity was reduced 

but external salinity maintained constant, Dufort et al (2001) found a rapid change in heart rate in 

H. americanus. During salinity change Cancer gracilis were able to maintain the salinity of water 

within the branchial chambers at a level that was about 30% higher than that of the surrounding 

medium (Curtis et al. 2007). When stressed the ventilation of C. maenas becomes independent of 

the oxygen content of the water and the crabs become oxygen conformers (Jouve-Duhamel and 

Truchot 1985). This behaviour of isolating the branchial chambers may constitute a short term 

adaptation that would have a distinct survival value to the species concerned as it would allow 

them to prolong their tolerance when under adverse conditions. 

Presumably, the duration of this tactic will also be metabolic-rate dependent and thus temperature 

dependent. Consequently, hypersalinity tolerance data are more informative if accompanying 

temperature data are included with them.  Worden et al (2006) found that the contraction amplitude 

of isolated H. gammarus hearts decreased by more than 60% over the temperature range 2°C to 

22°C and was accompanied by a decreased stroke volume but an increase in beat frequency. This 

suggests that the animals are able to manipulate their cardiac beat behaviour to maintain cardiac 

output under increasingly stressful temperature conditions. 

Crustacean cardioventilatory beat frequency has been shown to display considerable interspecific 

and intraspecific variability e.g. Walters & Uglow (1977a), Cumberlidge & Uglow (1981). C. maenas 

shows some decline in scaphognathite beat rate with decreasing salinity, but this is again variable 

between different individuals (Hume and Berlind 1976). A decreased scaphognathite beat rate may 

be a mechanism for limiting the exchange of materials across the gills and this could be an 

important adaptation in hypersaline media where the external concentration of ions is far greater 

than what the tissues of the animals are used to experiencing. 
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At any one set of environmental conditions, individual animals may show a wide range of beat 

behaviours over their normal activity range. This range may be wider in species that may spend 

large periods inactive (e.g. when buried in substratum) but with bursts of activity, compared with 

animals that spend most of their time active. 

When taking into account periods of organ inactivity, there was a significant correlation between 

the mean bpm and the percentage of time the heart was active (p < 0.05 in all cases) for both H. 

gammarus and N. puber. There were also significant correlations between the bpm of the 

scaphognathites (both left, right and combined total mean) and the percentage of time the 

scaphognathites were active. As the percentage activity and/or bpm decreased with increasing 

salinity, these correlations indicate that hypersalinity is having an effect on the crustaceans tested, 

even though they may not be showing any outward signs of distress. When the cardioregulatory 

nerves of H. americanus were severed, the lobsters showed no cardiac response to salinity 

reductions (Dufort et al. 2001), indicating that there is a cardiac response in lobsters to changing 

salinity. 

Arrhythmic scaphognathite beats have been discovered in the species in this study and occur in 

only the stressed state in H. gammarus and in both the normal and stressed state in N. puber. The 

heart of N. puber shows constant activity (continuous beating with no periods of inactivity) 

regardless of the salinity, but H. gammarus shows arrhythmic periods as salinity increases. 

However, though the organs may be active for 100% of the time, the actual bpm may be lowered 

by salinity. In contrast, in C. maenas the resting heart beat rate is naturally arrhythmic and ranges 

from 20 – 60 bpm with the stressed rate ranging between 80 – 120 bpm (Cumberlidge and Uglow 

1977a; Rovero et al. 2000), although the crab may not display any observable behaviours at this 

time e.g. movement of legs or antennae (Cumberlidge and Uglow 1977a). However arrhythmia is 

only a common occurrence when the crab is resting (Cumberlidge and Uglow 1977a). 

The cardioventilatory responses seen here are typical of those shown by crustaceans undergoing 

hypoxic stress (e.g. lowered ventilation rate, reduced heart rate etc) as they attempt to conserve 

oxygen. When taking into account these cardioventilatory responses in addition to the raised 

haemolymph lactate levels and the acidification of the haemolymph discovered in chapter 5, it 

appears that a similar hypersalinity-induced hypoxic effect is likely happening here. In response to 

increased environmental salinity the animals attempt to reduce the flux of ions into the body by 
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reducing the bpm of the cardioventilatory organs, as a by-product reducing the opportunity for an 

O2―CO2 exchange across the gills. Cancer pagurus has been shown to become bradycardic 

(reduction in heart rate) when exposed to hypoxic conditions (Bradford and Taylor 1982). In C. 

maenas, scaphognathite beat frequency has a direct linear relationship with absolute ventilation 

volume (Cumberlidge and Uglow 1977b). If it is assumed that the amplitude of scaphognathite 

beats is relatively constant in these crustaceans [as shown for C. pagurus (Pilkington and Simmers 

1973) and C. maenas (Young 1975)], then the force required to move water in and out of the 

branchial chambers must be variable, requiring variable amounts of energy. If beat frequency drops 

far enough, ventilation may become inadequate to cope with the oxygen demands of the animals 

when under hypersaline stress, even when in an O2 saturated environment. 

Decreases in heart rate and/or increased cardiac dysfunction are thought to be related to hypoxia 

in a number of crustacean species e.g. the decapod Callinectes danae (Rantin et al. 1996) and the 

Thalassinid shrimp Trypaea australiensis (Paterson and Thorne 1995). Many studies have been 

undertaken on the response of decapod crustaceans to hyposalinity and the overall result is a 

notable rise in heart rate (tachycardia) (Hume and Berlind 1976; Cumberlidge and Uglow 1977a; 

Spaargaren 1982; McGaw and McMahon 1996; McGaw and Reiber 1998; Dufort et al. 2001). It is 

thought that these changes may be indicative of an increased energy requirement for active ion 

uptake (Taylor 1977; Jury et al. 1994a) that may be brought about by increased activity levels. In 

the current study, when under hypersaline challenge, activity levels are decreased and due to 

higher concentrations of ions exteriorly, less energy should be needed for active uptake. This may 

explain why both heart and scaphognathite beat frequencies are reduced once salinity increases 

from the normal of 35. However is also possible that the animals are quiescent due to putting more 

energy into keeping high concentrations of ions from entering into the body’s tissues and this 

response is aided by seriously retarded cardioventilatory organ activity e.g. Curtis (2007), 

Depledge (1984a).  

These readings do not take into account the beat strength and therefore whilst the beats may be 

regular, the strength of the beat may be very weak. Therefore even if beats are occurring they may 

not be bringing sufficient water (and hence oxygen) into the gill chamber. Also the decrease in beat 

activity, and any concurrent decrease in amplitude, may indicate the crabs are trying to avoid 

taking the hypersaline water into their bodies.   
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The results given here also do not account for any mortalities that occurred as the experiment 

progressed, hence the data used in all statistical calculations came from surviving crabs and 

lobsters. These therefore may have a good level of organ activity but obviously dead specimens 

had no heart or scaphognathite activity whatsoever. N. puber in particular experienced a decline in 

physical state when under hypersaline challenge consistent with what has been observed in 

previous chapters. So whilst it may appear that the crabs can cope well with the higher salinities, 

this refers to only the fittest individuals. Mortalities appeared at the salinities discovered in chapters 

4 and 5 and were not included in any calculations of organ beat rate or activity so as to not bias 

results.  
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6.6 Conclusions 

Null hypotheses 

1. hypersalinity does not cause any change to heart beat behaviour in the crustacean species 

tested; REJECTED. Hypersalinity caused a significant decrease in heart rate in Homarus 

gammarus but not in Necora puber. 

2. hypersalinity does not cause any change to scaphognathite beat behaviour in the 

crustacean species tested; REJECTED. Hypersalinity caused a significant decrease in 

scaphognathite rate in both H. gammarus and N. puber. 

3. the crustaceans tested cannot distinguish between normal and hypersalinity; REJECTED. 

The significant decrease in cardioventilatory behaviour shows that both species can 

distinguish when salinity deviates from normal. 

 

It is assumed that the movement away from hypersalinity discovered in Chapter 3 at salinity 50 for 

both Homarus gammarus and Necora puber is the animals’ main escape response from 

unfavourable conditions.  The concealed responses discovered here mainly happen at salinities 

higher than those that prompt preference behaviour, being closer to those that prompt the salinity 

induced changes in blood chemistry seen in Chapter 5 (e.g. 55 in N. puber and from salinity 45 

upwards in H. gammarus) and it may be that change in beat behaviour effects the change in blood 

chemistry and vice versa. The changes in cardioventilatory behaviour when trapped in unavoidable 

hypersaline conditions involve a reduction in the ventilation of the branchial chamber via a 

reduction in scaphognathite beat rate in both H. gammarus and N. puber. A critical salinity exists 

beyond which maximum scaphognathite beat rates cannot be sustained and that this varies inter-

specifically with values of 50 and 45 respectively for H. gammarus and N. puber which is consistent 

with the onset of the negative halotaxis. The heart rate of H. gammarus is also significantly reduced 

with increasing salinity. When unable to avoid hypersaline conditions, the overall effect of this is 

likely to be to maintain a reservoir of favourable salinity inside the body, however this is expected to 

be only a short term solution and should the species tested be forced to endure hypersaline 

conditions above those that prompt the behavioural tolerances of Chapter 3, their long term 

survivability is likely to suffer. The important result is that salinity caused a deviation away from 

normal organ activity in both H. gammarus and N. puber and so it can be concluded that there was 

indeed an effect which could potentially lead to the lowered fitness of exposed animals. 
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 Chapter 7 

 General Discussion and Conclusions 

 

 

7.1 General Discussion 

The decapod crustacean species tested had a detection threshold to ambient hypersalinity beyond 

which avoidance behaviour was induced. There was also an interspecific variability of this 

hypersalinity-induced behavioural threshold which ranged from 40 psu for Carcinus maenas to 55 

psu for Pagurus bernhardus. Intermediate values of 45 psu were shown by Homarus gammarus 

and 50 psu for Cancer pagurus and Necora puber. The presence of a shelter in a hypersaline 

medium did not influence avoidance of hypersalinity by H. gammarus or C. pagurus suggesting that 

the detrimental effects of hypersalinity override the risks associated with lack of cover and 

likelihood of predation.  P. bernhardus showed the highest test salinity to elicit a preference 

response and this high value may be related partly to this species  retreating into its gastropod 

shell and thereby minimising direct contact with the outside environment, possibly by retaining a 

reservoir of seawater in the shell. P.  bernhardus did not recover as soon as the salinity became 

favourable again such as better-adapted species, instead they had to spend a long time in normal 

salinity conditions before becoming active again, suggesting the body tissues were still suffering 

osmotic stress. The findings of Davenport (1985) agree with this. 

Study here has also suggested that the encroachment of hypersaline waters over existing fishing 

grounds above the threshold values for these species may displace a population from such areas 

with consequent impacts on the local fisheries. In the wild, H. gammarus appear to undertake a 

limited range of movements alongshore or in/offshore. In a mark and recapture study by Smith et al 

(2001) over periods of up to 862 days 95% of recaptured lobsters had moved < 3.8 km from first 

release site, helping to explain how stable fisheries exist in several areas around the UK. The 

literature suggests that under normal conditions stable lobster fisheries exist, and the current study 

indicating that under hypersaline conditions there is a threshold salinity that prompts a preference 

for normal (35 psu) salinity, it seems likely that populations around a hypersaline diffuser would 

vacate the area completely if the salinity is too high, resulting in a loss of the fishery. 
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The possible effects of hypersalinity on H. gammarus, C. pagurus and N. puber indicate 

hypersalinity-induced quantitative changes to some of the haemolymph constituents. There was 

clear interspecific variability, and some evidence of intraspecific variability, of the threshold salinity 

at which the responses were statistically significant. H. gammarus was the least tolerant species 

with a salinity threshold of 45 for intermoult animals but as low as 40 for post-moult specimens.  C. 

pagurus was the most tolerant species and showed a strong regulatory ability with salinities of 55 

and above needed to induce significant quantitative changes to the haemolymph composition.  N. 

puber showed the most marked changes with significant increases in all blood parameters tested 

for at 50 psu including haemolymph glucose and lactate levels. Variability in response may itself be 

an indicator of stress as animals do not always respond in a predictable and consistent way to 

environmental changes. Therefore the general order of ability to cope with hypersalinity is C. 

pagurus > N. puber > H. gammarus.   

The hyperglycaemic response and the significant increase in haemolymph lactate levels are typical 

responses of crustaceans under hypoxia (Bridges and Brand 1980; Fincham and Rainbow 1988; 

Zou et al. 1996; Sneddon et al. 1998; McMahon 2001). Here it is taken as evidence that an internal 

hypoxia occurs at salinities above the threshold value, even though the external hypersaline 

medium remained normoxic. It was conjectured here that this apparently anomalous situation 

occurred because of a shutdown of cardio-ventilatory activities as a response of the animals to 

reduce any changes to their osmotic equilibrium at the high salinities which would be likely to 

induce an exosmosis (the passage of a fluid through a semipermeable membrane toward a 

solution of lower concentration). This hypothesis was accepted after a series of studies on the 

effects of hypersalinity on the cardioventilatory activities on N. puber and H. gammarus which 

showed a significant reduction in cardioventilation. 

The principal quantitative response of hypersalinity on cardioventilatory behaviour were 

bradycardia and decreased ventilation in H. gammarus, at salinities of 50 and 45 respectively, 

whereas N. puber showed a significant decrease in mean scaphognathite beat rate at salinity of 55 

but the mean heart rate was not altered significantly in any of the test media used.  Decreased 

cardioventilatory behaviour can, as described in chapter 6, lead to insufficient oxygenation of the 

body and so an internal hypoxia in otherwise fully oxygenated media. 
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The findings here show a group of behavioural and physical responses of a hypersaline challenge 

to a number of crustacean species which are fished commercially in an area of the North Sea 

where brine discharges occur. It is reasonable to assume that the ability to detect and respond 

defensively to adverse environmental conditions has considerable survival value implications for 

any species. In these studies, despite interspecific differences in detail, it is clear that the primary 

response of each species is a preferential movement away from the source of the hypersaline 

challenge. These responses were elicited at salinities slightly lower than the non-visible regulatory 

responses of haemolymph composition adjustments and altered cardio-ventilatory activities. 

Presumably, a simple, rapid, primary response, such as escape, is an effective one in many 

situations and will avert the need for more long-term defence against an environmental stressors. 

Only if the stressor persists and/or intensifies will further resistance measures such as the 

physiological adjustments found in the present studies be called upon. If the salinity challenge does 

persist, the animals may either adapt to the changed conditions and survive indefinitely or they will 

temporarily survive in a situation that will be ultimately lethal. Either way, the responses to 

hypersalinity shown here have demonstrable survival value. 

The types of response observed were much the same for each species but interspecific and some 

indications of intraspecific differences did occur and it is of interest to examine these more closely 

in terms of their relationship with the preferred habitat of these species.  Carcinus maenas, which 

has a littoral/shallow sublittoral distribution, had the lowest threshold level for behavioural 

avoidance of hypersalinity which, at a salinity of 40, was only 5 salinity units above the value of 

normal seawater. Such sensitivity to a changed intensity of an environmental variable would be an 

advantage to a species which, as an adult, occurs in the intertidal, a habitat recognised for its 

environmental instability. C. maenas is known to be a hyper/hypo-osmoregulating species (Siebers 

et al. 1982; Siebers et al. 1985). Although as shown here it is able to detect and respond to 

hypersalinity, it does if needed, have a wide range of tolerance and can cope well within the salinity 

range of 17 – 41 psu (Thomas et al. 1981; Ameyaw-Akumfi and Naylor 1987). The other species 

studied are rarely found intertidally and probably experience far fewer, and far less sudden 

changes in the intensity of environmental variables such as those experienced daily by littoral 

species.  This may be why they have a higher behavioural tolerance for hypersalinity. As they have 

little need to detect changes that are unlikely to occur in their environment, this ability is not 

required for their day to day existence in the way that is needed by an intertidal species such as C. 
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maenas which can get trapped in tidal pools and similar and hence be exposed to dilution effects 

through rainwater and surface runoff and concentration effects through evaporation. 

All of the species tested became inactive at the higher salinity levels. Such induced quiescence 

may be attributed to a number of factors including the effects of external magnesium levels. 

Although all species tested showed some regulation of haemolymph magnesium there was still a 

direct relationship found between the external and internal magnesium levels. H. gammarus and C. 

pagurus showed strong regulation and maintained their haemolymph magnesium levels at ca. 10-

15% of their hypersaline external medium but N. puber showed very weak regulation of magnesium 

with haemolymph levels remaining at ≈95% of the external values tested. These results compare 

with those of Walters & Uglow (1981) who showed that, in normal seawater, H. gammarus, C. 

maenas and Nephrops norvegicus regulated their internal magnesium levels at 20-30% of the 

external medium values. 

Magnesium is known to act as a neurotransmitter and Mg2+ is known to inhibit neuromuscular 

activity in crustaceans (Lang et al. 1979; Walters and Uglow 1981). Excess Mg2+ has been shown 

to have a narcotising effect on a number of marine invertebrates (Pantin 1931) and magnesium 

chloride and magnesium sulphate are often used in laboratory experiments for narcotising and 

anaesthetising aquatic invertebrates (Moore 1989; Spooner et al. 1991; Culloty and Mulcahy 1992; 

Wilson 2005). Generally, species that maintain low blood Mg2+ values were more active than those 

maintaining high blood Mg2+ levels (Robertson 1949) which accords with the narcotic properties of 

Mg. Increases in Mg as salinity increases coincide with the inability to move in the species of this 

study. In the intermoult H. gammarus acute exposure trial there was a significant correlation 

between Mg concentration in the haemolymph and activity (p = 0.001, n = 32, r = 0.556) with 

increasing Mg levels correlating with decreasing activity levels. There is a significant linear 

regression between these two variables: (p = 0.001, F = 13.436, y = 0.314x + 8.310). No significant 

correlation or liner relationship was found in late postmoult adult lobsters, though this is likely to be 

due to the small sample size and the fact that none survived past a salinity of 40. A negative linear 

relationship between the relative haemolymph magnesium values and the relative heart activity 

data has been shown for a number of species (Walters and Uglow 1981) and hence supports the 

findings of this thesis with regards to the lobsters. However no significant correlation or linear 

relationship between Mg and activity was found for acutely exposed C. pagurus. C. pagurus was 
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shown here to be able to regulate haemolymph Mg such that there was no change with increasing 

environmental salinity, whereas H. gammarus was not able to regulate in this way and therefore 

the ability to regulate the haemolymph Mg level may explain why the lobsters showed a 

relationship between raised Mg and lowered activity, whereas the crabs did not. The overall 

general quiescence observed in all test crustaceans at the highest salinities indicates that there is 

some factor that is causing this behaviour. Mg may be one explanation for this, another may be 

that it is to avoid much transfer of high solute levels from the external media to the body or 

conserving energy in the face of increased energy costs associated with removing excess internal 

Mg against a high external Mg gradient. 

As Mg inhibits neuromuscular transmission and also acts as a narcotising agent, it suggests that 

the high levels in hypersaline media may play a role in the significant quiescence of all three 

species tested under the extremes of hypersalinity and may also play a role in the decrease of 

cardioventilatory activity by influencing the reduction in beat rate. The heart of crustaceans is 

neurogenic (where heart beat originates from a small cardiac ganglion located on or in the heart) 

rather than myogenic (where the contraction is controlled by the heart muscle cells rather than an 

external source such as a cardiac ganglion nerve cluster). Therefore if magnesium acts to inhibit 

neuromuscular transmission it is likely that the activity of the heart would therefore be inhibited too. 

This hypothesis is supported by the findings of Walters and Uglow (1981) who showed a negative 

linear relationship between the relative haemolymph magnesium values (Mg2+) and the relative 

heart activity. In Homarus americanus neuromuscular transmission was severely depressed by 

40 mM Mg2+ but this was not the case in the spider crab Hyas areneus. It would appear that the 

spider crab is physiologically adapted to function at relatively high blood Mg2+ concentrations where 

the lobster is not (Lang et al. 1979). 

Haemocyanin (HCY) is the respiratory pigment in the haemolymph of crustaceans, in the same 

way that haemoglobin is the respiratory pigment in mammals. Whereas the metal in haemoglobin is 

iron, in haemocyanin the molecule instead contains copper. There is a direct relationship between 

HCY level in the blood and the activity of lobsters. Those with little or no HCY in the blood can 

survive for several months, but are not capable of appreciable activity and it is doubtful whether 

they can complete their normal life cycle (Spoek 1974). There is also a potential relationship 

between copper, HCY and hypersalinity. Bamber and Depledge (1997) found a direct relationship 

between copper levels and  heart rate in Carcinus maenas.  They noted that when Cu was 
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increased, the heart rate of C. maenas experienced a matching increase with the elevated rates 

indicating respiratory stress in both resting crabs and crabs subjected to physical stress, 

suggesting an impairment to one or more of the processes associated with normal respiratory 

functioning. Copper has been shown to induce a tissue hypoxia in crabs over several days 

(Nonotte et al. 1993). Tissue hypoxia is a condition which has the potential to influence respiratory 

and cardiac physiology.  

Copper is the metal in HCY and it appears from an additional analysis of present study data here 

(using data presented in Chapter 5), that that environmental Cu has little effect on the HCY level in 

the study species. Under chronic hypersaline exposure intermoult lobsters showed no significant 

correlation or linear regression between Cu and HCY level. The same was true for late-postmoult 

lobsters under acute hypersaline exposure and velvet crabs under chronic hypersaline exposure. 

Acutely exposed intermoult lobsters however showed a significant positive correlation between 

HCY and Cu (p = 0.005, r = 0.481, n = 33) and a weak yet significant positive linear regression (p = 

0.005, F = 9.323, y = 181.892x +1 2.701, r2 = 0.231). There was also a positive correlation between 

copper and HCY in acutely exposed C. pagurus (p = 0.002, r = 0.447, n = 45), and a positive linear 

regression which was weak but still significant (p = 0.002, f = 10.759, y = 2.369x + 1.023, r2 = 0.20). 

The same was true for acutely exposed velvet crabs with a positive correlation between Cu and 

HCY (p = 0.003, r = 0.747, n = 13), and a positive linear regression (p = 0.003, f = 13.899, y = 

0.774x + 5.700, r2 = 0.558). Therefore, when they experienced an acute hypersaline exposure, the 

test species revealed a weak relationship between the ambient copper and their circulating 

haemocyanin levels. Under chronic exposure long enough for the animals to become acclimated 

they displayed no relationship between these two variables. Allowing time for animals to acclimate 

to hypersaline conditions suggests a reduced chance of sublethal impacts occurring which may 

otherwise be detrimental to the health and survival of the species concerned. 

In C. pagurus, the HCY has a high affinity for oxygen (p50 = 5-10 torr) and shows a large positive 

Bohr shift, however under normal conditions this affinity is largely irrelevant to the crab with over 

91% of the oxygen supplied to the tissues being carried in solution rather than by the haemocyanin 

(Bradford and Taylor 1982). Bottoms (1977) worked on C. pagurus in a Scottish sea loch and found 

the crabs to be largely inactive with no measurable haemolymph copper indicating that basal 

metabolic rate oxygen requirements are very low. Therefore low HCY may play a role in low activity 

levels in decapod crustaceans. During prolonged food deprivation, the brown shrimp Crangon 
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crangon, catabolised its HCY and the liberated copper was removed from the blood and stored in 

vesicles in the hepatopancreas (Djangmah 1970). It was found that these vesicles had the capacity 

to store the complete HCY copper content should all the pigment be catabolised. In Crangon 

crangon, 60-93% of the haemolymph protein comes from haemocyanin (Djangmah 1970), and 

Uglow (1969) found that this could attain 100% in Carcinus maenas.  Consequently, the significant 

changes in protein seen in the experiments here may be due to the breakdown in HCY under 

hypersaline pressure. 

Both H. gammarus and N. puber showed changed scaphognathite beat behaviour in hypersaline 

media. This resulted in a reduced beat rate and qualitatively, in a change from constant regular 

beating to long periods of inactivity interspersed with short periods of beating. At the highest 

salinities tested, the mean beat rate dropped as low as 20 beats per minute in a number of cases 

(from 90 bpm) and this raises questions regarding the possible functional significance of altered 

beat behaviour. Regular beating ensures constant flushing of the respiratory surfaces to promote 

gas and ion fluxes but short bursts of beating punctuating lengthy periods of non-beating are 

unlikely to overcome the inertia of the water, although they may disrupt the development of a static, 

hypoxic layer forming at the gill surface. It is probable that this would ensure some measure of flux 

of respiratory gases but it is unlikely to be sufficient to prevent an internal hypoxia developing.   

Lobster species such as H. gammarus can compensate for hypoxia by improving gill oxygen 

transfer (Butler et al. 1978). It has been suggested that under hypoxic conditions oxygen supply 

can be maintained by pumping blood exclusively to vital organs and by decreasing heart rate and 

activity (Reiber and McMahon 1998). This reduction of activity was also found in the lobster 

Palinurus interruptus when nearing hypoxia (Ocampo et al. 2003). In fact P. interruptus appeared 

dead with no observable movements which is the same response seen in the three species tested 

here. The possibility of an internal hypoxia caused by a shutdown of cardioventilatory activity has 

already been discussed and complete quiescence in extreme hypersaline conditions (salinities 50 

and above) was common for all species. Ocampo et al (2003) suggested that this reduction in 

activity may be a compensatory mechanism to supply the energy required to survive stressful 

conditions such as hypoxia. This response is likely to apply to other environmental challenges such 

as hypersalinity and therefore could be used to maintain homeostasis at least in the short term. 
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Another possible cause of the inactivity is a build up of acid metabolites in the haemolymph. Lactic 

acid is produced in the body as a by-product of carbohydrate metabolism. Blood lactate arises 

primarily from muscle cells and reflects both production and metabolism. Lactic acidosis is caused 

by deprivation of oxygen and can result in weakness, fatigue, stupor and coma (Biotech Undated). 

The effects of the significant lactate acid build up (over a twofold increase in haemolymph level 

once salinity reached 50 and 55 in H. gammarus and N. puber respectively) seen in this study 

could explain why the crustaceans went into an apparent stupor/coma at high salinities. Hypoxia 

shows in the blood as raised levels of lactate and treating the hypoxia will cause a reduction in 

lactate levels. In the study crustaceans the increase in lactate was probably caused by an internal 

hypoxia (as lactate is produce by anaerobic respiration and the lack of high activity means exercise 

was not the cause of anaerobic respiration), therefore lactate is likely to be a factor in, but not the 

overall cause of the catatonic state induced in the test species in hypersaline environments. 

The breakdown of regular and sufficient cardioventilatory activity seems to be the key factor in 

contributing to the lowered fitness and survival potential of the test species during hypersaline 

challenges. This change in beat behaviour effectively stops respiratory gas and ammonia fluxes 

and prompts a possible internal hypoxia which would induce a switch from aerobic to anaerobic 

metabolism (as shown by elevated pH and lactate in the haemolymph). The links between 

hypersalinity, physiological and behavioural changes in the test species are shown in the 

conceptual model given in Figure 7.1. This model shows the way behavioural and physiological 

responses to hypersalinity in the test species are linked and cannot be considered as separate 

processes, along with the potential outcomes possible if a crustacean encounters a hypersaline 

environment. A number of crustacean species such as N. norvegicus (Hagerman et al. 1990; 

Schmitt 1995), Eriochier sinensis (Zou et al. 1996) and P. interruptus (Ocampo et al. 2003) show 

responses to hypoxic conditions that match those found in this study such as elevated blood lactate 

and hyperglycaemia. This is again indicative of an internal hypoxia induced by the hypersalinity in 

otherwise normoxic conditions. Schmitt (1995) showed that N. norvegicus could alter the blood 

oxygen supply to help tolerate progressive hypoxia through the changes in lactate concentration. 
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Figure 7.1  The potential effects of raised salinity on adult decapod crustaceans within the area affected 
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haemolymph properties. 
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Osmoregulation and salinity tolerance in aquatic crustaceans are highly correlated (Charmantier et 

al. 1988; Charmantier and Charmantier-Daures 1991). The findings of this study indicate that in 

general, under hypersaline conditions, H. gammarus is a limited hypo-osmoregulator, C. pagurus is 

a relatively strong hypo-osmoregulator and N. puber is an osmoconformer with regards to the ionic 

constituents of sea water. 

When under hyposaline challenge, C. pagurus acts as an osmoconformer  as when exposed to 

salinities only 5 to 10% less than ambient (salinity 35) their body gains water and they die within a 

few hours (Péqueux 1995). The present findings suggest therefore that the crab is more tolerant of 

relatively high hypersalinity than slight hyposalinity, as it had the highest 96 hour LC50 value of all 

study species at salinity 55.5 which is 58 % above normal. Hypo-osmoregulation appears to be a 

widespread method for coping with hypersalinity; the semiterrestrial crab Chasmagnathus 

granulatus is a strong hyperosmoregulator in diluted seawater as well as hypoosmoregulating in 

hypersaline conditions (Charmantier et al. 2002).  

Ionic regulation is defined as the maintenance in a body fluid of concentrations of ions differing 

from those in the passive equilibrium (Robertson 1949) and there is a strong correlation between a 

high osmoregulatory ability and salinity tolerance in aquatic crustaceans (Charmantier et al. 1988; 

Charmantier and Charmantier-Daures 1991). These studies were carried out at a temperature of 8 

°C ± 1 °C, but in the North Sea where the local brine discharge occurs, temperatures can range 

from around  6 °C to 14 °C (winter-summer) (Cutts et al. 2004). It has been shown that 

environmental conditions, such as salinity change, that may be tolerable for a number of marine 

species at low temperatures may not be tolerable at higher temperatures (e.g. in the crabs, Cancer 

irroratus and Cancer borealis (Charmantier and Charmantier-Daures 1991) and cottid fish, 

Oligocottus maculosus, Clinocottus globiceps and Leptocottus armatus (Morris 1960). Mortalities of 

juvenile of H. gammarus reared at 15 °C (approx summer temperature in the North Sea), occur 

only in salinities <17 and >46 with isosmotic regulation in high salinities and slightly hyperosmotic 

regulation in low salinities (Charmantier et al. 1984). Therefore it appears probable that the 

physiological effects of the hypersaline discharge will be more marked during the summer months 

when the surrounding seas are warmer than in the winter. 

Whilst it has been demonstrated here that when faced with hypersalinity the study species will 

preferentially move to a more favourable salinity environment, an abrupt, severe stressor of 



200 
 

salinities above 50 - 55 results in the onset of quiescent behaviour. This behaviour also occurs if 

there is no behavioural ‘escape route.’ Quiescence in unfavourable conditions and hence attempts 

to regulate the internal body chemistry either by employing iono- and osmoregulation techniques 

such as ion pumping, or by just shutting down all cardioventilatory activity to stop the flux of ions 

across the gills, are probably effective as a short-term measure rather than a means of prolonged 

survival. Jury et al (1994a) studied the energetic cost in H. americanus for its limited 

osmoregulation in low salinity conditions and whether it would be more energy efficient to increase 

active transport of ions or to employ avoidance behaviour. They found that at salinity 10, females 

required more energy to osmoregulate and that for both sexes the physiological stress imposed by 

hyposalinity played a part in determining their distribution and movements in estuarine habitats. 

Therefore it was preferable for the lobsters to avoid the unfavourable hyposaline conditions rather 

than staying and attempting to cope. The crab Cancer magister also shows reductions in the 

number of animals feeding, the amount of food consumed  and the time spent feeding in salinities 

where it actively osmoregulates (Curtis et al. 2010).  

Scope for growth and energetic repercussions of coping with the effects of stressors have been 

used as indicators of sublethal impacts to toxicants in the marine environment (Moriarty 1993; 

Forbes and Forbes 1994; Salazar and Salazar 1996). If the crustaceans of this study become 

inactive due to putting energy into regulation, then this energy will not be available for other 

biological processes or functions. Perhaps the most well known and extensive study of scope for 

growth is for the bivalve mollusc Mytilus edulis (Widdows and Johnson 1988; Widdows et al. 1995) 

where reduced scope for growth occurred in the presence of toxicants such as copper, diesel oil 

and organic contaminants. In terms of crustaceans, salinity stress has been shown to reduce scope 

for growth in a number of species; Gammarus oceanius (high salinity stress) (Normant and 

Lamprecht 2006), Callinectes sapidus (low salinity stress) (Guerin and Stickle 1992), Callinectes 

similis (low salinity stress) (Guerin and Stickle 1997), Cherax quadricarinatus (high salinity stress) 

(Meade et al. 2002), Farfantepenaeus californiensis (high salinity stress) (Villarreal et al. 2003) and 

Cancer magister (low salinity stress) (Curtis et al. 2010). 

In terms of the management of hypersaline discharges into marine areas, the results of this study 

have indicated that allowing time for animals to acclimate to hypersaline conditions means a 

reduced chance of sublethal impacts occurring which may otherwise be detrimental to the health 
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and survival of the species concerned. Hypersaline discharges, if not constant in their operation 

should be started and stopped gradually so as to allow animals time to acclimate to increased 

salinity in their environment rather than an abrupt onset which could induce the acute effects seen 

here. However the timescale over which this should happen needs further investigation in order to 

make a suitable compromise between the needs of the crustaceans and the operational capacity of 

the hypersaline discharge. In general, when unable to move away from areas of hypersalinity 

(which is the primary response) or if the onset of hypersalinity is so abrupt as to induce quiescent 

behaviour, the crustaceans will experience marked reduction in their cardioventilatory behaviour 

which may not be sufficient to sustain the organisms indefinitely. These changes are represented 

by increased haemolymph pH and lactate levels which indicate switch to anaerobic respiration due 

to hypoxia. Impacts of the stress caused by hypersalinity and the inadequate respiration are shown 

by increased haemolymph ammonia and hyperglycaemia, and inadequate iono-regulation by 

increased levels of ionic components of seawater in the haemolymph (e.g. Na and Mg). Overall 

hypersalinity, when acute, or above the behavioural tolerances for each species, produces first an 

avoidance response, then if inescapable, significant physiological changes that lower the fitness of 

exposed animals which if prolonged or beyond the range of homeostasis, are ultimately lethal 

(Figure 7.1). 
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7.2 Final summary and conclusions 

This study has assessed some of the behavioural and physiological effects of hypersalinity on 

commercially important crustacean species of the North Sea. The primary response to hypersaline 

challenge is a movement away from areas of hypersalinity once each species’ threshold is 

reached. If the crustaceans cannot move (e.g. rapidity of salinity change is sufficiently high as to 

prompt quiescence) then physiological changes begin to happen (Figure 7.1). There is a 

breakdown in cardioventilatory behaviour which most likely leads to an internal hypoxia and 

anaerobic respiration as evidenced by increased haemolymph pH and lactate levels. The combined 

effects of hypoxia and the external hypersaline environment results in changes in properties of the 

haemolymph and together the altered cardioventilatory activity and haemolymph properties cause 

a reduction in fitness and survival potential. In terms of management of fisheries it may be 

advisable, not only to limit discharges to the lowest tolerance of all the commercially fished species 

in the area, but to also limit discharges during the months of moulting. This could be achieved by 

slowing down the rate of pumping to allow the brine to diffuse more easily, or to not excavate the 

caverns at all during the typical moult months. This practice, though beneficial for the crustaceans, 

may not be feasible for the industry as it would increase cavern excavation time and operating 

time. A cost-benefit exercise (or similar) would need to be carried out in order to assess the 

financial viability for the industry of operating hypersaline discharges in such a way. 

Despite the potential for complete recovery of select specimens from hypersaline exposure it is 

emphasised that their inability to move even as a consequence of direct physical stimulus at the 

extremes tested raises the question of their long term survival and reproductive potential in a 

hypersaline environment.  Hypersalinity is an increasing environmental issue and the results of this 

work have demonstrated that, in addition to the wealth of existing knowledge on hyposaline 

limitations in marine organisms, crustaceans are also limited on the hypersaline side. All of the 

species studied exhibited hypersaline upper preference limits and without exception were severely 

affected upon reaching their specific upper threshold, in addition limited survival was observed at 

salinities ≥ 50, with at least 50% morality under these conditions. There is much attention focused 

on the effects of visual contaminants to the marine environment such as the 2010 Deepwater 

Horizon oil spill, however the data presented herein provides compelling evidence for the need for 

increased monitoring of the hidden effects of contaminants on ecosystems proximal to man made 

sites of hypersalinity such as those generated by the gas and desalination industries. 
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7.3 Further study and improvements 

The present studies have furthered our knowledge of the effects of hypersaline discharges on the 

behaviour and physiology of some commercially-important decapod crustacean species and have 

shown that hypersalinity significantly affects the studied species on both the behavioural and 

physiological level. Clearly, the findings raise other questions the answers to which were beyond 

the scope of the present work. It is suggested that further studies would be useful not only in terms 

of their addition to our knowledge of crustacean ecophysiology, but also in terms of the their 

relevance to the management and protection of crustacean fisheries on which the livelihoods of 

many are dependent directly and indirectly, as well in terms of management of brine discharges 

themselves. Suggested areas of further study include: 

• an assessment of impact of hypersaline discharges on all the moult stages of Homarus 

gammarus, Cancer pagurus and Necora puber to test the possibility of moult stage-dependent 

variability and also moult progression.  Hints of such variability occurred in the present studies 

with the observation that late-postmoult lobsters had markedly lower hypersalinity tolerance 

than intermoult ones. It is therefore hypothesised that newly moulted individuals may have an 

even lower tolerance for high environmental salinity due to the lack of a physical barrier (the 

carapace). If individuals can survive in a hypersaline environment, but cannot successfully 

complete or survive the moult the survival of the local populations and the continuation of their 

attendant fishery is questionable. 

• an assessment of the impact of hypersaline discharges on the eggs and larval and juvenile 

stages of the species studied should be made for the same reasons as given in the suggestion 

above. It is unknown whether ovigerous females can carry out normal ventilation of the 

developing eggs attached to their abdominal limbs, and if hypersalinity means that eggs do not 

fertilise or hatch and/or that larval stages have delayed or halted metamorphosis, the fishery 

will not survive in the long term. 

• an assessment of the effects of hypersalinity on the prey items of the test species. The long-

term health and survival of a population of any species is dependent on an adequate food 

supply. 
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• investigation into why a number of C. pagurus chose a location in the multi-choice salinity 

preference test and then stayed there for 24 hours, regardless of the prevailing salinity. This 

behaviour may have implications for populations and commercial fishing operations in areas 

affected by brine plumes. 

• the trials undertaken here were carried out at one temperature only. An improvement to this 

would be to repeat each trial at both colder and warmer temperatures. This would be beneficial 

in helping to provide a more comprehensive overview of the responses of these crustaceans to 

hypersalinity during different seasons.  

• although time and space meant it was impossible for this study, to enhance further results it 

would be preferable to increase the number of specimens used in each trial. This is especially 

true in the case of C. pagurus where poor availability meant this species was unable to be used 

in some of the experiments. 

• investigating alternative methods of nitrogen metabolism in crustaceans challenged by 

hypersalinity. The stability of haemolymph ammonia in some of the animals tested suggests 

that an alternative biochemical pathway may be being used as a detoxification strategy. This 

hypothesis was realised too late for this study but warrants further investigation. Analyses 

should be made of other principal nitrogenous metabolites, particularly urea and uric acid/urate 

in the haemolymph and other possible storage sites (e.g. muscles and bladder) after 

treatments which duplicate those described here. 

• determining conclusively whether the breakdown of cardioventilatory behaviour is causing an 

internal hypoxia of sufficient magnitude to cause the mortalities observed. Such studies would 

require the monitoring gill chamber water oxygen levels and simultaneous in situ haemolymph 

oxygen levels.  The magnitude of the internal hypoxia could then be assessed in terms of 

whether or not it was the cause of the mortalities that occur at such times. 

• in terms of fisheries management it would also be advantageous to map the extent of the 

affected area in hectares and hence the normal catch of each species per hectare would be 

useful information for the discharging body and the fishermen as it would facilitate a sensible 

value for compensation by the discharging body should such a need arise. 
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The suggestions made above would be useful for industry managers in helping to site hypersaline 

diffusers and providing further data that would inform suitable discharge concentrations and 

operational strategies that would benefit both the industry and the benthic crustaceans in the 

affected area.  

The studies herein are laboratory based and hence very controlled. Without results from field trials 

(where environmental conditions are naturally variable) to support these conclusions, caution 

should be appropriately extended by anyone wishing to extrapolate the results of these laboratory 

trials to impacts in the sea, especially as due to both anthropogenic and natural diffusion, the 

affected area is likely to be relatively small in the context of the local environment. 
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