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Abstract 

Model-based engineering (MBE) promises a number of advantages for the development of 

embedded systems. Model-based engineering depends on a common model of the system, 

which is refined as the system is developed. The use of a common model promises a consistent 

and systematic analysis of dependability, correctness, timing and performance properties.  These 

benefits are potentially available early and throughout the development life cycle. An important 

part of model-based engineering is the use of analysis and design languages. The Architecture 

Analysis and Design Language (AADL) is a new modelling language which is increasingly 

being used for high dependability embedded systems development. AADL is ideally suited to 

model-based engineering but the use of new language threatens to isolate existing tools which 

use different languages. This is a particular problem when these tools provide an important 

development or analysis function, for example system optimisation. System designers seek an 

optimal trade-off between high dependability and low cost. For large systems, the design space 

of alternatives with respect to both dependability and cost is enormous and too large to 

investigate manually. For this reason automation is required to produce optimal or near optimal 

designs. 

There is, however, a lack of analysis techniques and tools that can perform a dependability 

analysis and optimisation of AADL models. Some analysis tools are available in the literature 

but they are not able to accept AADL models since they use a different modelling language. A 

cost effective way of adding system dependability analysis and optimisation to models 

expressed in AADL is to exploit the capabilities of existing tools. Model transformation is a 

useful technique to maximise the utility of model-based engineering approaches because it 

provides a route for the exploitation of mature and tested tools in a new model-based 

engineering context. By using model transformation techniques, one can automatically translate 

between AADL models and other models. The advantage of this model transformation approach 

is that it opens a path by which AADL models may exploit existing non-AADL tools. 

There is little published work which gives a comprehensive description of a method for 

transforming AADL models. Although transformations from AADL into other models have 

been reported only one comprehensive description has been published, a transformation of 

AADL to petri net models. There is a lack of detailed guidance for the transformation of AADL 

models.  

This thesis investigates the transformation of AADL models into the HiP-HOPS modelling 

language, in order to provide dependability analysis and optimisation. HiP-HOPS is a mature, 

state of the art, dependability analysis and optimisation tool but it has its own model. A model 
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transformation is defined from the AADL model to the HiP-HOPS model. In addition to the 

model-to-model transformation, it is necessary to extend the AADL modelling attributes. For 

cost and dependability optimisation, a new AADL property set is developed for modelling 

component and system variability. This solves the problem of describing, within an AADL 

model, the design space of alternative designs. The transformation (with transformation rules 

written in ATLAS Transformation Language (ATL)) has been implemented as a plug-in for the 

AADL model development tool OSATE (Open-source AADL Tool Environment). To illustrate 

the method, the plug-in is used to transform some AADL model case-studies. 

Keywords: MBE, AADL, HiP-HOPS, Dependability modelling, Dependability analysis, Multi-

objective architecture optimisation, Model transformation, ATL. 
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Chapter 1 Introduction 

1.1 Research problem 

Model-based engineering (MBE) is used to design systems in which models are the central 

artifacts through the lifecycle of a system development process. Model-based engineering, as 

argued in (Feiler and Gluch, 2012), allows a systematic analysis of system architecture early and 

throughout the development life cycle. This can provide higher confidence that the system will 

meet specific design goals such as dependability, timing and performance-related requirements. 

Furthermore, model-based engineering enables a more efficient development and system 

integration process.  

These model-based engineering approaches need to be supported by languages and tools in 

order to ensure that the designed system complies with its requirements. Recent work in the area 

of model-based engineering approach has focused on the development of languages and 

notations that aim to progressively refine requirements models and design models to 

automatically drive the development and then verification of complex systems. These include 

general purpose modelling languages such as Unified Modelling Language (UML) (OMG, 

2005) and SysML (OMG, 2012) which enable system architecture design, behaviour modelling 

and allocation of functions to software and hardware resources. Recently, Architecture 

Description Languages (ADLs) such as AADL (Architecture Analysis and Design Language as 

described in SAE-AS5506 (2006)) and EAST-ADL (Electronics Architecture and Software 

Technology - Architecture Description Language as described in MAENAD project (2013)) 

have gaining widespread acceptance in aerospace, automobile and avionics industries for 

model-based design of complex embedded systems.  

Beyond the modelling of “normal” behaviour, these languages also include error modelling 

concepts to enable dependability-related analysis. Dependable systems are those systems that 

have high dependability (safety, reliability, availability, maintainability) requirements. For 

example, safety critical systems such as transport and medical engineering systems need to be 

dependable because their failure or malfunction may harm people or the environment. 

Dependability of a computing system as defined in (Avizienis et al., 2001) is the ability to 

deliver service that can justifiably be trusted. 

System dependability is a vital factor in system quality control since it quantifies system 

failures. It is important to differentiate between the terms - fault, error and failure as defined in 

(Avizienis et al., 2001; Popic, 2005). A fault is a defect in system implementation that causes an 
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error. A fault is said to be active when it produces errors otherwise it is dormant. An error is a 

design flaw embedded in a system that when activated may cause a failure. A failure is any 

departure of system behaviour from user needs and it occurs when an error reaches the service 

interface and alters the service. The ways in which a system can fail are defined as its failure 

modes, e.g., timing, value failures (Avizienis et al., 2001). 

The AADL Error Model Annex document (SAE-AS-5506/1, 2006), published by the Society 

for Automotive Engineer (SAE), focuses the capabilities for dependability modelling. One of 

the advantages of the Error Model Annex is that it supplies a notation used for modelling the 

failure information on the original AADL architecture model. This kind of error annotation 

enables the dependability analysis to consider both intra- and inter-component error models, 

which is considered important for dependability analysis (Joshi et al., 2007). An AADL 

architecture specification including error models supports a dependability-oriented view of the 

system. 

Architecture description languages are ideally suited to model-based engineering; but the use of 

new languages threatens to isolate existing tools which use different languages. This is a 

particular problem when these tools provide an important development or analysis function. 

System optimisation is such a function. 

System optimisation is an important part of system development and should benefit from a 

model-based engineering approach. System optimisation, as argued in Walker et al. (2013), is 

difficult. Optimisation requires the exploration of potentially huge design spaces. In addition, 

system designs typically need to balance multiple demands (e.g., dependability and low cost), 

which introduces the complication of multiple optimal designs. To overcome these difficulties, 

some automation is needed. 

Architecture description languages can enable automation and consistency in a model-based 

development process but as described in Walker et al. (2013), architecture description languages 

are not yet fully developed to ensure effective assessment and satisfaction of architecture 

optimisation. Currently, model-based engineering lacks tools for system optimisation and tools 

for new modelling languages take time to develop. There is also a lack of analysis techniques 

and tools that can perform a dependability analysis and optimisation of AADL models. Some 

analysis and optimisation tools are available but they are not able to accept AADL models since 

they use different modelling language.  

A cost effective way of adding system dependability analysis and optimisation to models 

expressed in AADL is to exploit these capabilities of existing tools. By using model 
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transformation techniques, one can automatically translate between AADL models and other 

models. The advantage of this model transformation approach is that it opens a path by which 

AADL models may exploit existing non-AADL tools. 

A number of transformation approaches have been proposed to produce dependability analysis 

of AADL models. Joshi et al. (2007) produced a static fault tree generator prototype based on 

AADL models. This work has been extended by Dehlinger and Dugan (2008), so that dynamic 

fault trees are generated automatically from AADL models. In Rugina et al. (2008), an AADL 

dependability model is transformed into a Generalised Stochastic Petri Net (GSPN) by applying 

model transformation rules. The resulting GSPN can be processed by existing tools. Although 

transformations from AADL into other models have been reported only one comprehensive 

description has been published, a transformation of AADL to petri net models (Rugina, 2007). 

There is little published work which gives a comprehensive description of a method for 

transforming AADL models. The designers therefore face the following challenge: How to 

transform AADL models to other models for dependability analysis and optimisation of AADL 

models? 

1.2 Research contributions 

If AADL models could be transformed into the models used by other model-based methods and 

tools then it would extend the range of analysis that could be done on AADL models. Model 

transformation is potentially very valuable but it is also complex. Mens and Van Gorp, (2006) 

and Biehl, (2010) argue that the semantics between source model and target model should be 

unchanged during the transformation. This is called semantics-preserving program 

transformation (Yang et al., 1992). In order to ensure a semantics-preserving program 

transformation, an in depth concept mapping between the source and target models is required. 

Moreover, the target model often makes explicit properties that are implicit in the source model.  

In this situation, the transformation design may need to search from different level of source 

models and finally create one single element in target model. At this transformation stage, 

however, it may difficult to create the exact target element since a complicated algorithm or 

function is needed to transform multiple elements to a single one.  This thesis investigates how 

model transformation can be used to advance model-based dependability analysis and 

optimisation to models expressed in AADL. The research hypothesis is that model 

transformation is a cost effective way to maximise the utility of model-based dependability 

analysis and optimisation to AADL models because it provides a route for the exploitation of 

mature and tested tools in the AADL context. More specifically, in order to introduce system 

dependability analysis and optimisation into AADL, this thesis argues for a model-based 
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dependability modelling and analysis and architecture optimisation method through model 

transformation. In order to evaluate the validity of the hypothesis, the model transformation 

method is implemented and integrated as a plug-in into the AADL development environment 

OSATE (Feiler et al., 2006).  Several case studies are also developed and tested based on this 

plug-in so as to check the developed transformation method.    

The thesis summarises the current system optimisation methods and tools for AADL models.  

One tool is ArcheOpterix (Aleti et al., 2009), which is based on AADL and potentially allows 

automatic optimisation of AADL specifications. Another tool is AQOSA (Automated Quality-

driven Optimisation of Software Architecture) (Li et al., 2011, Etemaadi and Chaudron, 2012), 

for automated software architecture optimisation that allows multiple quality attributes (e.g. data 

flow latency, safety and cost). Limitations in the exploitation of current system optimisation 

methods are identified. A summary on model transformation is also examined. Following on 

from this, the thesis develops a transformation based method to introduce optimisation via an 

existing optimisation tool. The approach advocated in this thesis is to exploit existing 

dependability analysis and architecture optimisation techniques and tools. The challenge is to 

ensure that such tools are properly integrated into a model-based engineering process.  

The method is demonstrated using the AADL language and AADL Error Model Annex. The 

system architecture including components and its subcomponents and connections between 

components are described by using the AADL language. The dependability-related data is 

described with AADL Error Model Annex and then associated to the components and 

connections. The transformation takes advantage of the existing mature dependability analysis 

and architecture optimisation technique HiP-HOPS (Hierarchically Performed Hazard Origin 

and Propagation Studies) (Adachi et al., 2011). HiP-HOPS models the topology of a system in 

terms of components and data transactions among those components. HiP-HOPS supplies a fast 

algorithm for automatic generation of dependability analysis artifacts such as fault trees and 

Failure Models and Effects Analyses (FMEAs). Moreover, using genetic algorithms, a novel 

extension is able to solve multi-objective (cost and dependability) optimisation problems. 

Although HiP-HOPS is a state-of-the-art model-based system dependability and architecture 

optimisation analysis technique, unfortunately, HiP-HOPS requires that the system to be 

optimised is expressed as a HiP-HOPS model using the HiP-HOPS modelling language. HiP-

HOPS requires, as input, the local failure behaviour of the system components together with the 

inter-component failure propagation behavior. For optimisation, component variability 

information is also required. The integration of tools such as HiP-HOPS into an AADL model-

based engineering environment requires that these tools have suitable access to the system 
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model. Without proper integration, additional system information must be input at additional 

cost and risk of inconsistency. 

This problem can be overcome by transforming the AADL model into an equivalent HiP-HOPS 

model. More specifically, the AADL dependable model must be transformed into a HiP-HOPS 

model that captures the relevant component structure, topology and local failure information 

required for the HiP-HOPS analysis. The transformation design is driven by considering the 

needed information from the target HiP-HOPS model and the location of that information in the 

source AADL model. The thesis shows the integration of AADL model with HiP-HOPS model 

and implements the transformation between the two models by defining a set of identified 

transformation rules. Through the transformation design the thesis contributes as follows:  

1. Model transformation method for automatic optimisation of AADL dependable models 

A method that integrates system dependability design and dependability analysis and 

architecture optimisation based on dependability and cost is the main contribution of this thesis. 

The method is automated and based on model transformation. 

The thesis presents rules for transforming an AADL model which contains an error state 

machine into a fault tree by integrating the state machine to fault tree conversion algorithms 

shown in Mahmud et al. (2010, 2011) to the model transformation method. The transformation 

rules have been automated by implementing them in the ATL language (Jouault et al., 2008). 

The thesis shows the feasibility of the automation by implementing the tool AADL2HiP-HOPS, 

which has been developed to implement the model transformation and has been integrated as a 

plug-in into the AADL development environment OSATE (Feiler et al., 2006).  

Figure 1.1 shows the developed system dependability analysis and optimisation method in this 

research. In this method, once a dependable system with its optional designs is identified then it 

can be implemented by AADL. AADL is used as the notation for capturing the system 

architecture model and the possible component faults and failure modes (error model). The 

AADL modelling language has no direct support for optimisation of models. This has motivated 

the development of a new set of properties to extend AADL models (see the rectangle box with 

dotted lines shown in Figure 1.1). These properties allow an AADL model to capture the 

information required to perform model optimisation. In particular, they can represent the 

relevant optimisation properties and allow component alternatives to be specified. 

The system architecture model annotated with error model of components and optimisation 

model is defined as a system dependability and optimisation model in this thesis. The model 

transformation from AADL to HiP-HOPS is able to use this information to produce a HiP-
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HOPS optimisation model. The model which is then used for dependability analysis including 

automatic synthesis of fault trees, generation of FMEAs tables and multi-objective architecture 

optimisations analysis based on dependability and cost. 

 

Figure 1.1  The developed system dependability and optimisation analysis method between 

AADL and HiP-HOPS 

The model transformation method developed in this thesis is based on a synthesised view of 

several works (Joshi et al., 2007; Biehl et al., 2010; Rauzy, 2002; and Mahmud et al., (2010, 

2011)). The method for extracting the AADL dependability model is similar as the method 

shown in Joshi et al. (2007). However, the thesis adopts the state machine to fault tree 

conversion algorithm shown in Mahmud et al. (2010, 2011) rather than using Direct Graph 

(DG) shown in Joshi et al. (2007). This conversion algorithm ensures that the temporal 

characteristics (Mahmud et al., 2010) can also be obtained. The transformation method is 

similar as shown in Biehl et al. (2010). The transformation concepts shown in Biehl et al. (2010) 

are used because their work is related to this research. The transformation in this thesis, 

however, is from a different model (AADL) and the scope is broader, aiming to encompass not 

only the dependability analysis but also the optimisation and temporal analysis (Mahmud et al., 

2010) capabilities of HiP-HOPS. 

2. Extending AADL modelling with optimisation attributes 

Though AADL supports the description of system dependability by using the Error Model 

Annex, there are no AADL features that can be directly used for model optimisation. The 

second contribution of this thesis is to extend the AADL modelling features by adding an 
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optimisation modelling scheme. This includes a high level way to define the alternatives for a 

component and optimisation needed properties such as component cost, system optimisation 

objectives. 

1.3 Thesis structure 

The structure of the remaining chapters of this thesis is described below: 

Chapter 2 introduces the relevant background to this research. It is divided into four sections. 

The first section introduces a few well-known modelling languages in the context of 

dependability analysis. More detailed modelling concepts are given to selected test language: 

AADL. The second section describes methods and tools used for achieving system 

dependability analysis. More detailed introduction is given to a well-known fault tree based 

dependability analysis technique - HiP-HOPS, for system dependability modelling and analysis. 

The third section introduces the system architecture optimisation in the context of dependability 

and cost has been selected as the combined optimisation objective. The third section also 

summarises the relevant work for system architecture optimisation. This section also identifies a 

key research problem of this thesis, i.e., how to integrate system architecture optimisation 

constructs into the AADL modelling language. Model transformation has been identified as a 

cost effective way to tackle this problem. The fourth section introduces concepts of model 

transformation and summarises the current model transformation methods used in the context of 

dependability analysis. Limitations in these transformation method i.e., lack of detailed report of 

transformation method are identified.  

Chapter 3 describes methods for performing automatic model transformation from AADL 

models to HiP-HOPS models. This chapter focuses on model to model transformations, 

especially the transformation rules identified and the implementation of these transformation 

rules in model transformation language ATL. Chapter 3 also describes the design of model 

transformation considering modularity to achieve two identified design qualities: reusability and 

adaptability. From the transformation experience gained in this research, this chapter describes a 

model transformation guideline for rule-based (general standalone rule with source and target) 

model transformations. This guidance is illustrated by considering the transformation 

implemented in the model transformation language ATL. The chapter shows how adaptability 

and reusability in transformation designs can be achieved through modularisation. The chapter 

shows the rule implementations of the transformation definitions by applying three ATL rule 

integration mechanisms, i.e., implicit rule calls, explicit rule calls and rule inheritance. Every 

mechanism has its advantages and disadvantages to integrate rules together. Implicit rule calls 

relies on indirect rule dependencies and usually lead to a low coupling between rules. It is thus 
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would be chosen when the adaptability and reusability are set as the main quality attribute for 

the transformation definitions. For explicit rule calls, rules are integrated with explicit rule 

scheduling of function and method calls, where a rule may be directly invoked by another rule. 

This is particular useful when a transformation algorithm is needed to explicitly generate target 

model element from imperative code.  Rule inheritance mechanism enables one rule to inherit 

functionalities from another rule. This allows one rule can be reused for many times. However, 

rule inheritance may lead to tight coupling between rules because it refers to rules by name.  

Chapter 4 shows a case study, where the model transformation techniques described in Chapter 

3 are applied to a complex temperature monitoring system. Based on the benefit of this 

transformation, the fault tree and FMEA analysis results are analysed. This system is designed 

in order to verify all transformation rules identified in Chapter 3. 

Chapter 5 discusses the developed AADL optimisation modelling methods and rules for 

transforming AADL optimisation model to HiP-HOPS model. 

Chapter 6 applies the optimisation modelling method and optimisation transformation rules to a 

safety critical system. Through the analysis of this case study, this chapter highlights the value 

of this research. 

Chapter 7 concludes the thesis and lists the potential future work. 

1.4 Publications 

The following is a list of publications in which materials from this research work have been 

presented: 

Mahmud N and Mian Z, 2013, Automatic Generation of Temporal Fault Trees from AADL 

Models, European Safety and Reliability conference (ESREL 2013), Amsterdam. 

Mian Z and Bottaci L, 2013, Multi-objective Architecture Optimisation Modelling for 

Dependable Systems, the 4th IFAC Workshop on Dependable Control of Discrete Systems 

(DCDS2013), York University, UK. 

Mian Z, Bottaci L and Papadopoulos Y, 2013b, Multi-objective Architecture Optimisation for 

Dependable Systems, extended abstract for the 3rd International Workshop on Model Based 

Safety Assessment, IWMBSA’2013, Versailles, France. 
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Mian Z, Bottaci L, Papadopoulos Y and Adachi M, 2013a, Multi-objective Architecture 

Optimisation for Dependable Systems, Reliability Engineering & System Safety Journal, 
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Mian Z, Bottaci L, Papadopoulos Y and Biehl M, 2012, System Dependability Modelling and 

Analysis Using AADL and HiP-HOPS, 14th IFAC Symposium on Information Control 

Problems in Manufacturing, Bucharest, Romania. 

Mian Z, Bottaci L, Papadopoulos Y, Sharvia S and Mahmud N, 2013c, Model Transformation 

for Multi-objective Architecture Optimisation of Dependable Systems, In Zamojski W (Ed.) 

Dependability problems of complex information systems, Springer Verlag.  
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Chapter 2 Background 

Model-based engineering is a design approach in which models are the central artifacts 

throughout the lifecycle of the system development process. A model as described in Czarnecki 

and Helsen (2006) is an abstraction of a system and its environment. By the use of models, the 

developers and other stakeholders can effectively address concerns about the system or effects 

when there is a change on the system before the system is implemented. Model-based 

engineering depends on a common model of the system, which is refined as the system is 

developed. As a system model is continuously refined, the model includes finer analysis of the 

system and provides more detailed insights into the quality (e.g., dependability and 

performance) of the design. Model-based engineering, as argued in (Feiler and Gluch, 2012), 

supplies a systematic analyses of system architecture model early and throughout the 

development life cycle and can provide higher confidence that the implemented system will 

meet specific design goals such as dependability, timing and performance-related requirements. 

Furthermore, model-based engineering approach enables a more efficient system development 

and system integration process. For example, Biehl et al. (2010) argues that the integration 

(between the automotive domain to the safety domain through model transformation) help the 

safety engineers to perform the safety analysis early in the development process to fulfil safety 

goals with lower effort and cost. The transformation is automated and therefore can be repeated 

efficiently in the course of design iterations. 

2.1 Languages for model-based engineering 

Model-based engineering approaches must be supported by languages. Architecture and 

analysis languages as introduced in (Feiler and Gluch, 2012), have well-defined semantics that 

include specification of architecture and a standardized mechanism for semantically consistent 

extensions.  It provides the basis for automatically deriving analytical models to validate non-

functional requirements (such as dependability and performance) through formal analysis and 

simulation.  

The following subsection introduces a few of the better-known architecture modelling 

languages and how they may be useful for dependability analysis.   

2.1.1 Electronics Architecture and Software Technology - Architecture 

Description Language (EAST-ADL) 

EAST-ADL (Walker et al., 2013; MAENAD project, 2013) is an architecture description 

language mainly developed for the design and analysis of embedded systems in automotive 
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industry. It is developed in several European research projects including the EAST-EEA project, 

the ATESST and ATESST2 projects and most recently the European FP7 MAENAD project. 

The language is currently maintained by the EAST-ADL Association (2013 (a)). This language 

uses concepts from SysML, UML and AADL but adapted for automotive needs including 

vehicle features, functions, requirements, variability, software and hardware components and 

communication. The language is aligned on the automotive standard AUTOSAR (2014) and is 

structured in five abstract levels, i.e., vehicle level, analysis level, design level, implementation 

level and operational level.  These abstract levels cover all development information (e.g. the 

internal structure and external interfaces of system being modelled) from early analysis to late 

implementation. 

In addition to the five abstract levels defining the structural view of a system being modelled 

(nominal model), the language also defines concepts for defining abnormal behaviours of a 

system. EAST-ADL contains a set of dependability packages (i.e., elements related to 

dependability) for defining and formalising system dependability-related requirements (EAST-

ADL Association, 2013 (b)).  These include ErrorModel, SafetyRequirements and 

SafetyConstraints. The ErrorModel sub-package defines concepts for representing abnormal 

behaviours (e.g. component errors and their propagations) of a system in its operation. The error 

behaviours are represented as a separated view but orthogonal to the nominal system model.  

The benefit of this separation of concern, as described in EAST-ADL Association (2013 (b)), 

avoids the undesired effects of error modelling e.g. the risk of mixing erroneous and nominal 

behaviour in term of reuse and system synthesis (e.g. code generation). 

In the ErrorModel sub-package, the concepts of Fault and Failure are distinguished in terms of 

the perspective of the component. For example, the incoming flaw or an internal flaw is 

modelled as a Fault that may result in a component Failure.  An output error propagation from a 

component is defined as a Failure. More details of how EAST-ADL ErrorModel are used to 

specify and model the failure behaviour of a dependability-critical system can be found in 

EAST-ADL Association (2013 (b)). 

The SafetyRequirement package contains elements for organising standard safety requirements 

in accordance with ISO 26262. For instance, the SafetyGoal defines the top-level safety 

requirement specified in ISO 26262 in order to avoid or reduce the risk of hazardous event. The 

SafetyConstraints package contains constructs and elements for defining safety constraints.  For 

example, the QuantitativeSafetyConstraint represents the quantitative integrity constraints 

(failure rate) on a fault or failure. 
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The variability modelling in EAST-ADL enables the language to define the optimisation space 

(Walker et al., 2013) and thus potentially extend the language to have system optimisation 

capability. The individual optimisation candidates are produced through configuration and 

variability resolution.  

2.1.2 Architecture Analysis and Design Language (AADL) 

2.1.2.1 Introduction to AADL 

AADL (SAE-AS5506, 2006; Feiler and Gluch, 2012) is an example of an architecture and 

analysis language which is increasingly being used for high dependability embedded systems 

development. AADL is both a textual and graphical language with component-based modelling 

concepts designed to represent embedded software systems. The development of the AADL 

started in 1999 and is patterned after MetaH, a research prototype of a language and tool 

developed by the Honeywell Technology Centre for analysis and generation of embedded real-

time systems. AADL was originally published in November 2004 and the revised standard 

became available in January 2009. It has been improved and published as an international 

standard by the Society of Automotive Engineer (SAE). Compared with other languages, the 

language as described in (Feiler and Gluch, 2012), provides more advanced support for 

analysing quality attributes. This includes the Behaviour Annex standard (SAE-AS5506/2, 2011) 

and the Error Model Annex standard (SAE-AS5506/1, 2006) for AADL. The Behaviour Annex 

standard extends the AADL to specify the component interaction behaviour with further 

precision to address safety aspects of the system. The Error Model Annex standard extends the 

AADL to specify fault behaviour and error propagation to address reliability aspects of the 

system architecture. 

2.1.2.2 Comparison between AADL and UML, SysML and EAST-ADL 

Feiler and Gluch (2012) compared the AADL, UML and SysML for model-based development 

of embedded systems. They highlighted that AADL solves the issue that UML has in addressing 

the non-functional characteristics of performance-critical systems in PSM (Platform Specific 

Model) by directly addressing the performance-critical aspects of software system architecture. 

The main difference between AADL and SysML is that AADL is a textual modelling language 

with graphical representations but SysML is a graphical language based on UML. SysML 

incorporates two new diagrams (the requirements and the parametric diagram) that are 

applicable to system engineering. These diagrams, however, are less effective in capturing and 

representing the execution of a computer’s runtime environment including threads, process, and 

their allocation to different processors (Feiler and Gluch, 2012). For capturing the architecture 
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of an embedded system, AADL, focuses on the interaction between the physical system 

architecture, the runtime architecture of the embedded software and the computer hardware. 

SysML, however, focuses on the system as a whole in the context of its operational environment 

with the computer hardware as one component and the software implementing system 

functionality. Compared with SysML, AADL provides more insights into the management and 

control of a system in terms of timing, reliability and safety behaviour of the embedded 

software system (Feiler and Gluch, 2012). Furthermore, as noted in (OMG, 2012; Feiler and 

Gluch, 2012), SysML lacks a defined foundation for rigorous formal analysis. 

Johnsen and Lundqvist (2011) compared and investigated the two ADLs - East-ADL and 

AADL regarding the level of support provided by these two ADLs to developers for developing 

dependable systems. The authors (Johnsen and Lundqvist, 2011) summarised that both EAST-

ADL and AADL have their advantages and disadvantages. Compared to AADL, the authors 

highlighted that the metamodel (Jouault et al., 2008) of EAST-ADL has higher abstraction 

levels to describe systems. AADL, however, models a system using concrete system elements 

e.g., process and thread. This provides less freedom of the structure and designers may find it’s 

hard to understand how the functionality is obtained in the implementation. Since EAST-ADL 

has a higher abstraction level, the gap between an architecture description artefact and its 

implementation is larger in EAST-ADL compared to AADL. EAST-ADL tends to focus on 

understandability and communication of systems whereas AADL tends to be more suitable for 

analysis tools. 

In this thesis, AADL was selected as a suitable dependability modelling language to illustrate 

the developed model transformation method. The reasons for selecting AADL are:  First, 

compared with other languages, AADL as described in (Feiler and Gluch, 2012), provides more 

advanced support for analysing quality attributes. The AADL Error Model Annex standard 

specifies system fault behaviour and error propagation to address reliability aspects of the 

system architecture. Thus, it is well fitted in the context of this research, i.e., system 

dependability analysis and optimisation. Second, compared with EAST-ADL, AADL does not 

provide a variability management mechanism that directly supports defining design alternatives 

(which is useful for representing the design space for system optimisation). This is taken into 

consideration when choosing between AADL and EAST-ADL and has motivated this research 

to develop a new AADL property set for modelling component and system variability (see 

Chapter 5). Third, though AADL is increasingly being used as an international standard for high 

dependability embedded systems development there is still a lack of analysis techniques and 

tools that can perform a dependability analysis and optimisation of AADL models (as argued in 

section 2.3). This motivates the thesis to select AADL as a modelling language and develops a 
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model transformation based method to enable AADL has the capability of system dependability 

analysis and optimisation. 

The next sub-sections give an overview of AADL language and the dependability modelling 

with AADL Error Model Annex. Since system dependability is concerned as one key system 

attribute in this research, the introduction focuses on related architecture and error modelling 

and error propagation in AADL. 

2.1.2.3 AADL metamodel 

The SAE AADL metamodel (SAE-AADL Meta Model/XMI V0.999, 2006) defines the 

structure of AADL models, i.e., an object representation of AADL specifications that 

corresponds to a semantically decorated abstract syntax tree.  This is done through a set of 

related class specifications using the Eclipse Modeling Framework (EMF) Ecore (Steinberg et 

al., 2009) notation.   

Objects in an AADL metamodel are related to each other through two types of associations, a 

containment association, and a reference association.  Figure 2.1 shows the containment and 

reference associations between objects in AADL model. 

A containment association specifies that one object is part of another object.  A containment 

association is represent by using a line with a diamond at the container end and an open 

arrowhead at the contained end (see the containment of ProcessSubcomponents in ProcessImpl 

in Figure 2.1). 

A reference association specifies that objects are accessible from other objects either uni-

directionally or bi-directionally.  Unidirectional reference associations are shown as a line with 

an arrowhead and a label at the destination (see the reference from ProcessSubcomponent to 

ProcessClassifier in Figure 2.1).  Bi-directional reference associations are shown as a line 

(without an arrowhead) with labels on both ends (see the reference between ProcessImpl and 

ProcessType in Figure 2.1). 

If one of the labels of a bi-directional reference association is marked with a (T), then references 

in this direction are transient, i.e., not persistently stored in XML.  This reduces the size of 

XML documents, while at the same time provides for efficient access to objects in the AADL 

model when operated on by tools. 

Both containment and reference associations can have a multiplicity to specify the number of 

association instances. The containment association between ProcessImpl and 
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ProcessSubcomponents shown in Figure 2.1 indicates that a process implementation can contain 

zero or one process subcomponents subclause objects.  The bi-directional reference association 

between ProcessTypes and ProcessImpl shown in Figure 2.1 indicates that the reference from 

the implementation to the type is required to be one and is stored persistently, while the 

reference from the type to the implementations is zero or more and is maintained only in-core. 

 

Figure 2.1  Containment and reference associations in AADL metamodel (Source: SAE-AADL 

Meta Model/XMI V0.999, 2006) 

The AADL metamodel is the basis of a standard persistent interchange format in XML and the 

basis of an in-core object model that result from loading an XML-based model into memory.  A 

detailed introduction about AADL metamodel can be found in SAE-AADL Meta Model/XMI 

V0.999 (2006). 

2.1.2.4 AADL modelling concepts 

The Architecture Analysis and Design Language (AADL) is an SAE standard for the 

specification and analysis of the software and hardware architecture of embedded systems. 

AADL uses a component-based paradigm and provides a number of modelling concepts, in a 

number of dimensions, which can be used for both the design and analysis of embedded systems. 

Components form the central modelling vocabulary in AADL (Feiler et al., 2006; Joshi et al., 

2007). There are a number of categories of component designed to model both hardware and 

software. Components are defined through the type and implementation declarations. A 

component type defines the functional interface e.g. ports of the component. A component 

implementation is an instance of a component type, which specifies the internal structure of the 

component. A component type can have several implementations but an implementation can 

only belong to one component type.  

Composite components allow models to be structured into systems of subsystems. A system 

component may model a component containing hardware, software and other composite 
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components. AADL constructs are suitable for modelling both software and hardware 

components. Systems tend to be at the highest levels of the hierarchically structured models.  

AADL defines five categories of application software components (i.e. process, thread, thread 

group, subprogram, and data) and four categories of execution platform components (i.e. 

processor, memory, device, and bus category). Each of these categories has its specific 

semantics defined in the SAE AADL standard (SAE-AS5506, 2006). 

Connections are used to define interactions between components through externally visible 

features. A port in a component is one kind of AADL feature, which defines an interface for the 

directional transfer of data or events, into or out of a component. Port to port connections are 

pathways for such directional transfers between components.  

Component properties are used to describe component types, component implementations, 

connections, and etc. A property contains a name, a type, and an associated value. The property 

type defines the set of acceptable values for a property.  A property type could be one of the 

built-in data types e.g. string, integer, Boolean, enumeration, and component reference, or a user 

defined type.  

For dependability analysis, one must consider the environment in which the system runs. In the 

context of this research, a system normally contains software, hardware and mechanical 

components. Model-based development tools and techniques can be used to model these 

components. By modelling these software and hardware components, one can create a model of 

the nominal (non-failure) system behaviour. Furthermore, for dependability analysis, it also 

requires knowledge of system fault behaviour e.g. different faults that can occur and various 

system component malfunctions. Thus, model-based development approaches need to 

incorporate system fault behaviours (models) into the development process. Model-based 

dependability analysis as described in Joshi et al. (2006) is an approach in which non-failure 

system behaviour obtained in model-based development approaches is augmented with the fault 

behaviour of the system.  

The system nominal model augmented with fault behaviours supplies a dependability-oriented 

view of the system and is called the system dependability model. Given system dependability 

models, the dependability analysis process as described in Joshi et al. (2006) consists of 

defining a set of dependability requirements for the system. Then using dependability analysis 

techniques e.g., failure modes and effects analysis (FMEA) (IMCA, 2002), Markov chains 

(Trivedi, 2001; Mahmud, 2012), fault trees (Vesely et al., 2002) and reliability block diagrams 
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(Vesely et al., 2002; Rouvroye and Bliek, 2002), to determine whether the dependability 

requirements are satisfied based on the proposed system architecture.  

AADL is designed to be flexible and can be extended to accommodate descriptions that the core 

language does not completely support. By using the extension capabilities of the language, 

additional models and properties can be included. In particular, an AADL Error Model Annex 

(SAE-AS5506/1, 2006) can be used to define components’ error models, which facilitates a 

fault tree or Markov analysis of the system dependability.  

2.1.2.5 Dependability modelling with the AADL Error Model Annex 

AADL error models are specified in the AADL Error Model Annex (SAE-AS5506/1, 2006). 

The AADL Error Model Annex defines a sub-language of AADL that supports specification of 

dependability-related information e.g. fault assumptions, fault tolerance policies, error state and 

propagations, and stochastic parameters specifying the occurrence of fault events and 

propagations.  

Error models, as introduced in Feiler and Rugina (2007), are based on the concept of a state 

machine. The error model for a component describes the behaviour of that component in the 

presence of local (internal) failure and repair events, and in the presence of output failures from 

other components that are propagated to the component’s inputs. Error models may be placed in 

an error model annex library to be reused.  

There are two kinds of reusable error model: basic and derived error models. A basic error 

model defines a set of error states and transitions for a component or connection. The error state 

transitions specify how a component changes its error state (from one state to another) when 

local or internal faults (represented by error events) occur or when errors propagate from other 

components. In a derived error model, a component’s error state can be defined by using its 

subcomponents’ error states.  In this case, the error state transitions are not explicitly defined. 

For example, a component, because it has no internal redundancy, could be in an error state 

when any of its subcomponents are in an error state. Typically, the error models of the high 

level subsystems and overall system are used to obtain the results of system hazard analysis. 

The error models for low-level components are typically used to obtain the results of failure 

modes and effects analysis. In the AADL Error Model Annex, error propagation rules are 

predefined to specify the paths through which the error propagations can propagate from one 

component or connection to another. For example, a process hosted on a processor can receive 

an error propagated from that processor. These error propagations must propagate through the 

data flow’s direction e.g. direct port to port connections or explicit bindings as specified in the 
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model. They cannot propagate if the components are not connected to each other. A connection 

connects an output port of one component to an input port of another component. An input port 

of a component may have a guard_in property which can be used to: 

1. Unconditionally map an incoming error state or error propagation (name) from a sender 

component error model into an error event name defined in the receiving error model. 

2. Conditionally map a set of incoming error states and error propagations defined in sender 

components error models into a single input error propagation or a set of input error 

propagations defined in the receiving error model.  

3. Conditionally mask incoming error states and error propagations.  

Similarly, an output port may have a guard_out property to specify the pass-through mappings 

or masking of incoming error states or error propagations from sender components to output 

error propagations of the given component. More details of how AADL error models are used to 

specify and model the failure behaviour of a dependability-critical system can be found in Feiler 

et al. (2006), Feiler and Rugina (2007), Rugina et al. (2007), Joshi et al. (2007), Joshi and 

Heimdahl (2007) and Dehlinger and Dugan (2008). 

Model-based engineering languages are ideally suited for high dependability embedded systems 

development since they supply a systematic modelling mechanism to model not only the system 

nominal behaviour but also the system fault behaviour.  However, the use of new languages 

such as AADL threatens to isolate existing tools which use different languages. This is a 

particular problem when these tools provide an important development or analysis function. 

System optimisation (based on e.g. dependability and cost) is such a function. An important 

question faces engineering is how to do dependability analysis and system optimisation for 

AADL models. The following sections first introduce methods and tools for dependability 

analysis. It then introduces the background of system optimisation based on dependability and 

cost.  

2.2 Methods and tools for model-based dependability analysis 

For the design of embedded systems, quality requirements such as dependability and 

performance are important. It is beneficial to ensure that designs fulfil these quality 

requirements from the early architecture design stages. The later in the development a change is 

made the larger are the costs and delays. Model-based analysis and verification technologies can 

answer important questions related to these quality requirements and thus can facilitate a model-
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based development process. This section describes methods and tools used for achieving system 

dependability analysis.  

2.2.1 Methods for achieving system dependability 

The development of dependable system requires techniques that can successfully detect, 

prevent, forecast and reduce faults. Avizienis et al. (2001) introduced four methods that can be 

applied to achieve system dependability: 

(1) Fault prevention: to avoid the occurrences of faults, 

(2) Fault tolerance: to delivery correct service regardless the presence of faults, 

(3) Fault removal: to detect and eliminate faults, 

(4) Fault forecast: to estimate the presence and the likely consequence of faults. 

Model-based dependability analysis is one of the two means for fault forecasting (Rugina, 

2007). The dependability evaluation as described in (Avizienis et al., 2001) can be: 

(1) Ordinal or qualitative evaluation, which is used to identify and rank failures or the event 

combinations in order to avoid failures. 

(2) Probabilistic or quantitative evaluation, which is used to evaluate dependability attributes in 

terms of probabilities. 

Dependability is typically evaluated using dedicated analytical models. Some types of models 

are only suitable for one of the two types of analysis e.g., failure modes and effects analysis 

(FMEA) (IMCA, 2002) for qualitative analysis and Markov chains (Trivedi, 2001; Mahmud, 

2012) for quantitative analysis. Some types of models e.g., fault trees (Vesely et al., 2002) and 

reliability block diagrams (Vesely et al., 2002; Rouvroye and Bliek, 2002) are suitable for both 

types of analysis.  

During the last two decades, a considerable body of work (Rouvroye and Bliek, 2002; 

Papadopoulos and Maruhn, 2001; Papadopoulos et al., 2004; Bieber et al., 2002; Bozzano and 

Villafiorita, 2003; Giese et al., 2004; Joshi and Heimdahl, 2005; Grunske and Kaiser, 2005; 

Joshi et al., 2005; Joshi et al., 2006) has been developed to ensure that dependability concerns 

are satisfied. A large body of this work, classed broadly as dependability analysis (Vesely et al., 

2002; Joshi et al., 2006), is concerned with understanding system failures and their causes and 
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the relationship between them. It is then concerned with reducing the probability of failures by 

modifying the system architecture (design) to make them less likely. 

Basically, these techniques as introduced in Rouvroye and Bliek (2002), can be divided into two 

categories: one is quantitative techniques such as reliability block diagram (RBD), Markov 

analysis, hybrid techniques and etc. The other is qualitative techniques such as fault tree 

analysis (FTA) and failure modes and effects analysis (FMEA). Quantitative techniques are 

probabilistic analysis approach which aim to predict the probability of hazardous failure of the 

system from statistical data about the failure rate of its components. Qualitative techniques use 

logical analysis in which causes and effects of unwanted system behaviour are investigated.  

Papadopoulos and Maruhn (2001) and Papadopoulos et al. (2004) provide a model-based 

synthesis of fault trees and failure modes and effects analysis. Bieber et al. (2002) provide a 

formal verification technique focusing on automated dependability analysis of systems 

represented as state automata. In this approach, model-checking (Bozzano and Villafiorita, 

2003) is used to verify the satisfaction of dependability requirements or detect violations of 

requirements in normal or faulty conditions. Giese et al. (2004) present an approach supporting 

the compositional hazard analysis of UML models. The approach permits to systematically 

identify and prioritise the hazards and failures. Joshi and Heimdahl (2005) present a model-

based safety analysis approach for automating the safety analysis process using executable 

Simulink models. Similarly, Grunske and Kaiser (2005) provide a technique for generating an 

analyzable failure propagation model for a system by annotating components with modular 

failure mode assumptions. The modular failure mode is described in the failure propagation 

transformation notation (FPTN). By using this technique a model-based safety evaluation is 

possible. A model-based safety evaluation enables the automatic generation of safety-related 

models from system models. Joshi et al. (2005, 2006) present a proposal for model-based safety 

analysis.   

Nicol et al. (2004) is a survey of existing model-based techniques for evaluating system 

dependability and Mahmud (2012) provides an introduction and classification in terms of static 

and dynamic approaches to safety analysis. For this research, the fault tree and FMEA based 

dependability analysis was selected as a typical example of dependability analysis that would be 

applied to a system. HiP-HOPS is a fault tree and FMEA based dependability analysis and 

optimisation technique and hence HiP-HOPS has been selected as a suitable dependability 

analysis and optimisation technique to demonstrate the transformation approach. The following 

sections introduce some concepts from FMEA and fault tree.  
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2.2.1.1 Failure mode and effects analysis 

The failure mode and effects analysis (FMEA), as defined in (IMCA, 2002), is “A systematic 

analysis of the systems to whatever level of detail is required to demonstrate that no single 

failure will cause an undesired event”. FMEA starts from the known causes and uses the 

bottom-up analysis method in order to investigate the immediate failure mode and its hazards. 

FMEA shows the relationship between component failures and its possible effects that can have 

on the system.  Thus, it enables the designers to understand how a failure (and how likely that 

failure is) for a component affects the system. The objectives of FMEA summarised in (IMCA, 

2002) are to: 

(1) identify each of  potential failure mode and its causes, 

(2) evaluate the system effects based on each failure mode, 

(3) identify measures to eliminate or reduce the risks related to each failure mode, 

(4) provide information to the designers to ensure they understand the limitations of the system. 

FMEA as described in Mahmud (2011) can be useful in many ways: first it serves as a basis for 

probabilistic reliability and availability analysis. Second, it provides future references for design 

changes so as to avoid or minimise the effects of the most critical failures identified. Third, it 

helps to show (e.g., in HiP-HOPS) how some design alternatives can represent optimal trade-

offs based on maximum dependability and minimum cost. 

2.2.1.2 Fault tree and fault tree analysis  

A fault tree (FT), as described in Vesely et al. (2002), “is constructed as a logical expression of 

the events and their relationships that are necessary and sufficient to result in the undesired 

event, known as top event”. The symbols used in a fault tree indicate the type of events and the 

type of relationships that are involved. The fault tree can be considered as qualitative, when it 

provides extremely useful information on the causes of the undesired event, and also 

quantitative, when it provides useful information on the probability of the top event occurring 

and the severity of all the causes and events modelled in the fault tree.  

Fault tree analysis (FTA), as described in Vesely et al. (2002), is a failure-based deductive 

approach. Fault tree analysis begins with a system failure (e.g. an unwanted event), and then 

deduces its causes by using a systematic, backward-stepping process. Fault tree analysis 

supplies key information that can be used to prioritise the importance of the causes to the 

unwanted event and those causes should be the focus of any dependability activity. As a result, 
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fault tree analysis is very useful to identify weaknesses of the systems and to evaluate possible 

upgrades.  

One important concept in fault tree analysis is cut sets and minimal cut sets (MCSs). A cut set is 

a set of basic events so that if all these events occur together then the top event will occur. A 

minimal cut set is a cut set so that if any of the basic events is removed then the remaining set 

does not cause the top event (i.e., no longer a cut set). Minimal cut sets are important because it 

relates the top event directly to the basic event causes (Vesely et al., 2002). The minimal cut sets 

indicate all the ways that the occurrence of the various basic events can cause the top event.  

Another important concept is the order of a cut set, which is the number of events that compose 

the cut set. Cut sets with order 1 indicate a single point of failure that will immediately cause the 

top event. These single failures are often weak links and could be the failures of critical 

components or unhandled deviations of critical system inputs. By identifying the critical failures 

and components the designers then can focus the design on those critical components to meet 

the reliability concerns. Especially, those appearing in minimal cut set of low order and those 

included in most cut sets are good candidate to be critical for the system dependability analysis. 

Till now, this section introduces different methods for dependability analysis. For large systems, 

tools are needed to automatically generate and synthesise fault trees. There are also tools for 

these different methods for dependability analysis.  The Failure Propagation and Transformation 

Notation (FPTN), as described in (Fenelon and McDermid, 1993; Fenelon et al., 1994) is a 

graphical dependability modelling tool for the analysis of failure behaviour of a system. It is an 

abstraction of a technique for supporting both Fault Tree Analysis and Failure Modes Effects 

Analysis. This technique, however, has a key deficiency: The failure model is sensitive to 

changes of system components and as a result the defined failure model can be easily impacted 

by the changes of the system model (Parker, 2010; Wallace, 2005). This can result in a complete 

reanalysis of the entire system when changes are required to a component in the system model. 

Furthermore, FPTN is limited to a process that cannot be automated (Parker, 2010).  

The Fault Propagation and Transformation Calculus (FPTC) is a technique developed by 

Wallace (2005) in an attempt to overcome the identified limitations with FPTN. This is 

achieved by integrating the failure behaviour of the system more closely into the system model. 

The result of this, as argued in Parker (2010), is that not only transmit failure but also all 

potentially important dependencies are identified and recorded. Compared with FPTN, FPTC 

can be automated (Parker, 2010). Moreover, since the failure model is tied to system 

architectural model, changes made to components can be localised and not require a complete 

reanalysis to update these changes. However, the FPTC as argued in Parker (2010), has 
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limitations in the analysis of the effect of a failure, i.e. the failure must be injected into the 

system. This injection process has to be repeated for each different failure.  

The State Event Fault Trees (SEFTs) as described in (Kaiser et al., 2007), were developed to 

overcome of the inability of standard fault trees to model temporal event ordering.  This is done 

by separating states (that last a period of time) from events (that are instantaneous and typically 

trigger state changes).  The use of the concepts of states and transitions in the state event fault 

trees makes it unable to use standard fault tree analysis algorithms. Instead, the model is 

converted into a Petri Net model. Once a Petri Net model exists, a quantitative analysis may be 

performed automatically by a suitable tool, such as COMPASS (COMPASS project, 2013).  

Since the SEFTs is a state-based analysis technique, this could lead to a state-space explosion 

for larger models and thus as argued in (Parker, 2010), may affect the scalability of the 

technique. 

More detailed introduction of various dependability analysis techniques and tools can be found 

in Paker (2010) and Mahmud (2012).  However, these tools only support system dependability 

analysis and none of them can supply system architecture optimisation based on dependability 

and cost.  HiP-HOPS is a model based dependability analysis and architecture optimisation 

technique. Recently, HiP-HOPS has combined with meta-heuristics (Pareto-based Genetic 

Algorithms (Walker et al., 2013)) to enable the design models to meet the desired cost and 

dependability requirements. By using genetic algorithms, HiP-HOPS is able to explore the 

space of variations of a model and by evaluating the dependability and cost of the various model 

variations, HiP-HOPS is able to solve multi-objective (cost and dependability) optimisation 

problems. Dependability analysis and optimisation tools that are not AADL based cannot be 

used directly on AADL models. Section 2.3 summarises techniques and associated tools for 

system architecture optimisation. By comparing the advantages and limitations of these related 

work, this section also draws forth the research problem in the context of this research, i.e., how 

best to integrate system architecture optimisation analysis into AADL. A model transformation 

between AADL and HiP-HOPS has been identified as a cost effective way to tackle this 

problem. Section 2.4.3 summarises the current model transformation methods used in the 

context of dependability analysis and also gives the motivation for choosing HiP-HOPS as a 

target model for AADL dependability and optimisation analysis.  Details of the HiP-HOPS 

modelling concept for dependability analysis will be introduced in the following section.  
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2.2.2 Hierarchically Performed Hazard Origin and Propagation Studies (HiP-

HOPS) – A tool for system dependability analysis and optimisation 

HiP-HOPS is a well-known fault tree based dependability analysis technique for system 

dependability modelling and analysis. HiP-HOPS is a state-of-the-art system dependability (i.e. 

availability, maintainability, reliability and safety) analysis technique. HiP-HOPS uses the 

topology of a system together with reusable local failure specifications at component level to 

automatically produce a network of interconnected fault trees and a Failure Modes and Effects 

Analysis (FMEA) for the system. It offers a significant degree of automation and reuse thereby 

countering problems arising from the increasing complexity of systems. The technique is 

supported by a software tool. 

A HiP-HOPS model abstracts a system into components and connections between those 

components. The input and output ports of components provide the anchor points for 

connections between components. HiP-HOPS defines a language for the description of failure 

behaviour at the component level. In the basic version of this language, the failure behaviour of 

a component can be specified as a function of internal failure modes of that component (internal 

malfunctions) and deviations or omission of parameters as they can be observed at the outputs 

of connected components (output malfunctions). Each internal malfunction is optionally 

accompanied by quantitative data, for example a failure rate or a repair rate. Output 

malfunctions are associated with Boolean expressions which describe their causes as a logical 

combination of internal malfunctions of the component and the malfunctions of connected 

components manifest as deviations and omission of parameters at the component inputs. It is 

this component failure data that is used by HiP-HOPS to automatically produce a network of 

interconnected fault trees and a Failure Modes and Effects Analysis (FMEA) for the system. To 

synthesise a system fault tree, HiP-HOPS examines the local fault tree expression of each 

component and the propagation of failure data between components. In HiP-HOPS, the Line 

objects specify how failure events propagate between components. 

2.2.2.1 HiP-HOPS metamodel 

The metamodel of HiP-HOPS describes the structure of the model. Figure 2.2 shows the 

simplified HiP-HOPS metamodel. The top element of system consists of components and lines.  

Each component contains ports, a default implementation, and alternative implementations 

(alternatives). Each implementation can have failure data (see fData shown in Figure 2.2) to 

indicate how this component can fail and the probability between component failures and 

system failures. The failure data consists of basic events and output deviations. Each basic event 

contains a name and an optional unavailability formula that defines the quantitative failure 
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information of this basic event. The basic events are the basic failure modes of an individual 

component.  Basic events can include things like wear, environmental factors (e.g. temperature), 

faults in the component (e.g. overheating, short circuits), or anything else that cannot be 

decomposed further. 

The output deviations represent errors or faults propagated from the outputs of a component. At 

minimum, an output deviation needs a name and a failure expression (see defaultString attribute, 

defined as an Estring type under object OutputDeviation shown in Figure 2.2). The failure 

expression is a string representing the logic of the output deviation.  This is an expression in 

Boolean logic that specifies how causes – either basic events, common cause failures, input 

deviations, or deviations imported via allocation links – to the fault propagated from the output.  

It may also possess a flag indicating whether this is a “system output port” (see systemOutPort 

attribute).  The system output port represents system level failures.  Output deviations with this 

flag set to true become the top events of fault trees. 

 

Figure 2.2  The HiP-HOPS metamodel 
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2.3 System optimisation with dependability 

For the development of dependable systems, designers must address both dependability and cost 

concerns. For example, the cost of cars can be reduced by developing distributed flexible 

subsystems such as car control systems that can be based on reusable and standard 

interchangeable modules and architectures (Papadopoulos and Grante, 2005). Such control 

systems, although of a lower cost, are required to perform reliably. 

The designers must carefully address the safety issues since the car control subsystems provide 

important vehicle functions such as steering and braking. Development processes are needed to 

address both these safety and economic concerns and they should be applicable  at an early 

stage of the design process so as to avoid unnecessary and expensive design iterations. 

However, to consider both dependability and cost design objectives, the following two 

situations need to be addressed (Adachi et al., 2011; Walker et al., 2013). On one hand, a large 

number of different designs with different architectures can potentially meet the dependable 

requirement both technically and economically. In such architectures, shared information and 

hardware resources allow a large number of configurations options. This results in more 

difficulties in design since potential design spaces are largely expanded. The system designers 

must find the architecture that needs minimal development costs. On the other hand, if no 

design solutions can fulfil all dependability-related requirements, then the designer must find 

the architectures that achieve the key requirements with best possible trade-offs between 

dependability and cost. This is called the trade-off between multi-objectives. 

Aleti et al. (2009) and Walker et al. (2013) argue that it is the conflicting quality requirements 

(e.g., minimum cost and maximum dependability) and the increasing complexity of today’s 

systems, which adds more challenges for the development of dependable systems. With a 

number of different designs with different architectures that can potentially supply the functions 

of a system, the designers then face a difficult multi-objective optimisation problems (Walker et 

al., 2013). Multi-objective optimisation problems, as described in Adachi et al. (2011) and 

Walker et al. (2013), can effectively be addressed by the use of optimisation techniques and 

computerised algorithms. These algorithms can efficiently search for optimal solutions in large 

potential design spaces. Grunske et al. (2007) is an introduction to the model-based optimisation 

field and Aleti et al. (2012) is a wider survey of literature on architectural optimisation 

techniques.  

As argued in Walker et al. (2013), to find a suitable or optimal architecture design is difficult 

and some automation is needed. One key issue facing system designers is how to optimise 
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system architectures throughout the whole system development lifecycle with respect to 

dependability and cost. Modelling languages and emerging ADLs offer multiple qualities 

analysis and evaluation functions. Thus, they could benefit from concepts and technical support 

of ADLs that enable this type of optimisation. 

Some work has been done for solving multi-objective architecture optimisation problems in 

dependable systems. This includes the work that based on Reliability Block Diagrams (RBDs) 

model (Konak et al., 2006) and the HiP-HOPS (Papadopoulos and Grante, 2005, Hamann et al., 

2008, Adachi et al., 2011). HiP-HOPS is a model based dependability analysis and architecture 

optimisation technique. Recently, HiP-HOPS has combined with meta-heuristics (Pareto-based 

Genetic Algorithms (Walker et al., 2013)) to enable the design models to meet the desired cost 

and dependability requirements. By using genetic algorithms, HiP-HOPS is able to explore the 

space of variations of a model and by evaluating the dependability and cost of the various model 

variations, HiP-HOPS is able to solve multi-objective (cost and dependability) optimisation 

problems. 

Some related work has been done in the context of ADLs. Walker et al. (2013) presented a 

multi-objective optimisation approach based on EAST-ADL. In this approach, three objectives, 

i.e., dependability, timing and cost were evaluated. Typically, the system dependability is 

evaluated by HiP-HOPS where the system dependability characteristics are obtained via 

transforming EAST-ADL model to HiP-HOPS model. One important aspect of this approach is 

that they used EAST-ADL’s variability management mechanism to define the alternative 

implementations and thus benefiting to the ease of defining design space. AADL, however, has 

no such scheme to define the search space of alternatives. A scheme for representing component 

variability is needed for optimisation AADL models. This motivates the thesis to extend the 

AADL model by defining sets of optimisation related properties to represent variability. The 

details of defined optimisation properties are given in Chapter 5. 

Some other work has been done on the development of tools for multi-objective optimisation of 

software architectures. One tool is ArcheOpterix (Aleti et al., 2009), which is based on AADL 

and potentially allows automatic optimisation of AADL specifications. Two quality metrics, i.e., 

data transmission reliability and communication overhead were evaluated. The tool was 

extended to enable reliability, cost and response time optimisation of AADL models shown in 

Meedeniya et al. (2009). In this extension, only simple component redundancy allocation was 

used as a reliability improvement. The design space of a set of component alternatives, however, 

was not considered, which is considered important to create the possible design space in this 

research for optimisation. Furthermore, in order to perform the optimisation, it is necessary to 

transform from other models to AADL model since the tool is tightly integrated in AADL.  
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Another tool is AQOSA (Automated Quality-driven Optimisation of Software Architecture) (Li 

et al., 2011, Etemaadi and Chaudron, 2012), for automated software architecture optimisation 

that allows multiple quality attributes (processor utilisation, response time, data flow latency, 

safety and cost). The tool uses model transformation technology to transform AADL input 

models into an intermediate AQOSA-IR model and this model is then used as the basis of the 

optimisation process. AQOSA is developed independently for any domain specific languages 

and hence needs model transformation technology to generate analysis models from other 

architecture models to perform the optimisation. There is, however, no detailed work shown 

how the variability of alternative AADL components are represented and how the AADL 

dependable model can be transformed to AQOSA for AADL architecture optimisation based on 

dependability and cost.  

There is still a lack, however, of analysis techniques and tools that can perform a dependability 

analysis and optimisation of AADL models. HiP-HOPS models the topology of a system in 

terms of components and data transactions among those components.  HiP-HOPS supplies a fast 

algorithm for automatic generation of dependability analysis artifacts such as fault trees and 

Failure Models and Effects Analyses (FMEAs).   Moreover, using genetic algorithms, a novel 

HiP-HOPS extension is able to explore the space of variations of a model. By evaluating the 

dependability and cost of the various model variations, HiP-HOPS is able to solve difficult 

multi-objective (cost and dependability) optimisation problems.  

A cost effective way of adding system dependability analysis and optimisation to models 

expressed in AADL is to exploit the capability of HiP-HOPS. This can be done by transforming 

the AADL model into an equivalent HiP-HOPS model. The purpose of this research is to 

develop a method which combines the multi-objective optimisation techniques (e.g. HiP-HOPS) 

and variability capabilities (to be developed in this thesis) and quality attribute such as 

dependability transformed from AADL.  The benefit of this transformation is that it opens a 

path that will enable the AADL language to take advantage of some of the unique capabilities of 

HiP-HOPS, i.e. the synthesis of multiple failure mode FMEAs, temporal fault tree analysis and 

evolutionary architecture optimisation with respect to dependability and cost. This in turn brings 

some of the benefits of this type of analysis – rationalisation, automation, consistency between 

design models and analyses and the ability to iterate analyses - in the context of an emerging 

paradigm for model-based design. 

To enable the design of model transformation from one model (e.g. AADL model) to another 

(e.g., HiP-HOPS), it is necessary to understand the concepts used in each of the model and 

identify the mappings between the two models. The rest of this Chapter gives an introduction of 

model transformation and developed model transformation techniques to tackle the identified 
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limitations and challenges, i.e., lack of techniques for system optimisation of AADL dependable 

systems, discussed in this thesis. 

2.4 Model transformation 

Different models and modelling languages are used for different kinds of development and 

analysis and to describe a system on different abstraction levels and from different views. It is 

not always possible or best to develop and analyse systems in a single model. Different models 

are implemented in different languages and hence have different domains. These include data 

program code, data schemas, UML models and interface specifications etc. (Czarnecki and 

Helsen, 2006). 

Due to the use of varied models, transformations between models are necessary (Czarnecki and 

Helsen, 2006; Biehl et al., 2010). Czarnecki and Helsen (2006) argue that model 

transformations are very important in model-based engineering and they are necessary in 

application including: generation of lower-level models code from high-level models, 

synchronisation and manipulation of models at different (or same) levels of abstraction, the 

creation of a system based on query views, model refactoring in model revolution tasks, and etc. 

Biehl et al. (2010) also argue that the transformation between the automotive domain to the 

safety domain is required to feed the growing demand of integrating safety analysis techniques 

into the model-based embedded systems development process. They also argue that the 

integration (through model transformation) help the safety engineers to perform the safety 

analysis early in the development process to fulfil safety goals with lower effort and cost.  

In the context of this research, AADL supplies a dependability-oriented view of system by 

providing support for capturing all the dependability-related information through AADL 

architecture modelling and AADL Error Model Annex. To aid automated dependability analysis 

(e.g. automated generating fault trees and FMEAs) for AADL, the AADL dependability model 

need to be transformed to other model-based engineering approaches such as HiP-HOPS.   

2.4.1 Introduction to model and metamodel 

A model as described in Jouault et al. (2008) is a representation of a system, which contains 

characteristics and knowledge of the system. In model-based engineering, models must be 

described in accurate modelling languages. When the conceptual foundation of a modelling 

language is expressed as a model, then it is called metamodel (Jouault et al., 2008). For 

example, the metamodel and interchange formats annex (SAE-AADL Meta Model/XMI V0.999, 

2006) specifies the AADL metamodel, i.e., the structure of AADL models. This is done through 
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a set of related class specifications using the Eclipse Modeling Framework (EMF) Ecore 

(Steinberg et al., 2009) notation. 

The AADL metamodel is useful since it can be manipulated programmatically through an API, 

and can also be stored in a standard interchange format e.g. in XML. This enables different tools 

to interoperate on AADL models if they support AADL XMI (XMI, 2003) metamodel 

specification or XML schema (XML, 2001). 

The AADL metamodel is the basis of a standard persistent interchange format in XML and the 

basis of an in-core object model that results from loading an XML-based model into memory. A 

detailed introduction about the AADL metamodel can be found in SAE-AADL Meta 

Model/XMI V0.999 (2006). 

A model usually conforms to its metamodel (the relation between a model expressed in a 

language and the metamodel of this language is called conforms to). Similarly, metamodels are 

in turn expressed in a modelling language specified in a metametamodel.   A detailed definition 

of these concepts can be seen in Jouault et al. (2008). 

2.4.2 Introduction to model transformation 

Mens and Van Gorp (2006) define model transformation as the “automatic generation of one or 

multiple target models from one or multiple source models, according to a transformation 

description”. A model transformation definition, as introduced in (Biehl, 2010), expresses how 

source models are transformed into target models.  

The transformation should also preserve some properties. The semantics between source model 

and target model should be unchanged during the transformation (Mens and Van Gorp, 2006; 

Biehl, 2010). This is called semantics-preserving program transformation (Yang et al., 1992), 

which is defined as the values computed are unchanging while the way computations are 

performed is changing. Although, a transformation between source and target models is 

semantics preserving, the target model often makes explicit properties that are implicit in the 

source model. An example of this is the HiP-HOPS Line object which models the propagation 

of failure events. Failure propagation information is available in the AADL source model but 

not so explicitly represented. If source metamodels assumptions are basically different from 

target metamodels, it might be difficult to preserve all the semantics (Biehl, 2010).  

Transformations may be defined in a model transformation language. If the model 

transformation language is rule-based (general standalone rule with source and target) then the 

transformation definition is a set of model transformation rules (Biehl, 2010). Each rule defines 
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a source pattern and a target pattern and specifies how an element in the source pattern can be 

converted into an element in the target pattern. The running result of each rule is that a target 

pattern (specified in the target model) is created for any source pattern appears in the source 

model.  

Model transformations as introduced in (Biehl, 2010), enable an automatic generation of target 

models from required information obtained from the source models. This automation (through 

model transformation) allows consistency between different models and enables systematic 

reuse of information.  

Generally, the goal of the model transformation is to generate a target model e.g. Mb, from a 

source model e.g. Ma through a model transformation model definition defined as a model e.g. 

Mt. These models (i.e. Ma, Mb and Mt) have to conform to their own metamodel respectively.  

 

Figure 2.3  An overview of model transformation process 

Figure 2.3 shows the complete model transformation pattern. A target model Mb that conforms 

to a metamodel MMb is created from a source model Ma that conforms to a metamodel MMa 

through the execution of a model transformation model Mt that conforms to a model 

transformation metamodel MMt. These metamodels conform to a metametamodel MMM, an 

example of which is Ecore (Steinberg et al., 2009). The execution of Mt results in automatic 

generation of Mb from Ma. 

In the context of transforming AADL to HiP-HOPS, the AADL dependable model (Ma in Figure 

2.3) conforming to AADL metamodel (MMa in Figure 2.3) is the source model. The HiP-HOPS 

file (Mb in Figure 2.3) is the final output of the transformation, which conforms to the HiP-
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HOPS schema definition (MMb in Figure 2.3). The transformation rule (sematic mapping, Mt in 

Figure 2.3) written in the ATL language is a model conforming to the ATL metamodel (MMt in 

Figure 2.3). All metamodels conforms to the Ecore (Steinberg et al., 2009). More details of 

AADL Ecore metamodels and HiP-HOPS Ecore metamodel can be found in SAE (2006) and 

Biehl et al. (2010).  

2.4.3 Model transformation for model-based dependability analysis 

A number of model transformation approaches have been proposed for the dependability 

analysis of AADL models.  One approach consists of developing a framework for dependability 

analysis of AADL error models by transforming AADL models to Generalised Stochastic Petri 

Nets (GSPNs) as described in (Rugina, 2007; Rugina et al., 2008). The GSPN obtained by 

transforming the AADL dependability model is constructed by applying a set of transformation 

rules. All transformation rules are presented and formalised using the notations related to Petri 

Nets. There are two subnets, the component subnets and the dependency subnets are structured 

in order to obtain GSPN model from AADL model. The component subnets model the 

behaviour of independent components based on their own faults and repair events. Components’ 

error models including error states and error transitions triggered by error events are processed 

to create the component subnets. The corresponding transformation rules are identified for 

transforming independent components. For example, the AADL error state is transformed to the 

place in GSPN. The AADL initial error state is transformed to the place with token in GSPN. 

The AADL error event is transformed to GSPN transition. The dependency subnets model the 

error behaviour associated with dependencies described by name-matching, i.e. input and output 

error propagations. The input and output error propagations are the basic mechanisms for 

presenting interactions between AADL components. For each identified output error 

propagation, the input error propagations that could occur as effects of the output error 

propagation are searched through the AADL architecture model. The name-matching input and 

output error propagations are then transformed, according to defined rules, into dependency 

subnets that are connected to the component subnets.  

There are also rules for transforming AADL guard_in and guard_out error properties.  These 

error properties provide a mechanism for error propagation filtering and masking. For each of 

such error property, the components owning the propagations and states named in the Boolean 

expressions or the property are searched and obtained. The resulting dependency subnets are 

connected to the component subnets. Furthermore, there are similar defined rules for other 

mechanisms, e.g., for connecting error states to modes (Rugina, 2007), i.e., guard_event and 

guard_transion. 
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This approach focuses mainly on quantitative (probabilistic) analysis. This approach, however, 

as argued in (Walker et al., 2013), does not allow qualitative analysis. Qualitative analysis such 

as FMEA is important when probabilistic data is not available. A more suitable model for 

qualitative analysis is the fault tree and an alternative approach for AADL dependability 

analysis has been described in (Joshi et al., 2007), where the AADL dependable model is 

transformed to static fault trees in three steps. First, the AADL system instance error model is 

extracted based on the AADL system instance model and the individual error models referenced 

in the system instance model. The extracted instance error model is stored in the form of nodes 

of a Directed Graph (DG) (Joshi et al., 2007). The DG is used for identifying error propagation 

sources e.g. the directed edge points to all associated components that could be the sources of 

their input error propagations. Second, once the system instance error model data has been 

stored in the form of a DG, a fault tree generation algorithm is used to recursively generate an 

intermediate fault tree with the top event being the error state or propagation listed in an AADL 

report property. Finally the intermediate fault tree is formatted for a specific analysis tool. 

There is, however, no published implementation work showing how each step of the 

transformation is done and how the static fault tree is generated from an AADL error model. 

There are also drawbacks, however, in Joshi and others’ conversion, particularly, as argued in 

(Walker et al., 2013) that the temporal characteristics (Walker and Papadopoulos, 2009; 

Mahmud et al., 2010; Mahmud, 2012; Mahmud and Mian, 2013) of the AADL error model are 

lost through the transformation to static fault trees. As a consequence, this loss could cause 

serious errors when analysing dynamic systems. To overcome the above drawbacks, HiP-HOPS 

integrated temporal logic called Pandora (as described in Walker and Papadopoulos, 2006) to 

achieve automated synthesis and analysis of dynamic fault trees. This is one reason that HiP-

HOPS was chosen as the dependability analysis tool in this research and also motivates the 

work to convert AADL models to HiP-HOPS models. 

A very similar work to Joshi et al. (2007) is the work reported in Dehlinger and Dugan (2008). 

In this work, Joshi and others’ conversion is extended to allow dynamic fault trees (Dugan et al., 

2007) to be generated from an AADL model. There is, however, no detailed implementation 

work show how the dynamic fault tree is generated from an AADL error model. 

Several groups have been reported to have an integration of dependability related analysis 

capabilities based on AADL. The aerospace corporation toolset, as described in Hecht et al. 

(2009, 2010) and Feiler (2010), is integrated with OSATE and generates Generalised Stochastic 

Petri Nets (GSPN) from AADL models. From this GSPN (XML file generated by the ADAPT 

tool (Rugina, 2007; Rugina et al., 2008), a translator generates a Stochastic Activity Network 
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model in the Mobius toolset format. Mobius (2014) is a model-based environment for validating 

reliability and availability of systems. A second translator generates an FMEA representation 

from the Petri Net of the error model for FMEA analysis. The COMPASS project (Correctness, 

Modelling and Performance of Aerospace Systems) (2013) is an integration toolchain for 

verification and validation of AADL models. The toolset support safety analysis such as fault 

tree analysis and failure mode and effects analysis (Feiler, 2010). Under ASSERT project 

(2014), an effort has been started to develop a transformation between AADL dependability 

model and AltaRica (Bieber et al., 2002). The AltaRica project (2014) is a modelling language 

designed by LABRI (2014) and industry companies for formally specify the behaviour of 

systems when faults occur.  

Biehl and others (2010) reported a model transformation method for automated transformation 

from EAST-ADL to HiP-HOPS. They assumed a model based development process through 

which the automotive concepts (e.g. vehicle features, functions, requirements, variability, 

software and hardware components and communication) are represented by the EAST-ADL 

architecture description language. The concepts of the error analysis are represented by the 

safety analysis tool HiP-HOPS, and the automated transformation from EAST-ADL to HiP-

HOPS integrates the development and analysis domains together. Their transformation method 

is divided into two phases. The first phase is designed for conceptual mapping between the two 

domains, i.e., an abstract model to model transformation from source model (EAST-ADL) to 

intermediate target model (intermediate HiP-HOPS model). The purpose of the first phase 

transformation is to preserve the semantics of the source model through mapping concepts 

between EAST-ADL and HiP-HOPS. The second phase is designed for representing the output 

of first phase transformation (the intermediate HiP-HOPS model) in the concrete syntax of 

target model (HiP-HOPS model). In this work, only concept mapping between EAST-ADL and 

HiP-HOPS is reported. For example, the EAST-ADL ErrorModelType.errorConnector 

object is mapped to the HiP-HOPS System.Lines object. There is, however, no published 

work showing why the two identified objects should be mapped and how this mapping is 

transformed and implemented in the selected transformation language, ATL.  

Grunske and Han (2008) compared the AADL error annex to some of the existing model-base 

dependability analysis techniques according to its ability in modelling and tool support. Five 

existing model-based evaluation methods, i.e., Failure Propagation and Transformation Notation 

(FPTN), as described in (Fenelon and McDermid, 1993; Fenelon et al., 1994), Component Fault 

Trees (CFTs), as described in (Kaiser et al., 2003), State Event Fault Trees (SEFTs) as 

described in (Kaiser et al., 2007), Fault Propagation and Transformation Calculus (FPTC) as 

described in (Wallace, 2005) and HiP-HOPS as described in (Papadopoulos and Maruhn, 2001; 
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Papadopoulos et al., 2004; Papadopoulos and Grante, 2005) are compared. The author 

highlighted that one weakness of most of these techniques is they cannot generate FMEA tables. 

Only HiP-HOPS provides ways to obtain FMEA tables by analysing minimal cut sets of the 

generated fault trees. The author also highlighted that the adoption of the generation of FMEA 

tables would be a good extension to the support of AADL’s error model. The integration of 

AADL and HiP-HOPS allows AADL exploring some of the advantages of HiP-HOPS such as 

the ability to generate FMEA, temporal fault trees and architecture optimisation. This is also 

one motivation of the selection of using HiP-HOPS as the dependability analysis and 

optimisation technique in this research. 

The above early work shows the transformation approaches for dependability analysis of ADLs 

models, however, there is little published work which gives a comprehensive description of a 

method for transforming AADL models. Although transformations from AADL into other 

models have been reported only one comprehensive description has been published, a 

transformation of AADL to Petri Net models. There is a lack of detailed guidance for the 

transformation of AADL models. This motivates the thesis to give a detailed transformation 

from AADL model to HiP-HOPS model shown in Chapter 3. Furthermore, none of the above 

early work shows in detail how the AADL model can be optimised based on dependability. 

Section 2.3 has introduced the concept of system optimisation and a summary of the attempt to 

optimise architecture models. This includes some tools such as ArcheOpterix, AQOSA and 

HiP-HOPS for multi-objective optimisation of software architectures. Based on the identified 

limitations in the exploitation of current system optimisation methods, Chapter 5 introduces the 

transformation approach advocated in this thesis so as to tackle these limitations.  

2.4.4 Modularity in model transformation 

Modularity in the context of a programming language means the ability to compose programs as 

a set of smaller units, called modules. It is common to impose a set of requirements to the 

modules, e.g., for software development, modularity means to achieve two qualities: reusability 

and adaptability.  

In addition to correctness, the design of model transformation should fulfil certain quality 

properties, such as adaptability, modifiability and reusability. In the context of model 

transformation, a suitable modular structure may help designers to fulfil these quality properties. 

Kurtev et al. (2007) analysed several modular features of rule-based model transformation 

languages in order to produce adaptable and reusable transformation designs. Two quality 

properties, i.e., adaptability and reusability of transformation designs, are studied. This work 

draws developers’ attention to two main considerations: First, to achieve a proper 
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modularisation, more than one decomposition in the source and target metamodels should be 

considered. Second, an integration mechanism that ensures loose coupling between modules 

should be used in order to achieve an adaptable and reusable transformation design.  

In the context of model transformation, most of current transformation languages as introduced 

in (Kurtive et al., 2007; Czarnecki and Helsen, 2006), are rule-based. Rules defined in a 

transformation language are either matched rules (i.e. clearly separated source and target 

pattern) or are imperative rules (i.e. procedures units that similar to the imperative languages). 

The transformation rule as introduced in Kurtive et al. (2007) and Jouault and Kurtev (2005), is 

the basic module. Modularity as described in Kurtive et al. (2007) requires decomposition of 

transformation definitions (rules). This will help the transformation designers to reduce the 

complexity when designing model transformation and thus may help in promoting reusability 

and adaptability. Rules as described in Kurtive et al. (2007) should also be designed to meet the 

criterion for composability. This means that a rule may use the functionality of other rules to 

combine them together. 

Generally, the declarative languages (Kurtev et al., 2007) with implicit rule calls enable more 

adaptable transformations. This is because implicit rule calls are not explicitly referenced to rule 

names. An implicit rule call is triggered when one rule needs the functionality produced by 

another rule. This ensures loose coupling between rules since implicit rule call relies on indirect 

rule dependencies. The evaluation, however, presented in Kurtev et al. (2007) does not use 

formal case studies. 

2.4.5 Transformation languages 

The model transformation language is important in model transformation. Software engineers 

should be supported in performing model transformation by mature model-based engineering 

tools and techniques (Jouault et al., 2008). Model transformation languages are designed and 

developed to provide such a support so as to solve common model transformation tasks 

(Czarnechi and Helsen, 2006). The model transformation technique e.g. the declarative 

approach offers a number of advantages compared to the use of a general purpose programming 

language such as Java. In any model transformation, two tasks must be accomplished. Firstly, 

the source model must be navigated to locate the elements that contain the information required 

in the target model. Secondly, the collected information must be processed and used to construct 

the appropriate elements of the target model. If a general purpose language is used to implement 

a model transformation, considerable programming effort can be devoted to the navigation of 

the source model. The use of a model transformation language abstracts away from explicit 

source model navigation. Instead, the transformation language programmer specifies, using a 
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pattern, the structure of the information required from the source model and the transformation 

language pattern matcher will systematically traverse the source model instantiating pattern 

matches wherever they are found. 

Model transformation languages and engines have been classified in Czarnechi and Helsen 

(2003, 2006) and Biehl et al. (2010). Different model transformation languages have their 

advantages and disadvantages in solving specific types of tasks. To choose which model 

transformation approach is based on specific domain models. For example, as described in 

Czarnecki and Helsen (2006), most graph-transformation-based approaches are suited for 

transforming UML models. 

For this research the model-to-model transformation languages are well suited for the semantic 

mapping transformation, since both input and output are models. The ATLAS Transformation 

Language (ATL) (Jouault et al., 2008), a hybrid language containing a mixture of declarative 

and imperative constructs is chosen in this research. The criteria for selecting ATL are 

simplicity (i.e. hiding the complexity e.g. explicit source model navigation, of model 

transformation), suitability (i.e. suitable to illustrate the developed transformation method) and 

integratability (i.e. can be easily integrated into the growing toolset surrounding AADL).   

The use of a declarative language such as ATL abstracts away from explicit source model 

navigation. Instead, the ATL programmer, specifies, using a pattern, the structure of the 

information required from the source model and the ATL pattern matcher will systematically 

traverse the source model instantiating pattern matches. Each match of a pattern in the source 

model identifies the source model elements required to construct an element of the target model. 

Matched patterns trigger rules which specify how the information matched in the pattern should 

be processed to create an element of the target model. The ATL rules also simplify the 

processing of the information necessary to construct target model elements. The right-hand-side 

of an ATL rule is essentially a template for the target element to be constructed and variables in 

the template are instantiated when the left-hand-side pattern of the rule is matched.  

In isolation, each rule is relatively straightforward. It is the ATL rule matching algorithm which 

“brings the rules together” to achieve a complete transformation. The higher level of abstraction 

of the declarative approach not only reduces the workload of creating a model transformation it 

also makes the transformation less rigid and less dependent on the precise structure of the 

source model.  

In this research, the criteria for selecting a transformation language is only for illustration 

purpose i.e. for showing how the identified transformation method can be implemented in a 
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transformation language. In the case that maintainability and efficiency is a main concern for 

the transformation, other model transformation languages and tools e.g. Tefkat (Lawley et al., 

2004) may be used. 

ATL is selected in this research not only because it hides the complexity of model 

transformation behind the simple syntax but also because: 

1. It has been shown to provide effective means of achieving similar model transformations 

(Biehl et al., 2010).   

2. ATL is a hybrid model-to-model transformation language that uses declarative (matched) 

rules and imperative (called) rules (Kurtev et al., 2007), which makes the language suitable to 

illustrate the transformations method.  

3. ATL can be integrated into the growing toolset surrounding AADL. The Open-Source AADL 

Tool Environment (OSATE) developed by SEI (2004) is a set of plug-ins based on Eclipse and 

the Eclipse Modelling Framework (EMF) (Steinberg et al., 2009). OSATE is used to parse and 

semantically validate textual AADL specifications into models for input to ATL 

transformations. 

ATL transformation is unidirectional. The transformation process operates on read-only source 

models and generating write-only target models i.e. the source model can be navigated but 

cannot be changed; the target model cannot be navigated. More detailed ATL features such as 

modular, helper, matched rules, and etc. can be found in Jouault et al. (2008) and ATLAS group 

(2005). 
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Chapter 3 Model transformation for the automatic generation of HiP-HOPS-

oriented dependability analytical models from high level AADL dependable 

models  

This Chapter outlines a new model transformation method (AADL2HiP-HOPS) for the 

automatic generation of HiP-HOPS-oriented dependability analytical models from high level 

AADL dependable models. AADL is used as the notation for capturing the system architecture 

model and the AADL Error Model Annex is used to capture the component faults and failure 

modes. The method transforms this AADL dependability model to a HiP-HOPS model which is 

then used for the synthesis of fault trees, FMEAs and other analyses to automatically generate 

the fault tree and FMEA table of a system for further dependability analysis.  

3.1 Model transformation overview 

AADL and HiP-HOPS use different modelling concepts and hence have different models and 

different modelling languages. To perform a HiP-HOPS dependability analysis of an AADL 

model it is necessary to create a HiP-HOPS model from the AADL model. There are similarities 

and differences in the AADL and HiP-HOPS modelling concepts. Both languages use the 

concepts of component, port and connection although detailed semantics differ. The remaining 

part of this section discusses the main similarities and differences between AADL and HiP-

HOPS. 

AADL component error models, as described in Feiler and Rugina (2007), are effectively state 

machines. Figure 3.1 illustrates how error models (i.e. error state machines) relate to AADL 

components and how components are connected to each other through AADL connections. In 

Figure 3.1, each component has a number of ports and an associated error model, e.g., 

component D has one input port called in and one output port called out and an associated 

error model (see dotted circle shown in Figure 3.1). The error model is a state machine which 

describes how the state of the component changes in response to events or the state of other 

components as observed at input ports. An omission of input or an internal component failure is 

an example of an event that might cause a transition to a component-failed state.  

The connections between components form the main paths of error propagation through the 

system. In Figure 3.1, the connections between components are shown as small circles. AADL 

connections can also have associated error models although this is not typical. If there is no 

error model associated with the connection, error propagations defined in the connected 

component will propagate through the connection. To describe the transformation, the thesis 
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first discusses the case in which there are no error models associated with connections. The case 

in which connections have error models is discussed at the end of this chapter. 

 

 

Figure 3.1  An AADL system model consisting of five components, each with an associated 

error model, and six connections 

Figure 3.2 illustrates the HiP-HOPS model corresponding to the AADL model shown in Figure 

3.1. Instead of state machines, HiP-HOPS uses local Boolean failure expressions to describe 

how each component may fail based on its internal malfunctions or input error deviations. The 

failure expression is a Boolean logic expression, which is equivalent to a local fault tree for that 

component. For example, in Figure 3.2, the fault tree in the dotted circle emanating from 

component D specifies the various ways in which component D can fail. 

The HiP-HOPS Line element describes how events, typically error events, propagate from one 

component to another. A Line element is associated with each input port. In Figure 3.2, there 

are four HiP-HOPS Lines (shown as small triangles) connecting the components, one for each 

input port. HiP-HOPS can automatically generate a system fault tree from the locally defined 

component fault trees and the propagation information contained in the HiP-HOPS Line 

elements. 

 



41 

 

 

Figure 3.2  HiP-HOPS model corresponding to the AADL model shown in Figure 3.1. The 

HiP-HOPS model consists of five components, and their associated fault tree expressions. 

There are four HiP-HOPS Lines (shown as small triangles) connecting the components 

3.1.1 Translation of AADL component error model to HiP-HOPS failure 

expressions  

At the highest level of abstraction, the transformation consists of two parts. One part is 

concerned with the component specific error behaviour and the other part is concerned with 

inter-component error propagation. Structurally, the model transformation transforms AADL 

components into HiP-HOPS components and constructs HiP-HOPS Line objects from 

information in AADL components and connections. More specifically, for a given component, 

the HiP-HOPS failure expression (local fault tree) can be derived from the AADL error state 

machine, guard_in and guard_out expressions. The HiP-HOPS Line elements can be derived 

from the AADL connections. 

An AADL component error model is a state machine in which component behaviour is 

described in terms of states and transitions between states caused by error events. Figure 3.3 

shows example error state machines for components A and D. Component A is initially in the 

ErrorFree state. If component A fails then its state changes to Failed. Once in the Failed 

error state it propagates the event LossData from A.out. When component D, which is 

initially in the ErrorFree state receives an input error event called LossData1 it changes to 

the error state Failed. This error state can be also reached when the component itself fails (a 
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Fail error event is detected). Once in this error state, component D propagates output error 

event LossData2. This event may in turn cause a transition in the error model of some other 

connected component. 

 

Figure 3.3  Error state machine for component A and D 

The first stage of the transformation is to transform the component error models of each AADL 

component into a HiP-HOPS component fault tree expression. Each possible output of the error 

state machine is a top event for a fault tree. For example, in the component D shown in Figure 

3.3, if we set the output propagation (LossData2) as the top event then the equivalent failure 

expression or fault tree is: 

LossData2 = LossData1 OR Fail                                     (1)   

This failure expression is constructed by identifying paths from the initial state to the final state 

corresponding to the top event in the state machine error model. The introduction to the formal 

algorithm is given in the following section. 

3.1.1.1 Translation of error model state machine to fault tree  

The error model associated with an AADL component or connection is essentially a state 

machine (Feiler and Rugina, 2007). The component error behaviour is described in terms of 

logical error states in the presence of faults. To construct the Boolean failure expression from an 

error state machine, a conversion algorithm, presented in (Rauzy, 2002; Mahmud et al., (2010, 

2011)), is used. Essentially, the algorithm generates a fault tree for each output propagated from 

the state machine with that output as the top event. Below the top event is an OR-gate. There is 

one input to the OR-gate for each path from the initial state to the final state corresponding to 

the top event. This is because each path represents an alternative way of reaching the final state. 
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To traverse a path to the final state, each event that controls a state transition on that path must 

occur hence a path is represented by an AND-gate in which the inputs are the events that occur 

on the path. By using the above conversion algorithm, one can transform an AADL component 

error state machine to the corresponding component’s local fault tree. 

Note that the conversion algorithm, presented in Mahmud et al., (2010, 2011) can be used only 

for producing general Boolean failure expression (i.e. producing equation (1)) from an error 

state machine. Thus, the conversion algorithm needs to be adapted for this research in order to 

produce a HiP-HOPS specific failure expression from AADL state machines. To produce a HiP-

HOPS-specific Boolean failure expression i.e. the notation <FailureClass>-<PortName>, further 

transformation algorithms are required. This includes the algorithms for mapping error states 

and events to component ports, transforming guard_in(out) expressions to fault trees, and 

transforming AADL connections error model to HiP-HOPS fault trees. These algorithms are 

discussed in the following sections. 

3.1.1.2 Mapping error states and error events to component ports  

Returning to the example of Figure 3.3, notice the absence of port names in the expression (1) 

above. Error events enter and leave components via ports. To represent this information in HiP-

HOPS, expression (1) would be written as  

LossData2-out = LossData1-in OR Fail                              (2)   

Equation (2) specifies that when the component receives an input error propagation LossData1 

through its input port in, the component will propagate the error LossData2 through its output 

port out. In general, the HiP-HOPS name for an error event consists of a basic event name, 

known also as a failure class or generic error followed by a port identifier. The notation 

<FailureClass>-<PortName> indicates the type of failure and the port from which it propagates. 

The port and event name information required to construct the HiP-HOPS, expression (2) may 

be obtained from the guard_in error property of the AADL model. The guard_in property 

associates a local error event with events from other components that may propagate along a 

connection to an input port. The guard_in property can be used to rename error events or states 

or to define new events in terms of other events and states. For example, the AADL guard_in 

property at the input port in of D might be 

    guard_in => LossData1 when in[LossData], 
                mask when others 
                applies to in; 



44 

 

This expression means that the propagation of the error event LossData to the input port in of 

D will trigger the LossData1 error event in D. Other error events from A that arrive at the input 

port are “masked” i.e. do not enter the port. The port name that the guard_in property applies to 

can be used to translate the AADL error LossData1 into a HiP-HOPS failure class, i.e. 

LossData1-in = LossData-in                                        (3)   

Figure 3.4 shows the general form of the guard_in expression. In more detail, e1 is the name of 

an incoming (in or in-out) propagation declared in the error model and x1 is the expression to 

be evaluated to determine whether the e1 event occurs.  

The form of the expression can 

- be a single in or in-out port. 

- reference one or more outgoing propagations or error stats of the error model of some 

components connected to the given component through some ports of the given 

component. 

- reference specific error states in the error model of the given component. 

- contain Boolean operators, not, or, and, ormore and orless.  

The port names that appear in the expressions refer to component’s input port names through 

which the error propagations or error states will be propagated. The input port names i.e. p1, 

p2,…, pk that are listed in the applies to clause specifies that the defined guard_in 

property is only applied to these input ports. These input ports are used to qualify the defined 

input error propagations.  

 

Figure 3.4  The general form of the guard_in property 

The guard_in property consists of a sequence of clauses as shown in Figure 3.4. Some clauses, 

shown in [], are optional. The when clauses are evaluated in the order of the declaration until 

the first one (whose Boolean error expression xi) is evaluated to be logically true. The 

incoming error propagation in that clause is considered to have occurred and causes the event 

named on the left of the corresponding when clause. The last when clause might specify 

guard_in => e1 when x1,   
            e2 when x2, 
            e3 when x3, 
            [mask when em], 
            e4 when x4, 
            [e5 when others] 
            applies to p1, p2,…,pk; 
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others, which means that the event on the left of when clause occurs if none of the previous 

clauses are true.  

The guard_in property can also be used to specify the conditions under which the input error 

propagations are masked (ignored). If a mask clause expression is evaluated to true, the events 

appearing on the left of the when clauses do not occur and they will not have any impact on the 

given component.  

Generally, each when clause in a guard_in property applied to an input port can be transformed 

into a fault tree. The top event is the event on the left of the when clause and the tree is defined 

by the expression of the right of the when clause. All the clauses in the guard_in property can be 

transformed into a list of fault trees. To produce HiP-HOPS failure classes, the top events are 

qualified by the input port name.  

The top events of the fault tree are qualified as:  

ei - pj,           

where i indexes an event and j indexes a port and pj is a port name appearing in the 

applies to clause. Figure 3.5 shows partial fault trees generated from transforming the 

guard_in property shown in Figure 3.4.  

Under each top event is an AND gate. The input error propagations ei are evaluated in the order 

of declaration until the first when clause (i.e. Boolean error expression) is evaluated to be 

logically true. This means that, for example, if the third when clause is evaluated to be logically 

true then both the first and the second when clause must have been firstly evaluated to be 

logically false. Thus, a NOT gate should be added for each when clause fault tree to specify that 

all the clauses before the current clause must be evaluated to be false. Furthermore, when the 

mask clause is evaluated to be true then all the errors i.e. input error propagations ei defined in 

the guard_in property are masked.    

The top events i.e. e1 to e5 are qualified by port p1. The fault tree for the top event of e2-

p1:  

e2-p1 = NOT (x1) AND x2 
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Figure 3.5  The fault trees generated from the guard_in property shown in Figure 3.4. The 

top events i.e. e1 to e5 are qualified by port pi.  The trees shown above are for the port pi.  

There is one set of trees for each port p1 to pk in the applies to clause 

Before give a formal algorithm, a small worked example of how the transformation algorithm 

from guard_in to fault tree works is given. Assume there are 5 when clauses in the guard_in (see 

Figure 3.4), listed in a sequence. The left-hand-side of the when clause is an event ei, the right-

hand-side is an expression, xi. The when clause m = em is a mask clause. The list of when 

clauses is 

<e1 = x1, e2 = x2, e3 = x3, m = em, e4 = x4, e5 = others> 

The first step of the algorithm is to collect all sub-sequences of increasing length into a 

sequence. 

<<e1 = x1>,  
 <e1 = x1, e2 = x2>,  
 <e1 = x1, e2 = x2, e3 = x3>,  
 <e1 = x1, e2 = x2, e3 = x3, m = em>,  
 <e1 = x1, e2 = x2, e3 = x3, m = em, e4 = x4>, 
 <e1 = x1, e2 = x2, e3 = x3, m = em, e4 = x4, e5 = others>> 
 

Delete the sequence with the last element equal to the mask expression.  

<<e1 = x1>,  
 <e1 = x1, e2 = x2>,  
 <e1 = x1, e2 = x2, e3 = x3>,  
 <e1 = x1, e2 = x2, e3 = x3, m = em, e4 = x4>, 
 <e1 = x1, e2 = x2, e3 = x3, m = em, e4 = x4, e5 = others>> 
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Map each sequence into a pair, the first element of the pair is the sequence less the last element, 

the second element of the pair is the last element of the sequence. 

<(<>, e1 = x1),  
 (<e1 = x1>, e2 = x2),  
 (<e1 = x1, e2 = x2>, e3 = x3),  
 (<e1 = x1, e2 = x2, e3 = x3, m = em>, e4 = x4), 
 (<e1 = x1, e2 = x2, e3 = x3, m = em, e4 = x4>, e5 = others)> 

Map each pair (call it the source pair) to a pair (call it the target pair). The first element of each 

source pair is a sequence. From this sequence, construct the sequence containing only the when 

clause right-hand-side expressions. This is the first element of the target pair to be constructed. 

The second element of the target constructed pair is the same as the second element of the 

source pair.  

<(<>, e1 = x1),  
 (<x1>, e2 = x2),  
 (<x1, x2>, e3 = x3),  
 (<x1, x2, x3, em>, e4 = x4), 
 (<x1, x2, x3, em, x4>, e5 = others)> 
 

Map the logical not function to each expression in each sequence that is the first element of 

every source pair. 

<(<>, e1 = x1),  

 (<not x1>, e2 = x2),  
 (<not x1, not x2>, e3 = x3),  
 (<not x1, not x2, not x3, not em>, e4 = x4), 
 (<not x1, not x2, not x3, not em, not x4>, e5 = others)> 

Map each source pair to a target pair as follows. The first element of the target pair is produced 

by extending the sequence that is the source pair first element by adding the expression that is 

the right-hand-side of the when clause that is the second element of the pair. The second 

element of the target pair is produced from the left-hand-side event in the when clause that is 

the source pair second element. 

<(<x1>, e1),  
 (<not x1, x2>, e2),  
 (<not x1, not x2, x3>, e3),  
 (<not x1, not x2, not x3, not em, x4>, e4), 
 (<not x1, not x2, not x3, not em, not x4, true>, e5)> 
 

Map each pair into a fault tree constructed as follows. The expression of the fault true is 

constructed from folding the logical and function into the expressions in the first element 
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sequence. The top event of each fault tree is the second element of the pair hyphenated with the 

port indexed by i. 

 
<e1-pi = x1,  
 e2-pi = not x1 and x2,  
 e3-pi = not x1 and not x2 and x3,  
 e4-pi = not x1 and not x2 and not x3 and not em and x4, 
 e5-pi = not x1 and not x2 and not x3 and not em and not x4> 
 

This step is repeated for i=1 to k, i.e. for each port in the “applies to” clause. 

The formal algorithm for transforming AADL guard_in property to HiP-HOPS fault trees is 

given in Figure 3.6  below. The algorithm codes each of the steps shown in the above example. 

In each step, a function is applied to a source sequence and produces a target sequence. In the 

next step, the target sequence of the previous step becomes the source sequence and so on. 

 

Figure 3.6  The formal algorithm for transforming AADL guard_in (guard_out) property 

into HiP-HOPS fault trees 

The algorithm first collects all the input error propagation clauses i.e. all guard clauses defined 

in the guard_in property to a sequence G. The sequence GR is a set of set guard clauses. Each 

element of GR is a sequence of guard clauses obtained by taking partial elements (guard clauses) 

in sequence G. This is done by take(G, i), which gives the first i elements of sequence G. 

Each element of GR contains all the required Boolean error expressions (defined in guard 

Let Sequence G = com.ErrorProperty.inErrorPropagationGuard.list; 
Let Sequence GR = <>;  
for (i = 1 to G.length) { 
  GR.Add(take(G, i));  // collect sub-sequences 
} 
G = {s : GR | s.last.lhs != mask}  // delete mask sub-seqc 
// split sequences at last element and construct pairs 
G = {s : G  pair({take(s, s.length – 1)}, s.last)} 
// change each ‘when’ clause of form e = x to x 
G = {p : G  pair({when: p.first  when.rhs}, p.second)} 
// insert ‘not’ for each expression 
G = {p : G  pair({x: p.first  not x}, p.second)} 
// extend sequence with ‘when’ expression 
G = {p : G  pair(p.first.add(p.second.rhs), p.second)} 
// insert ‘and’ between expns of sequence and produce FT expns 
for (i = 1 to k){ 
  Gi = {p : G  tree(p.second-pi, fold(and, p.first))} 
} 
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clauses) to create a fault tree for an input error propagation identifier specified in the guard_in 

property.  

The algorithm makes use of the filter function (the | in the algorithm denotes a filter function) 

which tests each element of a sequence with a Boolean function and collects all the elements 

that are true.  

The variable G is then defined to be the set generated ( denotes generator operator) by 

collecting the value of each pair function. 

The pair function creates a pair. The first element of the pair is pair.first. The second part 

element of the pair is pair.second. A when clause event is when.lhs and a when clause 

expression is when.rhs.  

The fold function inserts a two argument function between each element of a collection to 

produce a single expression. The tree function creates a fault tree from a top event and a 

Boolean expression. The result fault tree expression is in the form <e> - <p>, where p is the 

port name specified in the applies to clause of a guard_in property.  

Note that if an input error propagation (e.g. e) is defined in more than one guard_in property 

applied to multiple ports e.g. p1 and p2. In this case, it may guard the situation that different 

types of incoming error propagations through different input ports can be mapped into the same 

incoming propagation e. Thus, this input error propagation e1 is transformed as a disjunction 

(OR) of port qualified names:   

e = e-p1 OR e-p2                                                  (4)   

Note that if there is no guard_in error property defined for a locally defined input error 

propagation, then this means that no input error name mapping is required i.e., input and output 

error propagations have the same name. Note also that in the situation in which a component has 

more than one input port and no guard_in error property is defined for a given error that may 

propagate to those input ports then the error may propagate through any of the input ports. To 

translate this situation into a HiP-HOPS failure expression, an event name of the form 

<FailureClass>-<PortName> is created for each port. The event which is the propagation of the 

error to any port can then be represented as a disjunction (OR) of port qualified names. In 

general, each locally defined input error propagation e that appears in a state machine is 

transformed into a disjunction (OR) of the names constructed by appending each of the input 

ports to the input error propagation: 
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e = e-in1 OR e-in2 OR ... e-inN                                  (4)’   

where in1, in2, ... e-inN are the input ports through which e may propagate to the 

component. 

The HiP-HOPS names of error events that propagate out of a component may be constructed in 

an analogous manner. In the presence of a guard_out property at a port, the error name mapping 

at that port can be used to create the HiP-HOPS name. In the current example, suppose that 

there is the following guard_out property at the output port out of D  

    guard_out => LossData2  
                  when self [Failed], 
                  mask when others 
                  applies to out; 

which means that the component will propagate an output error propagation called LossData2 

through output port out when it is in the state Failed. The other error propagations propagate 

through this output port are “masked” i.e. not propagated out. Again, the fact that this guard_out 

property is associated with the port out may be used to qualify the LossData2 event, i.e. 

LossData2 = LossData2-out                                          (5)  

The guard_out also allows the mapping of the component Failed state to the output 

propagation LossData2 (HiP-HOPS failure class LossData2-out), i.e. 

LossData2-out = Failed                                             (6)  

In the absence of any guard_out error property, the output error propagations defined for a 

component will propagate through each output port of that component. For a given set of errors 

that propagate out of a component, a HiP-HOPS failure class is created for each error. For a 

given set of output ports, each port is used to qualify the failure class. More formally, suppose 

that there are number n of output ports (n >= 1), i.e., out1, out2, . . . , outn, then we 

obtain: 

OutputErr = OutputErr-Out1 = OutputErr-Out2 = ... = OutputErr-Outn (7)  

For component D, there is only one output port out. Thus, in the absence of any guard_out error 

property, based on the Boolean logic shown in (7), we obtain: 

LossData2 = LossData2-out                                          (8)  

For component D, from Boolean logic (1), (2) and (3) we now obtain: 
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LossData2-out = LossData-in OR Fail                                (9)  

This is the HiP-HOPS Boolean failure expression (fault tree) for the component D and all event 

names are expressed as <failure class>-<port name>.  

3.1.2 Transformation of AADL connections to HiP-HOPS Lines  

Using the AADL state machine and guard_in(out) expression to HiP-HOPS fault tree 

transformation described in the previous section, we can obtain a local fault tree for each 

component in the system. To create a whole system fault tree, HiP-HOPS needs information 

about how errors propagate between components. This information is represented using HiP-

HOPS Lines. The HiP-HOPS Line element describes how events, typically error events, 

propagate from one component to another. The HiP-HOPS Line concept describes a set of 

connected ports. The Line contains a set of HiP-HOPS Connection objects (see the right hand 

figures shown in Figure 3.7). Each Connection describes the propagation of event to a specific 

port from other ports. A Line connecting two ports will have two Connections if events flow in 

both directions.  

Figure 3.7 presents a high-level overview of the transformation in the form of mappings 

between constructs of the two metamodels. In Figure 3.7 the left hand figure shows the AADL 

connection metamodel and the right hand figure shows a corresponding HiP-HOPS Line 

metamodel. For example, an AADL EventConnection object (with type of Connection) that 

contains dst (destination port) and src (source port) is mapped as a HiP-HOPS Line objects. A 

HiP-HOPS Line type contains a list of ConncetionsType and each ConncetionsType has three 

attributes: failureClass, port and portExpression. The details of the transformation mappings i.e. 

how AADL connections can be transformed to HiP-HOPS Line objects are discussed as 

follows.  
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Figure 3.7  Left hand figure shows the AADL connection metamodel and right hand figure 

shows a corresponding HiP-HOPS Line metamodel 

The information required to create HiP-HOPS Lines can be obtained from the AADL 

connection objects. To give a simple description of the transformation from AADL connections 

to HiP-HOPS Lines, consider a simple case in which only one AADL connection (called 

EventConnection1) is defined between two components A and B. Assume also that there is 

an “in out” error propagation called LossData which is defined in an error model and this error 

model is associated with both components A and B. The partial AADL description of this 

connection is  

EventConnection1: event port A.out -> B.in; 

For this AADL connection, the error events will propagate from the source port A.out to the 

destination port B.in. In particular we can associate a connection logic failure expression 

(called HiP-HOPS PortExpression) with port B.in which describes the failure at component B 

in terms of the output failure at A. Thus the HiP-HOPS Line for the connection from A.out to 

B.in would be constructed as follows 
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 <Line>  
   <Type>Directed</Type> 
   <Connections> 
     <Connection> 
       <FailureClass>LossData</FailureClass> // failure in component 
       <Port>B.in</Port>     // propagated into port  
       <PortExpression>     //failure propagated when 
         LossData-A.out 
       </PortExpression> 
     </Connection>  
   </Connections>  
 </Line> 

Each Line element contains a list of Connections. Each Connection describes how errors at one 

or more output ports (e.g. LossData at A.out) propagate to an error at an input port (e.g. 

LossData at B.in). The <Port> attribute identifies the port to which the error propagates. 

Since the Line is directed the error will propagate from the port (A.out) to the port (B.in). The 

PortExpression element is a Boolean expression containing AND, OR, and the names of other 

port or ports on the Line. The PortExpression describes the events at other components, i.e. 

LossData from A.out, which causes an event, in this case, LossData at B.in at the in port 

of component B.  

The transformation of the above example AADL connection to HiP-HOPS Line is relatively 

straightforward as errors to the port B.in can come only from one port, i.e. A.out. The 

transformation transforms the AADL connection’s destination port to HiP-HOPS Connection 

destination port and the AADL connection’s source port to HiP-HOPS PortExpression. The 

AADL output error propagation LossData is transformed to a HiP-HOPS FailureClass and the 

portExpression is constructed in the style of <FailureClass>-<portname>. 

Whereas an AADL connection joins only two ports, a HiP-HOPS Line may connect any number 

of ports. For each port in a Line to which error events may propagate, there is a HiP-HOPS 

Connection object that specifies how error events may propagate to that port from other ports in 

the Line. The HiP-HOPS Line also maps the names of events at source components to names of 

events in the destination component. Figure 3.8 illustrates an important difference between 

AADL connections and HiP-HOPS Lines. HiP-HOPS models multiple connections that fan-in 

to a single destination port using one HiP-HOPS Line. In Figure 3.8, each small circle and 

triangle denotes an AADL connection or a HiP-HOPS Line object respectively. In AADL, the 

connections between components shown in Figure 3.8 (left-hand side) are modelled using six 

connections (three out of A and three into E). In the same system modelled in HiP-HOPS, 

however, shown in Figure 3.8 (right-hand side), there are only four HiP-HOPS Lines. The three 

AADL connections to component E are transformed into one HiP-HOPS Line. 
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Figure 3.8  Left hand figure shows an AADL model with six connections, small circles. 

Right hand figure shows a corresponding HiP-HOPS model with four Lines, small 

triangles 

Continuing with the above example, below is a partial AADL description of three connections 

from source ports B.out, C.out and D.out to destination port E.in respectively.  

EventConnection4: event port B.out -> E.in; 
EventConnection5: event port C.out -> E.in; 
EventConnection6: event port D.out -> E.in; 

Assume there is a single AADL error model associated with four components B, C, D and E. 

Assume that this error model has an “in out” type error propagation called ValueIsHigh and 

this error propagation will cause a state transition in E. This means that whenever component E 

receives a ValueIsHigh event at the input port in, irrespective of the source of the event, a 

ValueIsHigh event occurs in E. 

Since the ValueIsHigh event may originate from either component B, C or D, the 

transformation introduces the OR logic operator into the port expression, i.e. ValueIsHigh-

B.out OR ValueIsHigh-C.out OR ValueIsHigh-D.out. The port names B.out, 

C.out and D.out are available as the source ports of the connections. The corresponding Line 

object is given below. 
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 <Line>  
   <Type>Directed</Type> 
   <Connections> 
     <Connection> 
       <FailureClass>ValueIsHigh</FailureClass> 
       <Port>E.in</Port> 
       <PortExpression> 
          ValueIsHigh-B.out OR ValueIsHigh-C.out OR ValueIsHigh-D.out 
       </PortExpression>  
     </Connection>  
   </Connections>  
 </Line> 

Note that each failure class is represented in a distinct HiP-HOPS Connection within a Line. 

This models the situation in which different failure classes in the destination component may be 

caused by different failure classes from different source components although they all share the 

same fan-in connection topology. The transformation creates a Connection object for each of the 

failure classes defined in any of the connected components. The Connection object contains a 

PortExpression with the OR logic operator between each source port. This allows the failure 

class to originate from any of the connected components. 

In the case that there different error models for each of the three components B, C and D, 

the transformation checks whether an output propagation propagated to the destination port is 

defined in its connected component’s error model. If it is defined then the source port will be 

included in the PortExpression object. For example, assume there are three output propagations 

(ValueIsHigh1, ValueIsHigh2 and ValueIsHigh3) that can propagate to E.in. By 

checking the error model that is defined for each connected component (i.e., B, C, and D) it is 

possible to determine whether each output propagation is defined in these connected 

components. Assume, for example that ValueIsHigh1 is defined both in component B and C, 

ValueIsHigh2 is defined only in component B and ValueIsHigh3 is defined in all the 

components B, C and D. This means that ValueIsHigh1 could be propagated from the output 

of either component B or C, ValueIsHigh2 is only propagated from component B and 

ValueIsHigh3 could be propagated from either component B, C or D. Based on this data, the 

corresponding HiP-HOPS Line is given below: 
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 <Line>  
  <Type>Directed</Type> 
  <Connections>  
    <Connection> 
       <FailureClass>ValueIsHigh1</FailureClass> 
       <Port>E.in</Port> 
       <PortExpression> 
          ValueIsHigh1-B.out OR ValueIsHigh1-C.out 
       </PortExpression> 
    </Connection> 
    <Connection> 
       <FailureClass>ValueIsHigh2</FailureClass> 
       <Port>E.in</Port> 
       <PortExpression>ValueIsHigh2-B.out</PortExpression> 
    </Connection> 
    <Connection> 
       <FailureClass>ValueIsHigh3</FailureClass> 
       <Port>E.in</Port> 
       <PortExpression> 
          ValueIsHigh3-B.out OR ValueIsHigh3-C.out OR 
          ValueIsHigh3-D.out 
       </PortExpression> 
    </Connection> 
  </Connections> 
 </Line> 

To generalise, the corresponding algorithm for transforming AADL connections to HiP-HOPS 

Lines is given below. In a hierarchically structured model, the algorithm is applied to the top-

level system and any sub-system. 

 

Figure 3.9  The formal algorithm for transforming AADL Connections into HiP-HOPS 

Lines 

The formal description of the algorithm shown in Figure 3.9 should be read as follows. The 

variable DestPorts is defined to be the set generated ( denotes generator operator) by 

collecting the destination port of each connection in the system. The system is represented by 

the variable sys. The variable ConnsSameDest is defined to be a set of connection sets. In 

Let DestPorts = {c : sys.Connections  c.destination}; 
 
ConnsSameDest =  
  {p: DestPorts  {c: sys.Connections | c.destination = p}}  
 
Lines = {cd : ConnsSameDest  Line({c : cd   
   {e : c.source.component.errorsPropagated   
      ConnectionH(c.destination,  
                  OR{c : cd |  
                          e ∈ c.source.component.errorsPropagated  
                               e-c.source.name})}})} 
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each connection set, all the connections share the same destination port. For each destination 

port, a set of connections to that port is generated by filtering (| denotes filter operator) the 

connections with a destination equal to a given destination port. The variable Lines is the set 

of HiP-HOPS Line objects. For each set of connections in ConnsSameDest, a HiP-HOPS 

Line object is constructed. A Line is constructed from a set of HiP-HOPS Connection 

(ConnectionH). A HiP-HOPS Connection is constructed for each failure class that is 

propagated from any component that is at the source of any connection in the set of connections 

to a given destination port. The HiP-HOPS PortExpression is a disjunction because the error 

may propagate from any of the source components, hence 

OR{c : cd  e-c.source.name}  where e is a failure class and c.source.name is a 

port name. 

The operator OR denotes e-c1.source.name OR e-c2.source.name .. e-cn.source.name, for each 

connection ci in cd. 

In this definition, c.source.component.errorsPropagated denotes the set of output error 

propagations (HiP-HOPS failure classes) from the component at the source of connection c. 

These error propagations can be obtained from the error model of the source component. Each 

failure class collected, denoted e, is used to qualify the connection source port name, i.e. e-

c.source.name. 

HiP-HOPS allows a number of abbreviated syntax forms in order to improve readability. Note 

that if the Line does not include any failure class element, this signifies that, for all failure 

classes, the error will propagate from A.out to B.in. If a model is not intended to be human-

readable then such abbreviations are unnecessary. Omitting such abbreviation typically 

simplifies the model to model transformation and is the approach adopted in this work. 

3.2 Model transformation method implementation using transformation rules 

The Eclipse Modelling Framework (EMF) (Steinberg et al., 2009) is a modelling framework to 

provide a highly integrated tool platform. Different plugins for different models can be 

developed based on EMF. The Open-Source AADL Tool Environment (OSATE) developed by 

SEI (2004) is a set of plug-ins based on Eclipse and the EMF. The OSATE plug-ins were used 

in the work reported in this thesis.  

The transformation from AADL to HiP-HOPS modes consists of two parts. The first part is the 

transformation of the component error models into a HiP-HOPS individual component fault 

trees. The second part is the transformation of the connections into HiP-HOPS Lines. The 
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algorithm that traverses the paths of the error model state-machine in order to produce HiP-

HOPS fault trees (i.e. failureExpression) has been implemented directly in code, namely Java. A 

code implementation was chosen because of the complexity of the transformation. The 

transformation maps from multiple elements of different types. This is something that is not 

conveniently implemented using a function (or helper) in ATL. Furthermore, this algorithm 

does not require extensive navigation of the AADL model and so Java proved convenient. It 

was also straightforward to integrate the Java implementation as part of the plug-in integrated 

into the OSATE tool because OSATE and ATL are all Java-based tool sets.   

The second part of the transformation has a greater requirement to navigate the source AADL 

model. For this reason, the thesis has chosen to perform the model transformation from AADL 

to HiP-HOPS using a declarative model transformation language. Model to model 

transformation languages should be well suited for the semantic mapping transformation, since 

both input and output are models. The thesis chose the ATLAS Transformation Language 

(ATL) (Jouault et al., 2008) which is a hybrid language containing a mixture of declarative and 

imperative constructs.  

In the context of transforming AADL to HiP-HOPS, the AADL dependable model conforming 

to AADL metamodel is the source model. The HiP-HOPS input file is the final output of the 

transformation, which confirms to the HiP-HOPS schema definition. The transformation rules 

(sematic mappings) written in the ATL language is a model conforming to the ATL metamodel. 

All metamodels conforms to the Ecore (Steinberg et al., 2009) modelling language.  

The advantages of using a high-level model transformation language such as ATL has been 

discussed in section 2.4.5. Another benefit of using a high-level rule language such as ATL is 

that it is possible to write rules which resemble the algorithms given in the previous section. The 

algorithms used to transform AADL connections into HiP-HOPS Lines depend heavily on 

iteration, filtering, generation and collection operations. ATL includes operators for iterating 

over collections, filtering the results and generating values from arbitrary expressions. 

3.2.1 ATL rule implementation 

In this section, a few of the most important rules are described. Without giving a detailed 

description of the implementation it does illustrate the nature of a rule-based transformation.  

Figure 3.10 shows the rule description for transforming AADL connections to HiP-HOPS 

Lines. This rule is responsible for the construction of a hiphops!Line element and is the ATL 

implementation of the algorithm given in Figure 3.9. In the left-hand-side of the rule, the 
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variable conn is instantiated to the set of AADL connections in the source model. ATL is a 

hybrid rule language and thus allows functions to be defined and called within a rule. The 

expression conn.getConnsSameDest() is such a function call. The function (known in ATL 

as a helper) returns a collection of set of connection such that all the connections of any given 

set share the same destination port. A hiphops!Line has a connections element. The value 

of this element is set from the value of the _connections element which is a set of 

hiphops!Connection. Each hiphops!Connection has three main attributes, the fc 

attribute is the failure class (propagated error), the pn attribute is the destination port name and 

the pe attribute is the port expression. The values of these variables are found using helper 

functions. The helper functions in this rule are discussed next. 

 

Figure 3.10  Rule transforming AADL Connections to HiP-HOPS Lines 

The ATL helper function getConnsSameDest() is shown in Figure 3.11. The result of this 

helper is a set connections that share the same destination port. In this helper, the variable self 

is a set of connections. This helper firstly collects from all connections, all destination ports, 

c.value.dst.name, in a set (i.e., without duplication). This set of ports is the input to the 

second collection. In this collection, for each of the destination port (p), there is a second 

iteration over that set of connections (variable c). The if-statement is executed for each 

connection. If the destination port of connection (c.value.dst.name) is the same destination 

port (p) then add this connection to the result set res.  

rule Connection2Line { 
  from  
    conn : core!Connections 
  to 
    li : distinct hiphops!Line foreach ( 
        conDestPort in conn.getConnsSameDest()) ( 
          connections <- _connections), 
          _connections : hiphops!Connections( 
            connection <- _connection), 
          _connection : distinct hiphops!Connection foreach (  
            elm in thisModule.getConnectionH(conDestPort)) ( 
              fc <- thisModule.getFailureClass(elm), 
              pn <- conDestPort.getPortName(), 
              pe <- thisModule.getPortExpression(elm))  
} 
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Figure 3.11  The helper function that returns all connections that share the same 

destination port 

The ATL helper function getConnectionH() is shown in Figure 3.12. In this helper, the 

variable ConDestPort is a single set of connections, all with the same destination port, as 

produced by getConnsSameDest(). From this set, a HiP-HOPS Line is constructed. This 

helper firstly collects all errors propagated from all the source ports in ConDestPort. The 

expression c.source.component.errorPropagated.name, returns the names of the 

errors propagated from the component at the source of the connection c. For each error e, a 

string portExpression is constructed using a second iteration over the set of connections. 

Wherever a connection source port propagates an error equal to the given error e, a e-

c.source.name element is constructed. This element, together with the OR operator is 

appended to the variable portExpression. 

 

Figure 3.12  The helper function that returns all connections in a Line. A list of 

connections is constructed for each of error propagated to the destination port 

Note that the implementation of the helpers expressed in ATL shown in Figure 3.11 and Figure 

3.12 shows poor maintainability. This is because the static variable path e.g. the if condition 

shown in Figure 3.12 (c.source.component.errorPropagated.name) is used to collect 

the required information.  If the path for collecting the required information is changed the 

helper code has to be changed.  This reduces the maintainability of the helper. In this research, 

the implemented ATL transformation rules and helpers are used only for demonstration purpose 

helper def:getConnectionH(ConDestPort: OrderedSet(core!Connection)): 
  OrderedSet(String) =  
    ConDestPort -> collect (c |  
      c.source.component.errorPropagated.name).asSet() ->  
        iterate (e; ConnectionH: OrderedSet(String) = {} | ConDestPort ->  
          iterate (c; portExpression: String() = ''| 
                    if c.source.component.errorPropagated.name.asSet()-> 
                       exists(i | i = e)  
                    then portExpression + e + '-' + c.source.name +'OR'  
                    else portExpression endif) 
          ConnectionH.append(portExpression)); 

 

helper context core!Connections def : getConnsSameDest(): 
  OrderedSet(core!Connection) =  
    self.contents -> collect (c | c.value.dst.name).asSet() ->  
      collect (p | self.contents ->  
        iterate (c; res: OrderedSet(core!Connection) = OrderedSet{} 
                  | if p = c.value.dst.name  
                    then res.append (c.value)  
                    endif)); 
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and the maintainability and efficiency of the transformation language is not considered as a key 

concern. In the case that maintainability and efficiency is a main concern for the transformation, 

other model transformation languages and tools e.g. Tefkat (Lawley et al., 2004) may be used.  

Furthermore, the model transformation in this research is developed manually. Some code 

patterns are implemented repetitively, reducing code reusability and increasing the probability 

of programing errors. To allow an efficient (semi-automated) model transformation 

development, model weaving and matching transformation (Del Fabro and Valduriez, 2009) 

could be used.  

The transformation is driven by the top-level rule which is shown in Figure 3.13. This rule has 

the effect of calling the getAllComponentInstance() rule on the root system and the 

getAllConnectionsInTopsystem() rule on the root system. These rules transform AADL 

components to HiP-HOPS components and AADL connections, to HiP-HOPS Lines 

respectively. The component element and the lines element are the two main elements of 

hiphops!System. 

 

Figure 3.13  Rule transforming AADL top system instance to HiP-HOPS top system 

Below the top level, there are two kinds of component categories to be considered. The first 

kind is an AADL component that contains no subcomponents. The second kind is component 

which contains sub-components, i.e. a sub-system. Each kind has its own rule. The rule shown 

in Figure 3.14 transforms AADL components which contain no subcomponents. The rule shown 

in Figure 3.15 transforms AADL components which contain subcomponents. 

The rule shown in Figure 3.14 constructs a hiphops!Component element from an AADL 

component that is not the root system nor a sub-system. Within this rule, the important elements 

are the ports and implementation elements. The rule specifies that the ports element is 

constructed by the rule ci.getAllFeatureInstance() and the implementation element 

is constructed by constructing a hiphops!Implementation. A hiphops!Implementation 

has one fData element, which is constructed by the rule ci.getErrorModelImplemen(). 

rule SystemInstance2System { 
  from  
    si : instance!SystemInstance -- rootSystem 
  to 
    model: hiphops!Model (system <- _system), 
    _system: hiphops!System ( 
               component <- si.getAllComponentInstance(), 
               lines <- si.getAllConnectionsInTopsystem()) 
} 
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Figure 3.14  Rule transforming an AADL component instance to a HiP-HOPS component 

The rule shown in Figure 3.15 is similar to the rule shown in Figure 3.14 except that it applies to 

sub-systems. In addition to constructing the elements constructed by the rule shown in Figure 

3.14, an extra HiP-HOPS element system is bound to the HiP-HOPS implementation 

element by constructing a hiphops!System. This allows the rule to recursively construct the 

component element by calling the rule ci.getAllComponentInstance(). The lines 

element is constructed by the rule ci.getAllConnectionsInSubsystem(). 

 

Figure 3.15  Rule transforming AADL sub-system to HiP-HOPS component 

Note that the connection data is stored differently in AADL according to whether the connection 

is part of the top system instance or a component instance. For this reason there are two retrieve 

methods: (1). Retrieve and transform AADL connections in root system instance to HiP-HOPS 

Lines in root system (see the ATL helper getAllConnectionsInTopsystem() in Figure 

3.13). (2). Retrieve and transform AADL connections in component instance with category of 

system (i.e., sub-system) to HiP-HOPS Lines in sub-system (see the ATL helper 

rule ComponentInstanceIsTypeOfSubSystem2Component { 
  from 
    ci : instance!ComponentInstance ( 

   not ci.IsRootSystem() and ci.IsSubSystem())  
  to 
    com : hiphops!Component( 
                ports <- ci.getAllFeatureInstance(), 
                implementation <- _implementation), 
    _implementation: hiphops!Implementation( 
                fData <- ci.getErrorModelImplemen(), 
                system <- _system), 
    _system: hiphops!System( 
                component <- ci.getAllComponentInstance(), 
                lines <- ci.getAllConnectionsInSubsystem()) 
} 

 

-- ComponentInstance is the superclass of SystemInstance 
rule ComponentInstance2Component { 
  from  
    ci : instance!ComponentInstance ( 

   not ci.IsRootSystem() and not ci.IsSubSystem()) 
  to 
    com : hiphops!Component(ports <- ci.getAllFeatureInstance(), 
                            implementation <- _implementation), 

_implementation: hiphops!Implementation( 
                            fData <- ci.getErrorModelImplemen()) 
} 
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getAllConnectionsInSubsystem() in Figure 3.15). Once the connections are retrieved, 

however, in either situation, the same connection transformation is applied. 

The transformation rules have been automated by implementing in a tool called AADL2HiP-

HOPS.  The tool has been integrated as a plug-in into the AADL development environment 

OSATE. The tool performs a model-to-model transformation (see M2M in Figure 3.16) in 

memory, where the AADL system architecture model and the system error model are 

transformed into an intermediate HiP-HOPS Ecore model. The model-to-model transformation 

is a conceptual mapping between the two domains and preserves the semantics of the source 

AADL model. The HiP-HOPS Ecore model contains all the HiP-HOPS required data produced 

from AADL for dependability analysis but it does not conform to HiP-HOPS’ schema. The in-

memory HiP-HOPS Ecore model is then output to a file in XML format (see M2T, i.e., Model 

to Text transformation in Figure 3.16). The model-to-text (M2T) transformation transforms the 

output of the first phase transformation (AADL model to intermediate HiP-HOPS model) into 

the concrete syntax of target model (HiP-HOPS model).  The M2T output is a standard HiP-

HOPS XML format for input directly into HiP-HOPS.  

The separation of two different concerns of the transformation i.e. M2M and M2T allow each 

transformation to be a separate module, which can be developed, changed and tested 

independently. Furthermore, it allows the two transformations to evolve independently i.e. a 

change in AADL will only affect the M2M transformation and a change in HiP-HOPS will only 

affect the M2T transformation. 

 

Figure 3.16  The overview of transformation design, an in-memory model to model 

transformation is followed by conversion of the model to XML format for input into HiP-

HOPS 

The model-to-model transformation is designed by considering the input requirements of the 

HiP-HOPS analysis.  The target HiP-HOPS metamodel is firstly analysed and the required 

dependability data and elements such as components and their failure data and lines between the 

components are identified.  Secondly, the AADL metamodel is analysed to identify those 
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elements that are required to create the target elements.  A transformation rule is then defined 

for each of the mapping i.e. each rule defines what source model elements are required to create 

the target model element and how the target element is constructed from the source elements.  

The identified semantic mappings are derived by the analysis of both source and target 

metamodels.  

To check that the identified mapping and rules are correct, an expert with good knowledge of 

AADL and HiP-HOPS may inspect the transformation design. The expert reviews all the 

identified mappings and also the corresponding transformation rules. The expert then checks to 

see if all the required target metamodel elements that are created and if all the required source 

metamodel elements that are covered to create the target model elements.  

Also, the ATL transformation tool can help to support the correctness decision making. The 

ATL transformation tool can record how many rules are executed when the transformation is 

done. The ATL transformation tool can also track how many source and target model elements 

are covered when each transformation rule is executed. This can help to ensure that the 

developed rules are all executed and all the required elements in both source and target model 

are covered.  

In this research, 7 rules are defined for the model transformation between the two domains. In 

this case, a manual expert review process is sufficient and applicable. However, it may make the 

review process much harder and time consuming if the size of the metamodels is quite large or 

dozens or more rules are applied to the transformation. One solution to this problem is to build a 

weaving model (Del Fabro and Valduriez, 2009) that contains different kinds of relationships 

between the source and target metamodels. These relationships capture different transformation 

patterns. Based on the weaving model one could then automatically create a model 

transformation design between the source and target metamodels. Also the correctness and 

completeness of the transformation could be automatically checked based on the weaving 

model.  

3.3 Model transformation for AADL connections with error models 

For AADL connections associated with an error model, a further AADL to AADL model 

transformation may be required. This is because the HiP-HOPS Line has no error model (failure 

data) defined for it. For this reason, any AADL connection with an associated error model is 

transformed into a HiP-HOPS component object, for which failure expressions may be defined. 

Consider the example shown in Figure 3.17, where two components A and B are connected by 

connection C. There is an associated error model defined for connection C. To translate this 
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AADL connection to an equivalent HiP-HOPS component, this AADL connection (with the 

associated error model) is first transformed to a special AADL component which we call a 

ConnectionComponent. The ConnectionComponent corresponding to the connection C is 

shown as CC in Figure 3.18. The ConnectionComponent has two ports, an input port named 

in and an output port named out. The ConnectionComponent has an error model, which is 

the error model of the connection. The ConnectionComponent has no other features. The 

transformation described earlier may now be applied to the ConnectionComponent to 

produce a HiP-HOPS component. The connection error model is transformed as any other 

component error model. 

As can be seen from Figure 3.18, the transformation from AADL connection to 

ConnectionComponent requires the construction of a ConnectionComponent and two new 

connections. One connection connects the source component (A in Figure 3.18) to the 

ConnectionComponent and the other connects the ConnectionComponent to the 

destination component (B in Figure 3.18). The algorithm for this transformation is described in 

Figure 3.19. 

 

Figure 3.17  Two AADL components A and B and one AADL connection C with associated 

error model 
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Figure 3.18  The connection C with associated error model shown in Figure 3.17 is 

transformed to two new connections and an intervening ConnectionComponent called CC 

 

Figure 3.19 The algorithm for transforming AADL Connection with associated error 

model to two new AADL Connections and an intervening connection component called CC 

The algorithm operates on a component-based model of a system which contains a collection of 

components and a collection of connections between those components. The first part is 

responsible for adding the connection component CC to each of the given target connection with 

associated error model. The second part adds two connections – c1 and c2. Informally, the 

algorithm iterates through the connections under system and replaces each connection that has 

associated error model with two new connections and an intervening connection component 

called CC. The algorithm assumes that the components and connections in a system are available 

from a variable sys.  

3.4 Model transformation design 

Due to the fact that both the AADL and HiP-HOPS modelling languages are evolving, it is 

important that the design of the model transformation should have the capability to adapt easily 

to changes in the AADL or HiP-HOPS languages. Transformations should also be adaptable to 

changes in the purpose and requirements of the transformation. Reusability and adaptability are 

the quality properties in the transformation method developed in this research. From the 

transformation experience gained in this research, this chapter discusses model transformation 

for (Connection c  in {sys.connections | c.hasErrormodel = true}) { 
         CC = new ConnectionComponent(); 
         sys.components = sys.components ∪ {CC} 
         c1 = MakeConnection(c.source, CC.in); 
         c2 = MakeConnection(CC.out, c.destination); 
         sys.connections = sys.connections \ {c} ∪ {c1, c2}; 
} 
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design for reusability and adaptability. The rule transformation language ATL is used to 

illustrate the transformation definitions.  

3.4.1 Modularising transformation definition 

This section first considers how the structure of the source and target models affects the 

modularisation of transformation definitions and how the evolution of these models may affect 

the transformation. Secondly, there are different integration mechanisms such as explicit rule 

calls and implicit rule calls that may help ensure the required reusability and adaptability. Each 

mechanism has advantages and disadvantages with respect to modularisation which is discussed.  

To show the advantages and disadvantages of the different dimensions in the decomposition of 

metamodels, a set of transformation rules are defined. The transformation rules are shown 

conceptually as relations between the source and target metamodels. Based on these rules, the 

function units required to be modularised for reusability and adaptability are identified. Then 

the section introduces a scenario in which the target metamodel is evolved by adding an 

alternative element to a component. The chapter then considers three rule integration 

mechanisms and evaluates their quality with respect to reusability and adaptability. The degree 

of coupling between rules, as discussed in (Kurtive et al., 2007), is considered.  

In the context of this research, the purpose of the transformation is to transform an AADL 

dependability model to a HiP-HOPS dependability model. There are similarities and differences 

in the AADL and HiP-HOPS modelling concepts. Both languages use the concepts of 

component, port and connection although detailed semantics differ. For example, for 

dependability modelling, AADL is based on error state machine and HiP-HOPS is based on 

fault tree. Thus, it is necessary to identify a mapping of concepts (rules) from source to target 

model.  

3.4.1.1 Components 

To identify the transformation rules, the required concepts, and how they are implemented in the 

target metamodels, can be used as the starting point. In the context of this research, for example, 

a target HiP-HOPS component must be generated from a corresponding AADL component. The 

AADL metamodel describes ten component types that can be mapped to a HiP-HOPS 

component. This includes five software components: data, process, subprogram, thread and 

thread group; four hardware components: bus, device, memory and processor; and one 

composite component: system. In HiP-HOPS, the component is abstract. This means that HiP-

HOPS component can be any one of those ten AADL component type. In order to build a HiP-
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HOPS component, ten transformation rules may be used, one for each of the AADL component 

type. This draws forth a possible decomposition of rules based on the AADL component type. 

Since the decomposition start from the source (AADL) model, this method can be seen as a 

source-driven modularisation. The transformation rules shown in outline are the following:   

processToComponent ( source [ProcessType], 
    target [Ports, FailureData] ) 
… 
deviceToComponent ( source [DeviceType], 

target [Ports, FailureData] ) 
… 
systemToComponent ( source [SystemType], 

target [Ports, FailureData] ) 
 

Three rules are listed above: for process (processToComponent), device 

(deviceToComponent) and system (systemToComponent) types. The remaining rules are 

omitted to avoid repetition since they all have the same structure. Each rule consists of a source 

pattern, i.e. a tuple containing AADL model elements, and a target pattern, i.e. a tuple 

containing HiP-HOPS model elements. Each rule means that for each occurrence of the source 

tuple (elements) in an input model, the target tuple (elements) are created in an output model. 

This basic interpretation captures the essential semantics and is sufficient for the discussion of 

the rules.  

One of the problems with the above ten rules is that all the ten rules repeat the same structure. 

The construction of target (HiP-HOPS) component i.e. target [Ports, FailureData], is 

repeated ten times rather than modularised in a single reusable unit.  Potentially, the replication 

would be as many times as the number of the source (AADL) component types. Thus, potential 

changes in the future for this element are error prone since the replication. For example, assume 

that the target model (HiP-HOPS) evolves to have the capability of optimising the architecture 

of dependable systems. For the optimisation purpose, each component needs one or more 

alternatives in order to create the search space. This alternatives attribute is common to all the 

ten component types. To implement this change of the component, it results in a series of 

changes in all the rules. For example, in the rule of processToComponent, an Alternative 

element needs to be added to the target model below. 

processToComponent ( source [ProcessType], 
target [Ports, FailureData, Alternative] ) 
 

This means each rule needs to add an alternative element as in the example above (i.e. in total 

need to add ten times) in order to transform AADL alternative components to corresponding 
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HiP-HOPS alternative components. There is the danger that the person making the changes to 

the rules does not realise that there are ten rules that need to be modified and some of the rules 

are overlooked. It is easier to modify one rule rather than many rules.  

Furthermore, consider that if AADL evolves in the future and a new component type is added 

then it is necessary to add an additional corresponding rule for the transformation of this 

component type. It needs to add potentially as many times as the number of the new component 

types. This reduces the adaptability. A well-designed transformation definition should have the 

resilience to adapt easily to this kind of evolution.  

The transformation in the context of this research is not dependent on the component type 

because error models are not dependent on the component type. For these reasons, the similar 

parts of the rule should be abstracted. An abstract or super class component type could be used 

in the source so as to transform all AADL component types to HiP-HOPS component using one 

rule. Whenever there is a need for adding new component types there is no need to change the 

transformation definition since the super class abstracts all the component types. The above 

rules can then be replaced by one rule in order to improve the reusability and adaptability. The 

benefit is that if it is necessary to change the mapping of an AADL component to a HiP-HOPS 

component then the change is restricted to a single rule. This is better than changing many rules. 

The new version of the conversion is defined as follows: 

componentTypesToComponent ( source [ComponentType], 
target [Ports, FailureData] ) 
 

All the ten component types shown above are the sub-class of ComponentType class. The 

above general rule will match any AADL component type and transform them to HiP-HOPS 

component. In fact this rule may match more than the ten component types listed.  

The issue of whether to have a rule for each type of component depends on how components 

should be transformed. Due to the fact that HiP-HOPS does not distinguish component types as 

they are distinguished in AADL. HiP-HOPS abstracts component as a conceptual black-box 

with ports and failure data and hence the transformation in the context of this research is not 

dependent on the component type. For other purposes of model transformation, however, it is 

may be better to define the transformation depend on the component type. Assume that each 

component type in source model is also distinguished in the target model. In this case it would 

be better to define the transformation with rules that are dependent on the source and target 

component type. If there are any changes or evolutions for any component type the fact that 

there is a specific rule for that component type makes the rules more modifiable to the changes.  
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In HiP-HOPS, the System element is the top-most part of the actual system hierarchy, which 

contains a set of Components. Hierarchies are created by enabling Components to contain 

Systems of their own. This means that the implementation of a component can be a sub-system 

with sub-components. In HiP-HOPS, the elements for a component with or without subsystem 

are different and thus the transformation should be differentiated. The new version of the 

conversion is defined as follows: 

componentTypeIsSubsystemToComponent ( 
    source [ComponentType (isSystemType)], 

target [Ports, FailureData, system] ) 
 

componentTypeToComponent ( 
   source [ComponentType (notSystemType)], 

target [Ports, FailureData] ) 
 

Note that in the target model, a system element is created if the source component is a type of 

sub-system. Generally, there will be guard conditions (isSystemType, notSystemType) in 

the rules to distinguish transformed source types. Now the transformation definition is better 

since the rules are modularised in two single reusable and adaptable units but there are still the 

problems of mixing of functionality. 

3.4.1.2 Component ports and failure data 

A general principle of modularity is that different functions should be implemented in different 

modules. A problem with the above designs is that it involves mixing of functionality within a 

single module. In the target model, the two rules above both refer to the elements for the ports 

and FailureData. Therefore, it contains concepts that belong to two different concerns, i.e. 

ports and failure data. Ports are used to describe the input and output points for components and 

as such are relevant to both normal behaviour of system and failure behaviour of the system. 

Failure data is used to describe only the error behaviour of the system.  

Mixing of functionality within a single module can cause problems if the application models 

change. For example, suppose that HiP-HOPS changes its failure rate modelling concept by 

adding a failure rate type (e.g., constant, Poisson distribution) element to explicitly calculate the 

occurrence probability of an error event. This kind of change effects the transformation of the 

AADL error model to HiP-HOPS failure data but is irrelevant to ports. Isolating the rules that 

require changes is more difficult if failure data parts of rules are obscured by other concepts 

such as ports. There is the danger that the person making the changes to the rules does not 

realise that these rules also contain ports and some modification to the transformation of ports 

could be made by mistake. Moreover, the person making the changes to the rule may feel 
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confused since he believes only failure data part of the transformation needs to be changed but 

the mix of functionality (ports and failure data) exists within a single rule and this may suggest 

in his mind that failure date changes affects ports.  

The reason for the problems discussed above is because only one dimension for decomposition 

into modules is considered. For the ten rules design, the source component type was used as the 

dimension for decomposition into modules. The way the source AADL model is decomposed 

into different component types means that each AADL component type is transformed into all 

the elements (such as ports and failure data) needed to construct a HiP-HOPS component. This 

particular dimension of decomposition leads to a good modularisation provided the future 

changes are restricted to just the AADL component types. If future changes involve other 

AADL elements or HiP-HOPS elements, as discussed above, it causes the defined rules to be 

less reusable, adaptable and modifiable.  

Better than decomposition in one dimension is decomposition in multiple dimensions. 

Decomposition in multiple dimensions, as discussed in Kurtive et al. (2007), ensures reusable 

and evolvable transformation design along those dimensions. A multiple dimensions of 

decomposition could be classifying different functionalities of the component based on target 

model, where the ports and failure data are classified as different dimensions. Hence two extra 

rules are extracted for each of the dimension: 

componentTypeToPort (source [ComponentType], 
target [Ports] ) 
 

componentTypeToFailureData (source [ComponentType], 
target [FailureData] ) 
 

This design of rule definition eliminates the mixing of functionality problem discussed above. 

The source element of the rules is defined along differentiated component type dimension. For 

each distinguished component type, the target elements of rules are decomposed into other two 

dimensions: Ports, and FailureData. The advantages of this design are as follows: First, all 

dimensions defined in the target model are adaptable. Second, the common parts (dimensions) 

in the rules are extracted into separate module. Extraction can lead to more modifiable and 

reusable modules (i.e. rules).  

3.4.1.3 Component connections, guards and error renaming 

The important dimension of model decomposition that can be used for modularity is the 

decomposition of a model into components and connections. Components and their associated 
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error models in a system are connected to each other through connections. A connection 

declares interactions e.g. data or flow of control between components through component ports. 

Connections form the main paths of error propagations between component error models. The 

interactions between component error models occur when error propagations occur through the 

connections between components.  

The decomposition of a model into components and connections can be refined further into the 

decomposition of components, connections and port descriptions as described in guard_in(out) 

specifications. The guards specified in component’s ports are used to filter and rename 

incoming and outgoing error propagations coming into or going out a component port. For 

example, the guard_in error property specifies incoming error propagations (through an input 

port) to be either unchanged, or masked or mapped to a different kind of error declared in the 

local component error model. The guard_out error property specifies similar guard for mapping 

or masking outgoing error propagations (through an output port) of a component.  

The guards applied to components ports combine the local component errors and external errors 

together so as to compose a complete system error model. Thus, in addition to transitions of 

component (and associated error models) and connections (error propagation paths), the guards 

property must be also transformed so as to generate a complete system fault tree.  

It is expected that component based models, even if not described in AADL, will have the three 

dimensions of components, connections and port descriptions. For example, in EAST-ADL, the 

FaultFailurePropagationLinks defined in EAST-ADL ErrorModel (EAST-ADL Association, 

2013 (b)) are used to specify error propagation paths in the ErrorModelType. The 

FailureOutPort is used to specify a point for propagating outgoing failure. Similarly, the 

FaultInPort is used to define a point for receiving incoming faults. Guards (Chen et al., 2013; 

EAST-ADL Association, 2013 (b)) are specified in EAST-ADL to declare cause-effect 

dependencies of error state transitions. The state transition guards can be used to precisely 

specify under which condition (e.g. Conditon[VehicleSpeed > ABSVehicleSpeedThreshhold]) a 

transition will be triggered from one state (the associated “from” state) to another state (the 

associated “to” sate). This means that a transformation based on the three dimensions should be 

generally applicable.  

The design experience discussed in this section is specific to AADL and ATL. The 

decomposition of the transformation discussed in the context of this research is along the 

dimensions of component, connections and boundaries of components i.e. guards on the ports of 

components. This is because these dimensions are likely to be contained in most of model-based 

modelling languages e.g. AADL and EAST-ADL. 
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3.4.2 Rule integration mechanisms 

Until now this chapter has explored how the decomposition in the existing metamodels can 

influence the design of transformation rules. Next, it focuses on another aspect of 

transformation which is the modularity of the transformation rule-language. There are different 

modularity constructs available in rule-based transformation languages that may help ensure the 

required reusability and adaptability. Rule integration is an example of a modularity construct. 

Rule integration mechanisms include implicit or explicit rule calls and rule inheritance. Each 

mechanism has advantages and disadvantages with respect to modularisation which is discussed. 

The rule integration mechanism allows one rule to use the functionality of another rule. The rest 

of this section focuses on the implication of three rule integration mechanisms, i.e., explicit rule 

calls, implicit rule calls and rule inheritance for modularity.  

Explicit rule calls as described in Kurtive et al. (2007), are usually used in imperative and 

hybrid languages. In this mechanism, rules are integrated with explicit rule scheduling of 

function and method calls. ATL supports explicit rule calls, where a rule may be directly 

invoked by another rule.  

Implicit rule calls mechanism is usually found in declarative languages. It relies on indirect rule 

dependencies. Rules are enabled whenever certain conditions are satisfied. A scheduler 

schedules all the enabled rules and decides which rule is executed. Rules may create the 

conditions that enable other rules and so trigger the execution of other rules do not have to use 

explicit rule names. Note that the triggered rules may not be immediately executed. It depends 

on the transformation scheduling algorithm in a language. The rule might be performed later or 

the result could already have been generated.  

Rule inheritance mechanism enables one rule to inherit functionalities from another rule. This 

allows one rule can be reused for many times. For example, if rule R1 is anyone over 16 must 

join the army and rule R2, which inherits from R1, is anyone over 18 must vote then everyone 

over 18 must join the army and vote.  

abstract rule R1 { 
   from Over16 to JoinArmy 
} 
 rule R2 extends R1 { 
   from Over18 to Vote 
} 
 

The semantics of R2 is as follows: Over18 must be a subset of Over16 this means that the set 

of models which match Over18 must also match Over16. Also the target of R2 is JoinArmy 
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union Vote. The result is that a match of Over16 leads to JoinArmy and a match of Over18 

leads to JoinArmy and Vote. To understand rule inheritance, consider for example, if one 

defines rule R2 without inheriting from R1, one must define R2 as  

rule R2 { 
   from Over18 to [JoinArmy, Vote] 
} 
 

in order to ensure those Over18 must JoinArmy and Vote. This reduces the reusability of the 

rules since the JoinArmy appears twice (both in R1 and R2).  

In either situation (with or without inheritance) one needs to ensure that rule R1 and R2 only 

matches purely Over16 and Over18 elements (types) respectively otherwise it will raise a 

multiple matching problem. Those people Over18 will match both rules (R1 and R2) and this is 

not allowed in ATL since in ATL a source model element must not be matched more than once 

(ATL/User Guide, 2012). When R2 inherits from R1, R1 is matched to those elements that 

match R1 and not R2. R2 is matched to the remaining elements.  

In order to explore how each rule integration mechanism can impact the reusability and 

adaptability of defined rules, some scenarios are considered. Consider that the target model 

(HiP-HOPS) evolves in adding an alternative element to each component so as to extend the 

target model to have the capability for system optimisation analysis. The target metamodel is 

extended. The original defined model transformation rules should be modified to match this 

evolution so that the source model (AADL) can utilise the newly added optimisation analysis. 

There will be several ways (e.g. explicit rule calls, implicit rule calls and rule inheritance) to 

implement this change in the transformation definition. The designers must decide which rule 

integration mechanism that can ensure the best quality design.  

First, consider using the explicit rule calls to implement the scenario (add new alternative 

element to each component type). Before the change, the rule would look like: 

rule componentTypeIsSubsystemToComponent{ 
    from e : ComponentType (isSystemType) 
    to vComponent : Component( 
        ports <- [vPort] e 
        fData <- [vErrorModel] e 
        system <- [vSystem] e 

)} 
 

The assignment of alternative element could be modularised in an explicit rule call. The code 

below shows the implementation based on explicit rule calls. The expression [vPort] e 
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means the required target object generated from the source element e is returned and assigned 

to the identifier vPort.  

rule componentTypeIsSubsystemToComponent{ 
    from e : ComponentType (isSystemType) 
    to vComponent : Component( 
        ports <- [vPort] e 
        fData <- [vErrorModel] e 
        system <- [vSystem] e 
    ) 
    do { 
        SetAlternative(e, vComponent );   --Explicit rule call 
    } 
} 
 

The rule that is called is 

rule SetAlternative (source: ComponentType, target: Component){ 
    target.alternative <- [vAlternative] source; 
} 

 

This modification has to be done for all the rules and so there is 

rule componentTypeToComponent{ 
    from e : ComponentType (notSystemType) 
    to vComponent : Component( 
        ports <- [vPort] e 
        fData <- [vErrorModel] e 
    ) 
    do { 
        SetAlternative(e, vComponent );   --Explicit rule call 
    } 
} 
 

The generation of the alternative element is defined in a single rule. In this way, the rule is 

reusable because one rule is reused many times. The implementation, however is unnatural 

since a do{} statement may not be needed for adding the alternative element.  

The modification described above could have been done with an implicit rule call. It would be 

implemented as 
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rule componentTypeIsSubsystemToComponent{ 
    from e : ComponentType (isSystemType) 
    to vComponent : Component( 
        ports <- [vPort] e 
        fData <- [vErrorModel] e 
        system <- [vSystem] e 
        alternative <- [vAlternative] e 
    ) 
} 
 
rule componentTypeToComponent{ 
    from e : ComponentType (notSystemType) 
    to vComponent : Component( 
        ports <- [vPort] e 
        fData <- [vErrorModel] e 
        alternative <- [vAlternative] e 
    ) 
} 
 
rule alternativeClassifierToAlternative{ 
    from e : ComponentClassifier  
    to vAlternative : Alternative( 
        cost <- e.cost 
        fData <- [vErrorModel] e 
    ) 
} 
 

The expression [vAlternative] e means the required alternative object generated from 

the source element e is returned and assigned to the identifier vAlternative. Note that the 

rules that create this alternative object (alternative <- [vAlternative] e) is implicitly 

referenced. The code alternative <- [vAlternative] e may use any rule that generates 

an object defined with the identifier vAlternative and thus lead to a low coupling between 

rules. In this example (implicit rule calls), the adaptability and reusability requirements of rules 

are achieved. Furthermore, implicit rule calls enables more modifiable rule definition. As 

discussed above, if an alternative element is added to a component then only one new rule 

alternativeClassifierToAlternative is added. If any changes related to alternative 

element are necessary in the future only this new rule needs to be changed.  

In the alternatives component problem, the implicit rule call implementation is more natural 

than the explicit rule call. An alternative element is directly added in implicit rule call 

rather than invoke a do{} statement in the explicit rule call. In some cases, however, an explicit 

rule call has to be used. For example, when creating the HiP-HOPS fData element it is 

necessary to transform the AADL error state machine to HiP-HOPS fault tree (failure 

expression). In this situation, a complicated algorithm or function is needed to transform 

multiple elements of different types to a single one. A function (or helper in ATL context) in a 
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specific transformation language may not capable to support this kind of transformation. Hence, 

a further transformation with a capable algorithm might be needed to explicitly create target 

model element (i.e. failureExpression) from imperative code. Since the AADL error state 

machine must be transformed to fault tree for all the component types, the algorithm should be 

modularised in a single rule in order to be reused. The explicit rule call is used to invoke the 

outside function in order to create the failure expression element. For example,  

rule componentTypeIsSubsystemToComponent{ 
    from e : ComponentType (isSystemType) 
    to vComponent : Component( 
        ports <- [vPort] e 
        fData <- [vErrorModel] e 
        system <- [vSystem] e 
    ) 
    do { 
        GetFailureExpression(e, vComponent);   --Explicit rule call 
    } 
} 
 
rule componentTypeToComponent{ 
    from e : ComponentType (notSystemType) 
    to vComponent : Component( 
        ports <- [vPort] e 
        fData <- [vErrorModel] e 
    ) 
    do { 
        GetFailureExpression(e, vComponent);   --Explicit rule call 
    } 
} 
 
rule GetFailureExpression (source: ComponentType, target: Component){ 
    target.fData.failureExpression <- source.getFailureExpression(); 
} 
 

In the case of explicit rule calling, however, if a new rule for failure expression transformation 

is to be used the invoking code must be changed to reflect the name of the new rule.  

Consider now rule inheritance.  

Before the change, the two rules are defined as: 
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rule componentTypeIsSubsystemToComponent{ 
    from e : ComponentType (isSystemType) 
    to vComponent : Component( 
        ports <- [vPort] e 
        fData <- [vErrorModel] e 
        system <- [vSystem] e 
    ) 
} 
 
rule componentTypeToComponent{ 
    from e : ComponentType (notSystemType) 
    to vComponent : Component( 
        ports <- [vPort] e 
        fData <- [vErrorModel] e 
    ) 
} 
 

The two rules are extended by adding the alternative element: 

rule AlternativeForSubsystem extends 
componentTypeIsSubsystemToComponent{ 
    from e : ComponentType (isSystemType and hasAlternatives) 
    to vAlternative : Alternative( 
        alternative <- e.alternative 
    ) 
} 
 
rule AlternativeForComponent extends componentTypeToComponent{ 
    from e : ComponentType (notSystemType and hasAlternatives) 
    to vAlternative: Alternative ( 
        alternative <- e.alternative 
    ) 
} 
 

This implementation defines the rules AlternativeForSubsystem and 

AlternativeForComponent that extend two already existing rules by adding an alternative 

element. In this mechanism, the adaptability requirement is not satisfied. For example, suppose 

that a new rule shall be used for transforming the AADL component types to HiP-HOPS 

component. This implies that both rules AlternativeForSubsystem and 

AlternativeForComponent should inherit from this new rule. It is however, not allowed in 

the rule inheritance mechanism because one rule cannot inherit from more than one rule. This 

implementation also leads to tight coupling between rules because it refers to rules by name. 

Furthermore, the construction of alternative element is repeated twice rather than modularised in 

a single reusable unit.  
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In the context of this research, rules are integrated by using implicit rule calls so as to allow one 

rule to use the functionality of another rule. Explicit rule calls are also used as a combination of 

implicit rule calls in order to transform state machine to failure expression as discussed.  

3.5 Summary 

This Chapter describes a model transformation method which transforms AADL dependability 

models to HiP-HOPS fault tree models. This allows HiP-HOPS to perform dependability 

analysis on systems modelled in AADL. Transformation allows the exploitation of existing non-

AADL-based methods and tools, e.g. HiP-HOPS. 

The transformation algorithm developed in this research is adapted from the state machine to 

Boolean failure expression algorithm shown in Mahmud et al., (2010, 2011). The algorithms 

developed produce HiP-HOPS specific failure expressions (i.e. the notation <FailureClass>-

<PortName>) from AADL state machines. These include algorithms for mapping error states 

and events to component ports, transforming guard_in(out) expressions to fault trees, and 

transforming AADL connections error model to HiP-HOPS fault trees.  

The transformation algorithms were conveniently implemented using the ATLAS 

Transformation language. This chapter shows the feasibility of the automation by implementing 

the tool AADL2HiP-HOPS, which has been developed to implement the model transformation 

and has been integrated as a plug-in into the AADL development environment OSATE. AADL 

is used as the notation for capturing the system architecture model and the AADL Error Model 

Annex is used to capture the component faults and failure modes. The plug-in (AADL2HiP-

HOPS) transforms this AADL dependability model to a HiP-HOPS model which is then used 

for synthesis of fault trees, FMEAs and other analyses to automatically generate the fault tree 

and FMEA table of system for further dependability analysis.  

The benefit of this transformation method is that it opens a path that will enable the AADL 

language to take advantage of some of the unique capabilities of HiP-HOPS which include the 

synthesis of multiple failure mode FMEAs, temporal fault tree analysis and evolutionary 

architecture optimisation with respect to dependability and cost. 

This chapter also describes some of the modularisation techniques in ATL. Transformation 

modules (rules) can be obtained from the correspondences between the source and target model 

elements. Generally, there are multiple correspondences existing between the source and target 

elements and thus designers should assess them with the required quality attributes e.g. 

reusability, adaptability and modifiability. This chapter shows that different sets of 

transformation rules can be derived from different decompositions in the source and target 
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metamodels. Thus, the designers are suggested to consider multiple decompositions in the 

metamodels.  

The chapter introduces three rule integration mechanisms, i.e. implicit rule calls, explicit rule 

calls, and rule inheritance that can be used to integrate ATL rules together. Each mechanism has 

its advantages and disadvantages to integrate rules together. Implicit rule calls relies on indirect 

rule dependencies and usually lead to a low coupling between rules. It is thus could be chosen 

when the adaptability and reusability are set as the main quality attribute of the transformation 

definitions. In the context of this research, explicit rule calls is best for error state machine to 

fault tree conversion. This is because ATL rules take input from sources of different types i.e. 

they are source type sensitive. The error state machine to fault tree conversion is not source type 

sensitive. A transformation algorithm is needed to explicitly generate target model element (i.e. 

failureExpression) from imperative code.   
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Chapter 4 Case study: temperature monitoring system 

To illustrate the useful application of the transformation method, this chapter demonstrates the 

transformation using a case study. In Mian et al., 2012, it illustrated the model transformation 

technique to a small standby-recovery system. In that small system, however, only some of the 

transformation rules are applicable because, for example, the fan-in connection pattern does not 

occur. In this Chapter, a more complex model is used, which has a multi-level hierarchical 

structure and contains the full range of connection patterns. With this model the case study can 

illustrate the transformation of: 

(a) a system which includes sub-systems,  

(b) transform AADL fan-in connections, 

(c) transform the guard_in property into HiP-HOPS failure expression. 

4.1 The temperature monitoring system 

Figure 4.1 illustrates a system for monitoring a temperature controlled storage facility, an 

example of which is a cold store for agricultural products. The system maintains a record of the 

temperatures within various parts of the facility but also raises alarms when the temperatures are 

outside prescribed limits. At the top level (see Figure 4.1), the monitoring system consists of 

two subsystems. One subsystem (SensorInput) consists of a variety of temperature sensors 

and switches, the second subsystem (TempProcess) processes the various signals from these 

sensors into alarm outputs or other outputs suitable for further processing, e.g. data logging. 

There are two types of temperature device. One type, sensor, provides a continuous temperature 

reading which is used for record keeping and for average temperature calculations. Another 

type, switch, provides a signal when the temperature exceeds or falls below a pre-set value. The 

second subsystem (TempProcess) checks that the temperature requirements are met, which it 

does this by comparing current and average temperatures with pre-set values, and logging 

temperatures values. 

In more detail, in SensorInput (see Figure 4.2), SensorInput_D1, SensorInput_D2 

and SensorInput_D3, are single temperature switches which provide a signal if a pre-set 

temperature is exceeded. These three switches are located in three different places. The outputs 

of these switches are input to the process SensorInput_P1. If any one of the switches fails 

then the SensorInput_P1 process fails. SensorInput_D4 and SensorInput_D5, are 

double temperature switches which provide a signal if the temperature moves outside a region 

defined by a lower and upper limit. These two switches send data to the process 



82 

 

SensorInput_P2. Each of switches can act as a replacement for the other. SensorInput_D6 

is a temperature sensor connected to process SensorInput_P3. 

The subsystem TempLimLog, receives and analyses the data from subsystem SensorInput. 

Temperatures that exceed limits are, for security, simultaneously logged in three different 

locations (i.e., process TempLimLog_P1, TempLimLog_P2, and TempLimLog_P3). Process 

TempLimLog_P4 is responsible for detecting alarm conditions. 

System TempProcess analyses the temperature data received and transmits the temperature 

data for further analysis. More specifically, process TempProcess_P1 and TempProcess_P2 

receive the continuous temperature data and produce a short-term (over last 5 minutes) and a 

long-term (over last 90 minutes) average temperature respectively. TempProcess_P3 transmits 

the temperature alarms and average readings to other systems. 

The thesis uses a hierarchical naming strategy, i.e., system name followed by component name 

and then the port names. For example, SensorInput_D1_Out (shown in Figure 4.2) is the port 

name, where SensorInput is the system name, D1 is device one in this system, Out is the 

direction of this port.  

 

Figure 4.1  The top level structure of the temperature monitoring system 

Figure 4.2 to Figure 4.4 illustrates the architecture of the sub-systems SensorInput, 

TempProcess and TempLimLog. Note that there are system levels where two or more Lines 

share the same destination port. For example, in Figure 4.1, for input port TempProcess_In1 

on system TempProcess, there are two Lines which share this destination port. One comes 

from SensorInput_Out1 and the other comes from SensorInput_Out2. 
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Figure 4.2  The architecture of sub-system SensorInput 

 

Figure 4.3  The architecture of sub-system TempProcess 
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Figure 4.4  The architecture of sub-system TempLimLog 

In this system, each component has a failure mode “Fail” which represents an internal failure of 

the component. A component failure causes the omission of output from that component. In 

addition, for each component, an omission of input will cause an omission of output. 

4.2 AADL modelling of temperature monitoring system 

A partial AADL description for the temperature monitoring system is shown in Figure 4.5 to 

Figure 4.7. Note that in Figure 4.5, for the error model associated with system implementation, 

TempProcess.Impl, there is a guard_in error property defined on port TempProcess_In1. 

The guard_in property specifies how an input error is propagated to a port of a component based 

on the error state of that component and the error states or output error propagations of 

connected components. Here, the guard_in expression specifies that the omission of input 

Omission_TempProcess_In1 is caused by the omission of output 

Omission_SensorInput_Out1 and the Omission_SensorInput_Out2 from the output 

ports of SensorInput. The other guard_in error properties in this system are shown in Figure 

4.6. 

Figure 4.7 shows AADL error model type and the implementation declaration for the system 

TempProcess, device SensorInput_D1 and process SensorInput_P1. In Figure 4.7, for 

system TempProcess, it is specified that there is an EMI fail for all the components within the 

TempProcess system.  

There are also two types of error model implementations. Type one (see type1 in Figure 4.7) 

indicates that the component may fail as the result of an internal failure. Type two (see type2 
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in Figure 4.7) indicates that the component may fail as the result of an internal failure or if there 

is an omission of input to the component.  

 

Figure 4.5  Partial AADL architecture for temperature monitoring system 

system implementation TempControl.Impl 
  subcomponents 
    SensorInput: system SensorInput.Impl; 
    TempProcess: system TempProcess.Impl; 
  connections 
    EventConnection1: event port SensorInput.SensorInput_Out1 -> TempProcess.TempProcess_In1; 
    EventConnection2: event port SensorInput.SensorInput_Out2 -> TempProcess.TempProcess_In1; 
    EventConnection3: event port SensorInput.SensorInput_Out3 -> TempProcess.TempProcess_In2; 
end TempControl.Impl; 
 
system implementation SensorInput.Impl 
  subcomponents 
    SensorInput_D1: device SensorInput_D1.Impl; 
    SensorInput_D2: device SensorInput_D2.Impl; 
    SensorInput_D3: device SensorInput_D3.Impl; 
    SensorInput_P1: process SensorInput_P1.Impl; 
    SensorInput_D4: device SensorInput_D4.Impl; 
    SensorInput_D5: device SensorInput_D5.Impl; 
    SensorInput_D6: device SensorInput_D6.Impl; 
    SensorInput_P2: process SensorInput_P2.Impl; 
    SensorInput_P3: process SensorInput_P3.Impl; 
  connections 
    EventConnection1: event port SensorInput_D1.SensorInput_D1_Out -> SensorInput_P1.SensorInput_P1_In; 
    EventConnection2: event port SensorInput_D2.SensorInput_D2_Out -> SensorInput_P1.SensorInput_P1_In; 
    EventConnection3: event port SensorInput_D3.SensorInput_D3_Out -> SensorInput_P1.SensorInput_P1_In; 
    EventConnection4: event port SensorInput_D4.SensorInput_D4_Out -> SensorInput_P2.SensorInput_P2_In; 
    EventConnection5: event port SensorInput_D5.SensorInput_D5_Out -> SensorInput_P2.SensorInput_P2_In; 
    EventConnection6: event port SensorInput_D6.SensorInput_D6_Out -> SensorInput_P3.SensorInput_P3_In; 
    EventConnection7: event port SensorInput_P1.SensorInput_P1_Out -> SensorInput_Out1; 
    EventConnection8: event port SensorInput_P2.SensorInput_P2_Out -> SensorInput_Out2; 

EventConnection9: event port SensorInput_P3.SensorInput_P3_Out -> SensorInput_Out3; 
  annex Error_Model {** 
    model => ErrorModel_TempControl_System::Basic.SensorInput; 
**}; 
 
end SensorInput.Impl; 
 
system implementation TempProcess.Impl 
  subcomponents 
    TempLimLog: system TempLimLog.Impl; 
    TempProcess_P1: process TempProcess_P1.Impl; 
    TempProcess_P2: process TempProcess_P2.Impl; 
    TempProcess_P3: process TempProcess_P3.Impl; 
  connections 
    EventConnection1: event port TempProcess_In1 -> TempLimLog.TempLimLog_In; 
    EventConnection2: event port TempProcess_In2 -> TempProcess_P2.TempProcess_P2_In; 
    EventConnection3: event port TempProcess_P2.TempProcess_P2_Out -> TempProcess_P3.TempProcess_P3_In; 
    EventConnection4: event port TempProcess_P1.TempProcess_P1_Out -> TempProcess_P3.TempProcess_P3_In; 
    EventConnection5: event port TempProcess_P3.TempProcess_P3_Out -> TempProcess_Out; 
    EventConnection6: event port TempLimLog.TempLimLog_Out -> TempProcess_P3.TempProcess_P3_In; 
    EventConnection7: event port TempProcess_In2 -> TempProcess_P1.TempProcess_P1_In; 
  annex Error_Model {** 
    model => ErrorModel_TempControl_System::Basic.TempProcess; 
    report => Omission_TempProcess_Out; 
    guard_in => Omission_TempProcess_In1 

when TempProcess_In1[Omission_SensorInput_Out1, Omission_SensorInput_Out2], 
                mask when others 
    applies to TempProcess_In1; 
**}; 
end TempProcess.Impl; 
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Figure 4.6  Partial AADL implementations associated with error models 

device implementation SensorInput_D1.Impl 
  annex Error_Model {** 
    model => ErrorModel_TempControl_System::Basic.SensorInput_D1; 
**}; 
… 
process implementation SensorInput_P1.Impl 
  annex Error_Model {** 

model => ErrorModel_TempControl_System::Basic.SensorInput_P1; 
    report => Omission_SensorInput_P1_Out; 
    guard_in => Omission_SensorInput_P1_In  

when SensorInput_P1_In[Omission_SensorInput_D1_Out,  
         Omission_SensorInput_D2_Out, 
         Omission_SensorInput_D3_Out], 

               mask when others 
    applies to SensorInput_P1_In; 
**}; 
end SensorInput_P1.Impl;  
…. 
process implementation TempProcess_P3.Impl 
  annex Error_Model {** 
    model => ErrorModel_TempControl_System::Basic.TempProcess_P3; 
    guard_in => Omission_TempProcess_P3_In 

when TempProcess_P3_In[Omission_TempProcess_P1_Out]  
  OR TempProcess_P3_In[Omission_TempProcess_P2_Out]  
  OR TempProcess_P3_In[Omission_TempLimLog_Out], 

               mask when others 
    applies to TempProcess_P3_In; 
**}; 
end TempProcess_P3.Impl; 
… 
process implementation TempLimLog_P4.Impl 
  annex Error_Model {** 
    model => ErrorModel_TempControl_System::Basic.TempLimLog_P4; 
    guard_in =>  Omission_TempLimLog_P4_In  

when TempLimLog_P4_In[Omission_TempLimLog_P1_Out, 
           Omission_TempLimLog_P2_Out, 
           Omission_TempLimLog_P3_Out], 

                mask when others 
    applies to TempLimLog_P4_In; 
**}; 
end TempLimLog_P4.Impl; 
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Figure 4.7  Partial AADL error model type and implementation declaration 

4.3 Model transformation from AADL to HiP-HOPS 

The example below shows how the rule for transforming AADL connections to HiP-HOPS Line 

works. This rule is responsible for the construction of a hiphops!Line element. In the top 

level of the temperature monitoring system (see Figure 4.1 and Figure 4.5), there are three event 

connections, two of which share the same destination port (TempProcess_In1). 

package ErrorModel_TempControl_System 
public 
  annex Error_Model {** 
    error model Basic --basic error model 
    features 
      ErrorFree: initial error state; 
      Fail, Fail1, Fail2, Fail3, EMI: error event; 
      Omission_SensorInput_D1_Out, Omission_SensorInput_D2_Out, Omission_SensorInput_D3_Out,  
      Omission_SensorInput_D4_Out, Omission_SensorInput_D5_Out, Omission_SensorInput_D6_Out,  
      Omission_SensorInput_P1_Out, Omission_SensorInput_P2_Out, Omission_SensorInput_P3_Out,  
      Omission_SensorInput_Out1, Omission_SensorInput_Out2, Omission_TempProcess_P1_Out, 
      Omission_TempProcess_P2_Out, Omission_TempProcess_P3_Out, Omission_TempProcess_Out, 
      Omission_TempLimLog_P1_Out, Omission_TempLimLog_P2_Out, Omission_TempLimLog_P3_Out,  
      Omission_TempLimLog_P4_Out, Omission_TempLimLog_Out: 
          error state; 
      Loss_Data, Loss_Data1, Loss_Data2, Loss_Data3: out error propagation {occurrence => fixed 0.8}; 
      Omission_SensorInput_P1_In, Omission_SensorInput_P2_In, Omission_SensorInput_P3_In, 
      Omission_TempProcess_P1_In, Omission_TempProcess_P2_In, Omission_TempProcess_P3_In,  
      Omission_TempProcess_In1, Omission_TempLimLog_P1_In, Omission_TempLimLog_P2_In, 
      Omission_TempLimLog_P3_In, Omission_TempLimLog_P4_In:  
          in error propagation; 
    end Basic; 
    
   error model implementation Basic.SensorInput 
   transitions 
      ErrorFree -[ Fail1 ]-> Omission_SensorInput_Out1; 
      Omission_SensorInput_Out1 -[ out Loss_Data1 ]-> Omission_SensorInput_Out1; 
      ErrorFree -[ Fail2 ]-> Omission_SensorInput_Out2; 
      Omission_SensorInput_Out2 -[ out Loss_Data2 ]-> Omission_SensorInput_Out2; 
      ErrorFree -[ Fail3 ]-> Omission_SensorInput_Out3; 
      Omission_SensorInput_Out3 -[ out Loss_Data3 ]-> Omission_SensorInput_Out3; 
    properties 
      occurrence => poisson 1.0e-6 applies to Fail1; 
      occurrence => poisson 1.0e-6 applies to Fail2; 
      occurrence => poisson 1.0e-6 applies to Fail3; 

end Basic.SensorInput; 
 

   error model implementation Basic.TempProcess 
   transitions 
      ErrorFree -[ EMI ]-> Omission_TempProcess_Out; 
      ErrorFree -[ Omission_TempProcess_In1 ]-> Omission_TempProcess_Out; 
      Omission_TempProcess_Out -[ out Loss_Data ]-> Omission_TempProcess_Out; 
    properties 
      occurrence => poisson 1.0e-6 applies to EMI; 
    end Basic.TempProcess; 
    
    error model implementation Basic.SensorInput_D1--type1 
    transitions 
      ErrorFree -[ Fail ]-> Omission_SensorInput_D1_Out; 
      Omission_SensorInput_D1_Out -[ out Loss_Data ]-> Omission_SensorInput_D1_Out; 
    properties 
      occurrence => poisson 1.0e-6 applies to Fail; 
end Basic.SensorInput_D1; 
... 

   error model implementation Basic.SensorInput_P1--type2 
    transitions 
      ErrorFree -[ Fail ]-> Omission_SensorInput_P1_Out; 
      Errorfree -[Omission_SensorInput_P1_In]-> Omission_SensorInput_P1_Out; 
      Omission_SensorInput_P1_Out -[ out Loss_Data ]-> Omission_SensorInput_P1_Out; 
    properties 
      occurrence => poisson 1.0e-6 applies to Fail; 
end Basic.SensorInput_P1; 
**}; 

end ErrorModel_TempControl_System; 
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EventConnection1: SensorInput.SensorInput_Out1 ->  
                  TempProcess.TempProcess_In1; 
EventConnection2: SensorInput.SensorInput_Out2 ->  
                  TempProcess.TempProcess_In1; 
EventConnection3: SensorInput.SensorInput_Out3 ->  
                  TempProcess.TempProcess_In2; 

The third data connection, which does not share a port with any other data connection, is 

transformed into a single Line. The first and second event connections share the same 

destination port TempProcess_In1 and thus correspond to a single HiP-HOPS Line. The 

PortExpression is obtained by using the connection to Line transformation algorithm. The 

algorithm first obtains a set of output propagations (or error states) that propagate to the port 

(TempProcess_In1) from the error models of connected (source) components. Here, the set of 

output propagations includes the output error states defined in the when clause of the guard_in 

expression for port (TempProcess_In1), i.e. {Omission_SensorInput_Out1, 

Omission_SensorInput_Out2}. The algorithm then creates a HiP-HOPS Connection for 

each of the output propagation (or error state). Each of the output propagation (or error state) 

will be treated as a failure class and for each of the failure class the PortExpression is 

obtained by using the AADL connection to HiP-HOPS Line conversion algorithm as discussed 

before. The algorithm includes the error and source port if the output propagation (or error state) 

is defined in the error model of that source component. The source ports appear in the 

PortExpression with the syntax <output propagation>-<portname>. The HiP-HOPS 

result is shown below. 

 <Line>  
   <Type>Directed</Type> 
   <Connections> 
      <Connection> 
         <FailureClass>Omission_SensorInput_Out1</FailureClass> 
         <Port>TempProcess.TempProcess_In1</Port>  
         <PortExpression> 
            Omission_SensorInput_Out1-SensorInput.SensorInput_Out1 OR  
            Omission_SensorInput_Out1-SensorInput.SensorInput_Out2 
         </PortExpression>  
      </Connection>  
      <Connection> 
         <FailureClass>Omission_SensorInput_Out2</FailureClass> 
         <Port>TempProcess.TempProcess_In1</Port>  
         <PortExpression> 
            Omission_SensorInput_Out2-SensorInput.SensorInput_Out1 OR 
            Omission_SensorInput_Out2-SensorInput.SensorInput_Out2 
         </PortExpression>  
      </Connection>  
   </Connections>  
 </Line> 
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Figure 4.8 shows the resulting HiP-HOPS dependability model for the process 

SensorInput_P1 (see Figure 4.2, Figure 4.6 and Figure 4.7). Note that, both the AADL 

architecture model including component name and ports name and type and the associated error 

model including error events and error states etc. are transformed into the HiP-HOPS model. 

In more detail, the Ports section (lines1 to 11) is obtained by transforming the architecture of 

component SensorInput_P1 in Figure 4.2. The section from line 14 to line 40 is obtained by 

transforming the model property defined in SensorInput_P1.Impl shown in Figure 4.6 and 

the error model implementation Basic.SensorInput_P1 shown in Figure 4.7. For example, 

the basic event Fail in line 19 and its failure rate 1.0e-6 in line 22 are transformed from the 

error event Fail and its occurrence property defined in Figure 4.7. The output deviation 

Omission_SensorInput_P1_Out-SensorInput_P1_Out in line 29 and its failure 

expression  

(Omission_SensorInput_D1_Out-SensorInput_P1_In AND 
Omission_SensorInput_D2_Out-SensorInput_P1_In AND 

     Omission_SensorInput_D3_Out-SensorInput_P1_In) OR Fail 

in line 32 to line 34 are transformed from the state machine transitions defined in 

Basic.SensorInput_P1 shown in Figure 4.7 and the guard_in error property defined in 

Figure 4.6. 
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Figure 4.8  The result HiP-HOPS model of process SensorInput_P1 transformed from 

AADL models 

Once the AADL model is transformed into a HiP-HOPS model, HiP-HOPS is able to analyse 

the dependability of this model and generate the FMEA table, fault trees, and etc. Figure 4.9 and 

Figure 4.10 show the screenshot of the resultant FMEA tables. In Figure 4.9, the FMEA shows 

that for seven components, a Fail will directly affect the system output. For example, a failure 

of SensorInput_D6 will directly cause omission of the system and therefore a critical failure. 

The FMEA indicates that these seven components (i.e., from component SensorInput_D6 to 

0 <Component> 
1    <Name>SensorInput_P1</Name> 
2    <Ports> 
3      <Port> 
4        <Name>SensorInput_P1_In</Name> 
5        <Type>in</Type> 
6      </Port> 
7      <Port> 
8        <Name>SensorInput_P1_Out</Name> 
9        <Type>out</Type> 
10     </Port> 
11   </Ports> 
12   <Implementations> 
13     <Current> 
14       <Name>BasicSensorInput_P1</Name> 
15       <Cost>0</Cost> 
16       <FailureData> 
17         <BasicEvents> 
18           <BasicEvent> 
19             <Name>Fail</Name> 
20             <UnavailabilityFormula> 
21               <Constant> 
22                 <FailureRate>1.0e-6</FailureRate> 
23               </Constant> 
24             </UnavailabilityFormula> 
25           </BasicEvent> 
26         </BasicEvents> 
27         <OutputDeviations> 
28           <OutputDeviation> 
29             <Name>Omission_SensorInput_P1_Out-SensorInput_P1_Out</Name> 
30             <SystemOutport>true</SystemOutport> 
31             <FailureExpression> 
32                (Omission_SensorInput_D1_Out-SensorInput_P1_In AND 
33                Omission_SensorInput_D2_Out-SensorInput_P1_In  AND 
34                Omission_SensorInput_D3_Out-SensorInput_P1_In) OR Fail 
35             </FailureExpression> 
36           </OutputDeviation> 
37         </OutputDeviations> 
38       </FailureData> 
39     </Current> 
40   </Implementations> 
41 </Component> 
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component TempProcess_P3) are the critical elements in this design and therefore should be 

designed unlikely to fail to reduce chance of failure. 

 

Figure 4.9  The screenshot of resultant FMEA of temperature monitoring system 

generated by HiP-HOPS from the initial AADL model after transformation: Direct effects 

Figure 4.10 shows the FMEA further effects for component SensorInput_P1. The FMEA 

shows that the conjunction fail of SensorInput_P1 and SensorInput_P2 will cause the 

system fail. Similarly, the system will fail when SensorInput_P1, SensorInput_D4 and 

SensorInput_D5 fail simultaneously. This indicates the design should also pay attention to 

the common cause failures, e.g., EMI, to these components. 
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Figure 4.10  The screenshot of resultant FMEA of temperature monitoring system 

generated by HiP-HOPS from the initial AADL model after transformation: Further 

effects of component SensorInput_P1 

4.4 Model transformation checking 

In order to evaluate the developed transformation method between AADL and HiP-HOPS, a test 

system (the temperature monitoring system discussed in this chapter) is selected to test the 

transformation method. The selection criterion to the test system is that the test system should 

contain all the elements and characteristics that cover all the identified metamodel elements 

defined in the transformation rules. A three-step expert review method is adopted on the 

selected test system: 

In the first step, the expert first reviews the functional description of the selected test system. 

Especially, the architectural description and the dependability-related data e.g. failure behaviour 

is reviewed. The expert then reviews the implementation of the test system modelled in AADL 

and HiP-HOPS respectively. The AADL and HiP-HOPS implementations of the test system are 

reviewed separately and independently by the expert. This ensures that the abstracts of the test 

system are completely reserved when it is implemented in two different modelling languages 

according to the system description. This is done by reviewing whether the test system is 
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modelled completely according to each language's modelling concepts. For example, the use of 

AADL error state machine and HiP-HOPS failure expression for modelling the failure 

behaviour of the test system respectively.  

In the second step of the review method, the expert reviews the transformation rules defined 

between the two domains i.e. AADL and HiP-HOPS. Each transformation rule (mappings 

between AADL and HiP-HOPS) is then reviewed to ensure that the selected test system covers 

all the metamodel elements that are defined in the transformation rules. A check list of all the 

metamodel elements defined in the transformation rules are checked against all the metamodel 

elements showing in the test system. This ensures whether the selected test system covers all the 

metamodel elements defined in the transformation rules. The ATL transformation tool can 

indicate how many rules are executed when executing the transformation on the test system. 

This helps to check that all the rules are executed for the test system.   

In the third step of the review method, the expert runs the two implemented models of the test 

system and obtains two HiP-HOPS outputs i.e. fault trees from each run. The first HiP-HOPS 

outputs (fault trees) are generated by modelling the test system in HiP-HOPS and HiP-HOPS 

directly produces the fault trees. The second HiP-HOPS outputs (fault trees) are produced from 

the output of the model transformation that is the input to HiP-HOPS. In this step, the test 

system is firstly implemented in AADL and then transformed to HiP-HOPS by using the 

developed model transformation tool – AADL2HiP-HOPS. Once the two HiP-HOPS output 

(fault trees) in hand they are then compared by the expert according to the correction criteria. 

The correction criterion is: the two fault trees must be exactly the same i.e. the failure 

expression for the top event of the system or component should be logically equal. The expert 

reviews the failure expressions for the top event and checks if any differences exist. The 

minimal cut sets of the top event are checked and compared each other. The correctness check is 

done to the component level. For example, both the HiP-HOPS outputs (failure expressions) for 

the top event of Omission_SensorInput_P1_Out-SensorInput_P1_Out component 

SensorInput_P1 are exactly the same as it shows in the <FailureExpression> element in Figure 

4.8.  

4.5 The transformation cost estimation 

The research hypothesis is that model transformation is a cost effective way to maximise the 

utility of model-based dependability analysis and optimisation to AADL models. The 

implementation of the transformation method and testing using case studies is evidence towards 

the validation of the model transformation method and that it is an effective way to analyse the 

AADL dependability models. In all engineering tasks, cost is also important. To consider the 
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cost effectiveness of the transformation method it is necessary to consider the costs of using the 

transformation method. The only evidence available for the cost of the method is the cost of the 

work done in this thesis. To consider the transformation cost taken in this project, the author 

estimates the following times were used for the tasks listed below:  

 1. Four months to learn the AADL model,    

 2. Three months to learn the HiP-HOPS model,  

 3. Three months to learn the ATL and Eclipse plug-in development,  

 4. Twenty months to design, implement and test the model transformation.  

The estimated time is a full cost of a thirty months’ work. The author supposes that the 

transformation designer is not an AADL or HiP-HOPS expert and the transformation designer 

has to learn the two models first and then to design the transformation.  This was the case for 

the author who did not have any background knowledge of AADL or HiP-HOPS before the start 

of the project.  Note that this is not a rigorous measure of the cost but the author believes it is a 

reasonable estimation based on his development experience.  Furthermore, because there is no 

objective data available for the cost of model transformation tasks then the author believes that 

this estimated cost data is useful evidence.     

4.6 Summary 

In this chapter, a temperature monitoring system was used as a case study to illustrate and test 

the model entity transformation rules. 

The transformation method is tested on a test system (the temperature monitoring system 

discussed in this chapter). The test system is developed in AADL development tool OSATE and 

OSATE can automatically validate the validity of the developed system in the context of 

AADL. This ensures the test system is valid to AADL. The output of the transformation is a 

HiP-HOPS input XML file which conforms to HiP-HOPS’s metamodel. If an input of a HiP-

HOPS XML file is not complete or correct HiP-HOPS will identify problems of the input file 

and will not produce any output e.g. fault trees. This gives confidence that the transformed 

output conforms to HiP-HOPS metamodel. However, this does not implicate the transformation 

itself is correct. To ensure a correct transformation a check method is required. 

An expert review method is used to validate the model transformation. In this validation 

method, two HiP-HOPS fault trees are generated from two different paths. One HiP-HOPS fault 

trees is produced by directly implementing the test system in HiP-HOPS and the other is 



95 

 

produced by transforming the same test system that is implemented in AADL to HiP-HOPS. 

The two produced fault trees are compared and checked by the dependability expert. 

Correctness of the transformation is ensured by checking that the fault trees (logical failure 

expressions) for the top event of the system are exactly the same. 

The adopted transformation validation method is mainly a manual process. One drawback of 

this method (expert review) is that it is time consuming and limits to the size of the case study. 

For this test system, it contains only few components and connections and the hierarchy of the 

system is simple. In this case, a manual expert review process is sufficient and applicable. 

However, it may make the review process much harder and time consuming if the size of the 

system is quite large e.g. when southlands of components are contained. Also, the check process 

is mainly based on the knowledge of the expert and thus becomes unrealistic when no such 

expert is available.  

Future work could include automatic checking and comparison to ensure that the two fault trees 

are the same. Moreover, to validate the model transformation method shown in this work, more 

experiment using AADL models with distinct size and complexity is required to show the 

feasibility and scalability of the method. In particular, testing approaches to model 

transformation validation should also be explored. Baudry et al., (2006) discussed some issues 

related to define techniques for testing transformations e.g. the issue for test data that must 

conform to the structure, constraints and precondition of metamodel. This requires an automated 

test case generation approach to produce test case systematically. A systematic validation of 

model transformation, as discussed in Kuster (2004, 2006) may also be considered in the future. 

The model transformation approach has been shown to be an cost effective way to provide fault 

tree and FMEA analysis of AADL models. It is possible, using a model transformation 

approach, to provide fault tree and FMEA analysis of AADL models by exploiting an existing 

non-AADL method and supporting tool, i.e. HiP-HOPS.  

In this chapter the method and tool is shown to provide fault tree and FMEA analysis of AADL 

models. The next chapter (Chapter 5), however, will focus on providing AADL models with 

access to multi-objective system optimisation.  
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Chapter 5 Multi-objective architecture optimisation for AADL dependable 

systems 

This Chapter first tackles the problem of describing, within an AADL model, the design space 

of alternatives. A new AADL property set is developed for modelling component and system 

variability for cost and dependability optimisation. Secondly, the developed method is 

illustrated with an example of an AADL model of a safety critical embedded system with fault 

tolerant schemes (Adachi et al., 2011). The schemes comprise self-protection, self-checking and 

checkpoint-restart and process-pair mechanisms. Not all of these mechanisms need be employed 

at a given component and the choice of mechanism at each component leads to a space of 

design choices. In general there is a dependability-cost trade-off that should be optimised. For 

large systems, this design space is very large and cannot be explored efficiently without 

automation. Third, the Chapter extends the model transformation on AADL to HiP-HOPS 

transformation by opening up the optimisation capabilities of HiP-HOPS to AADL models. This 

allows the architecture optimisation with respect to dependability and cost of AADL models. 

The relative rules for optimisation are defined and implemented in ATL.  

Note, some of the material in this chapter has been published in Mian and Bottaci (2013), Mian 

et al. (2013a) and Mian et al. (2013b).  

5.1 Optimisation modelling for AADL dependability systems 

5.1.1 Introduction 

Common critical systems design requirements are high dependability and low cost. Design is a 

complex collaborative exercise and typically there are many ways in which dependability 

requirements can be achieved, including, among others, employing fault tolerant architectures 

and incorporating high integrity components. In a typical system, the space of possible designs 

is enormous and therefore finding a solution that meets the dependability requirements with 

minimal cost is difficult. If no solution can meet all the dependability requirements the goal is 

often to design a system that achieves the key requirements with the best possible trade-offs 

between dependability and cost. 

For a given system, optimisation may be performed with respect to various objectives, for 

example, cost, reliability etc. There is still a lack, however, of analysis techniques and tools that 

can perform a dependability analysis and optimisation of AADL models.  

A cost effective way of adding system dependability analysis and optimisation to models 

expressed in AADL is to exploit these capabilities of HiP-HOPS. Model transformation can be 
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used to transform the AADL model into an equivalent HiP-HOPS model. Chapter 3 has 

previously described a new model transformation method (AADL2HiP-HOPS). This has been 

integrated as a plug-in in the AADL model development tool: OSATE, for the automatic 

generation of HiP-HOPS dependability models from high level AADL architecture models. 

This Chapter extends Chapter 3 on AADL to HiP-HOPS transformation by opening up the 

optimisation capabilities of HiP-HOPS to AADL models. This allows the architecture 

optimisation of AADL models with respect to dependability and cost.  

5.1.2 Method 

Model optimisation depends on the possibility of choosing between model variations. 

Variability is a prerequisite for optimisation, because it creates the design space of alternatives 

which is explored in the search of the best architectural solutions. In this work, variability is 

introduced at the component level, by associating alternative components to particular 

components. A designer, for example, may wish to consider a number of alternative 

components to implement a particular function in a system. As another example, the designer 

may wish to add, or at least consider the possibility of adding, additional dependability to 

selected components of the model. In this case, the two alternatives are inclusion or absence of 

components that provide protection, redundancy or recovery. In both these cases there is a 

requirement to model component alternatives. 

HiP-HOPS has an optimisation capability for system dependability and cost. The HiP-HOPS 

system model contains features that directly support optimisation. One of these is the 

specification of alternatives for a component. For each component and its alternatives, attributes 

that are relevant to the optimisation must be specified. These attributes include cost, weight, 

reliability etc. 

In order to specify the application of the optimisation process, it is possible to specify for each 

component whether it should be replaced with an alternative. This allows the designer flexibility 

in including or excluding components in the optimisation. In addition, from the given set of 

alternatives for that component, it is possible to specify that a specific alternative should not be 

used as a replacement. This allows the designer fine-grained control over the particular 

alternatives used for a component, a useful feature when there is a library supplied set of 

replacement components. 

At the system level, there are a number of optimisation parameters that include optimisation 

objectives, e.g., cost, reliability etc. and the search termination criterion. Optimisation is 

inherently a search based process that may continue indefinitely where there is a large search 
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space and the difficulty of recognising an optimal solution. The termination criterion can be 

expressed in terms of the computing resources consumed during the search. 

The AADL modelling language has no direct support for optimisation of models. This has 

motivated the development of a new set of properties into the AADL modelling language. These 

properties allow an AADL model to capture the information required to perform model 

optimisation. In particular they can represent the relevant optimisation properties and allow 

component alternatives to be specified. The model transformation from AADL to HiP-HOPS is 

able to use this information to produce a HiP-HOPS optimisation model.  

5.1.2.1 Optimisation example 

To illustrate the use of alternative components, consider the AADL description of a system 

shown in Figure 5.1. This figure shows part of the AADL text description of a motor vehicle 

Pre-collision system (PCS) described by Adachi et al. (2011), which is to be optimised for 

dependability and cost. A Pre-collision system (PCS) first sends out warning messages to the 

driver once a potential collision threat has been identified. If the brakes are failed to be applied 

by the driver, then a brake assist mechanism will be triggered immediately to increase the 

braking force before a collision to reduce the collision injury. Eventually emergency braking is 

initiated, according to the environmental conditions. 

Figure 5.1 shows the AADL description of 42 subcomponents in the PCS including sensors, 

processes, software modules and actuators. There are 7 key components listed as 

Detection_Module through to Actuator_Driver. For each of these 7 components there is 

a fault-tolerant scheme. This scheme involves the presence or absence of self-checking and 

recovery components described in Adachi et al. (2011). A specific design for the PCS system 

can be modelled as a specific architecture involving particular selections from alternative 

components. Where, for example, a self-checking component is present, the “present” 

alternative is selected, if the self-checking component is absent, the empty alternative is 

selected. Depending on the degree of dependability required, different parts of the fault-tolerant 

scheme can be selected. In total, there are 12 potential component architectures for each of these 

7 components. The size of the design space to be explored is therefore of the order of 127 

models and as such it is very difficult to do this kind of optimisation manually. 

The optimisation process is a guided search of the possible models (combinations of possible 

choices) that result when components are replaced by alternatives. Each model instantiation 

produced by a particular choice of components is evaluated by HiP-HOPS for dependability and 

cost. It has been shown that optimisation heuristics such as genetic algorithms described by 
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Parker (2010) can exploit a model dependability evaluation function to obtain optimum or near 

optimum designs. 

 

Figure 5.1  AADL text description of subcomponents and associated optimisation 

properties for the pre-collision system 

5.1.3 Optimisation modelling in AADL 

It is necessary for components and subsystems in AADL architecture models to be associated 

with one or more alternatives with respect to dependability and cost. AADL, however, has no 

specific features whereby the optimisation alternatives for a component can be represented.  

In AADL, a component type can have several implementations, each of which must implement 

all the features declared in the component type description. This suggests that the optimisation 

system implementation PrecollisionSystem.impl 
  subcomponents 
    Radar_Sensor: device SensorMemory.RadarSensor; 
    Vehicle_Sensor: device SensorMemory.VehicleSensor; 
    Pedal_Sensor: device SensorMemory.PedalSensor; 
    Data_Memory: device SensorMemory.DataMemory; 
    Switch_Sensor: device SensorMemory.SwitchSensor; 
    Detection_Module: process DetectionModule.impl; 
    Monitoring_Module: process MonitoringModule.impl; 
    Switch_Controller: process SwitchController.impl; 
    PCS_Logic1: process PCS_Logic1.impl; 
    PCS_Logic2: process PCS_Logic2.impl; 
    Decision_Module: process DecisionModule.impl; 
    Actuator_Driver: process ActuatorDriver.impl; 
    SP01: process SelfProtection.SP01; 
    SP02: process SelfProtection.SP01; 
    . . . 
    SP16: process SelfProtection.SP02; 
    SC01: process SelfChecking.SC01; 
    SC02: process SelfChecking.SC01; 
    . . . 
    SC07: process SelfChecking.SC02; 
    CR_PP01: process CRAndPP.CR_PP01; 
    CR_PP02: process CRAndPP.CR_PP01; 
    . . . 
    CR_PP07: process CRAndPP.CR_PP02; 
  connections 
    . . . 
  properties  
    Optimisation_Attributes::Maximum_Generations => 1000; 
    Optimisation_Attributes::List_of_Objectives =>  
         ([Objective=>Cost; Goal=>Minimise; Bound=>0..85;], 
          [Objective=>Risk; Goal=>Minimise; Bound=>0..0.18;]); 
end PrecollisionSystem.impl; 
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alternatives for a component might be represented as different implementations of that 

component. In practice, however, this could be unsatisfactory. The reasons for this 

dissatisfaction are explained in the following. 

Although a component implementation and any of its replacements must all be of the same type, 

the concept of a different implementation of a component is more general than that of an 

optimisation replacement component. A model, for example, may contain two different 

implementations of a component, one of which complies with the European licensing authority, 

and another implementation which complies with the American licensing authority. Clearly, the 

choice of which of these two implementations to use in the system is not an optimisation 

concern but dependent on the system location. The optimisation method would need to be able 

to identify which implementations are optimisation alternatives and which are not. 

Another disadvantage of using multiple implementations is that the alternatives are restricted to 

components that are of the same type, i.e. all alternative implementations must comply with the 

same type definition. Once the features have been specified in a component type definition, all 

alternative implementations are restricted to use the same features. Those alternative 

implementations that have different hierarchical architectures (with sub-components) are 

excluded. This seems to be a severe and an unnecessary restriction to the space of design 

alternatives. 

Another possible scheme for representing variability within an AADL model is to use the 

modes concept as defined by Feiler and Gluch (2012). A mode can be used to distinguish 

different operational states, for example, “active” versus “idle”. Modes can be defined locally 

for each component and so a mode can be defined for each alternative to that component. By 

assigning each alternative component to a different mode, alternatives could be selected for each 

component by specifying a specific mode for that component. Again this scheme is 

unsatisfactory. Each mode combination simply identifies an optimisation alternative. The modes 

introduced to represent alternative components have no meaning as modes within the system 

and should therefore remain hidden from the model. 

Both of the schemes for representing variability in AADL considered above suffer from the 

problem that the representation of alternatives is not explicit but is “riding on the back” of an 

existing AADL concept, either alternative implementations or modes. In the case of the 

alternative implementations, optimisation alternatives must be distinguished as “optimisation” 

implementations and in the cases of the modes concept, specific “optimisation modes” would be 

necessary. In both cases, the legitimate uses of these concepts would be obstructed. 
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An explicit and secure way to define the alternatives for a component is required which does not 

compromise any existing AADL concept. A possible scheme is to define a new property for a 

component to hold the alternative components for a given component in a specific alternatives 

list which is a property of that component. The content of the alternatives list could be 

populated by reference to a library of alternatives which contains pre-specified alternative 

component for various component types. With this scheme, a designer, according to his 

assessment of a particular component situation in the model, has the flexibility of adding 

specific optimisations to the library or to that component by specifying alternative 

implementations. The following section will discuss this developed AADL optimisation 

modelling concept. 

5.1.4 The definition of alternatives and optimisation properties 

5.1.4.1 AADL extensibility 

As described by Feiler and Gluch (2012), AADL is an extensible language. AADL allows the 

designer to introduce additional properties and property types through the concept of a property 

set. This is used when it is necessary to add information to an AADL model and no appropriate 

predefined property has been declared. The property set is used to define a conceptually related 

group of properties, property types and property constants. Property set names are unique 

identifiers. Each property set provides a separate name space. By preceding the property name, 

property type name, or property constant name with the property set name followed by “::” one 

can uniquely reference them. 

Figure 5.2 shows an example of an AADL property set declaration which describes some 

properties of a person.  

 

Figure 5.2  The AADL property set declaration for some example properties of a person 

The AADL description of the general syntax for declaring a property set is shown in Figure 5.3. 

The property set type is identified by its name. The optional with clause identifies any 

other property sets that are referenced from within the property set. The property, property 

type and property constant declarations can be defined in any order.  

property set personProperties is 
  Height: aadlreal applies to (person); 
  Sex: type enumeration (Male, Female); 
  Name: constant aadlstring => "Amy"; 
end personProperties; 
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Figure 5.3  The AADL property set declaration syntax 

In more detail, the property declarations define a property by declaring a name and a type for 

the property and identify which AADL model element (e.g., software component, hardware 

component, and connection) accepts values for this property through property association. The 

property type declarations define a type for the values that are acceptable to a property. One 

can define a property to be of a specific property type, hence limiting the values that this 

property accepts in property association. The syntax for a property type declaration must 

include a type keyword followed by the type definition. The type definition can be one of the 

built-in property types (e.g., aadlinteger, aadlstring, aadlboolean and aadlreal) or it 

can be defined with one of the type constructor (e.g., range of real values, classifier 

and record) that can refer to another property type or property name. The property 

constant declarations define a symbolic name for a property value. One can reference this 

name in property declarations wherever the value itself is permissible.  

5.1.4.2 New AADL optimisation properties 

Figure 5.4 shows the AADL description of using an AADL property set to define new 

optimisation properties named Optimisation_Attributes. The names of the optimisation 

properties such as Cost (of type aadlreal), Weight (of type aadlreal) are used at the 

component level. In the HiP-HOPS optimisation model, it is possible to selectively apply 

optimisation to particular sets of components. This is the motivation for the two properties 

Optimise (of type aadlboolean) and Exclude_From_Optimisation (of type 

aadlboolean) which are used at the component level. This is indicated by the applies to 

(all) clause. Other attributes, i.e. Maximum_Generations (defined as a constant with type 

of aadlinteger) is a property of the optimisation. This property is a termination condition and 

limits the search of model space, which, if not limited for large models, might proceed for a 

very long time.  

property set <property set name> is 
[with <property set name(s)>;] 
  <property declaration(s)> 
  <property type declaration(s)> 
  <property constant declaration(s)> 
end <property set name>; 
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Figure 5.4  The use of AADL property set to define optimisation properties 

Another property that applies to the optimisation is the List_of_Objectives property that 

specifies a list of specific optimisation objectives. An optimisation objective has a name, a 

direction and a range. For example, (cost, minimise, [700, 23000]). The AADL description of 

the type Objectives (defined in Figure 5.5) is a record type with three fields, Objective, 

Goal and Bound. Each of these fields has its own type respectively, i.e., aadlstring, 

aadlstring, and range of aadlreal. This property is applicable to the system component 

type. Note that, the List_of_Objectives property is defined as list of record defined in the 

property set Optimisation_Objectives. Therefore, one must include that property set in 

the “with” clause of Optimisation_Attributes.  

 

Figure 5.5  The use of AADL property set to define a new Objectives property type 

Finally, in order to specify the alternative components, there is an AADL property (the property 

is of type classifier) named List_of_Alternatives (shown in Figure 5.6) which is 

defined in the property set named Alternatives. This property is applicable to all of the 

component types. The AADL description of the Alternatives property (shown in Figure 5.6) 

defines a list of AADL classifiers that are alternative implementations of a given component. A 

classifier is an AADL type for representing component type and implementation declarations.  

 

property set Optimisation_Objectives is 
  Objectives: type record ( 
  Objective: aadlstring; Goal: aadlstring; Bound: range of aadlreal; 
  ); 
end Optimisation_Objectives; 

property set Optimisation_Attributes is 
with Optimisation_Objectives; 
  Cost: aadlreal applies to (all); 
  Weight: aadlreal applies to (all); 
  Optimise: aadlboolean applies to (all); 
  Exclude_From_Optimisation: aadlboolean applies to (all); 
  Maximum_Generations: constant aadlinteger => 1000; 
  List_of_Objectives: list of Optimisation_Objectives: 
                      Objectives applies to (system); 
end Optimisation_Attributes; 



104 

 

 

Figure 5.6  The use of AADL property set to define the List_of_Alternatives 

property. This property specifies the alternative components for a given component 

Figure 5.1 also shows the association of optimisation properties for the Pre-collision system. In 

Figure 5.1, the maximum generation (Maximum_Generations) is set to value 1000. The 

objectives property is defined as a list of record type. Two objectives are defined. The first 

objective is Cost with the goal of Minimise and the bound of Cost is between 0 and 85. The 

second objective is Risk with the goal of Minimise and the bound of Risk is between 0 and 

0.18. For each objective, there is a defined lower bound and an upper bound. The bounds 

restrict the optimisation searches to find candidates within those lower and upper bounds for 

each objective. The use of lower and upper bounds is an important requirement in multi-

objective optimisation as they can be used to limit the optimal solutions found to the region of 

interest. 

Figure 5.7 shows the association of defined optimisation properties for process type CR_PP01 

and the alternative implementations of this type. From Figure 5.7, the Optimise property with 

value true means that alternatives for process CR_PP01 should be considered in the 

optimisation process. This allows the optimisation process to be applied selectively to parts of 

the system. For the implementation component, CR_PP01.impl, the property 

Exclude_From_Optimisation property with value true means that this alternative 

component should not be used as a replacement, i.e., is not an available alternative. This allows 

the designer fine-grained control over the alternatives used in the optimisation. The Cost 

property specifies the cost of this implementation. The process CR_PP01 has two alternative 

implementations (CR_PP01.NA_01 and CR_PP01.CR_01), which is specified in the properties 

via setting the property value of List_of_Alternatives. For each of the implementation, 

the cost, weight and other optimisation properties are associated via set the property value 

respectively. 

property set Alternatives is 
  List_of_Alternatives: list of classifier applies to (all); 
end Alternatives; 
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Figure 5.7  The association of defined optimisation properties for process type CR_PP01 

and different implementations of this type 

The above AADL optimisation properties and component alternatives form the basis for the 

transformation of the AADL model to an optimisable HiP-HOPS model. To perform this 

transformation into an optimisable HiP-HOPS model, the early transformation described in 

Chapter 3 is extended with additional transformation rules (see section 5.2 below). These rules 

transform the AADL elements that comprise the AADL optimisation model into corresponding 

HiP-HOPS optimisation elements. These transformations are largely structural. The values of 

the basic attributes involved e.g., cost, reliability etc. do not require translation. The 

transformation transforms the AADL model shown in Figure 5.1 and Figure 5.7 using the new 

properties into the HiP-HOPS model. Once the AADL system model is transformed into HiP-

HOPS, HiP-HOPS will automatically analysis and optimise the system architecture.  

process CR_PP01 
  features 
    CR_PP01_Input: in event port; 
    CR_PP01_Output: out event port; 
  properties 
    Optimisation_Attributes::Optimise => true; 
end CR_PP01; 
 
process implementation CR_PP01.impl 
  properties 
    Optimisation_Attributes::Exclude_From_Optimisation => false; 
    Optimisation_Attributes::Cost => "25"; 

Alternatives::List_of_Alternatives => ( 
      process CR_PP01.NA_01, process CR_PP01.CR_01); 
  annex Error_Model {** 
    model => ErrorModel_PCS::Basic.Process_Pair_01; **}; 
end CR_PP01.impl; 
 
process implementation CR_PP01.NA_01  
  properties 
    Optimisation_Attributes::Exclude_From_Optimisation => true; 
    Optimisation_Attributes::Cost => "0"; 
  annex Error_Model {** 
    model => ErrorModel_PCS::Basic.CR_PP_NA_01; **}; 
end CR_PP01.NA_01; 
 
process implementation CR_PP01.CR_01 
  properties 
    Optimisation_Attributes::Exclude_From_Optimisation => false; 
    Optimisation_Attributes::Cost => "20"; 
  annex Error_Model {** 
    model => ErrorModel_PCS:: 
       Basic.CheckPoint_Restart_01;**}; 
end CR_PP01.CR_01; 
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Ultimately, the nature of the optimisation determines the properties that must be represented in 

the model. This section targets the HiP-HOPS optimisation objectives of cost and dependability 

but the developed method in this section is not specific to the HiP-HOPS optimisation 

techniques. The developed optimisation modelling scheme can be easily transplanted to other 

similar search-based optimisation methods and tools. This follows from the use of the high level 

modelling techniques shown in this section. For example, the designer can easily specify their 

own optimisation objectives in the system by using the defined List_of_Objectives 

property shown in Figure 5.4. The List_of_Objectives property is defined as list of 

record type (defined in Figure 5.5) so that the designers can easily add, delete or modify any 

element in the record type.  

5.2 The model transformation from extended AADL system optimisation model 

to HiP-HOPS optimisation model 

The resulting AADL model extended with optimisation properties is transformed into a HiP-

HOPS model for dependability analysis and optimisation. The model transformation from 

AADL to HiP-HOPS places component alternatives into the HiP-HOPS optimisation model. 

Each model instantiation produced by a particular choice of components is evaluated by HiP-

HOPS for dependability and cost. This information guides the genetic algorithm search (Parker, 

2010) to obtain optimum or near optimum designs.  

The resulting model of the above optimisation modelling process is named as the AADL 

dependability and optimisation model. Figure 5.8 shows the overview of extended model 

transformation from AADL to HiP-HOPS. The extended AADL system optimisation model is 

shown as a box with dotted lines. The AADL system optimisation model is developed by using 

the optimisation modelling method described in section 5.1. 

 

Figure 5.8  The overview of the extended transformation design 
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Figure 5.9 shows the transformation rule, which transforms AADL component alternatives in 

the extended AADL system optimisation model to HiP-HOPS Alternatives object. Each 

alternative defined in the AADL alternative property is an AADL Classifier. The rule 

obtains the information needed by matching the AADL object with that Classifier and 

transforms it to a HiP-HOPS Alternative object. A HiP-HOPS Alternative is a type of 

HiP-HOPS implementation which consists of some optimisation attributes such as 

excludeFromOptimisation and cost and a Failure data (fData) object. The value of these 

attributes and object is obtained by invoking the ATL helper, i.e., 

IsAlternativeExcludeFromOptimisation(), getAlternativeCost(), and 

getAlternativeErrorModelImplementation() respectively.  

 

Figure 5.9  The ATL rule for transforming AADL alternative classifier to HiP-HOPS 

Alternative 

5.3 Summary 

This chapter discusses the potential routes to the representation of variability within an AADL 

model in order to optimise AADL dependable models based on dependability and cost. Some 

new AADL properties have been defined. Some of the optimisation properties need to be set in 

type declarations and some of them need to be set in implementation declarations. These 

properties allow a designer to express component variability in an AADL model. The 

optimisation modelling method is illustrated both at system and component levels of a 

dependable system. The benefit of this optimisation modelling method is that it allows designers 

to automatically optimise models on the basis of component level variability.  

The chapter also illustrates the model transformation (in ATL rule) from extended AADL 

system optimisation model to HiP-HOPS optimisation model. The rule shows how AADL 

component alternatives contained in the extended AADL system optimisation model are 

transformed to corresponding HiP-HOPS Alternatives object. With this optimisation modelling 

rule AlternativeClassifier2Alternatives{ 
from  
  al : instance!ClassifierValue 
to 
  impalt : hiphops!Alternative( 
    name <- al.componentClassifier.name, 
    excludeFromOptimisation <-  
       al.IsAlternativeExcludeFromOptimisation(), 
    cost <- al.getAlternativeCost(), 
    fData <- al.getAlternativeErrorModelImplementation() 
  ) 
} 
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method and alternative transformation rule shown in this chapter together with the model 

transformation rules shown in Chapter 3, the AADL dependability and optimisation model can 

be created and transformed to HiP-HOPS for dependability and cost optimisation analysis. The 

overall benefit of this optimisation modelling and model transformation is that it automates and 

simplifies the dependability design process.  
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Chapter 6 Case study: aircraft wheel brake system 

To illustrate the useful application of the optimisation modelling and transformation method, 

this chapter demonstrates the transformation using a case study. This case study has been 

published in Mian et al. (2013c).  

6.1 System description  

The aircraft wheel brake system model is adapted from the Aerospace Recommended Practice 

(in page 14 and 16 of ARP 4761, 1996) aircraft wheel brake system, which is also presented in 

(Joshi et al., 2006; and Sharvia, 2011). Some components such as accumulators and mechanical 

pedals are left out. These are part of the fault tolerant mechanisms. These fault tolerant 

components are left is because the research supposes the system is designed with a basic design 

at the beginning.  Then the research aims to show how the assessment approach (i.e. HiP-HOPS 

architecture optimisation based on dependability and cost) may help the system designers to 

find design solutions based on both dependability and cost constrains from a more basic design.  

These adaptations should not pose any threats to the validity of the obtained results because the 

system is chosen to demonstrate the application of the optimisation. The dependability and 

optimisation analysis results are dependent on the structure of the system, but the any changes 

in this structure (or failure data), can be reflected in the analysis accordingly. For example, the 

system architecture is expanded with additional components, there will be bigger search space 

(more configuration alternatives) during the optimization but it will not affect the validity of the 

results. 

Figure 6.1 shows the basic system structure and Figure 6.2 shows the corresponding AADL 

description of the wheel brake system. The primary function of the wheel brake system is to 

provide safe braking function for aircraft which requires supplying correct pressure and 

preventing skidding. Braking can be either manual or automatic. Manual braking is controlled 

via brake pedals, while automated braking does not require pedal application. The automated 

braking is realised via Autobrake function which allows the pilot to provide the deceleration rate 

prior to takeoff or landing. 

The braking system operates in one of two modes, Normal or Alternate. In Normal braking 

mode, GreenPump provides the required hydraulic pressure, and Alternate mode is held on 

standby. If failure occurs on Normal mode, the system moves to Alternate mode and 

hydraulic power is generated by the BluePump. In the original ARP 4761 example, another 

backup mechanism is in place lest both of the pumps fail. In this chapter, however, it has been 
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deliberately excluded to demonstrate how HiP-HOPS can be used to help guide the analysis 

process and the identification of potential safety measures.  

The Brake System Control Unit (BSCU), is the digital controller which accepts inputs to 

compute braking and anti-skid commands. In its Normal operational mode, BSCU receives 

information from various input sources. It obtains brake pedal positions as input and processes 

this information to produce command signals to the brakes. When Autobrake is true, 

deceleration rate and aircraft speed are used to calculate the brake command. BSCU also 

monitors signals which indicate certain critical aircraft and system states to provide correct 

brake function, generate warnings, indications and maintenance information to other system.  

Two hydraulic pressure lines are used: the Green line, powered by the GreenPump (Normal) 

and the Blue line, powered by the BluePump (Alternate). The GreenValve and the 

BlueValve are used to control the pressure from the GreenPump and BluePump respectively. 

The SelectorValve is located across the Green and Blue hydraulic lines, and selects only 

one of the two hydraulic systems to provide pressure to the brakes. This pressure is relayed to 

the corresponding meter valves, CMD/ASMeterValveG and CMD/ASMeterValveB 

respectively. The meter valves take two inputs: the incoming pressure and the valve position 

command. The valve position is adjusted to output the required amount of pressure based on the 

command from the BSCU.  

The system switches to Alternate mode when the pressure along the green line falls below a 

threshold. Once BSCU identifies that Alternate line should be activated, it sends an 

OnAlternate signal which commands SelectorValve to switch to the Blue line. Once the 

system switches to Alternate, it will not revert back to Normal. The component labelled WBS 

is the pressure output block, the components NormalP and AlternateP serve only to 

propagate failures.  
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Figure 6.1 The basic system structure of aircraft wheel brake system 

 

 

Figure 6.2 The AADL description for the aircraft wheel brake system 

system implementation AWBS.SystemImpl1 
  subcomponents 
    Power: device DeviceType1.Power; 
    PedalPosition: device DeviceType1.PedalPosition; 
    AutoBrake: device DeviceType1.AutoBrake; 
    NormalP: device DeviceType2.NormalP; 
    AlternateP: device DeviceType2.AlternateP; 
    CMDASMeterValveG: device DeviceType3.CMDASMeterValveG; 

 . . . 
 --Other components omitted  
 . . . 

    WBS: device DeviceType3.WBS; 
    SelectorValve: device DeviceType4.SelectorValve; 
    BSCU: device DeviceType5.BSCU; 
  connections 
    DataConnection1: data port Power.Output -> BSCU.Input1; 
    DataConnection2: data port PedalPosition.Output -> BSCU.Input2; 
    DataConnection3: data port AutoBrake.Output -> BSCU.Input3; 

 . . . 
 --Other connections omitted  
 . . . 
DataConnection17: data port CMDASMeterValveG.Output ->  
                            BSCU.Input6; 

    DataConnection18: data port NormalP.Output -> WBS.Input1; 
    DataConnection19: data port AlternateP.Output -> WBS.Input2; 
end AWBS.SystemImpl1; 
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6.2 Failure data 

The AADL Error Model Annex is used to model the system failure behavior. For simplicity, 

each component is assumed to be vulnerable to one internal failure which leads to the omission 

of component output. Other types of component failure (for example, commission or value 

failure) are not discussed but may be treated analogously. The internal failures for components 

GreenPump, GreenValve, BluePump, BlueValve, CMD/ASMeterValveG, 

CMD/ASMeterValveB and SelectorValve are denoted as GreenPumpBE, GreenValveBE, 

BluePumpBE, BlueValveBE, GCMDASBE, BCMDASBE, SelValveBE respectively. Internal 

failure in the BSCU (the command unit) is denoted as CMDBE. The input to the BSCU comes from 

Power, PedalPosition, AutoBrake, Speed and DCRate component. Internal failures in 

these input components are denoted as PowerBE, PedalPositionBE, AutoBrakeBE, 

SpeedBE, and DCRateBE respectively.  

Figure 6.3 shows the AADL error model type definition and error model implementation for 

component Power, GreenValve and BSCU.  Figure 6.4 shows the association of error model 

implementation Basic.BSCU (shown in Figure 6.3) to component BSCU, the guard_in and 

guard_out error properties for component implementation DeviceType5.BSCU and the 

alternative implementations of this component. Note the guard_in and guard_out error 

properties shown in Error_Model in DeviceType5.BSCU. These error properties specify 

conditions under which the input or output error propagations occur. From Figure 6.4, the 

Optimise property with value true means that alternatives for device DeviceType5 should be 

considered in the optimisation process. This property allows the optimisation process to be 

applied selectively to parts of the system. For the implementation component, 

DeviceType5.BSCU2, the property Exclude_From_Optimisation property with value true 

means that this alternative component should not be used as a replacement, i.e., is not an 

available alternative. This allows the designer fine-grained control over the alternatives used in 

the optimisation. The Cost property specifies the cost of this implementation. The device 

DeviceType5 has three alternative implementations (DeviceType5.BSCU2, 

DeviceType5.BSCU3, and DeviceType5.BSCU4), which is specified in the properties via 

setting the property value of List_of_Alternatives. For each of the implementations, the 

cost and other optimisation properties are specified. 
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Figure 6.3 AADL error model type definition and error model implementation for 

component Power, GreenValve and BSCU. 

 

package AWBS_ErrorModel 
public 
  annex Error_Model {** 
    error model Basic --basic error model 
    features 
      ErrorFree: initial error state; 
      GreenPumpBE, GreenValveBE,BluePumpBE, BlueValveBE, GCMDASBE, 
      BCMDASBE, SelValveBE, CMDBE, PowerBE, PedalPositionBE, 
      AutoBrakeBE,SpeedBE, DCRateBE: error event; 
      Failed, Failed1, Failed2, Failed3: error state; 
      Loss_Data: in out error propagation {occurrence => fixed 0.8}; 
      Loss_Data1, Loss_Data2: in error propagation;   
    end Basic; 
 

    error model implementation Basic.Power 
    --error transitions omitted 
    end Basic.Power; 

 
    error model implementation Basic.GreenValve 
    --error transitions omitted 
    end Basic.GreenValve; 

 
    error model implementation Basic.BSCU 
    transitions 
      ErrorFree -[ Loss_Data1 ]-> Failed1; 
      ErrorFree -[ Loss_Data2 ]-> Failed1; 
      ErrorFree -[ CMDBE ]-> Failed2; 
      Failed1 -[ out Loss_Data ]-> Failed1; 
      Failed2 -[ out Loss_Data ]-> Failed2; 
    properties 
      occurrence => poisson 1.0e-10 applies to CMDBE; 
    end Basic.BSCU; 

… 
  **}; 
end AWBS_ErrorModel; 
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Figure 6.4 Associated AADL error model, guard_in and guard_out error model properties 

for component BSCU and alternative implementations of this component 

 

device DeviceType5 
  features 
    Input1: in data port; Input2: in data port; Input3: in data port; 
    Input4: in data port; Input5: in data port; Input6: in data port; 

Output: out data port; Output1: out data port; Output2: out data 
        port; 

  properties 
    Optimisation_Attributes::Optimise => true; 
end DeviceType5; 
 
device implementation DeviceType5.BSCU 
  properties 
    Optimisation_Attributes::Exclude_From_Optimisation => false; 
    Optimisation_Attributes::Cost => "50"; 
    Alternatives::List_of_Alternatives => (device DeviceType5.BSCU2, 

              device DeviceType5.BSCU3, device DeviceType5.BSCU4); 
  annex Error_Model {** 
    model => AWBS_ErrorModel::Basic.BSCU; 
    guard_in =>  
      Loss_Data1 when Input1[Loss_Data], 
      mask when others 
      applies to Input1; 
    guard_in =>  
      Loss_Data2 when Input2[Loss_Data] AND  
      (Input3[Loss_Data] OR Input4[Loss_Data] OR Input5[Loss_Data]), 
      mask when others 
      applies to Input2,Input3,Input4,Input5; 
    guard_out =>  
      Loss_Data when self[Failed2], 
      mask when others 
      applies to Output1; 
  **}; 
end DeviceType5.BSCU; 
 
device implementation DeviceType5.BSCU2 
  properties 
    Optimisation_Attributes::Exclude_From_Optimisation => true; 
    Optimisation_Attributes::Cost => "20"; 
  annex Error_Model {** 
    model => AWBS_ErrorModel::Basic.BSCU2;  
  **}; 
end DeviceType5.BSCU2; 
 
--Implementation of DeviceType5.BSCU3 and DeviceType5.BSCU4 similar to 
above but cost and error model differ 
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6.3 Dependability analysis of the wheel brake system model  

The AADL wheel brake system model is transformed into a HiP-HOPS model for dependability 

analysis and optimisation. HiP-HOPS produces, FTA and FMEA. The analysis of the results of 

FTA and FMEA shows, for example, that the omission of Power, BSCU command unit and 

SelectorValve directly leads to omission of pressure on the wheel brake. The other single 

point failures are also identified. The obtained fault tree and FMEA in this work is checked with 

the result published in Sharvia, (2011) since the same case study is used. The correctness of the 

transformation is checked by comparing the obtained FMEA tables (i.e. generated from the 

transformation of the AADL dependability model to HiP-HOPS dependability model) with the 

validated FMEA published in Sharvia, (2011).  For a small design model, manual analysis may 

be manageable. But for larger system, where this architecture may be nested within a more 

complex design, manual analysis becomes laborious and error-prone.  

6.4 Design optimisation 

In this case study, it is assumed that each component has four different alternatives (each with 

different failure rate and different cost). Components with lower failure rates have a higher cost. 

Table 6.1 summarises the failure rates and costs data for the component alternatives. The failure 

rates and costs of CMD/ASMeterValves follow those of green valves and blue valves. It should 

be noted that the values of failure rates are not based on any empirical data, but chosen 

hypothetically to illustrate the method.  

Table 6.1 The failure rates and costs data for the component alternatives 

Component Failure Rate λ Cost 

BSCU1/ SelectorValve1 1e-10 50 

BSCU2/ SelectorValve2 2e-10 20 

BSCU3/ SelectorValve3 3e-10 10 

BSCU4/ SelectorValve4 5e-10 5 

GreenPump1/Valve1/BluePump1/Valve1 1e-8 16 

GreenPump2/Valve2/BluePump2/Valve2 2e-8 8 

GreenPump3/Valve3/BluePump3/Valve3 3e-8 4 

GreenPump4/Valve4/BluePump4/Valve4 4e-8 2 

   

In general, there are 4 potential component architectures for each of these 8 components. The 

size of the design space to be explored is therefore 48 possible configurations. As such it is very 

difficult to do this kind of optimisation manually. 
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6.5 Optimisation results 

Based on these parameters the multi-objective optimization problem is to minimize both system 

risk and cost. 

 

Figure 6.5 The Pareto front optimal solutions 

Figure 6.5 shows the optimal architectures on the Pareto front produced by HiP-HOPS. These 

solutions are less risky than all other more costly solutions. To obtain specific solutions from 

the Pareto front, the goal of the optimization was defined as:  

    Risk ≤0.000015, Cost ≤120 

Three solutions which satisfy this constraint are presented in Table 6.2. HiP-HOPS uses its 

optimisation algorithm to search and calculate each candidate’s characteristics such as the cost 

and risk vales and finally generates those solutions that meet the defined goals. The 

configuration shows the combination of component alternatives selected for the solutions.  
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Table 6.2  The three solutions which satisfy the constraint: Risk ≤0.000015, Cost ≤120 

Component Solution 1  Solution 2 Solution 3 

BSCU BSCU2 BSCU2 BSCU1 

BluePump BluePump2 BluePump2 BluePump2 

BlueValve BlueValve3 BlueValve1 BlueValve3 

CMD/ASMeterValveB CMDASMeterValveB1  CMDASMeterValveB4 CMDASMeterValveB2 

CMD/ASMeterValveG CMDASMeterValveG3 CMDASMeterValveG1 CMDASMeterValveG3 

GreenPump GreenPump3 GreenPump3 GreenPump1 

GreenValve GreenValve2 GreenValve3 GreenValve3 

SelectorValve SelectorValve3 SelectorValve2 SelectorValve2 

Cost 74 90 114 

Risk  0.000015 0.000014 0.000013 

The various design solutions shows different potential configurations of components to achieve 

the pre-defined risk and cost restrictions. BSCU and SelectorValve are highly critical 

components and therefore should be robust. This is illustrated by how Solution 3, which has 

the lowest risk among the three selected sample solutions within the restricted cost, employs the 

BSCU1 and SelectorValve2. The results presented here represent a preliminary step in the 

overall safety assessment process. The multi-objective assessment routine can be performed 

iteratively by adjusting design parameters (risk and cost) until requirements are met in the 

process of an evolving design. The optimization is automated and therefore can be repeated 

efficiently in the course of design iterations.  

6.6 Summary 

In this chapter, an aircraft wheel brake system was used as a case study to illustrate and validate 

the transformations between AADL dependability and optimisation model to HiP-HOPS 

optimisation model. The AADL dependability and optimisation model of the aircraft wheel 

brake system is obtained by extending the system dependability model through adding newly 

defined AADL optimisation properties to both system and component levels. Also, the 

alternatives for each component in the system are added. The AADL dependability and 

optimisation model of the aircraft wheel brake system is then transformed into the HiP-HOPS 

optimisation model.  

The correctness of the transformation is validated by comparing the obtained fault tree (i.e. 

generated from the transformation of the AADL dependability model to HiP-HOPS 

dependability model) with the validated fault tree published in Sharvia, (2011).  The alternatives 
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of each component is checked to ensure that all the characteristics e.g. failure data, cost that are 

related to the alternatives are transformed correctly.   

HiP-HOPS uses this optimisation model to search and obtain the optimal architectures on Pareto 

front. The Pareto front optimisation solutions shows the combination of component alternatives 

selected for the solutions. This allows the AADL designers to select, among a large number of 

potential design spaces, the solutions that satisfy both dependability and cost constraints. The 

model transformation approach is an effective way to provide such dependability and cost 

optimisation of AADL models.   
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Chapter 7 Conclusions and future work 

The general research hypothesis of this thesis is that model transformation is a cost-effective 

way to advance model-based dependability analysis and optimisation to models expressed in 

AADL. The thesis has developed a model transformation method (in Chapter 3) to show that 

model transformation is a fundamental technique to maximise the utility of AADL because it 

provides a route for the exploitation of mature and tested tools in the AADL context.  

Following a survey of the current system dependability analysis and optimisation methods and 

tools e.g. ArcheOpterix (Aleti et al., 2009) and AQOSA (Li et al., 2011, Etemaadi and 

Chaudron, 2012) for AADL models, limitations in the exploitation of current system 

optimisation methods are identified. In order to enable AADL use the existing system 

dependability analysis and optimisation techniques, this thesis develops a model-based 

dependability modelling and analysis and architecture optimisation method using model 

transformation.  

If AADL models could be transformed into the models used by other methods and tools then it 

would extend the optimisation analysis that could be done on AADL models. HiP-HOPS is a 

state-of-the-art model-based dependability and optimisation analysis technique but HiP-HOPS 

requires the system to be optimised is expressed as a HiP-HOPS model using the HiP-HOPS 

modelling language. This problem can be overcome by transforming the AADL model into an 

equivalent HiP-HOPS model. In this thesis, a model transformation method has been devised 

and implemented for automatic dependability and cost optimisation of AADL dependable 

models.  

The thesis presents transformation rules for transforming an AADL model which contains an 

error state machine into a HiP-HOPS fault tree model. The transformation rules have been 

implemented in the ATL language. The ATL language is selected as a transformation language 

in this research not only because it hides the complexity of model transformation behind the 

simple syntax but also because it is a hybrid model-to-model transformation language that uses 

declarative rules and imperative rules which makes the language suitable to implement the 

transformations method. The thesis has shown the feasibility of the automation of the 

transformation method by implementing the tool AADL2HiP-HOPS, which has been integrated 

as a plug-in into the AADL development environment OSATE.  

The AADL2HiP-HOPS tool has been developed for the automatic generation of target HiP-

HOPS-oriented dependability analytical models from high level source AADL dependable 

models. AADL is used as the notation for capturing the system architecture model and the 
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AADL Error Model Annex is used to capture the component faults and failure modes. The 

method transforms this AADL dependability model to a HiP-HOPS model which is then used 

for synthesis of fault trees, FMEAs and other analyses to automatically generate the fault tree 

and FMEA table of system for further dependability analysis.  

AADL and HiP-HOPS use different modelling concepts and hence have different models and 

different modelling languages. There are similarities and differences in the AADL and HiP-

HOPS modelling concepts. Both languages use the concepts of component, port and connection 

although detailed semantics differ. To ensure the semantics between the source and target model 

remain unchanged during the transformation, the mappings between the source and target model 

are comprehensively analysed. The transformation mappings are driven by considering the 

information needed from the target HiP-HOPS model and the location of that information in the 

source AADL model. 

The transformation from AADL to HiP-HOPS consists of two parts. The first part is the 

transformation of the component error models into HiP-HOPS individual component fault trees. 

A state machine to fault-tree conversion algorithm is used for this part. The second part is the 

transformation of the AADL connections into HiP-HOPS Lines. Although, a transformation 

between source and target models is semantics preserving, the target model may represent in an 

explicit property, properties that are implicit in the source model. An example of this is the HiP-

HOPS Line object which models the propagation of failure events. Failure propagation 

information is available in the AADL source model but is not so explicitly represented. In 

particular, the information in the guard_in(out) expressions as well and the AADL connections 

is required in order to create the corresponding HiP-HOPS Line objects.  

In order to make the developed transformation method more reusable and adaptable, the thesis 

also discusses the guidance for the AADL to HiP-HOPS model transformation design. The 

guidance discusses some of the modularisation techniques in rule-based transformation 

languages. The ATL transformation language is used to illustrate the transformation design. 

Usually, different sets of transformation rules can be derived from different decompositions in 

the source and target metamodels and hence, the thesis proposes that the designers consider 

multiple decompositions in the metamodels. Moreover, the thesis considers the appropriate use 

of the three rule integration mechanisms, i.e. implicit rule calls, explicit rule calls, and rule 

inheritance that can be used to integrate rules together. Each mechanism has its advantages and 

disadvantages to integrate rules together. Implicit rule calls relies on indirect rule dependencies 

and usually lead to a low coupling between rules. It thus can be chosen when adaptability and 

reusability are set as the main quality attribute of the transformation definitions. In the context 

of this research, explicit rule calls is best for error state machine to fault tree conversion. This is 
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because ATL rules take input from sources of different types i.e. they are source type sensitive. 

The error state machine to fault tree conversion is not a source type sensitive transformation. 

For this reason, imperative code is used to implement the transformation needed to explicitly 

generate the target model element (i.e. fault tree failureExpression).  

One challenge for the optimisation of AADL models is how to enable the representation of 

“variability” in the AADL system. Variability is a prerequisite for optimisation, because it 

creates the design space of alternatives which needs to be explored in order to seek the best 

architectural solutions. Variability includes the possibility of designating one or more 

alternatives to a given component or subsystem. Clearly, for automated optimisation, the 

variability must be constrained. In the optimisation method considered in this thesis, component 

and subsystems may be associated with one or more alternatives with respect to dependability 

and cost. The optimisation process searches the large space of possible designs defined by the 

combinations of possible choices, and uses optimisation heuristics such as genetic algorithms to 

obtain optimal or near optimum designs.  

In AADL, however, there is no scheme for directly modelling alternatives and optimisation 

parameters. The thesis has discussed the problem of defining variability in AADL and has 

developed an optimisation modelling method which allows the AADL designer to specify 

variable elements of the system model. The developed optimisation modelling method extends 

the AADL modelling features by adding an optimisation modelling scheme. This includes a 

high level way to define the alternatives for a component and optimisation needed properties 

such as component cost, system optimisation objectives. Explicitly specifying alternative 

implementations gives the designer the flexibility to add or remove component specific 

optimisations as needed. The benefit of this developed optimisation modelling method is that it 

supplies designers an open path to design their own specific optimisation properties with lower 

load. The application of this optimisation modelling method lead to a AADL dependability and 

optimisation model, which is then transformed to a HiP-HOPS optimisation model for 

dependability and cost optimisation analysis.  

The model transformation approach has been illustrated and tested by applying it onto several 

case studies. The model transformation approach has been shown to be an effective way to 

provide fault tree and FMEA analysis and optimisation analysis of AADL models. The direct 

benefit of the transformation presented in this thesis is that it opens a path that will enable the 

AADL language to take advantage of an existing dependability analysis and optimisation 

technique. The technique may be used early in the design and makes the analysis of complex 

dependable systems practical and cost-effective.  
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Beyond this research, future work may focus on: 

1. Dependability analysis and optimisation of AADL systems that have temporal ordering 

characteristics.  

HiP-HOPS Pandora technology (Walker and Papadopoulos, 2006) can be used to implement the 

dependability analysis for AADL models with temporal ordering characteristics. Future work 

could adapt and test the transformation method based on a case study to make the 

transformation method capable to transform AADL model (with temporal ordering 

characteristics) into temporal fault trees.  

2. This research focuses on the static architecture of AADL models. The static architecture is 

represented by a collection of components that are structured in a component hierarchy. For 

each component in the hierarchy, its component implementation defines the internal structure in 

terms of subcomponents and interactions in terms of connections. The dynamic architecture is 

represented by a collection of component and connection configurations that are controlled by 

modes (Feiler and Gluch, 2012). Due to the constraints imposed by AADL Error Model Annex, 

certain types of failure modes cannot be specified in the error model and one challenge in this 

research (as encountered in (Joshi et al., 2007)) is the failure modes are not considered since 

they cannot be obtained in the error model. Future work should consider failure modes 

separately.  

3. More detailed cost modelling 

The cost attribute in the optimisation process is assumed directly as a cost value. The total cost 

for all of the components included in a design solution is simply the sum of each component’s 

cost. In reality, however, there are situations where more complicated cost calculations are 

required. For example, a discount may be possible if several repeated components are selected 

in the same architecture design. Thus, in this situation, the actual total cost should be calculated 

as the total cost of these repeated components subtract the discount. Maintenance cost is also a 

detail that should be included. This means that the system cost should be calculated over a given 

lifetime.  

4. Future work could focus on improving the modularity of the transformation so that it can be 

more easily re-targeted to different optimisation tools. Furthermore, a library of alternatives can 

be built for each type of component in AADL so that once the designer choose one type of 

component then the alternatives of this particular component type can be automatically selected 

for optimisation. Future work may also consider new techniques for describing model 

variability. In addition to replacing a single component with an alternative component, a 
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designer may wish to introduce other replacement patterns. For example, a replacement pattern 

may require that two matching components are always replaced as a pair.  
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Hamann R, Uhlig A, Papadopoulos Y, Rüde E, Grätz U, Walker M and et al., 2008, Semi 

Automatic Failure Analysis Based on Simulation Models, The ASME 27th International 

Conference on Offshore Mechanics and Arctic Engineering OMAE2008, 15-20 June, Estoril. 

Hecht M, Lam A, Howes R and Vogl C, 2010, Automated Generation of Failure Modes and 

Effects Analyses from AADL Architecturral and Error Models [online], Available: 

https://wiki.sei.cmu.edu/aadl/images/0/06/HechtFaultModelingMay2010.pdf [Accessed 15 

December 2013]. 

Hecht M, Vogl C and Lam A, 2009, Application of the Architectural Analysis and Design 

Language (AADL) for Quantitative System Reliability and Availability Modeling [online], 

Available: https://wiki.sei.cmu.edu/aadl/images/7/78/Vogl_Hecht_Lam_Aerotech_09.pdf 

[Accessed 15 December 2013]. 

IMCA, 2002, Guidance on Failure Modes & Effects Analyses (FMEAs), Report IMCA M 166 

[online], Available: http://www.imca-int.com/media/73361/imcam166.pdf [Accessed 10 

October 2013]. 

Johnsen A and Lundqvist K, 2011, Developing Dependable Soft-ware-Intensive Systems: 

AADL vs. EAST-ADL, (Eds.): Ada-Europe 2011, LNCS 6652, pp 103-117, Springer-Verlag. 

Joshi A and Heimdahl M P, 2005, Model-Based Safety Analysis of Simulink Models Using 

SCADE Design Verifier, In SAFECOMP, volume 3688 of LNCS, pp 122–135, Springer-

Verlag. 

Joshi A and Heimdahl M P, 2007, Behavioral Fault Modeling for Model-based Safety Analysis, 

Proceedings of 10th IEEE High Assurance Systems Engineering Symposium (HASE'07), Dallas. 

Joshi A, Heimdahl M P, Miller S, and Whalen M, 2006, Model-Based Safety Analysis, NASA 

contractor report, NASA/CR-2006-213953. 

https://wiki.sei.cmu.edu/aadl/images/0/06/HechtFaultModelingMay2010.pdf
https://wiki.sei.cmu.edu/aadl/images/7/78/Vogl_Hecht_Lam_Aerotech_09.pdf
http://www.imca-int.com/media/73361/imcam166.pdf


128 

 

Joshi A, Miller S, Whalen M, and Heimdahl M P, 2005, A Proposal for Model-Based Safety 

Analysis, In Proceedings of 24th DASC. 

Joshi A, Vestal S and Binns P, 2007, Automatic Generation of Static Fault Trees from AADL 

Models, In DSN Workshop on Architecting Dependable Systems, DSN07-WADS, Edinburgh, 

Scotland-UK. 

Jouault F and Kurtev I, 2005, Transforming models with ATL, Proceedings of the Model 

Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica [online], 

Available:  

http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/jouault_kurtev__transforming_models_w

ith_atl.pdf [Accessed 10 October 2013]. 

Jouault F, Allilaire F, Bezivin J, Kurtev I, 2008, ATL: A model transformation tool, Science of 

computer programming, volume (72), pp 31-39. 

Kaiser B, Gramlich C, and orster M F, 2007 State/event fault trees–a safety analysis model for 

software-controlled systems, Reliability Engineering & System Safety, 92(11), pp 1521–1537. 

Kaiser B, Liggesmeyer P, and ackel O M, 2003, A new component concept for fault trees, In 

Proceedings of the 8th Australian Workshop on Safety Critical Systems and Software (SCS’03), 

pp 37-46, Adelaide. 

Konak A, Coit D W, Smith A E, 2006, Multi-objective optimization using genetic algorithms, 

Reliability Engineering & System Safety 91 (9), pp 992-1007. 

Kurtev I, Berg K and Jouault F, 2007, Ruled-based modularization in model transformation 

languages illustrated with ATL, Science of Computer Programming, 68(2007), pp 138-154. 

Küster J M, 2004, Systematic Validation of Model Transformations In: WiSME 2004 

(associated to UML 2004), Lisbon, Portugal. 

Küster J M, 2006, Definition and validation of model transformations, Software and Systems 

Modeling 5(3), pp 233 - 259. 

LABRI, 2014, Available:  http://www.labri.fr/ [Accessed 18 July 2014]. 

Lawley M, Duddy K, Gerber A and Raymond K, 2004, Language Features for Re-Use and 

Maintainability of MDA Transformations, In: OOPSLA workshop on Best Practices for Model-

http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/jouault_kurtev__transforming_models_with_atl.pdf
http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/jouault_kurtev__transforming_models_with_atl.pdf
http://www.labri.fr/


129 

 

Driven Software Development, Vancouver, Canada [online], Available: 

http://s23m.com/oopsla2004/duddy.pdf [Accessed 28 July 2014]. 

Li R, Etemaadi, R, Emmerich, M T M, Chaudron, M R V, 2011, Automated Design of Software 

Architectures for Embedded Systems using Evolutionary Multiobjective Optimization, Proc. of 

the VII ALIO/EURO. 

MAENAD project, 2013, EAST-ADL Domain Model Specification, version V2.1.11 [online], 

Available: http://east-adl.info/Specification/V2.1.11/EAST-ADL-Specification_V2.1.11.pdf 

[Accessed 30 September 2013]. 

Mahmud N and Mian Z, 2013, Automatic Generation of Temporal Fault Trees from AADL 

Models, European Safety and Reliability conference (ESREL 2013), Amsterdam. 

Mahmud N, 2012, Dynamic model-based safety analysis: From state machines to temporal fault 

trees, PhD dissertation, Department of Computer Science, University of Hull, UK. 

Mahmud N, Papadopoulos Y and Walker M, 2010, A translation of State Machines to temporal 

fault trees, International Conference on Dependable Systems and Networks Workshops (DSN-

W), Chicago, USA, pp 45-51. 

Mahmud N, Walker M, and Papadopoulos Y, 2011, Compositional synthesis of temporal fault 

trees from state machines, The six international conference on Availability, Reliability and 

Security, pp 429-435. 

Medvidovic N and Taylor R N, 2000, A Classification and Comparison Framework for 

Software Architecture Description Languages, IEEE Transactions on Software Engineering 26, 

pp 70-93. 

Meedeniya I, Aleti A, Bühnova B, 2009, Redundancy allocation in automotive systems using 

multi-objective optimisation, Symposium of Avionics/Automotive Systems Engineering 

(SAASE’09), San Diego. 

Mens T and Van Gorp P, 2006, A taxonomy of model transformation, Electronic Notes in 

Theoretical Computer Science, vol. 152, pp 125 - 142. 

Mian Z and Bottaci L, 2013, Multi-objective Architecture Optimisation Modelling for 

Dependable Systems, the 4th IFAC Workshop on Dependable Control of Discrete Systems 

(DCDS2013), York University, UK. 

http://s23m.com/oopsla2004/duddy.pdf
http://east-adl.info/Specification/V2.1.11/EAST-ADL-Specification_V2.1.11.pdf


130 

 

Mian Z, Bottaci L and Papadopoulos Y, 2013b, Multi-objective Architecture Optimisation for 

Dependable Systems, extended abstract for the 3rd International Workshop on Model Based 

Safety Assessment, IWMBSA’2013, Versailles, France. 

Mian Z, Bottaci L, Papadopoulos Y and Adachi M, 2013a, Multi-objective Architecture 

Optimisation for Dependable Systems, Reliability Engineering & System Safety Journal, 

Elsevier, Accepted. 

Mian Z, Bottaci L, Papadopoulos Y and Biehl M, 2012, System Dependability Modelling and 

Analysis Using AADL and HiP-HOPS, 14th IFAC Symposium on Information Control 

Problems in Manufacturing, Bucharest, Romania. 

Mian Z, Bottaci L, Papadopoulos Y, Sharvia S and Mahmud N, 2013c, Model Transformation 

for Multi-objective Architecture Optimisation of Dependable Systems, In Zamojski W (Ed.) 

Dependability problems of complex information systems, Springer Verlag, Accepted. 

Mobius, 2014, Möbius Overview, Available: http://www.mobius.illinois.edu/ [Accessed 18 July 

2014]. 

Nicol D M, Sanders W H and Trivedi K S, 2004, Model-Based Evaluation: From Dependability 

to Security, IEEE Transactions on Dependable and Secure Computing, 1(1), pp 48-65. 

OMG, 2005, Introduction To OMG’s Unified Modelling Language (UML) [online], Available: 

http://www.omg.org/gettingstarted/what_is_uml.htm [Accessed 30 September 2013]. 

OMG, 2012, OMG Systems Modeling Language (OMG SysML), version 1.3 [online], 

Available: http://www.omg.org/spec/SysML/1.3/ [Accessed 30 September 2013]. 

Papadopoulos Y and Grante C, 2005, Evolving car designs using model-based automated safety 

analysis and optimisation techniques, The Journal of Systems and Software, 76(1), pp 77-89. 

Papadopoulos Y and Maruhn M, 2001, Model-based synthesis of fault trees from matlab-

simulink models, In 2001 International Conference on Dependable Systems and Networks (DSN 

2001), pp 77–82, IEEE Computer Society. 

Papadopoulos Y, Parker D, and Grante C, 2004, Automating the failure modes and effects 

analysis of safety critical systems, In Int. Symp. on High-Assurance Systems Engineering (HASE 

2004), pp 310–311, IEEE Computer Society. 

http://www.mobius.illinois.edu/
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/spec/SysML/1.3/


131 

 

Parker D J, 2010, Multi-objective Optimisation of Safety-Critical Hierarchical Systems, PhD 

dissertation, The University of Hull. 

Popic P, 2005, The Impact of Error Propagation on Software Reliability Analysis of 

Component-based Systems, PhD thesis, The West Virginia University. 

Rauzy A, 2002, Mode automata and their compilation into fault trees, Rel. Eng. & Sys. Safety 

(RESS) 78(1), pp 1-12. 

Rouvroye J L and Bliek E G V D, 2002, Comparing safety analysis techniques, Reliability 

Engineering and System Safety, 75(2002), pp 289-294. 

Rugina A E, 2007, Dependability modelling and evaluation - From AADL to stochastic Petri 

nets, PhD dissertation, LAAS/CNRS. 

Rugina A E, Kanoun K and Kaâniche M, 2007, An Architecture-based Dependability Modelling 

Framework Using AADL, 10th IASTED International Conference on Software Engineering and 

Applications (SEA'2006), Dallas (USA), pp 222-227. 

Rugina, A E, Kanoun K and Kaaniche M, 2008, The adapt tool: From aadl architectural models 

to stochastic petri nets through model transformation, In Proc. 7th European Dependable 

Computing Conf. (EDCC), Kaunas, Lituanie. 

SAE-AADL Meta Model/XMI V0.999, 2006, Annex C AADL Meta Model and Interchange 

Formats Normative [online], Available: 

http://aadl.sei.cmu.edu/aadlinfosite/downloads/AADLmetamodel/AADLmetamodel04102006.zi

p [Accessed 06 December 2010]. 

SAE-AS5506, 2006, Architecture Analysis and Design Language (AADL), Society of 

Automotive Engineers (SAE). 

SAE-AS5506/1, 2006, Architecture Analysis and Design Language Annex Volume 1, Annex E: 

Error Model Annex, Society of Automotive Engineers (SAE). 

SAE-AS5506/2, 2011, Architecture Analysis and Design Language (AADL) Annex Volume 2, 

Annex D: Behaviour Annex, Society of Automotive Engineers (SAE). 

SEI, 2004, OSATE: An extensible Source AADL Tool Environment, SEI AADL Team technical 

Report. 

http://aadl.sei.cmu.edu/aadlinfosite/downloads/AADLmetamodel/AADLmetamodel04102006.zip
http://aadl.sei.cmu.edu/aadlinfosite/downloads/AADLmetamodel/AADLmetamodel04102006.zip


132 

 

Sharvia S, 2011, Integrated Application of Compositional and Behavioural Safety Analysis, 

PhD dissertation, The University of Hull. 

Steinberg D, Budinsky F, Paternostro M, and Merks E, 2009, EMF: Eclipse Modeling 

framework, Pearson Education, Boston, USA. 

Trivedi K S, 2001, Probability and Statistics with Reliability, Queuing, and Computer Science 

Applications, John Wiley and Sons, New York, Second Edition, ISBN 0-471-33341-7. 

Vesely W, Stamatelatos M, Dugan J, Fragola J, Minarick J and Railsback J, 2002, Fualt Tree 

Handbook with Aerospace Applications, NASA Office of Safety and Mission Assurance, USA. 

Walker M and Papadopoulos Y, 2006, Pandora: The Time of Priority-AND gates, 12th IFAC 

Symposium on Information Control Problems in Manufacturing, St Etienne, France, pp 237-242. 

Walker M, and Papadopoulos Y, 2009, Qualitative temporal analysis: towards a full 

implementation of the Fault Tree Handbook, Control Engineering Practice 17(10), pp 1115–

1125, ISSN 0967 0661. 

Walker M, Reiser M-O, Tucci-Piergiovanni S, Papadopoulos Y, Lönn H, Mraidha Ch, Parker D, 

Chen D-J, Servat D, 2013, Automatic optimisation of system architectures using EAST-ADL, 

Journal of Systems and Software, 86(10), pp 2467-2487. 

Wallace M, 2005, Modular architectural representation and analysis of fault propagation and 

transformation, Electr. Notes Theor. Comput. Sci., 141(3), pp 53–71. 

XMI, 2003, XML Meta Interchange (XMI), Version 2.0, Object Management Group (OMG) 

[online], Available: http://www.omg.org/technology/documents/formal/xmi.htm [Accessed 06 

March 2011]. 

XML, 2001, XML Schema, Version 1.0, World Wide Web Consortium (W3C), [online], 

Available: http://www.w3.org/XML/Schema [Accessed 06 March 2011]. 

Yang W, Horwitz S, and Reps T, 1992, A program integration algorithm that accommodates 

semantics-preserving transformations, ACM Transactions on Software Engineering and 

Methodology, 1 (3), pp 310 - 354.  

http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3.org/XML/Schema

