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Abstract 

The application of heuristic search techniques, such as genetic algorithms, to the 

problem of automatically generating software test data has been a growing interest 

for many researchers in recent years. The problem tackled by this thesis is the devel­

opment of heuristics for test data search for a class of test data generation problems 

that could not be solved prior to the work done in this thesis because of a lack of an 

informative cost function. Prior to this thesis, work in applying search techniques 

to structural test data generation was largely limited to numeric test data and in 

particular, this left open the problem of generating string test data. Some potential 

string cost functions and corresponding search operators are presented in this thesis. 

For string equality, an adaptation of the binary Hamming distance is considered, 

together with two new string specific match cost functions. New cost functions for 

string ordering are also defined. For string equality, a version of the edit distance 

cost function with fine-grained costs based on the difference in character ordinal 

values was found to be the most effective in an empirical study. 

A second problem tackled in this thesis is the problem of generating test data for 

programs whose coverage criterion cost function is locally constant. This arises be­

cause the computation produced by many programs leads to a loss of information. 

The use of flag variables, for example, can lead to information loss. Consequently, 

conventional instrumentation added to a program receives constant or almost con­

stant input and hence the search receives very little guidance and will often fail to 

find test data. The approach adopted in this thesis is to exploit the structure and 

behaviour of the computation from the input values to the test goal, the usual in­

strumentation point. The new technique depends on introducing program data-state 

scarcity as an additional search goal. The search is guided by a new fitness function 
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made up of two parts, one depending on the branch distance of the test goal, the 

other depending on the diversity of the data-states produced during execution of 

the program under test. 

In addition to the program data-state, the program operations, in the form of the 

program-specific operations, can be used to aid the generation of test data. The 

program-specific operators is demonstrated for strings and an empirical investigation 

showed a fivefold increase in performance. This technique can also be generalised to 

other data types. An empirical investigation of the use of program-specific search 

operators combined with a data-state scarcity search for flag problems showed a 

threefold increase in performance. 
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Chapter 1 

Introduction 

Software testing covers a range of activities aimed at evaluating an attribute or ca­

pability of a program or system (Beizer, 1990). Usually, it is a process of executing 

a program or system with the intent of finding failures (Myers, 1979). Because soft­

ware and digital systems are not continuous, testing boundary values is not sufficient 

to guarantee correctness. All the possible values need to be tested and verified, but 

obviously, for a realistic software module, complete testing is impractical. Therefore 

testing must be selective. 

Testing is done at different levels of the software: 

1. Unit testing: which refers to the individual testing of separate units of a 

software system. In object-oriented systems, these units typically are classes 

and methods. 

Unit testing may be structural (white box) or functional (black box). 

(a) Structural testing: test case selection that is based on an analysis of the 

internal structure of the component, typically the source code. Different 

approaches to how test cases should be selected lead to different coverage 

criteria, statement coverage, branch coverage etc. 

(b) Functional testing: testing based on an analysis of the specification of a 

piece of software without reference to its internal workings. The goal is 

to test how well the component conforms to the published requirements 

for the component. 

1 
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2. Integration Testing: exposes faults during the process of integration of software 

components or software units and is specifically aimed at exposing faults in 

their interactions. The integration approach could be either bottom-up, top­

down or a mixture of the two. 

3. System testing: testing that attempts to discover defects that are properties 

of the entire system rather than of its individual components. 

4. Regression testing: retesting a previously tested program following modifica­

tion to ensure that faults have not been introduced or uncovered as a result 

of the changes made. 

This research is concerned with the automation of structural unit testing, in partic­

ular, the automatic generation of test data. 

1.1 Approaches to Automatic Test Data Genera­
tion 

Test data generation in white-box testing (source-code based testing) is a process of 

finding program input on which a selected element (e.g. a not yet covered statement) 

is executed. Finding such input test data manually can be very labour intensive and 

expenSIve. 

A number of different automatic software test data generation methods have been 

investigated (McMinn, 2004). These methods may be placed into one of two broad 

categories known as static methods and dynamic methods. Static methods aim to 

analyse the static structure of the program under test in order to compute suitable 

test cases. Static methods exploit control and data-flow information and may use 

symbolic execution (King, 1975), (King, 1976), (Beizer, 1990) but the program under 

test is not executed. 

Dynamic methods aim to exploit information gained by execution of the program 

under test. The most basic dynamic method is random test data generation (Duran 

and Ntafos, 1984). In this method, test data is generated randomly. Each test case 
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void func(int a) { 
if (a == 0) { 

//execution required 
} 

} 

Figure 1.1: Simple predicate example 

3 

is then executed and either retained or discarded according to whether it executes 

any test goals not executed by any other so far retained test case. Unfortunately, the 

likelihood that a test, generated randomly, will execute a difficult to reach branch 

is very low. As an example, consider the problem of generating an input to execute 

the target branch of the program fragment shown in Figure 1.1. 

The probability that a randomly generated input will set the variable a to be equal 

to 0 may be very small. In general, random test data generation performs poorly 

and is generally considered to be ineffective at covering all branches in realistic 

programs (Coward, 1991). 

1.2 Applying Heuristic Search to Test Data Gen­
eration 

Heuristic search techniques such as genetic algorithms, simulated annealing and tabu 

search are high-level frameworks which use heuristics to find solutions to problems 

without the need to perform a full exhaustive enumeration of a search space (Reeves, 

1995). They have been used to find acceptable approximations to the solution of 

many NP complete problems. 

Software testing normally aims to achieve certain measurable objectives. In fact, 

many test generation techniques are based around some notion of the coverage of 

the code. This coverage can be measured and incorporated into an objective or cost 

function. Better test values should be rewarded with lower cost values, whereas 

poorer test values should be penalized with higher cost values. With feedback from 

the cost function, the search looks for better tests based on a heuristic evaluation 
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of existing tests. 

For example, in the program of Figure 1.1 suppose a test case is required to execute 

the true branch. If the branch is not executed, many test cases will cause a == 0 

to be false. The value of abs(a - 0) increases as a becomes far from O. A value of 

4 has a better objective value than that of 10, since the objective function is better 

(4 is more close to 0 than 10). The search is encouraged to search around the value 

of 4, possibly encountering further "better" values, for example the values 1 or 2. 

1.3 Current Problems with Search Methods Ap­
plied to Test Data Generation 

A number of different decisions have to be made in order to adapt a heuristic search 

technique to a specific problem, e.g. the way in which solutions should be repre­

sented so that they can be handled by the search. A good choice of encoding, for 

example, will ensure that similar solutions in unencoded space are also neighbours 

in representational space and the search will be moved easily from one solution to 

another that has similar properties. Most important, however, a search can solve 

a problem only if the cost function is informative. In many test data generation 

problems it is difficult to find an informative cost function. The following section 

gives some examples of such problems. 

1.3.1 String test data 

Current work in test data generation has been largely limited to programs whose 

predicates compare numbers (Baresel et al., 2001), (Harman et al., 2002). Using 

the numerical diffrence between numbers, it is easy to define cost functions for these 

predicates. It is not obvious, however, how to compare non-numeric data types. An 

example is the string data type. 

Consequently, a problem that needs further research is how to automatically gen­

erate software test data for character strings. A simple branch coverage problem 

is illustrated in Figure 1.2. The problem is to find an input string s so that the 
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if (s == "World Cup") { 
//TARGET 

} 

5 

Figure 1.2: Need to measure similarity of string s to World Cup in order to measure 
the cost of failure to execute the required branch. 

required branch is executed. If s is such that the predicate fails, a cost is associated 

with s. This cost is used to guide the search. Given the use of a particular search 

technique such as a genetic algorithm, a key problem is how to compute a useful cost 

for this predicate failure. For example, for two test cases 81 = Wirld Cup and 82 

= World Cap the problem is to find which one, if any, should have the lower cost. 

Until the problem of a cost function for string equality is solved it overly reduces 

software testing approaches for applications in practice since string predicates are 

widely used in programming. 

1.3.2 Loss of Information 

The computation produced by many programs leads to a loss of information. The 

use of flag variables, for example, can lead to information loss. A flag variable is any 

variable that takes on one of a few discrete values . A boolean is a special case of a 

flag variable. Using flag variables in the predicate of conditions in programs produces 

fiat cost function landscapes when computing the branch distance measure. If the 

program has only relatively few input values which make the flag variable adopt a 

desired value, it will be hard to find, without guidance, an input to set the flag to 

the desired value. 

The lack of information at the branch distance function causes plateaux in the 

objective function landscape, one plane corresponding to the undesired value, or all 

input vectors that do not execute the target, and one plane corresponding to the 

desired value, or the required test data. No guidance is provided to the search as 

to how to move from one plane in the objective function landscape to the other. 

This is true in the example of Figure 1.3. The plateaux corresponding to the "false" 

value of the flag can be seen clearly in Figure 1.4. If the search compares any input 
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void Subject(int x) { 

} 

II ASSIGNMENT TO flag HERE 
if (flag) { 

Ilexecution required 
} 

Figure 1.3: Need to measure the flag to execute the required branch. 

o x values 

6 

Figure 1.4: Objective function landscape for the example program with flag variable 
of Figure 1.3 

x with its neighbours, it does not know whether to move towards increased values 

or decreased values, since the objective values returned for these inputs are exactly 

the same. The search therefore becomes random. 

1.4 Research Problem 

The problem tackled by this thesis is the development of heuristics for test data 

search for a class of test data generation problems that currently can not be solved 

because of a lack of an informative cost function. These are the problem of generating 

string test data and the problem of generating test data for programs whose coverage 

criterion cost function is locally constant. 
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1.5 Contributions of this Thesis 

1. Presents new cost functions that can be used to instrument programs where 

the test data is intended to cover program branches which depend on string 

predicates such as string equality and string ordering. 

2. New techniques for instrumenting programs where "flag variable" problem 

exists that depend on data-state scarcity. 

3. Use of program-specific search operators to improve performance of test data 

search in general. 

1.6 Overview of the Structure of this Thesis 

This thesis is organized as follows: 

Chapter 2 surveys the literature in automatic generation test data of structural 

(white-box) testing. Chapter 3 introduces and describes the string problem. Some 

potential string cost functions and corresponding search operators are 

presented, program-specific search operators for string are introduced, then the 

program-specific search operators are generalised to non-string data types. 

Chapter 4 considers the internal variable problem, with particular focus on the flag 

problem. Further work in the literature of relevance to the problem is evaluated. A 

new technique for directing the search when the function that instruments the test 

goal is not able to discriminate candidate test inputs is presented. The new 

technique depends on introducing program data-state scarcity as an additional 

search goal. The search is guided by a new evaluation (cost) function made up of 

two parts, one depending on the conventional instrumentation of the test goal, the 

other depending on the diversity of the data-states produced during execution of 

the program under test. 

Finally Chapter 5 summarises the conclusions and suggests some areas for further 

work. 



Chapter 2 

Automatic Test Data Generation 
for Structural unit Testing 

Automatic test data generation research has concentrated on structural testing prob­

ably because in some ways it is easier to automatically generate test data for struc­

tural testing than functional testing. Structural testing allows visibility into internal 

data structures and control flow. This ability to "see inside" the test object allows 

the test generator to identify near miss test cases and thus guide a search process. 

Automatic functional testing requires access to a machine readable specification 

which is often absent. 

2.1 Methods for Data Generation 

Approaches for finding test data that execute structural elements according to some 

coverage criteria are classed as either static or dynamic (McMinn, 2004). 

The early years of structural test data generation were dominated by static methods, 

which do not actually execute the code to be tested. Instead they attempt to find 

the conditions that bring about the traversal of a given statement or path in the 

program. Test data is then derived from these conditions. Dynamic methods on the 

other hand actually execute the software under test, and employ analytical or search 

techniques in order to find the relevant test data. Early dynamic methods employed 

simple local searches, whereas more current methods use global search techniques 

8 
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such as evolutionary algorithms. 

2.1.1 Static methods 

Symbolic execution is a concept that was first introduced by King (King, 1976). It 

is based on the idea of executing a program without providing values for its input 

variables. The output will then in general be a term depending on these input 

variables, rather than an actual value. This is usually described as a symbolic input 

value and in turns produces a symbolic output value. 

Clarke's work (Clarke, 1976) was one of the earliest in symbolic execution. For 

the execution of a given path, symbolic execution works by statically traversing the 

path in the code, building up representations of internal variables in terms of the 

input variables. Branches within the code introduce constraints on the variables. 

If these constraints are linear in nature they can be solved through the use of linear 

programming techniques to find input data. If not, conjugate gradient methods are 

used; however these require human interaction. For paths where the set of linear 

constraints generated are found to be inconsistent, the path is deemed infeasible. 

Clarke's work has several limitations. It requires the user to completely specify all 

desired test paths. If array indices depend on input data, the system cannot resolve 

the reference; the same problem occurs with pointers. 

The approach of Ramamoorthy (Ramamoorthy and Chen, 1976) which was built on 

Clarke's work suggested possible solutions to the array problem. Ramamoorthy's 

approach delays the symbolic execution of an array when it is dependent on input 

data until the constraint satisfaction stage. Values for variables upon which array 

access depends are determined first. This allows the array access to be completely 

determined. According to this method a new symbolic instance of the array will 

be created which is identical to the previous instance except for the element in 

question. However, this method significantly increases the complexity and memory 

requirements of the symbolic execution system. 

De!\1illo and Offutt (DeMillo and Offutt, 1991) developed a test data generation 
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1- Each variable is assigned a domain that includes all possible values for that 
type. 

2- Do 
{ 
by using information in a constraint, reduce variable's domain, this done as 

follows(X, Y are variables, C is constant and R is a relational operator): 
a - for constraints of the form X R C: reduce Domain of X. 
b - for constraints of the form X R Y : reduce domain of X and Y. 

} until (no further reductions are possible) 

3- Input variable with the smallest domain is chosen, and a random value is 
assigned to it. 

4- Do from step 2 for all remaining variables using the assigned value(s). 
5- If all variables have been assigned a value then success is achieved, otherwise 

restart from step 1. 

Figure 2.1: Domain reduction algorithm 

technique called Constraint-based testing with the goal of killing program mutants 

as part of a mutation testing strategy. A constraint system is derived which incor­

porates reachability and necessity constraints. Reachability constraints represent 

conditions under which a given statement will be executed, and necessity constraints 

describe conditions under which a mutant will be killed. 

Symbolic execution is used to rewrite the constraints in terms of the input variables. 

A search procedure known as domain reduction is used to attempt a solution to these 

constraints. The domain reduction works by using information in the constraint 

system to reduce the domains of the variables as shown in Figure 2.1. 

This method is hampered by similar problems involving loops, viewing the array as 

one variable, i.e. does not differentiate between individual elements in the array, 

etc. Offutt et al. introduced a new technique (Offutt et al., 1997) with the intent 

of solving some of the problems with constraint-based testing known as dynamic 

domain reduction (DDR). 
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The DDR procedure starts with several pieces of information: a flow graph, the 

initial domains for all input variables, and two nodes representing the initial and 

goal nodes. The first step is that a finite set of paths from the initial to the goal 

node is determined. Then each path is analysed in turn. The path is traversed 

and symbolic execution is used to progressively reduce the domains of values for 

the input variables. When choices for how to reduce the domain must be made, a 

search process is used to split the domain of some variable in an attempt to find 

a set of values that allows the constraints to be satisfied. Finally, a test case is 

chosen arbitrarily from within the reduced input domains. The DDR procedure has 

partially solved the problems of the arrays and loops. 

In summary, the major weakness of symbolic execution is the insufficient handling 

of loops, dynamic data structure, arrays and procedures. 

2.1.2 Dynamic methods 

In actually executing the software under test, dynamic methods manage to overcome 

some of the problems associated with static methods. The simplest dynamic test 

data generation is to generate test data randomly. A random test data generator 

randomly generates a set of inputs and then runs the program with these inputs 

with the expectation that it might execute the selected target (statement, branch, 

path). The disadvantage of this method is that it is not very effective in finding test 

data for complex targets. Because of this disadvantage, random test data generation 

is not considered suitable for real application programs. 

The next attempt at test data generation based on actual executions of the 

program was in 1976 (Miller and Spooner, 1976), when Miller and Spooner put 

forward the idea that test data generation could be formulated as a numerical 

optimisation problem. To utilise the method, the user must select a path in the 

program and then produce a straight-line version of that program containing only 

that path. Any conditionals are replaced by constraints. A function is then derived 

which provides a real value estimate of how close the constraints are to being 
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satisfied. This value is negative when any of the constraints are not satisfied and 

positive when all constraints are satisfied. Numerical maximisation techniques can 

then be employed using this function to find inputs to the program that satisfy the 

constraints for the path. 

The idea of Miller and Spooner was extended by Korel in 1990 (Korel, 1990). It 

is based on actual execution of the program under test and function minimisation 

algorithms. Test data are developed using actual values of input variables. The 

program is executed by these input variables and its execution flow is observed. If 

an undesirable execution flow is taken at some branch, then a real value function is 

assigned to this branch. Function minimisation methods are used to automatically 

find the values of input variables which cause this function to become negative and 

the branch predicate to be true. This method has the advantage that it handles 

loops, dynamic data structures and array. 

In 1992 Korel (Korel, 1992) developed what became known as the goal-oriented 

approach. The goal-oriented approach alleviates the path infeasibility problem en­

countered by eliminating the path selection stage. First, the test data generator 

executes the program with an arbitrary input. While the program is being executed 

the program execution flow is also observed. Then the search procedure decides 

whether the execution should continue through the current branch or an alternative 

branch should be taken because the current branch does not lead to the execution 

of the selected statement. If an undesirable execution flow at the current branch is 

observed, then a real-value function is associated with this branch. A function min­

imisation search algorithm is used to find a new input that changes the execution 

flow at this branch. 

It was shown that the problem of finding input data can be reduced to a sequence 

of subgoals where each subgoal is solved using a function minimisation method that 

uses branch predicates to guide the search process. The branch predicate is assumed 

to be of the form E1 op E2, where E1 and E2 are arithmetic expressions and op is 

a relational operator <, ::;, >, ~, =, #. A function of the form F reI 0 can 
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then be derived, as shown in Table 2.1: 

Branch Predicate Branch Function F Relation rel 

E1 > E2 E2-E1 < 

E1 ~ E2 E2- E1 < -

E1 < E2 E1-E2 < 

E1 ~ E2 E1-E2 < -

E1 = E2 abs(E1-E2) -

E1 <> E2 abs(E1-E2) < -

Table 2.1: Deriving a cost function from branch predicates from (Korel, 1990) 

F is a real-valued function, referred to as fitness function, which is positive or zero 

if rel is < when a branch predicate is false or negative or zero if rel is = or :5 when 

a branch predicate is true. The fitness function is evaluated for a program input by 

executing the program and is used to guide the search. The problem is to find a 

value of x that causes F(x) to be negative or zero. 

In 1996 Korel proposed the chaining approach (Korel and Ferguson, 1996). In the 

chaining approach, the mechanics of a path search takes place using the notion of 

an event sequence. This incorporates some of the ideas of the influences graph. An 

event sequence is basically a succession of program nodes. Each program node has a 

set of variables associated with it called a constraint set, which can not be modified 

from one node to the next (i.e. a definition-clear path has to be found for these 

variables from one node in the sequence to the next). Formally, an event sequence 

is a series of tuples ei = (ni' Si) where ni is a node of the program graph and Si 

is the constraint set of variables associated with that node. The chaining approach 

works as shown in Figure 2.2. 

The chaining mechanism is therefore a secondary means of trying to force 

execution of test goals. If inputs cannot be found to change the execution of some 

problem node by means of a local search, the method implicitly tries to change the 
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I. Initial sequence is «s, <1», (g, <1»>, where s is start node, g is 
the goal node. 

2. Assume that at node p, the normal function minimisation 
method cannot bring about the execution of the program to g 
(p becomes the problem node). 

3. If the search fails, find the last definitions of the variables 
used at p. (LD(p) = (d I, d2, .. ,dn) 

4. a number of new event sequences are generated by inserting 
the problem node p and one of the last definition nodes, with 
the constraint set as follows: 
EI = «s, <1», (dI, D(dI», (p,<I», (g,<I»> 
E2 = «s, <1», (d2, D(d2», (p,<I», (g,<I»> 

En = «s, <1», (dn, D(dn», (p,<1», (g,<1»> 
From node di the control flow should progress to node g 
along a definition clear path with respect to D( di). 

Figure 2.2: Chaining approach 
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execution at the node by considering other nodes that can determine its outcome. 

For this reason Korel suggested the use of a global optimisation technique for 

future work, as local search methods tended to get stuck in local optimum. 

Korel uses gradient decent combined with an exploratory phase. The exploratory 

phase helps avoid getting stuck at a local optima. Other search methods are also 

able to avoid local optima. These include simulated annealing and genetic algo­

rithms(GA). This leads to the developments of a collection of work known as Evo­

lutionary Testing. 

2.2 Evolutionary Testing 

Evolutionary algorithms (EAs) are search methods that take their inspiration from 

natural selection and survival of the fittest in the biological world. EAs differ from 

more traditional optimization techniques in that they involve a search from a "pop­

ulation" of solutions, not from a single point. The best-known kind of evolutionary 
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yes 

initialise population with 
random inputs 

select parent(s) 

use mutation and crossover 
to produce offspring 

Figure 2.3: Flowchart of test data generation using a genetic algorithm. 
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algorithms is genetic algorithms. Figure 2.3 shows the basic steps of a genetic al­

gorithm. First the population is initialised, either randomly or with user-defined 

candidates. The genetic algorithm then iterates through an evaluate-select-produce 

cycle until either a solution is found or some other stopping criterion applies. The 

effectiveness of a genetic algorithm depends crucially on the reliability of the guid­

ance provided by the cost function. The cost function is a metric that evaluates 

each candidate in terms of its "closeness" to a solution. 

2.2.1 Early work 

The history of applying genetic algorithms to software testing problems can be 

traced back to 1992. The earliest referenced paper is Xanthakis et al. (Xanthakis 

et al., 1992) where the testing prototype TAGGER is introduced. The system was 

used for generating test data written in Pascal. 
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The first PhD thesis in the area was by Sthamer (Sthamer, 1995) who studied the 

use of GA as a test data generator for structural testing. The example programs 

are small procedures written in ADA, including triangle classification, linear search, 

remainder calculation, and direct sort. Sthamer applies GA to branch, boundary, 

and loop testing, and also for mutation testing. He claimed that "GAs show good 

results in searching the input. domain for the required test sets, however, other 

heuristic methods may be as effective, too". 

2.2.2 Dynamic test data generation 

Pei et a1. (Pei et aI., 1994) concentrated on pathwise test data generation. By using 

test data generation by G A they try to define if the selected subpath is feasible or not. 

The Pei et a1. approach is better than the other systems (e.g. random and TAGGER 

(Xanthakis et a1., 1992)) because it processes the whole path simultaneously. 

Watkins (Watkins, 1995) deals with path coverage optimisation by GA, using the 

popular triangle classification problem as an example. GA reached the same cov­

erage as the random method while sampling a smaller percentage of the complete 

search space. The objective function penalizes individuals that follow already cov­

ered paths, by assigning a value that is the inverse of the number of times the path 

has already been executed during the search. 

Smith and Fogarty (Smith and Fogarty, 1996) studied test coverage optimization 

by a hybrid version of GA and hill-climbing local search. Their application was also 

the triangle classification problem. They claim that their system can generate test 

sets that fully satisfy the given metric and reduce the size of evolved test sets. 

In the technique used by Jones et a1. (Jones et aI., 1996), a path does not need 

to be selected. The objective function is simply formed from the branch distance of 

the required branch, no guidance is provided so that the branch is reached within 

the program structure in the first place. Michael et a1. (Michael et a1., 1997) have 

developed what is called the GADGET (Genetic Algorithm Data Generation Tool) 

system, which is fully automatic and supports all C/C++ constructs. The system is 
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used to obtain condition/decision coverage. They compared results with the random 

method. GAs gained a much higher coverage than the random method. 

Kasik and George (Kasik and George, 1996) have used a GA for emulating software 

inputs in an unexpected, but not totally random way. The GA is used as a repeatable 

technique for generating user events that drive conventional automated test tools, 

so that the system can mimic different forms of novice user behaviour. The system 

tries to represent how a novice user learns to use an application. The fitness value 

is given according to how much the actions performed are guided by the individual 

to resemble novice-like behaviour. The novice behaviour is described by a special 

reward system that is built based on observations. 

Wegener et a1. (Wegener and etl., 1996), (Wegener et a1., 1997), (Wegener and 

Grochtman, 1998), (Wegner et a1., 1999), (Wegner et a1., 2000), (Baresel et al., 

2001) have studied the search of the execution time extremes of real-time software 

with a GA. They have compared their results to the random testing and static analy­

sis. Their object software has mainly been some small examples or DaimlerChrysler 

embedded automotive electronics software. They think that the static analysis and 

evolutionary testing together can effectively find the lower and upper execution time 

limits. They claim that there is not much support for temporal testing and often 

testers just use the methods that are designed to test the logical correctness. In their 

research, GA based testing was found to be much more effective than the random 

testing and particularly effective when a problem has many variables and a large 

input domain. Also they introduced the term "evolutionary testing" . 

Pargas et a1. (Pargas et a1., 1999) have experimented with genetic algorithm based 

test data generation for statement and branch coverage using a control-dependence 

graph to guide optimization. They tested six relatively small test programs and 

compared the results to the random method. Their approach clearly outperformed 

the random method for three of the six test programs, for the other three programs 

both methods found the optimal solution in the initial population. They suggest that 

the use of a GA could be more beneficial for complex programs. A minimizing version 

of the objective function of Pargas et a1., can be computed as (dependent-executed). 
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The main problem with this objective function is the coarseness of the resulting 

fitness landscape and the existence of several fitness plateau. This reduces the 

ability of the fitness function to guide the search to the target. As many test cases 

will have the same fitness values, it will have difficult to compare between these test 

cases. 

The PhD thesis by Tracey (Tracey, 2000) deals with automatic test data 

generation for testing safety-critical systems. He uses simulated annealing and 

genetic algorithms, but also random search and hill climbing as the optimization 

methods. He defines the framework on how to use them for generating test data 

for temporal WCET (Worst Case Execution Time) testing, assertion based testing, 

and structural testing. In this work Tracey identifies the control dependent nodes 

for the target structure. If an individual takes a critical branch from one of these 

nodes, a distance calculation is performed using the branch predicate of the 

required, alternative branch. This is computed using the functions of Table 2.2. 

Tracey then uses the number of successfully executed control dependent nodes to 

scale branch distance values. The published formula used by Tracey for computing 

the fitness function is : 

executed * branchdist 
dependent ' 

where branchdist is the branch distance calculation performed at the branching node 

where a critical branch was taken. This fitness function can lead to unnecessary local 

optima in the objective function landscape. d~C:d:t increases but should decrease 

and even depen~e~t although it decreases it can be dominated by branch distance. execu e 

In the example of Figure 2.4, the control dependent nodes for the target structure 

are identified. A distance is calculated using the branch predicate of the alternative 

branch if an individual takes a critical branch from one of these nodes. In this 

example, the first and second "if' statements are the critical nodes. A valley exists 

where ~ * Ixl ~ Iyl and x =j:. O. Figure 2.5 shows the landscape of the example in 

Figure 2.4. 
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void landscape(int x, int y) { 

if(x == O){ 

if (y == 0) { 

Ilrequired executed 

} 

} 

} 

Figure 2.4: Example to show Tracey's objective function . 
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Figure 2.5: Objective function landscape of Tracey (Tracey, 2000) for example of 

Figure 2.4. 
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Relational Predicate Objective Function obj 

Boolean if TRUE then 0 else K 

a=b if abs(a - b) = 0 then 0 else abs(a - b) + K 

a#b if abs(a - b) # 0 then 0 else K 

a<b if a - b < 0 then 0 else (a - b) + K 

a ::;b if a - b ::; 0 then 0 else (a - b) + K 

a>b if b - a < 0 then 0 else (b - a) + K 

a2:b if b - a ~ 0 then 0 else (b - a) + K 

rva Negation is moved inwards and propagated over a 

Table 2.2: Tracey's objective functions for relational predicates. The value K, K > 

0, refers to a constant which is always added if the term is not true 

The objective function of Barsel et a1. (Baresel et a1., 2001) normalizes branch 

distance values (branchdist) into the range 0-1 using the following function: 

normalizebd(branchdist) = 1 - U)(116r~nchd •• t 

This is combined with another value called the approximation level (approach level), 

calculated as follows: 

approachlevel = dependent - executed - 1 

The minimising objective function is zero if the target structure IS executed, 

otherwise, the objective value is computed as: 

approachlevel + normalizebd( branchdist) 

All the previous cost methods ignore improvement in the cost of disjunction (min) of 

the more costly operand. Consider, for example, the program fragment in Figure 2.6. 

To execute the goal the values x and y should be equal to O. Suppose there are 

test cases as shown in Table 2.3. The cost of the predicate is a fiat surface; even 
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if(x == 0 I I y == O){ 

Ilexecuted target 

} 

Figure 2.6: Example program using min as cost for disjunction 

the second test case is more "close" to solution than the others. Clearly, when 

the operands have different truth values, the cost of the disjunction should be the 

cost of the true operand. This leaves the cases where the operands have the same 

truth value. In this case, a popular choice for the cost of a disjunction is the cost 

of the operand with the lowest cost i.e. the cost function is the min function. 

The common corresponding cost function for the conjunction is the max function. 

The issue of cost functions to use for logical operators or and and is addressed by 

Bottaci (Bottaci, 2003). The cost function of or and and are shown in Table 2.4, 

where a and b are positive (false) and a', and b' are negative (true), a, b are never 

zero. 

1 10 1 

1 1 1 

1 99 1 

1 999 1 

1 50 1 

Table 2.3: Test cases for example in Figure 2.6. Note differences in the larger value 

are ignored. 

These costs can be illustrated with an example showing three failed and two suc­

cessful attempts to execute the predicate a :::; b for various integer values of a and 

b as shown in Table 2.5. The predicate cost function a - b when the predicate is 



Automatic test data generation for structural(White Box) testing 22 

a b aVb a/\b 

a b ab a+b a+b 

a b' b' a 
I 

b 
I 

b a a 

I 

b' a' + b' 
I I 

a b a 
a'+b' 

Table 2.4: Logical or and logical and cost table (from (Bottaci, 2003)) 

false and a - b - 1 when the predicate is true. 

I a I b II cost I or - cost I and - cost I 
8 3 5 5 5 

6 3 3 15 8 '8 

5 3 2 30 10 31 

3 3 -1 -1 10 

1 3 -3 -4 10 

Table 2.5: Cumulative or-cost and and-cost for the predicate a :::; b for the values 

listed 

Bottaci (Bottaci, 2005) also suggests a new method of finding a cost for branch in 

the loop as follows: Each reached branch maintains two cost values, both derived 

from the associated predicate cost function. One cost value is the cost that all 

attempts to execute the branch are successful. This is called the cumulative 

and - cost. The other cost value is the cost that any attempt is successful, called 

the cumulative or - cost. For example, in the following piece of code: 

public f (int x){ 

for (int i =0; i< 3;i++){ 
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if ex == O){//costl , cost2, cost3 for each iteration 0,1,2 respectively 

//Target executed 

} 

} 

The accumulative cost according to Bottaci is (costl V cost2 V cost3) or 

(costl 1\ cost2 1\ cost3), and this can be found depending on the previous equation 

of disjunction or conjunction. 

The value and - cost is positive and the value ar - cost is negative when both 

branches at a conditional node have been executed. The cost values produced by 

relational predicates are normalised to lie with in [-1, 1] using the following formula 

(let c be the branch distance value): 

{

II if c > 0 - He 
_1 __ 1 if c < 0 
1-e 
o otherwise 

Bottaci incorporates the two notions of branch distance and approximation level 

into a single predicate expression based on the control dependency condition for 

a branch. This condition is expressed as a conjunction of the predicates and the 

evaluation function for AND is used. For each statement in the program under test 

there is a reachabili ty condition such as: (P 1\ rv Q 1\ ... ) V (R 1\ rv S 1\ ... ), where 

(P 1\ rv Q 1\ ... ) is a single control dependency path to target and (R 1\ rv S 1\ ... ) 

is an alternative control dependency path to the target. Any non-reached branch 

predicates for which a cost value is not available are given a maximum predicate 

expression cost value that depends on the number of relational predicates in the 

branch predicate. This maximum value is equal to the largest cost value that may 

be generated at any branch predicate in the program after normalisation. This can 

be calculated at compile time by counting the number of conjuncts in a conjunctive 

predicate expression where each conjunct is a relational predicate which has a max 

cost of 2.0 after normalisation. In the following example there are three relational 

predicate expressions and so the max is equal 2.0 + 2.0 + 2.0 = 6.0 which is the 

cost given to this branch if it is not reached. 
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if (a == b && x == Y && t == w){ 

lido something 

} 
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The cost of all the boolean expressions in the empirical work reported in this thesis 

were calculated according to the above scheme. 



Chapter 3 

Search-based Software Test Data 

Generation for String Data using 

Program-Specific Search 

Operators 

3.1 Introduction 

Current test data generation work (Baresel et al., 2001), (Harman et al., 

2002), (McMinn et al., 2005), (Korel, 1990) has been limited largely to programs in 

which predicates compare numbers, as illustrated in the example below. 

if (y == 30) { 

//TARGET 

} 

These can be dealt with using cost functions discussed in the previous chapter. 

25 ... ., 
~ 
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Unlike numeric equality predicates, string equality does not suggest a single straight­

forward cost function. In research that has considered string predicates, one ap­

proach has compared strings by comparing their underlying character bit string 

representations using the bit Hamming distance as a cost function (Jones et al., 

1996). Another approach (Zhao, 2003) reduces the problem of string search to a 

sequence of character searches. In this approach, only a character matching cost 

function is used and characters are matched as numbers. There are a number of 

string matching algorithms, used in information retrieval and biological applications, 

which may be useful for defining cost functions but as yet none of these have been 

applied to the problem of searching for string test data. 

This chapter consists of two main parts. In the first part, some potential string cost 

functions and corresponding search operators are considered, including two new cost 

functions. These cost functions are assessed by comparing their performance on a 

number of sample test programs. In the second part of this chapter, a new type of 

search operator is introduced with the aim of biasing the search towards strings that 

occur as literals in the program under test. The performance of the cost functions 

when used with the new operators are assessed by again generating test data for 

the sample programs. The results show that the new search operators provide a 

substantial improvement in efficiency. The main contribution of this chapter is that 

it provides a new method for searching for string test data and demonstrates that 

it is potentially quite efficient. 

3.2 Cost Functions and Search Operators for 

String Predicates 

This section considers the extent and nature of the string search space that is relevant 

to programs in practice. It then considers some existing cost functions and some 

new cost functions for the string predicates of equality and ordering. 
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3.2.1 String search space 

Modern software uses 16-bit character strings. The space of strings formed from the 

16-bit character set is huge, so much so that a search process may be prohibitively 

slow to be of practical benefit. A preliminary investigation was thus done to try 

to establish the size and structure of the space of strings that are used in practice. 

A large body of software, the .NET Framework Shared Source Common Language 

Infrastructure (SSCLI) (Stutz et aI., 2003), was scanned to extract string literals. 

The strings were in turn scanned in order to produce a frequency distribution for the 

occurrence of each character in a SSCLI string literal. In over 13 million characters, 

only 850 were outside the 8-bit range. Over 99% of the characters were within the 

range of the 95 "printable" characters from the space character to the tilde. In 

practice, this means that the vast majority of the 16-bit character set need never 

be explored when searching for test data for typical programs. The examination 

of the SSCLI source code also showed that about 6% of the predicate expressions 

are string predicate expressions and about 91% of the string predicates are string 

equality. 

In order to exploit the marked non-uniformity of the distribution of characters typi­

cally used in string processing programs, in the work reported here, characters were 

restricted to have an ordinal value between 0 and 127, i.e. within the lower 7-bits. 

Characters outside this range were excluded entirely because the vast majority of 

programs do not require them. Since non-printing characters occur in the strings of 

only a very small proportion of programs, it is probably better to deal with these as 

a special case. This might be done by the tester, with a knowledge of the program 

under test, setting the parameters of the search space to a specific set of characters. 

It was also observed that many of the string literals consisted of English or English­

like text such as might be used for identifiers, the names given to products, organi­

sations, etc. This means that not all strings in the space of 7-bit character strings 

are equally likely to be required as test data. It is clearly advantageous to bias the 

search for strings according to the distribution of strings that occurs in practical 

programs. 



Search-based Software Test Data Generation for String Data 28 

Given a relative frequency table for the occurrence of character pairs in English text, 

a random English-like string may be constructed as follows. Initially, the first char­

acter is selected randomly from the English alphabet. The selection of subsequent 

characters, however, is biased so that consecutive pairs of characters in the string 

occur with the same relative frequency as they occur in English language texts, so 

as example if the first character is 'A' then the second character will not be 'E' 

because the probability of 'A' followed by 'E' is zero (Table 3.1). This approach 

can be applied to natural languages other than English of course, providing the 

language can be identified. Again, this is probably most easily done by the tester. 

Some strings cannot be generated by this method, e.g. the string "ae", and so an 

additional string generator generates strings with characters selected independently 

and with a uniform random distribution. 

The search space also depends on the minimum and maximum length of input string 

that is generated. It is clearly inefficient to set a maximum length that is greater 

than is required for a particular program. It is thus expected that the tester, with 

knowledge of the program under test, will specify both the minimum and maximum 

length of input string. 

A random string from the set of "practical" strings may therefore be constructed by 

selecting a random string length and then selecting, with some specified probability, 

from strings generated from characters selected from a uniform distribution over the 

7-bit character space or from English-like strings. 

Search operators and the role of the cost function 

The cost fUllction estimates the number of search operations that must be performed 

to transform the candidate into a solution. Clearly, the number of search operations 

required to transform a given candidate into a solution depends on the nature of the 

transformation performed by each operator. This important dependence between 

the cost function and the search operators can be illustrated by considering a simple 

search problem over the set of eight 3-bit strings from 000 to 111. Assume that 
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A B C D E F G H I J K L M N 0 p Q R S T U V W x y Z 

A 1 9 15 24 a 5 9 2 18 a 6 26 12 84 a 9 a 544 48 4 9 6 a 12 1 
B 5 1 a 0 22 a a 0 3 0 a 8 a a 9 a a 5 1 1 10 a a a 5 a 
c 15 a 2 a 18 a a 18 4 a 8 4 a a 21 a a 5 a 7 3 a a a 1 a 
D 22 9 4 6 26 5 3 12 23 1 1 5 7 8 19 3 a 7 16 26 5 1 9 a 4 a 
E 51 11 21 58 22 14 7 15 19 1 2 25 22 51 15 13 1 78 53 39 3 11 23 4 12 0 
F 12 1 1 1 9 5 a 4 11 a a 4 2 1 18 1 a 8 2 17 4 a 2 a 1 a 
G 11 2 1 1 13 1 2 16 8 0 a 3 1 2 11 1 a 6 4 7 3 a 2 0 1 0 
H 53 1 1 1 140 1 a 3 45 o a 1 1 1 23 1 a 3 2 15 4 0 2 0 2 a 
I 4 2 15 15 10 8 12 3 o a 4 17 17 83 11 3 a 13 40 43 0 7 3 1 a 1 
J 1 a a a 1 a a a 1 0 a a a a 1 a a a a a 4 a a 0 a 0 
K 3 1 0 0 14 1 0 1 7 0 a 1 a 4 2 o a a 2 2 0 0 1 0 1 a 
L 19 2 117 30 5 1 2 22 a 2 26 2 1 19 1 a 1 5 7 4 1 2 0 14 a 
M 21 3 0 0 31 1 a 2 11 o a 1 2 1 14 5 0 1 5 4 4 0 2 a 8 a 
N 19 3 12 68 31 4 43 8 15 1 4 4 3 4 28 2 a 1 15 49 3 1 6 0 5 a 
0 7 6 6 8 2 37 3 5 6 a 6 12 22 49 17 7 a 39 13 26 53 6 22 a 2 a 
p 11 a 0 a 14 a a 2 5 a a 7 0 a 10 5 a 8 2 5 3 0 1 a 1 a 
Q a a 0 a a 0 a 0 o a a a a a 0 o a a a 0 4 0 a 0 a a 
R 23 3 5 9 61 4 5 6 23 o 4 5 6 8 25 3 a 6 17 19 5 2 5 a 10 0 
S 31 5 8 3 34 5 2 23 23 1 3 6 6 4 26 9 1 2 20 50 9 1 11 0 2 0 
T 27 5 5 3 35 4 1 153 35 1 1 8 5 3 53 2 0 13 16 26 8 o 14 a 7 0 
u 3 2 6 3 3 1 6 1 4 0 1 16 4 17 0 8 a 20 16 22 a 0 1 a a 0 
v 2 0 0 a 30 0 0 0 5 a 0 0 0 a 2 o 0 a 0 0 0 0 o a a a 
w 31 0 0 1 18 0 0 20 18 o 0 1 1 5 13 o 0 1 2 2 a 0 1 0 1 a 
x 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 o 0 o 0 
y 8 3 3 3 6 3 1 4 5 0 0 2 3 2 17 2 0 1 9 9 1 1 5 0 1 a 
z 0 0 0 0 1 a a a o 0 a 0 0 0 a o 0 0 0 0 0 0 o 0 o 0 

Table 3.1: Relative frequency of character pairs in English text from (Leon, 2002) 
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011 goal 

100 start 

Figure 3.1: The search space defined by the 8 3-bit strings and a single bit inversion 

search operator. 

these strings constitute a set of inputs that is to be searched for the single input, 

011, which executes the target branch as shown below. 

pes) { 

t = F(s); 

if (t == 011) { 

//TARGET 

For simplicity of explanation, a simple hill-climbing search process will be used. In 

each iteration, each candidate string s is submitted to the program P and the string 

t is compared to the required or goal string by computing a Hamming distance. If 

the candidate is not a solution new candidates are generated from it, in this example 

by a search operator that inverts each bit to produce new candidate strings. The 

string (or one of the strings) with the lowest cost is used as the start for the next 

iteration. In this example, assume, initially at least, that F is the identify function 

and that the initial candidate is 100 from which the bit-inversion search operator 

generates the strings, 000. 110 and 101. The original string is discarded since the 

lowest Hamming cost is now 2. One of the new strings is selected and the iteration 

repeats. It is clear that this search converges rapidly to the goal string of 011. 

The space induced by the bit inversion operator on the set of eight strings is shown 

in Figure 3.1. Since each edge represents an application of the search operator, the 
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Figure 3.2: The search space defined by the set of eight 3-bit strings and a right 

bit-insert operator. 

Hamming distance between any two strings is precisely the number of applications 

of the search operator required to "search" for one string from the other. As a 

consequence of this, the Hamming distance is a reliable cost function for this space. 

The reliability of the Hamming distance is, however, dependent on the use of the 

bit inversion search operator. This can be illustrated by considering an alternative 

search operator that right shifts a random bit into a given string and discards the 

rightmost bit. The space produced by this operator is shown in Figure 3.2. Consider 

again the problem of finding the solution string 011 by applying this new search 

operator to the initial candidate 100. From Figure 3.2, it can be seen that this can 

be achieved by two applications of the search operator. Notice, however, that in 

this case, the Hamming distance (shown against each string) does not correspond 

to the number of applications of the search operator required to reach the solution. 

Moreover, if this Hamming distance were to be used to guide the search, the search 

would follow a path from 100 to 010 to 001 where it would remain stuck at a 

local minimum. For the right bit-insertion operator, the Hamming distance is not 

a reliable cost function. An appropriate cost function would count the number of 

right bit-insertion operations (equivalently, the edges between any two strings in the 

space shown in Figure 3.2) between a given string and a solution string. 

The above example illustrates a general principle concerning the duality between 

search operators and cost functions. A realistic search problem, however, is com-
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plicated by factors omitted from the example. The search operators are applied 

to values in the input domain but the cost function is applied to values that are 

arguments to the target branch predicate expression. The example avoids this issue 

because F is assumed to be the identity mapping; in general, it is not. In the general 

case, the cost function may lose some of its reliability but often it is still sufficiently 

reliable to guide the search to a solution. 

Mutation operators 

There are three basic kinds of string mutation operator: deletion, insertion and 

substitution. A single deletion operator was defined to delete a random character 

from a given string. Two insertion operators were defined. The uniform insertion 

operator inserts a character, selected randomly from the range 0 to 127, into a given 

string at an insertion position selected randomly. Over time, random insertions 

within an English-like string will reduce its English-like property. To counter this, 

an English-like insertion operator was defined. This operator inserts a letter from 

the English alphabet selected probabilistically according to letters that precede and 

follow the insertion point. If the insertion point is not preceded or followed by a 

letter from the alphabet, a random letter is inserted according to the frequency of 

single English letters. 

Two character substitution operators were defined. To accompany the binary Ham­

ming cost function (see below), a binary character substitution operator was defined. 

This operator inverts a random bit within the 7 low order bits of a character. To 

accompany the cost functions that compare the ordinal values of characters, a char­

acter substitution operator was defined to replace a character with another of a 

similar ordinal value. The new character is selected from a Gaussian distribution 

with mean at the given character. If the mean is selected then the new character is 

chosen randomly from the characters adjacent to the mean. The standard deviation 

of the distribution was set, rather arbitrarily, at 16. 
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3.2.2 String equality cost functions 

Of the many string matching metrics in the literature (Navarro, 2001), some use a 

vector space approach in which each string is equated with a point, in a Euclidean 

space, say and the Euclidean distance between the two points is used to derive 

a match cost. Another category of string matching metrics produces a distance 

value in terms of the number of primitive operations, typically, insertion, deletion 

and substitution of single characters, required to transform one string into another. 

Functions differ in terms of the particular costs attached to the particular opera­

tions. In some applications, for example, it is more important to match digits than 

letters or leftmost character matches may be more important than matches in other 

positions. In a spelling correction application, for example, the cost of substituting 

one character for another may depend on the proximity of the two characters on 

the user's input keyboard or on-line dictionary. The approach of considering the 

number of operations required to transform one string into another seems to be the 

most promising for defining a cost function that estimates the number of search 

operations required to transform a string to a solution. It is only this second type 

of metric that is considered in this thesis. 

Binary Hamming distance 

Traditionally, many genetic algorithms have used a binary string representation for 

candidates. The mutation operator has been bit inversion and binary Hamming 

distance (H D) has been the cost function. This representation could be used for 

character strings by simply working with the underlying bit representation of each 

character. Once each string is converted to a bit string by concatenating the bit 

patterns of each character, the Hamming distance of two equal length strings may 

be easily computed. 

Since character strings vary in length, a Hamming distance must be defined for 

unequal length strings. The comparison of unequal length strings requires 

consideration of the cost of inserting or deleting characters. Strictly, a binary 
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representation should allow only single bits to be inserted and deleted, which is 

clearly inappropriate, but a character insertion can be considered to be 7 

consecutive bit insertion operations. On the assumption that each bit operation 

should have an equal cost, the cost of inserting additional bits or removing excess 

bits was thus taken to be equal to the cost of mismatched bits. The Hamming 

distance function was therefore extended so that any bits in one string that extend 

beyond the length of the shorter string are counted as mismatched. More formally, 

the distance between two strings A and B is 

minlen i<7 

HD(A, B) = ( L L(AiIBi)) + 7(maxlen - minlen). 
j=O i=O 

where minlen, maxlen are the minimum length and maximum length of string A 

and B, Ai and Bi are bits number i and 1 is X 0 R operator. For example if: 

A = "SET" 

B = "CASE" 

HD(A, B) =(1010011 11000011)+(100010111000001) + (1010100 11010011)+ 7*1 

H D(A, B) = 1 + 1 + 3 + 7 = 12 

Strings are left-aligned, which may lead to unrepresentative costs because of a failure 

to take account of deletion and insertion. An example is H D(XHELLO, HELLO) where 

only one L matches and the cost is therefore relatively high. 

A problem with standard binary encoding is the disparity that can occur between 

solutions that are close to each other in unencoded solution space, but are far apart 

in the encoded binary representation. For example in a standard binary encoding 

the integer 63 is represented as 0111111, yet 64 is represented as 1000000. Therefore, 

the crossover and mutation operators must change all 7 bits to move from one integer 

value to the neighbouring other. 

Another limitation in this method is the maximum number of fitness values it can 

produce, which is ::; (7 * maxlen), where maxi en is the maximum length of the two 

strings compared. The example program fragment in Figure 3.3 requires s = "MN" 

to be executed. If the length of input string s is restricted and equal to 2 and the 
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if (8 == "MN" ) { 

//TARGET 

} 

Figure 3.3: Simple branch requiring MN to be executed 
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Figure 3.4: Object function landscape for HD in 26 characters domain for example 

in Figure 3.3. Cost of matching a string of 2 characters with "MN" 

domain size is 128, then there are 128 * 128 different combinations of two characters 

( ... , "AA" , ... , "zz" , .. . ) . The number of fitness values, however, is 7 * 2 = 14. So there 

are (128 * 128)/ 14 ~ 1152 different input strings that have the same fitness value 

(e.g. "MO" and "MM"). 

Suppose that the domain is restricted to 26 letters (,A', .. . , 'Z') . For this domain the 

possible number of string combinations is 26 * 26 = 676. Table 3.2 shows the cost 

values and the frequency of this cost value. As shown in this table the frequency 

varies from 1 to 154 and the average is 676/14 = 48. Figure 3.4 shows the H D cost 

landscape of program in Figure 3.3. 
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I Cost value I count I 
0 1 

1 8 

2 32 

3 78 

4 130 

5 154 

6 137 

7 86 

8 39 

9 10 

10 1 

Table 3.2: The cost values and frequency in 26 characters domain (,A', ... ,'Z'), num­

ber of fitness values = 11 i.e this restricts the search method. 
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Character distance 

Rather than using a binary space in which to map characters and strings, characters 

may be mapped into an ordinal space according to each character's ordinal value. 

In this space, a substitution operator would be sensitive to the ordinal value of the 

character it substitutes. This suggests a new cost function based on the pairwise 

comparison of character values. This new cost function, called character distance 

(C D) is defined as the sum of the absolute differences between the ordinal character 

values of corresponding character pairs. For strings of unequal length, any character 

without a corresponding character increases the cost by 128, the size of the character 

search space. More precisely, let string s = S081 •.. Sk-l be of length k where Si is 

the ordinal value of the ith character. Similarly, let string t = tOtl ... tl- l be a string 

of length k ~ I then 

i=k-l 

CD(s, t) = L lSi - til + 128(1 - k). 
i=O 

Strings are left aligned and absent characters are treated as null characters. For 

example if: 

s = "SET" 

t = "CASE" 

CD(s, t) = lascii('S')-ascii('C') I 
+ lascii('E')-ascii('A')1 

+ lascii('T')-ascii('S')1 

+ 128(4 - 3) 

CD(s, t) = 183 - 671 + 169 - 651 + 184 - 831 + 128 = 149 

Figure 3.5 shows the CD cost landscape of the program in Figure 3.3. 

CD, like H D, is sensitive to the alignment of different length strings. 

Edit distance 

Of the many existing string comparison metrics used in information retrieval and 

biological matching, the vast majority are derived from the edit distance. The edit 
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Figure 3.5: Object function landscape for CD in 26 characters domain for example 

in Figure 3.3. Cost of matching a string of 2 characters with "MN" 

distance (ED) (or Levenshtein distance (Navarro, 2001)) is derived explicitly from 

consideration of three operators that perform character insertion, character deletion 

and character substitution. The edit distance between two strings is the minimum 

number of deletions, insertions, or substitutions required to transform one string 

into another. For example ED (TEST, TOT) = 2, because 1 deletion (or 1 insertion) 

and 1 substitution is sufficient to match the two strings. The edit distance function 

is defined by the recurrence relation below where s : a, t : b are character strings, 

each consisting of a possibly empty string s, t , followed by the character a, b. 

ED(s : a, t : b) = min(ED(s : a, t) + 1, ED(s, t : b) + 1, ED(s, t) + ED (a, b)) 

The edit distance of two characters is one unless they are equal, in which case it is 

zero. The edit distance of an empty string and a given string is the length of the 

given string. 

In considering the suitability of the edit distance as a cost function, the size of the 

range is important. The range of edit distance values is equal to the maximum 

length of the two strings compared. Consider for example, that there are over 1010 

strings in the space of strings of length 5 and yet only 6 edit distance values. This 
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Figure 3.6: Object function landscape for ED in 26 characters domain for example 

in Figure 3.3. Cost of matching a string of 2 characters with "MN" 

means that the "surface" of the cost function produced by evaluating each point of 

the search space with respect to a given goal will be largely fiat. 

Figure 3.6 shows the ED cost landscape of the program in Figure 3.3, the objective 

function contain 3 values (0, 1 and 2 ) and gives no guidance as to change from 'A' 

to 'M'. 

Ordinarily, such an indiscriminate cost function would provide little guidance to 

the search but the cost function is nonetheless reliable given the search operators it 

assumes. A cost of one for the substitution of a character by any other character 

assumes a search operator which generates, in a single step of the search, all strings 

that may be formed by a single character substitution. In a practical search, the 

number of successors that such an operator would produce is too large to allow the 

easy identification of the best successor. 

A more practical substitution operator would produce a single string by substituting 

a given character with a single character. If the new character value is defined 

to be adjacent to that of the character it replaces, then the difference in ordinal 

values estimates the number of substitution operations required to substitute one 
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character for another. The ordinal distance is also a reasonable estimate when 

the new character value lies close to the original, as is the case with the Gaussian 

character substitution operator. 

To accommodate this kind of search operator, the edit distance function can be 

modified to take account of the difference in character values whenever a character 

is substituted. The edit distance of two characters can be taken to be equal to the 

absolute difference in their ordinal values. The ordinal edit distance (OED) could 

thus be defined as 

OED(s : a, t : b) = min(OED(s : a, t) + k, OED(s, t : b) + k, OED(s, t) + la - bl) 

where k is the insertion or deletion cost and a, b in la - bl are interpreted as ordinal 

values. 

To choose a value for k, note that the argument for the practicality of using a char­

acter substitution operator that, given a source string, produces a single modified 

string, applies also to the insertion operation. A practical insertion operator would 

therefore produce a single string by insertion of a single characterinto the source. 

The number of insertion operations now required to insert a given character is a 

function of the character set size. For this reason, the cost of insertion, k, was cho­

sen to be 128. Given that any match that can be achieved by an insertion into one 

string can also be achieved by a deletion in the other, the cost of deletion was also 

chosen to be 128. 

Using 128 as the cost of insertion and deletion, however, gIves OED(XHELLO, 

HELLO) = 128 and yet OED(GDKKN, HELLO) = 5 which is too low since the search 

effort required to match GDKKN, HELLO, five substitutions, should be higher than 

the effort to match XHELLO, HELLO, a single deletion. The problem is that 

substitution costs become unreasonably low as corresponding character values 

approach each other. The low, non-zero substitution costs were therefore offset 

away from zero while retaining the maximum cost at 128 (the maximum cost is 

127 but for consistency 128 is used). This was done by setting the substitution 

cost to be 128/4 + 31a - bl/4 when la - bl > 0 and zero otherwise. This gives 
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C -- (67) A --(65) S -- (83) E -- (69) 

0 ........ 128 256 ...... 384 512 

S -- (83) 128 ........ 
.. 44 ~ ~ 172 " 256 

110 384 
~ ~ 

E --(69) 256 .. 161.5 I " 79 
.. 207 ~ 256 

~ 

T --(84) 284 289.5 , 207 , '111.75 .... 239.75 -

Table 3.3: OED example calculation 

OED(GDKKN, HELLO) = 163.75 which is higher than 128. OED was thus defined as 

OED(s : a, t : b) = 

min(OED(s : a, t) + 128, OED(s, t : b) + 128, OED(s, t) + 128/4 + 31a - bl/4). 

~ : ~ is an arbitrary value which was found to be effective, ~ : ~ was also tried and 

was effective. The precise value is not important providing it is in the range ~ : ~ 

to 1 . 2 
3 . 3' 

For example if: 

s = "SET" 

t = "CASE" 

OED(s, t) = 239.75, the solution is shown in Table 3.3. 

Figure 3.7 shows the OED cost landscape of the program in Figure 3.3. 

A significant difference between H D and CD compared to OED is that the cost 

of OED does not depend on a left-most alignment of strings. For example, in 

OED(XHELLO, HELLO) five characters match. 

String ordinal distance 

Zhao et al. (Zhao, 2003) propose a string comparison cost function. In this func­

tion, each character string is represented by a nonnegative integer. This integer is 

constructed by regarding each character of the string as a "digit" in a base equal 

to the character set size. If 128 is the size of the character set then the numerical 

value of the string S = SOSI ••• Sk-l is ~(s) = 128k- l sO + 128k- 2S 1 + ... + 1282sk_3 + 
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Figure 3.7: Object function landscape for OED in 26 characters domain for example 

in Figure 3.3. Cost of matching a string of 2 characters with "MN" 

128sk- 2 + Sk- l' The string ordinal distance cost function (0 D) is thus defined for 

two strings s, t as OD(s , t) = I~(s) - ~(t)l. 

For example if: 

s = "SET" 

t = "CASE" 

~(s) = 84 *1280 + 69 * 1281 + 83 * 1282 

~(s) =1368788 

~ ( t) = 69 * 1280 + 83 * 1281 + 65 * 1282 + 67 * 1283 

~(t) = 141584837 

OD(s, t) = I~(s) - ~(t)1 = 140216049 

Figure 3.8 shows the OD cost landscape of the program in Figure 3.3. In this Figure 

the valley in the fitness landscape along the line 1st char = 'M' appears to be hori­

zontal but is in fact descending towards (1st char = 'M', 2nd char = 'N' ) because the 

gradient is only 13. This caused by the dominance of the cost function by the value 

of the 1st char and illustrating the problem with the cost function. In Figure 3.9, 

the gradient is visible because the cost varies only with the second character. 

In practice, ~ (s) may be very large for long strings. 0 D may be too large to be 
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Figure 3.8: Object function landscape for OD in 26 characters domain for example 

in Figure 3.3. Cost of matching a string of 2 characters with "MN" . 
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Figure 3.9: Object function landscape for OD in 26 characters domain for example 

in Figure 3.3. The first character is 'M', the cost varies only with the 2nd character. 
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represented using programming language provided integer data types even when 

two strings differ in only a single character, if it is the leftmost character. Zhao 

et a1. (Zhao, 2003) avoid integer overfiow because the algorithm that searches for a 

matching string searches for only a single character at a time. This means that in 

practice all string comparisons are in fact character comparisons. Used in this way, 

the ordinal distance cost function becomes equal to the conventional cost functions 

used for numeric predicates. 

To search for a string match, one character at a time, however, is not usually efficient. 

Circumstances arise in which good candidate solutions are neglected because of the 

particular order in which character matches are pursued. Consider, as an example, 

the search for a string to match HELLO. Consider further that GABCD and XELLO are 

two candidates in this search but the first character only is being used to give a cost 

for the match. Because H is closer to G than to X, the string XELLO is discarded in 

favour of GABCD. This particular example is clearly a mistake. The general problem 

is that a character by character search imposes the additional search problem of 

finding an order in which character positions are to be matched. The example 

program fragment below requires that the second character of the string be matched 

before the first. 

if (s[O] == 'H' && s[l] != 'E') { 

s[O]='X'; 

} if (8 == "HELLO") { 

//TARGET 

} 

If the ordinal distance cost function were to be used to compare strings rather than 

characters it would penalise mismatches in the leftmost characters far more than 

mismatches in the rightmost characters. Given that each character is equally likely 

to be modified by a search operator, this difference in cost values renders the cost 

function unreliable in many situations. The ordinal distance cost function is also very 

sensitive to the lengths of the strings compared. For example, the distance between 
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HELLO and XHELLO is an order of magnitude higher than the distance between HELLO 

and GABCD. For these reasons, the string ordinal distance was considered unsuitable 

as a cost function for string equality. 

3.2.3 String ordering 

String test data may be required to satisfy string ordering predicates such as s < t. 

String ordering may be determined from the ordinal value of each character in the 

character set or it may be determined using language or culture-specific rules. It 

is only the ordering induced by the character ordering that is considered here. But 

this does not limit the work reported because the work relies only on the existence 

of an ordering. 

Ordinal value ordering 

For a given maximum string length, and when all strings are right null padded if 

required to achieve the maximum length, a set of strings may be totally ordered 

according to the ordinal value of the string. When two strings are out of order, the 

difference in ordinal values may be used as the cost OV, thus 

OV(s, t, <) = ~(s) - ~(t) + 1, s ~ t 

OV(s, t, <) = -OV(t, s, ::;), s < t 

OV(s, t, ::;) = ~(s) - ~(t), s > t 

OV(s, t, ::;) = -OV(t, s, <), s ::; t 

This cost function has disadvantages, however. The problem of the very large values 

it produces has already been mentioned. In addition, it is not clear that the cost 

values produced are a reasonable estimate of the cost of satisfying a string ordering 

predicate. 

Table 3.4 shows how the cost function is computed for s < "T" where s is a string 

variable. Before the comparison right fill short strings with 0 to make the strings's 

length equal. Different values with different length are assigned to s to illustrate 

the cost. 
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(s<'T") 

s target value Result 
·Z· 'T' 90 -84 + 1 7 

'U· 'TO' (90 + 90 *128) - (84*128+ 0) + 1 859 

'XX" 'TO· (88 + 88 * 128) - (84 *128) + 1 601 

'WZ' 'TO' (90 +87 * 128)- (84*128) + 1 475 

'WAA' 'TOO' (65 + 65 '128+ 87 '128' 128) -(84 '128 '128) + 1 57538 

'TB' 'TO' (66 + 84 * 128) - (84 * 128) + 1 67 

Table 3.4: String ordering example using ordinal method 

In the majority of cases, when two random strings are compared for a given ordering, 

it is only the most significant character of each string that is relevant. Consider, 

for example, the cost of satisfying the predicate expression XYA < NKL. This pred­

icate may be satisfied by modifying only the first character in either string. This 

observation motivated the definition of the following string order cost function. 

Single character pair ordering 

The cost of satisfying the predicate expression XY A < NKL should depend on the cost 

of satisfying X < N since this is how the string predicate expression may be solved 

with the least modification to the strings. A predicate such as X < N may be satisfied 

by modifying either character. In general, the cost of satisfying a character predicate 

is calculated according to the cost functions for numerical predicates (Bottaci, 2003). 

In the case of <, it is the difference in ordinal values plus one, in the case of ~ it is 

the difference in ordinal values. 

For some string predicate expressions, there may not be a choice of character that 

may be modified. For example, if the string alphabet consists only of the 26 letters 

from A to Z then two characters must be modified to satisfy Z < A. Because twice 

as many character modifications are required, such predicates are considered more 

costly to satisfy. 

In general, the cost of satisfying a string predicate expression may be based on the 



Search-based Software Test Data Generation for String Data 47 

number of character pairings where a single character modification is sufficient to 

satisfy the string predicate expression. In the example XY A <NKL, a single character 

modification is sufficient to satisfy the predicate expression only in the first pairing. 

Until the first pairing is at least equal, modifying characters of subsequent pairings is 

futile. In the example NNP <NNe, a single character modification in any three of the 

character pairings is sufficient to satisfy the predicate expression and consequently 

the cost of this example should be lower. The cost is highest when no such character 

pairings exist. 

On the basis of the above observations, a cost function, known as single character 

pair (Sep) cost was defined. A cost for an unsatisfied string ordering predicate 

expression is calculated as follows: for each character pair formed from corresponding 

characters in two strings, left aligned and right null padded where necessary to be 

of equal length, a character pairing cost is calculated. A character pairing cost is 

calculated as follows: if no single character modification in that pair can satisfy the 

string predicate expression, the cost for that pair is 2 x 128. 2 x 128 was chosen to be 

significantly larger than 128 which is the largest possible cost for a single character 

modification. If modification of a single character in a pair, a, b may satisfy the 

string predicate then the cost for the pair is a - b + 1 assuming a < b is required. 

The cost of the string predicate expression is the sum of the character pair costs 

divided by the length of the longest string to give an average cost for the modification 

of a character in a character pair. When two empty strings fail a string ordering 

predicate, the cost is 2 x 128. For example the cost of is" aOxOOd" < "aOxf fc" (OxOO 

is null or a character of zero ordinal value and Oxf f is a character of 127 ordinal 

value) equal to ((a -a + 1) + 2* 128 + (d - c + 1))/3. For consistency with the cost 

function for logical negation (Bottaci, 2003), the cost of a satisfied string ordering 

predicate expression is the arithmetic negation of the cost of the logical negation of 

the string predicate expression. 

Table 3.5 shows how the cost function computed for s < "T" where s is a string 

variable. 
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(s <' T') 

s target value Result 

'Z: 'T' (90 -84 + 1 )/1 7 

"ZZ" "TO" «90 -84 + 1) + (90 -0 + 1 ))/2 49 

'XX' 'TO' «88 - 84 +1) + (88 - 0 + 1))/2 47 

"WZ" "TO" «87- 84 +1) + (90 -0 +1))/2 47.5 

"WAA" "TOO' «87 -84 +1) + (65 -0 +1) + (65 - 0 +1))/3 45.33 

"TB" "TO" «84 - 84 + 1) + (66 -0 +1))/2 34 

Table 3.5: String ordering example using single character pair method 

3.3 Empirical Assessment of String Search Oper-

ators and Cost Functions 

In order to assess the reliability of the cost functions introduced in the previous 

section, an empirical investigation was done. A number of test programs were as­

sembled and for each program, an attempt was made to generate inputs to achieve 

branch coverage. These programs, which include predominantly string predicates, 

are described in Table 3.6. The size of each program is given as lines of code (LOC). 

For each program, the total number of relational predicate expressions (RPE) in 

each program is listed, and in parentheses, the number of them that are string rela­

tional predicate expressions; the remaining relational predicates are numeric. One or 

more relational expressions may be combined with logical connectives into a branch 

predicate. The number of branches is also listed. The source code for each test 

object can be found in Appendix A. 

Calc 

This test object consists of one function, which takes an operator as string and two 

numeric operands. The function returns the result if the current inputted operator 

and operands are valid otherwise the function returns invalid-operation. The code 

is modified; instead of using a symbol operator (e.g "+", "-", "*", "tan" , ... ), the 
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code uses full operator name ("plus", "minus", "multiply", "tangent", ... ). Also 

there is a constraint to be sure that there is consistency between the operand and 

the operators. For example if the operator is "sqrt" then the operand must have 

a non-negative value; if the operator is "divide" the second operand must be non­

zero. The ranges used for the integer array values in the experiments were -10,000 

to 10,000. 

Cookie 

This test object takes three input variables, name, val and site as string. The pur­

pose of this test object is to read a specific name-attribute pair from a cookie and 

compare these values with input parameter values. 

DateParse 

This test object takes Day-name and Month-name as string parameters. The func­

tion validates name of day of the week and decodes name of month. 

FileSuffi.x 

The purpose of this test object is to check whether that the file suffix is consistent 

with directory. This function takes directory and filename as string parameters, 

then splits filename into (sub)strings at all OCClUrences of "." delimiter, returns a 

vector of (sub)Strings (fileparts). It assigns the last part of fileparts to Suffix then 

validates directory with the specific application name and validates Suffix with data 

format which is consistent with the application name. 

Order4 

This function takes 4 string parameters and the main purpose of this function is to 

check if 4 argument strings are in a specific increasing or decreasing order. 

Pat 

This test function takes two string parameters then checks for the presence of an 

argument string x, within another argument string y, the presence of the reverse of 

x, both x and its reverse and the two palindromes formed by concatenating the x 

with its reverse. 

Stem 

This module is an implementation of the Porter stemming algorithm (or Porter 

stemmer) which is a process for removing the most common morphological and 
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inflexional endings from words in English. Its main use is as part of a term normal­

isation process that is usually done when setting up Information Retrieval systems. 

The code is adapted from (Martin, 2005). This test function consists of six func­

tions, the main function Subject takes one string argument. 

Txt 

The main goal of this test object is to convert English text into mobile telephone 

txt by substituting abbreviations for common words (e.g "two" to "2", "you" to 

"u", "bye the way" to "btw", ... ). This test object takes 3 string parameters and 

depending on the values of these parameters, translates the words and phrases into 

an abbreviated txt form. 

Title 

The test object consists of one function which takes sex and title as string parame­

ters. The main purpose of this function is to validate that a person's title and sex 

are consistent(e.g "male" and" "mr"). 

I Name I LOC I RPE (str) I Branches I 
Calc 46 11 (11) 22 

Cookie 23 6 (5) 10 

DateParse 52 19 (19) 26 

FileSuJJix 40 11 (10) 22 

Order4 15 14(6) 6 

Pat 62 14(10) 28 

Stem 44 11(8) 16 

Txt 29 11(11) 14 

Title 36 21(21) 12 

Table 3.6: The JScript functions used for empirical investigation. 



Search-based Software Test Data Generation for String Data 51 

3.3.1 Experimental parameters 

Each of the cost functions and associated search operators were implemented in a 

prototype test data generation tool. The tool has been constructed by modifying 

the JScript (JavaScript) language compiler within the SSCLI and can therefore 

be used to test functions within programs written in the JScript language. The 

program must include directives to specify any input domain constraints that are to 

be applied. The program is then parsed and semantic analysis is done. The tool then 

inserts instrumentation code at each branch in the function. This instrumentation 

code calculates the cost of each branch predicate whenever it is executed, for more 

information refer to (Bottaci, 2005). 

The cost of each relational predicate expression was calculated according to the cost 

functions given in the previous section. Where branch predicate expressions consist 

of two or more relational predicates joined by logical connectives, and, or and not, 

the cost values were combined according to the scheme given in Bottaci (Bottaci, 

2003). In the case of logical and, for example, the costs of the constituent operands 

are added whenever they are both false. For nested branches, the costs of the 

branches in the control dependency condition of the target branch were similarly 

combined to provide an overall cost value for the candidate input. Unexecuted 

branches were assigned a high fixed cost (see Chapter 2, page 21). 

Input domains 

As described in Section 3.2.1, all character values were restricted to an ordinal 

range from 0 to 127 inclusive. A maximum string length of 20 was used to create a 

large search space and thereby reduce, to a very low probability, the possibility of 

achieving branch coverage by random data generation. 
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Genetic algorithm 

The search was directed to generate data for one branch at a time. The order 

in which the branches of the program were targeted was arbitrary except that no 

nested branch was targeted before the containing branch. This is not, in general, 

a good strategy since the search will become stuck at an infeasible branch but it is 

adequate for the experimental purposes of this research given that all the branches 

in the sample programs are feasible. 

A steady-state style genetic algorithm, similar to Genitor (Whitley, 1989), was used 

in this work. The cost function values computed for each candidate input were 

used to rank candidates within the population in which no duplicate genotypes 

are allowed. A probabilistic selection function selected parent candidates from the 

population with a probability based on their rank, the highest ranking having the 

highest probability. More specifically, for a population of size n, the probability of 

selection is 
2(n - rank + 1) 

n(n - 1) 

A single tree-structured representation was used, both for candidate inputs (pheno­

type) and for crossover and mutation (genotype). At the top-level, a candidate is 

an array of objects in 1-1 correspondence with the parameters of the program under 

test. Each object may be a primitive value, i.e. a number, character or string, or 

an array. This representation has the advantage that all candidates have the same 

structure. Candidates differ only in the lengths of strings and these occur only at 

the leaf nodes of the structure. 

Single point crossover was used. A cut-point within the tree structure was selected 

randomly and the resulting parts were exchanged. If the cut-point fell within a 

string and beyond the length of the shorter string then the single suffix from the 

longer string was transferred to the shorter string as illustrated below. 

parents offspring 

-------------------------------
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A genetic algorithm has a number of parameters that may be modified to suit a 

given problem. The size of the population and the frequency with which selected 

candidates are mutated are two examples. In the context of test data generation, a 

search algorithm must be able to perform effectively without significant human in­

tervention as such intervention is not cost effective hence no parameter was "tuned" 

to suit any particular program under test. In the work reported here, a population 

size of 100 was always used. At each evaluate-select-produce cycle, either muta­

tion or crossover was applied with equal probability. This means that a third of 

selected candidates were mutated since two candidates are selected for a single ap­

plication of crossover. The mutation of a candidate consisted of a mutation to a 

single randomly selected primitive value, in this case a string or a number. Of the 

two character substitution mutations, only the binary bit inversion operator was 

used when searching with the Hamming distance (H D) cost function, otherwise the 

Gaussian substitution operator was used. 

3.3.2 Preliminary results 

There are three kinds of string mutation that may be applied: deletion, insertion 

or substitution. Initially, the choice of which particular mutation to apply was 

determined randomly with equal probability. During a number of preliminary runs 

of the genetic algorithm, however, it was noticed that the effectiveness of the different 

kinds of mutation operator (i.e. the rank of the offspring produced) varied according 

to the stage in the search. The bar chart of Figure 3.10 shows the mean rank of the 

offspring produced by each kind of mutation for successive periods of the search to 

find data to execute a single branch in the Calc program. 

The three different kinds of mutation operator are broadly equally effective in the 

early part of a search but in the latter stages, only the substitution operator is 

effective and no offspring produced by the deletion or insertion operator enter the 
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Figure 3.10: The mean rank of offspring produced by each kind of mutation opera tor 

during successive periods of search. The population size is 100 and a rank of 101 

indicat es offspring not sufficiently fit to enter the population. 
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population. 

In the latter stages of a search for a given target, all the candidate strings will usu­

ally be of the same length as the solution. Some of the characters will be correct and 

others will be close in value. In such a situation, inserting or deleting a character 

from any candidate string increases its cost beyond that of the lowest ranked can­

didate. Recall that the cost of an insertion or deletion is the same as the maximum 

substitution cost. 

Clearly, it is inefficient to produce and evaluate offspring that will inevitably be dis­

carded. To reduce this inefficiency, the frequency with which deletion and insertion 

operations are applied may be reduced as the search progresses. The approach of 

varying the rate at which different operators are applied has been used with genetic 

algorithms (Davis, 1996) and is common in evolutionary strategies (Schwefel, 1995). 

Adopting this approach, two sets of results are given in the following section. In 

one set, the three mutation operators were always applied with equal probability. In 

the other set, the relative frequency of deletion and insertion was reduced in three 

stages during the search for a given target. For the first 300 offspring, all operators 

were applied with equal probability. From 300 to 500 offspring, substitution was 

five times more probable than deletion or insertion, from 500 to 700 offspring, sub­

stitution was ten times more probable than deletion or insertion and beyond 700, 

substitution was twenty times more probable than deletion or insertion. These val­

ues were chosen without detailed analysis and on the basis of inspecting the record 

of mean offspring rank for each of the three mutation operators for some of the 

branches in the sample programs. In addition, whenever, the probability of substi­

tution was increased, the standard deviation of the Gaussian substitution operator 

was reduced in order to localise the search. The initial reduction was from 16 to 

10, the second reduction was to 6 and finally to 3. Again, no detailed analysis was 

done to choose these figures, they were chosen only on the basis that they provide 

a progressive decrease to a small value. 
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Figure 3.11: The number of executions of the program under test required to find 

test data to achieve branch coverage (average over 20 trials). Equal probability of 

character insertion, deletion and substitution. 

3 .3.3 R esults 

For each type of string predicate, results are given for the number of test program 

executions required to find test data to cover all branches. 

E qua lity 

The results shown in the bar chart of Figure 3.11 show the number of program 

executions required to find input data to achieve branch coverage, averaged over 20 

trials. The probability of character insertion, deletion and substitution was equal 

throughout the search. These results provide some evidence that OED is the most 

efficient of the three cost functions and that CD is more effective than H D. Overall, 

OED is about a third more efficient than CD. The relative performance of OED 

is consistent across all the programs apart from Pat. Pat does not require its 

arguments to be any specific string as it is attempting to find two randomly chosen 

strings that are equal in part. As such, P at presents relatively weak demands on 
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the test data. 

To explain the poorer performance of H D and CD, recall that H D and CD left­

align strings and then compare corresponding characters and thus give relatively 

high costs in comparing strings such as HELLO and XHELLO. This problem, however, 

tends to occur most, early on in the search. Later in the search, for most of the 

branches of the programs used in the study, the candidate strings have the correct 

length and a number of corresponding characters match. In this situation, CD 

and 0 ED give similar costs. Indeed, the more similar the compared strings, the 

less likely that 0 E D will compute a cost via a deletion or insertion, since these 

operations cost significantly more than a substitution of similar characters. 

It should be noted that one of the most difficult search problems, which was pre­

sented by the FileSuflix program, was not related to the performance of any cost 

function. A fragment of this program is shown below. 

fileparts = file.Split(I."); 

lastpart = fileparts.Length - 1; 

if (lastpart > 0) { 

if (fileparts[lastpart] -- "exe") { 

//TARGET 

} 

In this program, an input string file is split into substrings at each occurrence of 

the dot character. A branch predicate is then satisfied if at least two substrings are 

produced and the last substring is equal to the string exe. Until a string is generated 

that contains a dot, only one substring is produced and lastpart > 0 produces a 

constant cost of 1 and so the search receives no guidance. Once a dot was inserted, 

the search progressed steadily under the guidance of the cost function. 

The results shown in the bar chart of Figure 3.12 again show the number of program 

executions required to find input data to achieve branch coverage, averaged over 20 
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Figure 3,12: The number of executions of the program under test required to find 

test data to achieve branch coverage (average over 20 trials). Progressive increase 

in the probability of character substitution. 

t rials but in this case the probability of charact er substitution was progressively 

increased and the standard deviation of the distribution used by the Gaussian sub­

stitution operator to select the replacement charact er was reduced. Comparing these 

results wit h those of Figure 3.11 , Figure 3.13 shows the average number of executions 

over all programs according to cost function and mutation probabilities. It is clear 

t hat there is a significant improvement in effi ciency to be gained from increasing the 

probability of a substitution mutation. Note, however, that the superiority of the 

ordinal edit cost function declines when the probability of a substitution mutation 

is increased. This can be explained by noting that the ordinal edit dist ance will give 

relatively low costs to matches such as (XHELLO, HELLO) compared to matches such 

as (GDKKN, HELLO). Awarding (XHELLO, HELLO) a low cost is ineffective, however, if 

deletion or insertion is rarely applied. 
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to find test data to achieve branch coverage for sample programs (average over 20 

trials) , 
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String ordering 

The empirical assessment of string order relations such as ~ is not straightforward. 

There is a reasonable probability of satisfying such an order relation given two 

randomly selected strings, something that is most unlikely for an equality predicate. 

A situation in which a predicate such as ~ is difficult to satisfy is when a constraint 

such as s ~ t ~ u applies. Here the value of t may be difficult to find if s is close to 

u. This problem becomes more difficult as s approaches u and in the limiting case, 

the difficulty of satisfying s ~ t ~ u equals the difficulty of satisfying s = t = u. A 

test program was thus required to impose a difficult to satisfy order relation on the 

program inputs but not so difficult that the order relation was in effect an equality 

relation. The program shown below was therefore written. 

Order4(s. t. u. v) { 

if «4 < s.Length && s.Length < 7) I I (4 < t.Length && t.Length < 7) 

(4 < u.Length && u.Length < 7) I I (4 < v.Length && v.Length < 7» { 

if (s < t && t < u && u < v) { 

//TARGET 

} 

else if (s > t && t > u && u > v) { 

} 

}} 

//TARGET 

The lengths of the strings were restricted in order to make the target branches more 

difficult to satisfy. Table 3.7 shows the number of executions required to find test 

data to execute all branches averaged over 50 trials using each of the candidate cost 

functions for string ordering. The results are given with and without the bias to 

the substitution mutation operator. It also shows the average number of executions 

required to find test data when a 2-valued cost function was used, i.e. a single cost 

value for true and a single cost value for false. This indicates the difficulty of finding 
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program no mutation bias mutation bias 

name Ordinal single Ordinal single random 

value character pair value character pair 

I Order4 I 1711 1622 1702 1813 I 23115 I 

Table 3.7: The number of executions required to find test data to achieve branch 

coverage (average over 50 trials). 

test data by random search. 50 trials were used to distinguish more accurately the 

performance of the cost functions compared to random search. 

There is no evidence to suggest that se P is more or less efficient than OV in terms 

of performance. There is also no advantage in increasing the probability of the 

substitution operator. This is understandable given that the search is not aiming 

to generate a fixed length string. As can be seen from the number of random 

candidates generated before satisfying the order predicates, the order relations are 

not particularly difficult to satisfy in this example and this may be true or order 

predicates more generally. se P has practical advantages, though; it is easier to 

implement since it does not require additional work to represent large numbers that 

exceed the capacity of the native numerical types. 

3.4 Program-dependent Search Operators 

Many of the programs that process strings contain string literals. The examination 

of the SSCLI code showed that about 65% of string predicate expressions contain a 

string literal, also in (DeMillo and Offutt, 1988), DeMillo and Offutt showed that 

58% of clauses are of the form x R c, where x is variable, c is a constant and R is 

relational expression. So a program may match a string literal with a string input, 

or a string derived from the input. 
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function f(s:string) { 

if (s. Equals (IICHILDII) { 

} 

} 

The first branch of this program is true when s = "CHILD". This suggests a 

heuristic to guide the search for values for the strings s, namely, set s to a string 

literal that appears in the program under test. 

Another example is given below. 

pes) { 

t = F(s); 

if ( t == II AC II) { 

//TARGET 

If the string literal, i.e. AC were to be generated as a candidate solution and F is 

the identity function, the search would produce a solution immediately. In general, 

however, the relationship between the input string and the string comparison in 

a branch predicate may not be so direct. In practice, F may not be the identity 

function and the input may be processed by any number of statements before a 

string comparison is made in a branch predicate. The effect of these statements is 

to add a transformation to the search space. 

The reliability of the cost function need not necessarily suffer as a result of such 

transformations. To illustrate this, assume the function F reverses its input. In this 

case, it is the input CA that executes the target branch, not the program literal AC. 

For simplicity, assume a search space of only 9 strings as shown in Figure 3.14. The 

bidirectional edges of the graph indicate possible string modifications by a search 

operator that may only "increment" or "decrement" a single character in the string. 

Against each string is shown the cost of that string compared to AC. The string 
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Figure 3.14: A small search space of 9 strings with increment and decrement char­

acter mutations. The cost of each string compared to CA is shown. 
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Figure 3.15: The search space after the addition of a reverse search operator. 

reverse operation performed by F does not reduce the reliability of the cost function 

since the costs decrease steadily towards the solution CA. 

In this example, using the program literal string AC as a candidate solution provides 

the worst possible start for the search as the minimum distances from other strings 

are all shorter. This observation prompted consideration of applying a search oper­

ator to counter the effect of F. Adding a string reverse search operator (reverse is 

its own inverse) leads to the space shown in Figure 3.15. The minimum number of 

applications of a search operator necessary to transform the initial input string AC 

to the solution CA is now just one. Additional search operators reduce path lengths 

but they do so at the expense of increasing the number of paths. In the particular 

case of moving from AC to CA, however, the mean number of operations is reduced. 

Although the addition of the reverse operator increases the number of edges, they 
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Figure 3.16: The program Q renders the cost function unreliable. (costs to the 

soultion shown against each node) 
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are all shortcuts on paths from AC to CA. 

It could be argued that the program P with the reverse operator F is unusual in not 

reducing the reliability of the cost function. The potential advantage of seeding the 

population with string literals and using "inverse string operations" as additional 

search operators is not restricted, however, to programs for which the cost function 

is always reliable. The following program, which reverses only selected strings, is an 

example of a transformation that reduces the reliability of the cost function. 

Q(6) { 

if (6[0] == 'A' II 6[1] -- 'c' II (5[0] == 'c' && 5[1] -= 'A')) { 

t = Reverse(s); 

} 

else { 

t = s; 

} 

if (t == "AC") { 

//TARGET 

This can be seen from Figure 3.16 which shows a local minimum at strings with 

equal first and second characters and Figure 3.17 shows the landscape of this pro­

gram. Nonetheless, even in this case, the addition of a reverse string search operator 

overcomes the local minimum and also leads to a solution. 

In moving from these particular observations to a general search strategy it is nec­

essary to accept that it is not, in general, possible to determine how a program 

transforms its input. Indeed, if the inverse computation problem were decidable, 

there would be no need to search for test data. It is possible, however, to assemble a 

collection of search operators that perform the inverses of typical string processing 

functions such as string concatenation, insertion and deletion. It is hoped that the 

use of such operators, together with any string literals drawn from the program 

under test, should, in general, improve the efficiency of the search. 
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Figure 3.18: The string domain 

3.4.1 String operations biased towards program string lit-

erals 

To exploit the observations of the previous section, the random string generator 

used to generate initial candidate solutions was extended to comprise two compo­

nents. One component is the former string generator which selected strings from 

two distributions, a uniform distribution of strings with characters with a range of 

ordinal values from 0 to 127 and an English-like distribution. The second compo­

nent generates strings that are either program literals or formed by concatenating 

these literals. The reason for concatenating literals is that programs often test if 

a string is a substring of another. Concatenating literals, rather than inserting a 

single literal into an arbitrary string, increases the chances of selecting the required 

literal and is also useful in the case in which the test program requires more than 

one literal to be a substring of a string. 

The current mutation operators will, over time, decrease the proportion of candi­

dates in the population that contain a program string literal. Consequently, three 

additional mutation operators were defined. One operator deletes a program literal 

from a given string if such a literal exists. An operator inserts a program literal or 

the concatenation of two literals into the string it is mutating. Another operator 

replaces a random substring of the string it is mutating with a program literal or 

the concatenation of two literals. The length of the substring replaced is equal to 
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Figure 3.19: The number of executions of the program under test required to find 

test data to achieve branch coverage (average over 20 trials) using program-specific 

search operators. 

that of the string to be inserted so that overall there is no change in length. 

The reason for replacing an equal number of characters follows from a characteristic 

of the search that was discussed earlier, i.e. the convergence of the search to a 

population of strings with the same length, If a mutation operator modifies the 

length of a candidate string then the cost function is likely to penalise it to the 

extent that it does not enter the population. 

3.4.2 Empirical assessment of program-specific search oper-

ators 

The programs listed in Table 3.6, except Order4 and Pat which contain no string 

literals, were used to assess the performance of the program-specific search operators. 

The test tool collects program li terals during a traversal of the program abstract 

syntax tree. Character literals are also collected and treated as strings. The random 

string generator was set to generate each type of string, i.e. 7-bit character, English­

like and literal, with equal probability as shown in Figure 3.18. 



Search-based Software Test Data Generation for String Data 

30 

25 

20 

15 

10 

5 

o 

[] no program search 
operators 

• program search 
operators 

program under test 

68 

Figure 3.20: A comparison of the number of executions of the program under test 

required to find test data to achieve branch 'overage (averag ov r 20 trials) with 

and without program-specific search operators. Only the values obtained with the 

ordinal edit distance are compared and mutation is biased towards substitution. 

Again, the aim was to find input data to exe ute all the branches in each of the 

programs. For each program and cost function, 20 trials were done. The average 

number of program executions required to achieve branch coverage over 20 trials is 

shown in the bar chart of Figure 3.19. These results show a significant improvement 

in performance compared to the results of the previous section, as can be seen in 

Figure 3.20 which compares the results of the ordinal edit function with respect to 

the use of program-dependent search operators. 

Overall, the use of program-specific search operators leads to about a fivefold im­

provement in search efficiency. Note that the r suIts in Figure 3.19 show the perfor­

mance of the various cost functions to be broadly similar. This is probably explained 

by the fact that, with program-specific search operators, much Ie s search is per­

formed and hence the cost function is likely to have less inHuence on the overall 

performance. In the case of Stem , for example, no guided search was required. 

The initial population strings, created from the program literals, were sufficient to 
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achieve branch coverage. 

3.4.3 Discussion 

A program may contain many string literals. For example, the Calc program con­

tains a switch statement in which each branch compares a string from the input 

against a specific literal. Although the program may contain many literal strings, 

in searching for test data to execute a specific branch, only one or two of these 

literals may be useful. For this specific branch, mutation operators that introduce 

the other literals will slow down the search. A very simple strategy which exploits 

this observation is to bias the search for a given branch that contains one or more 

literals to those literals. This strategy would have improved the performance of the 

program-specific operators for almost all of the sample test programs. More gener­

ally, the literals that should be used to bias the search are those that appear in any 

statement that may infiuence the branch predicate expression. Such literals could 

be identified from a datafiow analysis of the program. 

3.5 Program-specific Search Operators for Non-

string Data Types 

Although the usefulness of program-specific operators has been demonstrated for 

strings it seems clear that the technique generalises to other data types. This is 

illustrated for the numeric data type in the example in Figure 3.21. Although none 

of the three integer values 5, 10 and 20 that occur in the program are input values 

that execute the target branch (to execute the target branch a = 10 and b = 15) 

they do provide reasonable starting points for a guided search. To get the variable 

b = 15, simply inverse the arithmetic operation plus (v = v + b) which is (20 = 

5 + b ) then b = 20 - 5. 

Numerical types may be converted from integer and double as required by the input 
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void fl(int a, int b) { 

int v = 5; 

if (a == 10) { 

v = v + b; 

} 

if (v == 20) { 

II Target executed with a = 10, b = 15 

} 

} 

Figure 3.21: Alternative internal variable example 

domain. Numerical types may be also converted to character data type and vice 

versa if possible. In general, adding the literal that appears in the program is not 

straightforward. If the data types of the input parameters are integer but the literal 

collected from the program is double, the input domain is different from the literal 

data type: the literal data types are converted to confirm with the input domain 

data type. 

Figure 3.22 shows a program in which the first branch is executed when a .. 25. 

The required branch is executed only when the first "if statement" is executed and 

sin(b) = 1. This happens only when b = ¥. It is easy to execute this branch if the 

mutation operator sequence of sin-1(6.0 - 5.0) is used to create a value for b. The 

arithmetic operations in this program are : Plus and sin, the proposed mutation 

operators to execute the required branch might be Minus and Arcsin. 

This has motivated the introduction of additional genetic operators to increase the 

performance of searching the program under test by analysis and extracting arith­

metic operators from the program under test, then reversing these operators to 

induce the mutation operators. 
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void InverseSin (double a, double b) { 

double v = 5.0; 

if (a == 25.0) { 

v = v + sin(b); 

} 

if (abs(v - 6.0) <= Double.Epsilon) { 

//Target executed 

} 

} 

Figure 3.22: To execute the target, b equal to ¥ 

In general, when any arithmetic operator! or trigonometric function2 occurs in the 

program under test, this operator or function and its inverse are used as mutation 

operators (e.g. Plus and Minus, sin and Arcsin). Note that Arcsin and Arccos are 

used when the parameter is in the range (-1 to 1) only. 

The polygon classification program can be seen in Appendix A. The program ha..o;; an 

array of 6 or 8 of positive real numbers. The length of the array represents the figure 

shape: 6 means the figure might be Triangle, 8 means the figure might be Square or 

Rectangle or other Polygon. The first half of the input parameters (3 or 4) represents 

the angles and the rest represents the side lengths of the figure sides. The goal of the 

program is to determine the figure, Square, Rectangle, Triangle or other shape and 

also if the figure is Triangle, to categorize the triangle type. The program consists 

of 22 branches, all the branch cost functions have a gradient which illustrates the 

usefulness of program-specific search operators for program where branch coverage 

can be found by straight forward branch cost distance instrumentation. No branch 

has a branch distance cost which is locally flat. The program was executed by GAs 

Iplus, Minus, Multiply, Divide, Postlncrement, PostDecrement, Pow, Sqrt, Modulus and Ab­

solute value 
2 sin, Arcsin, cos, Arccos, tan and Arctan 
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with and without using program-specific search operators and over an average of 

20 trials the number of executions required to find test data to achieve all branch 

coverage without using program-specific search operators was 43872; the number 

of executions required to find test data with program-specific search operators was 

1542. It is clear that there is a significant improvement in performance by using 

program-specific search operators. 

3.6 Summary 

This chapter considers the problem of generating test data where the test data is in­

tended to cover programs branches which depend on string predicates such as string 

equality and string ordering. Current work in automatic test data generation has 

been limited largely to programs containing predicates that compare numbers and 

almost no work has been done on generating test data to satisfy string predicates. 

A dynamic test data generation approach is adopted and the problem is seen as 

one of defining appropriate search operators and corresponding cost functions with 

which to guide a search. 

A relatively simple but important aspect of the search for string data is the definition 

of the search space of strings. The space of 16-bit character strings is far larger than 

the space that need be searched in practice, being the space restricted to strings 

containing characters in the seven low-order bits. 

For string equality, an adaptation of the binary Hamming distance was considered, 

together with two new string specific match cost functions. New cost functions for 

string ordering were also defined. 

For string equality, a version of the edit distance cost function with fine-grained costs 

based on the difference in character ordinal values was found to be the most effective 

in a small empirical study. In addition, a progressive increase in the probability 

with which the character substitution mutation operator is applied has also been 

shown to improve the performance of the search. Two functions for string ordering 
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were investigated but there was no significant difference in their performance in the 

limited empirical investigation. 

The most significant improvement in performance, however, was obtained by ex­

ploiting the presence of string literals in programs that process string data. This 

chapter presents program-dependent string search operators that focus the search 

in the region of such string literals. In the empirical investigation, the use of these 

operators was shown to give a fivefold increase in performance. The use of program­

dependent string search operators has been shown to be far more important than 

the particular choice of cost function that guides the search. 

3.7 Estimating Number of Search Operator Invo-

cations 

Recall that the fitness function should estimate the number of search operators from 

a given candidate to the solution. After the completion of the experiments in the 

previous section, the question of estimating the cost of various search operators was 

considered empirically. Given a specific search operator, it is possible to investigate 

empirically, for a sample of candidates and goals, the actual number of invocations 

of the operator required to generate a given goal from a given candidate can be 

counted. To investigate this idea in concrete terms, the search operator OED was 

considered. 

As explained in Section 3.3.1, the cost of OED is computed as given: 

OED(s: a,t: b) = 

min(OED(s : a, t) + 128, OED(s, t : b) + 128, OED(s, t) + 128/4 + 31a - bl/4). 

The previous experimental results show that if different length strings are 

compared then any deletions or insertions are as effective as a single mutation. 

However, when a candidate string has the same length as the goal string then a 

deletion must be followed by an insertion. For example, OED(RAG, RARE) = 
161.5, OED(ROAR, RARE) = 129. This means "ROAR" is more close to 
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"RARE" than "RAG", even though moving from "ROAR" to "RARE" needs 3 

substitutions and moving from "RAG" to "RARE" needs 1 insertion and 1 

substitution. The question is which path, 3 substitutions or 1 insertion and 1 

substitution is more likely to lead to the solution. The higher probability path 

should have the lower cost in order to guide the search to path that is likely to 

lead to the solution. To answer this question the probability of insertion, deletion 

and substitution must be compared. Figure 3.23 shows the possible mutation 

operators to move from candidate string to the goal string and the probability of 

each operator is computed as follows: 

p( deletion of character i) =! * ~ , where n is the string length. 

p(insertion of character c at i) = ! * nll * 1~8' 

It is very difficult to find theoretically the probability of substitution by using a 

Gaussian distribution mutation operator because the new value may be right or 

left of the mean (given character) and the search ignores the new value if it is not 

better than the existing one. To find the probability of this mutation, a practical 

experiment of 100 trials was done to find the actual cost to move from one 

character to another with 7-bits domain( 0 - 127). The actual result is shown in 

Figure 3.24 and a heuristic approximation is computed and is shown in the same 

Figure. The heuristic approximation cost to move from one character to another 

character is given by the following equation: 

character :itlerence + 11. So the final cost of EOED (Empirical ordinal edit distance) 

will be computed as follows: 

EOED(s : a, t : b) = 

min(EOED(s : a, t) + 128, EOED(s, t : b) + 128, EOED(s, t) + 11 + la - bl/3). 

The probability of deletion followed by insertion is : 
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Figure 3.23: The possible mutation operator to move from candidate to goal string. 

(! * *) * (! * nll * 1;8) which is less than probability of substitution. 

The results in Figure 3.25 show the number of program executions required to find 

input data to achieve branch coverage, average over 20 trials while the probability 

of character insertion, deletion and substitution was equal throughout the search. 

This figure also shows comparison between number of program executions required 

to find input data using OED and EOED. These results show that EOED is more 

efficient than OED. 
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Figure 3.24: The actual and heuristic cost of gaussian mutation operator to move 

from one character to Z with the 7-bits domain. 
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Figure 3.25: The number of executions of the program under test required to find 

test data to achieve branch coverage by using OED and EOED. 



Chapter 4 

Using Program Data-state 

Scarcity in Test Data Search 

4.1 Introduction 

Search-based automatic software test data generation for structural testing depends 

on the instrumentation of the test goal to construct a many-valued function which is 

then optimised. The method encounters difficulty when the search is in a region in 

which the function is not able to discriminate between different candidate test cases 

because it returns a constant value. A typical example of this problem arises in the 

instrumentation of branch predicates that depend on the value of a boolean-valued 

(Hag) variable. Existing transformation techniques can solve many cases of the 

problem but there are situations for which the existing transformation techniques 

are inadequate. 

This chapter presents a technique for directing the search when the function that 

instruments the test goal is not able to discriminate between candidate test inputs. 

The new technique depends on introducing program data-state scarcity as an addi­

tional search goal. The search is guided by a new evaluation (cost) function made 

up of two parts, one depending on the conventional instrumentation of the test goal, 

77 
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the other depending on the diversity of the data-states produced during execution 

of the program under test. The method is demonstrated for a number of example 

programs for which existing methods are otherwise inadequate. 

4.2 Problem of Flag Cost Function 

A £lag variable is any variable that takes on one of a few discrete values. A boolean 

is a special case of a £lag variable. Where the program has only relatively few input 

values which make the internal £lag variable adopt a desired value, it will be hard to 

find these inputs using random search, see the program in Figure 4.1. A predicate 

which tests a £lag, produces a fitness function that yields either maximal fitness for 

the special values or minimal fitness for any other value. The landscape induced 

by the fitness function provides no guidance from lower fitness to higher fitness and 

hence it is difficult to find inputs to execute such branches. In geometric terms, the 

surface of values produced by the cost function for different inputs is fiat. In such 

situations, the heuristic search performs no better than a random search. 

boolean flag = false; 

if (x == 3) { 

flag = true; 

} 

//ASSIGNMENTS TO flag 

if (flag) { 

I/TARGET BRANCH 

} 

Figure 4.1: Program fragment for which branch coverage data must be generated. 
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4.3 Existing Techniques for 

Boolean Flag Variables 

79 

Instrumenting 

A number of techniques have been proposed to tackle programs that contain boolean 

flag variables. Bottaci (Bottaci, 2002) proposes a solution for programs in which the 

flag variable is assigned a predicate expression (as opposed to a constant true or false) 

as shown in the example program of Figure 4.2. This program iterates through an 

array of 64 boolean values and determines if the values are all true. 

AIITrue(boolean[] a) { 

} 

boolean alltrue = true; 

for (i = 0; i < 64; i++) { 

alltrue = alIt rue && a[i]; 

} 

if (all true) { 

//TARGET BRANCH 

} 

Figure 4.2: Example program with a flag variable problem. 

In (Bottaci, 2002) it is suggested that the predicate expression that is used to set 

the flag value is instrumented and the flag variable is replaced by a many-valued 

variable that can hold the instrumented value of the predicate expression. Any 

predicate expressions that use the boolean flag variable are rewritten to test the 

instrumentation value. These predicate expressions can then be instrumented in the 

usual way. The transformation is illustrated in Figure 4.3. 

The logical constants are instrumented as -1.0 and 1.0. By defining a suitable cost 

function to instrument the logical-and (Bottaci, 2003), where costAnd is an operator 

defined by Table 2.4, page 21, a cost value can be accumulated as the loop iterates. 
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AllTrue(boolean[] a) { 

} 

double alltrue = -1.0; 

for (i = 0; i < 64; i++) { 

alltrue = costAnd(alltrue, a[i]); 

} 

if (alltrue < 0) { 

//TARGET BRANCH 

} 
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Figure 4.3: Transformation of example program with a flag variable problem 

from (Bottaci, 2002), alltrue = -0.015384615 when all elements in the array are 

true. 

The technique of replacing boolean values with cost values is inapplicable, however, 

when the flag variable is assigned a constant true or false value, as occurs to the flag 

variable in the program of Figure 4.1. In this case, Harman et al. (Harman et al., 

2002) (Harman et al., 2004) suggest the use of a program transformation to remove 

internal flag variables from branch predicates, replacing them with the expression 

that led to their determination. In the transformed version of the program, the 

branch predicate is flag-free and can therefore be instrumented in a straightforward 

way. Their approach, however, does not handle assignment to flags within loops. In 

particular, 5 levels of program difficulty are identified and the given transformations 

are effective only for the first 4 levels. The fifth level consists of programs in which 

assignments are made to flag variables inside a loop that does not also contain the 

target branch. The example program of Figure 4.2 is an example of a level 5 problem. 

A testability transformation for loop assigned flags is, however, given by Baresel et 

al. (Baresel et al., 2004) who extend the transformation approach for internal flags 

assigned within loop structures. Two approaches are presented - a "coarse-grained" 

transformation and a "fine-grained" transformation. Both forms of transformation 
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AllTrue(boolean[] a) { 

alltrue = true; 

int counter = 0; 

double fitness = 0.0 

for (i = 0; i < 64; i++) { 

if (alltrue && a[i]) { 

} 

} 

alltrue = true; 

fitness ++; 

else { 

alltrue = false; 

} 

counter++; 

if (fitness == counter) { 

//TARGET BRANCH 

} 

Figure 4.4: A testable transformation of the program shown in Figure 4.2 
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replace the original condition using the flag variable with a predicate of the form 

counter = fitness, where counter is a variable incremented on each iteration of the 

loop, and fitness is a variable which is incremented if a loop iteration was evaluated 

in a "desired" manner. Figure 4.4 shows the result of applying the transformation 

to the program of Figure 4.2. 

A loop iteration is executed as desired when the flag is assigned the desired value. 

For example, an iteration which assigns a false value to a flag required to be true 

would not result in an increment of the fitness variable; whereas the avoidance of 
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the assignment would. In this way, the search receives a higher level of guidance to 

the input values which evaluate the original condition using the Hag in the desired 

manner. This is because the objective function landscape now corresponds to the 

predicate counter = fitness rather than the landscape containing the Hag, which 

contains plateaux. The difference between the coarse-grained transformation and 

the fine-grained transformation lies in the increment of the fitness variable within 

the loop. The coarse-grained transformation simply increments the counter in a 

uniform fashion. The fine-grained approach uses distances of key branch predicates 

used within the loop to assign Hag values. 

The chaining method of Korel (Korel and Ferguson, 1996) is an effective technique 

for some programs that contain Hag variables. The chaining method attempts to 

find inputs to execute a path from each last definition! of each variable used in the 

unsatisfied branch predicate. In broad terms, the heuristic is that the execution of 

a new path may produce a different value at the goal branch expression. In the 

example All True program, there is only one path through the program up to the 

target branch and hence the chaining method is ineffective. 

For the transformation of Baresel et al. (Baresel et aI., 2004) to be applicable, it 

must be possible to identify the desired and undesired assignments to a flag variable. 

Sometimes this is not possible. As an example, consider the Orthogonal program 

shown in Figure 4.5. This program determines whether two binary vectors are 

orthogonal by computing the inner product. Each of the two input arrays consists 

of integers with the value 0 or 1. The target branch is difficult to execute because for 

almost all random inputs, the value of the integer product is set to 1. Even though 

product is not a boolean variable, a "flag" variable problem arises because product 

may take one of only two integer values. The transformation in (Baresel et aI., 2004) 

requires that assignments to flag variables are replaced by conditional statements in 

which the Hag is set true and also set false and the predicate of the conditional is 

1 A last definition statement is simply a program node n that assigns a value to a variable 

which may be potentially used at the problem node p. For it to be a last definition therefore, a 

definition-clear path must exist between nand p 
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Orthogonal(int []a, int []b) { 

/ / a [i] and b [i] in [0, 1] 

int product = 0; 

for (i = 0; i < 64 && product -- 0; i++) { 

product = a[i] * b[i]; 

} 

if (product -- 0) { 

//TARGET 

} 
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Figure 4.5: A difficult to execute branch in a program with an integer "flag" variable 

taken from the expression assigned to the flag. This is clearly inapplicable for the 

Orthogonal program of Figure 4.5 since product is not a boolean variable. 

The problem with the transformation of Baresel et al. (Baresel et al., 2004) is that 

it attempts to move the computation done by a program from the sequence of data­

states it generates to the sequence of control-states produced and this movement is 

not practical when the set of possible data-states is large. 

The method of data-flow graph search, of Korel (Korel et al., 2005) searches for paths 

that are selected from examination of the data dependence graph of the variables 

that appear in the target branch predicate expression. In the example program of 

Figure 4.5, all such paths begin with the initial assignment to product and then 

take one or more iterations of the loop. By searching the space of paths, which in 

this case is small, the solution is found. However these paths, except for the solution 

path, all produce the same branch distance value and so the search is random. This 

would be a problem if the arrays were very large. 
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4.4 Data-state Scarcity as a Search Strategy 

It is clear that it is not only programs that use boolean variables that, when in­

strumented, produce cost functions that are locally Hat. The program fragment of 

Figure 4.6 computes the [OglO of x and then converts this value to an integer which is 

used to access an array. In this program, the target branch cost function is constant 

for all input values of x except for the single value x = 1. 

void Log10(int x){ 

} 

//x in [1, 100,000] 

a[O] = 0; 

a[1] = a[2] = a[3] = a[4] = a[5] = 1; 

double y = log10(x); 

int k = ceiling(y); //y in [0, 5] 

if (a[k] == 0) { 

//TARGET BRANCH 

} 

Figure 4.6: A difficult to execute branch in a program (LOglO) for which no existing 

technique is effective. 

Note that no existing technique is applicable to this program. The technique of 

substituting cost values for boolean values (Bottaci, 2002) is not applicable since 

there are no boolean expressions that can be effectively instrumented. There are 

no variables that can be used in the transformation of Harman (Harman et al., 

2004). There is a single path through the program and so the path search methods 

of Korel (Korel and Ferguson, 1996; Korel et al., 2005) are not applicable. 

A necessary condition for the cost function to be able to guide the search is that 

it should produce more than one value as it is applied to different inputs. This 

suggests a possible search strategy, namely search for inputs that produce a range 
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of values for the variable a [k] in the predicate expression. 

To produce a greater range of values for a [k], the search may be guided towards 

inputs that produce values for a [k] that are different from those that have so far 

been produced in the search. The search may be guided in this way providing inputs 

that produce so far unencountered values for a [k] are given a lower cost whenever 

they are encountered. In practice, a collection of random inputs will not produce 

diverse values at a[k]. Voas (Voas and Miller, 1995) introduces the notions of 

information loss and the domain/range ratio. The information loss of a mapping is 

the ratio of the size of the domain to the size of the range. The ratio can also be 

applied to any subset of a mapping. The information loss from the input to the value 

of a [k] is extreme for a very large part of the input domain. The information loss 

from x to k is not so extreme in that only 90% of the inputs map to a single value k 

= 5, 9% of the inputs map to a single value k = 4 and so on. Figure 4.7 shows the 

distribution of these values. In a population of 100 individuals, selected randomly, 

there is a reasonable probability of encountering inputs that produce values of k 

that are 4 or 3. If the search is directed to these inputs, then inputs that produce a 

value of 2 will be found. Such inputs are rarer than those that produce 4 or 3 and 

so the search is directed to consider inputs similar to those that produced a value 

of 2, with the result that inputs producing 1 and finally 0, will eventually be found. 

Pursuing data-state scarcity is also an effective strategy for finding an input to 

execute the required branch in the Orthogonal program of Figure 4.5. This program 

implements a mapping from integer array pairs (a, b) to the integer product, a 

constant mapping for the vast majority of the input domain. A problem arises if the 

values of the variable product are examined in the predicate expression of the target 

branch; here rare values are in practice never encountered. Consider, however, the 

values assigned to product within the loop. A number of zeros and possibly a single 

one may be assigned here. Without considering probabilities in detail, it is clear 

that the number of inputs assigning a given number of zeros to product decreases 

as the number of zeros increases (see Figure 4.8). These inputs may be identified as 

producing rare data-states and hence the search may be directed to the region in the 
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Figure 4.7: The distribution of the lOglO values. Figure shows that function that 

computes k is less locally constant than branch cost function; hence it is easier to 

search for different values of k. 

vicinity of these rare inputs. Directing the search towards inputs that produce rare 

patterns of assignments is an effective strategy for changing the final value assigned 

since this value changes when the maximum number of' zeros is assigned. 

Consider another example for which existing techniques are inadequate, the program 

Mask shown in Figure 4.9. This program checks that each character in an array 

conforms to the bit mask 1010101. There are 16 values that may be assigned to 

x. In general, we may expect the bits within x to tend towards zero as the array is 

iterated (assuming the data in the array is relatively random) since once a bit in x 

becomes zero, it will remain so. This means that although x within the loop may 

take a number of values, x in the branch predicate expression is almost constant 

with the value O. 

Although x in the predicate expression is almost constant, a greater range of values 

is assigned within the loop where it is thus possible to identify relatively rare values. 

In a reasonably large population of inputs, a small number of inputs will assign the 

relatively rare value of 1010101 a higher number of times than is typical among 

the inputs that have so far been executed. By directing the search towards these 

rare inputs, the search is directed to inputs that produce more than a single value 
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Figure 4.8: Number of test cases decreases as the number of zeros assigned to 

product increases. 

Mask(char[] a) { 

} 

char x = Ox55; II 1010101 

for (i = 0; i < 10; i++) { 

x = x & a[i]; Ilbitwise and 

} 

if (x == Ox55) { 

IITARGET BRANCH 

} 

Figure 4.9: Program Mask checks that each character in an array has each odd bit 

set . 
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for x in the branch predicate expression. Once this occurs, the cost function at the 

branch predicate expression may guide the search to a solution. The solution is any 

array which contains characters all of which have the four mask bit set, and there 

are 8 of these characters. 

The data-state scarcity search strategy may be outlined as follows: 

When the inputs encountered so far in the search have produced a population of 

equal cost function values, i.e. the cost function surface so far encountered is fiat, 

then it is assumed that there is a constant mapping from the majority of the input 

domain values to the values that are supplied as arguments to the cost function. 

Such a mapping cannot fail to produce an almost flat cost surface, irrespective of 

the cost function used. If the mapping is implemented in a progressive manner 

with respect to information loss, i.e. the information loss from input values to 

intermediate values, such as k in LoglO is not as high as that from input values to 

cost function inputs, then it is possible to instrument the intermediate values. If 

the information loss for different regions of the input domain is not uniform then a 

few intermediate values will predominate and other values will be rare. As shown 

in the LOglO example, the probability of value k = 5 is 90% but the probability 

of value k = 0 is l00~OO' To guide the search to generate new intermediate values 

(values of k = 4, 3, ... in the example of Figure 4.7), the search must be directed 

to inputs that increase the diversity of intermediate data-state values. By guiding 

the search towards inputs that produce diverse, as yet unencountered and therefore 

rare intermediate values, the likelihood increases of finding an input that produces 

as yet unencountered values as arguments for the cost function. 

Directing the search towards inputs that produce rare intermediate values is not 

necessarily directing the search towards inputs that solve the test goal. The cost 

functions are certainly different. The purpose of directing the search towards inputs 

that produce rare intermediate values is to provide inputs that produce a variety of 

arguments to the cost function that instruments the test goal. Only when this cost 

function receives a range of values can it produce a non-flat cost surface. 
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4.5 Data-state Scarcity Search by Maintaining 

Data-state Diversity 

The concept of diversity in the population has been studied in the literature. For ex­

ample, when the GA fails to find the global optimum, the problem is often attributed 

to premature convergence, which means that the sampling process converged on a 

local rather than the global optimum. Several methods for maintaining population 

diversity have been proposed to combat premature convergence in conventional GAs. 

These methods rely on various of similarity between individuals in the population. 

In this thesis, the purpose of investigation existing diversity measures is to consider 

how they can be used to augment the existing fitness function, which consists of the 

branch distance, to guide the search towards rare data-state values. 

4.5.1 Existing diversity measures and methods 

Biological diversity denotes the differences among individuals in a population, which 

in nature connotes structural and behavioural difference. The term "variety" was 

used by Koza (Koza, 1992) to represent the number of different genotypes in a 

population. In simple form, genotype diversity measures the number of unique 

individuals (Langdon, 1999). Genotype diversity does not consider fitness. Two 

individuals are equal if they contain exactly the same structure and content. 

An edit distance based on string matching was used by O'Reilly (O'Reilly, 1997). 

He uses single node insertions, deletions and substitutions to transform two genotype 

trees to be equal in structure and content. De Jong et al. (de Jong et al., 2001) used 

Levenshtein distance (see Chapter 3), which matches two trees at the root node. 

If the two different nodes match, they score a distance of 0, otherwise they score 

a distance of 1. The Levenshtein distance can be normalised by dividing the sum 

of all different nodes by the size of the smaller tree. The measure represents the 

number of node changes that need to be made to either tree to make them equal in 

structure and content. 
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Keijzer (Keijzer, 1996) used ratio of unique genotype subtrees over total subtrees to 

measure the subtree variety and the ratio of the number of unique individuals over 

the size of the population as program variety. Keijzer also used a distance measure 

between two individuals as the number of distinct genotype subtrees the individuals 

share. 

In addition to genotype diversity, fitness diversity has also been investigated. 

Fitness diversity, also known as phenotype diversity measures the number of 

unique fitness values in a population. Fitness entropy is calculated by grouping the 

fitness values into equivalence classes (Rosca, 1995). Given k classes in the current 

population, let Pi be the proportion of the population which belongs to class i. 

Fitness entropy is then defined as, 

Figure 4.10 shows how entropy increases as number of classes increases and decreases 

as distribution becomes less uniform. The high fitness entropy in genetic algorithms 

describes the presence of many unique fitness values in the population, where the 

population is evenly distributed over those values. Low fitness entropy describes a 

population which contains fewer unique fitness values as many individuals have the 

same fitness. 

4.5.2 Diversity control methods 

Given the various similarity measures discussed in the previous section, they may be 

incorporated into the genetic algorithm in different ways. Some common methods 

are listed below: 

1. restricting the selection procedure (crowding models) (Booker, 1982). Crowd­

ing induces niches by forcing new individuals to replace those that are similar 

genotypically. This is completed by using a "steady-state" GA which cre-
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Figure 4. 10: Four different distributions showing how entropy varies according to 

number and distribution of classes. 
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ates new individuals one at a time, inserting them into the population by 

replacement of existing individuals. In the crowding algorithm, an individual 

is selected for replacement by selecting a subset of the population randomly 

and then selecting the member of that subset that is similar to the individual. 

2. restricting the mating procedure (assortative mating) (DeJong, 1975). The 

general philosophy of restricted mating makes the assumption that if two sim­

ilar parents are mated, then the offspring will be similar. Assortative mating 

algorithms restrict crossovers to occur between similar individuals. 

3. explicitly dividing the population into subpopulations (common in parallel 

GAs). In parallel GAs the population is explicitly divided into smaller sub­

populations. Each subpopulation is separated from the others in the sense 

that it evolves independently with occasional migrations of individuals from 

one subpopulation to another. Based on concepts from population genetics, 

the idea here is that random genetic drift will cause each subpopulation to 

search different regions of the domain and that migration will communicate 

important discoveries among the subpopulations. Local mating algorithm.'l 

(Collins and Jefferson, 1991) arrange the population geometrically (e.g., in a 

two-dimensional plane) and crossovers occur only between individuals that are 

"near" one another geographically. The idea is that random genetic variation 

will lead to subgroups of individuals, each exploring different regions of the 

search space. These methods can slow down convergence time dramatically, 

but by themselves cannot maintain stable separate subpopulations. 

4. modifying the way fitness is assigned (fitness sharing) (Goldberg, 1989). Fit­

ness sharing (Deb and Goldberg, 1989), (Goldberg and Richardson, 1987) 

induces subpopulations by penalizing individuals for the presence of other 

similar individuals in the population, thereby encouraging individuals to find 

productive uncrowded niches. Fitness sharing leaves the standard GA un­

changed and simply modifies the way in which fitness values are computed2• 

2The sharing function, introduced by Goldberg (Goldberg, 1989), is a function used to explicitly 

define the degree of sharing and maps genotype similarity into the degree of sharing: 
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It is clear that the existing methods for maintaining diversity discussed in the previ­

ous section are inadequate in themselves for the problem of a locally constant branch 

distance function. Phenotype diversity will make little impact when the space of 

individuals is large relative to the population. Fitness diversity is ineffective because 

it assumes that the search is able to find inputs that have a variety of fitness values. 

In the problems described in this thesis, the cost function is locally constant and 

such inputs are very difficult to find. 

The problem that must be solved is that the fitness function, if it is only the branch 

distance, is locally constant. The solution is to extend the fitness function to include 

a measure of scarcity of data-state values. 

4.5.3 Data-state distribution diversity metric 

Recording program data-state values 

At a single assignment statement in the program under test, the values assigned 

may be stored in a histogram. The domain of the histogram is the domain of the 

variable to which values are assigned, although of course only non zero frequencies 

need be stored. For each candidate test case, the data-state distribution is recorded 

in a histogram of data-state values assigned to each relevant variable in the program 

under test. Initially, these are the variables that are in the branch predicate. This 

means that for a single program execution the data-state distribution is recorded 

as a set of histograms. A histogram of a given variable assignment containing rare 

data-state values is called a rare histogram and so it is possible to speak of histogram 

scarcity compared to the histograms of the same variable but in other individuals in 

the population. Figure 4.11 shows the relation between population and histograms. 

fi 
- fitness of individual 

shared tness - Total degree of sharing 

!s(Xj) = n f(x,) , where, s is the predefined sharing function and d is the phonotype or 
L: s(d(xj, Xj)) 
j==1 

genotype similarity ( distance) function. 

A simple sharing function s would be the identity function. 
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Figure 4.11: The structure of data-state distribution inside population 

Data-state values are recorded for discrete value types only (e.g. integer, character, 

string, etc.). The values assigned to fioating point variables are not recorded because 

it is most unlikely that two or more randomly selected floating point inputs will be 

equal. In addition, real-valued arithmetic operations and functions applied to these 

inputs are unlikely to produce equal results. When the fioating point values assigned 

to a variable are unique across all assignments to that variable across the population, 

it can be argued that diversity is present. In addition, the cost functions for the 

relational operators cannot produce constant values unless they receive constant 

inputs. In the LOglO example program (Figure 4.6 as seen in page 84), random 

inputs lead to unique (across the population) values assigned to y. The distribution 

of values assigned to y is heavily skewed but this alone is not responsible for the 

locally constant cost values. In fact the histograms of values assigned to y are unique 

across the population. 
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Methods for measuring data-state distribution diversity in the population 

The aim is to rank individuals of equal branch cost on basis of similarity of data­

state distribution to other individual in the population. This requires a measure of 

similarity or distance between data-state distributions. 

A simple method to identify test cases which produce rare data-state values, is to 

group test cases into classes on the basis of equal histogram sets. This is a binary­

valued distance measure, equal or not equal. Two histogram sets are equal if the 

histograms they contain are equal. This is a strong criterion for grouping histogram 

sets but is justified on the grounds that only one of the variables used by the cost 

function need take a different value in order to modify the computed cost. 

The fitness function should measure both branch distance and data-state scarcity. 

For constant branch distance, the fitness of an individual is a function of the data­

state diversity it contributes to the population. In the case where the branch dis­

tance values in the population are all equal, the size of the data-state distribution 

equivalence class to which the individual belongs is used for population member 

ranking. 

More formally, let the equivalence classes of individuals under equal data-state distri­

bution be grouped into sets of equal sized classes and then let these sets be ordered 

according to increasing equivalence class size to produce a data-state equivalence 

class sequence (as shown Figure 4.12). 

The rank of an individual is the position in this sequence of the set that contains the 

data-state distribution equivalence class to which it belongs. The fitness fUIlction 

for an individual with a data-state distribution in a given class is: 

branchC ost + classSize - 1 

This is zero when a solution is found because the branch cost is zero and the his­

togram of values assigned is unique, this assumes that the GA has not already found 

the solution and so the equivalence class size is one. 
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Population belore ranking Population after ranking 

Individuals Fitness Data state distributions Individuals Rank 

i1 c1 {v1 , 11 } i18 1 

i2 c1 {v2,12} 110 2 

i3 c1 {v1, In 115 2 

i4 c1 {v2,12} 16 3 
i5 c1 {v1, 11} 113 3 

i6 c1 {v4,14} Class count Rank 114 3 

i7 c1 {v2,12} {v5,15} 1 1 119 3 

i8 c1 {v1, 11} {v3,13} 2 2 12 4 

i9 c1 {v1, 11} {v4, f4} 4 3 14 4 
i10 c1 {v3, f3} {v2, f2} 5 4 17 4 

i11 c1 {v2, f2} {v1, f1} 8 5 111 4 

i12 c1 {v1, f1} 120 4 

i13 c1 {v4,14} 11 5 

i14 c1 {v4,14} 13 5 

i15 c1 {v3, f3} 15 5 

116 c1 {v1, f1 } 18 5 

117 c1 {v1, 11} 19 5 
118 c1 {v5, f5} 112 5 
119 c1 {v4, f4} 116 5 
120 c1 {v2, f2} 117 5 

Figure 4.12: Population before and after ranking using data-state distribution equiv-

alence class size. 

Other dissimilarity distance measures may be defined. In general, assume that there 

is a distance function d(XI, X2) defined between any two histograms Xl and X2. This 

distance function is required to have the following properties for all X 1 and X2: 

2. Non-negative, d(XI, X2) 2:: 0, 

3. Zero for identical histograms, d(Xl,X2) = 0 if Xl = X2. 

Two methods were considered to measure the distance between Xl and X2. These 

methods are common in the literature on population diversity (Mattiussi et al., 

2004), and are applied to phenotype and genotype diversity, but here they are ap­

plied to data-state distributions. 

1. Hamming distance: Each histogram is a set of (value, frequency) pairs. Two 

histograms may be compared by the number of pairs in each histogram that 
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Figure 4.13: The data-state distributions of two individuals 

are absent from the other. For example if 

Xl = (VI, h), (V2, h), (V3, h) and 

X2 = (VI, h), (V2'/4), (V4, 15) then 

I 

I 

HD(Xl,X2) = 4, since (v2,h) and (v3,13) are absent from X2 and (v2,14) and 

(v4,15) are absent from Xl· So the definition will be: 

HD(Xl,X2) = IXl\X21 + IX2\Xll· 
Extent Xl with IX2 \xli and give 0 counts. 

Extent X2 with IXI \x21 and give 0 counts. 

2. Euclidean distance: For each pair (v,!) in Xl, if (v, g) is present in x2 let 

Ll = (f~g)2 else Ll = j2. For each pair (v,!) in X2, if (v,g) is present in Xl 
let L2 = (f~g)2 else L2 = j2j then ED(Xl, X2) = Ll + £2. 

The difference between Euclidian distance and the Hamming distance is that the 

Euclidean distance is more sensitive to the frequency of data-state values. 
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The number of histograms inside the data-state distribution may be different. from 

one individual to other as this depends upon the number of relevant assignment 

statements executed during the program execution. Figure 4.13 shows two individ­

uals, the first one executed two relevant assignment statements (8..'!signment 1 and 

assignment2) then the data-state distribution consist of two histograms; the sec­

ond individual executed one relevant assignment statement (assignmentl) then the 

data-state distribution consists of only one histogram. To find the distallce betweell 

these two individuals, the cost of insertion or deletion of a histogram will be consid­

ered next. Assume a single, unmatched histogram, e.g. Assigment2 in Figure 4.13 

compared to the empty histogram shown as yep. 

The Hamming distance between individual x and individual y is: 

HD(x,y) = 11, since (2,1) and (4, 2) are absent from Y1 and (2,4), (6,2) and (9, 

1) are absent from Xl in addition to the cost of all pairs in X2 which are absent from 

y¢ (the cost = 6). 

The Euclidean distance between individual X and individual y calculated as follows: 

ED(x, y) = ED(X1' Y1) + ED(X2' y¢) 

ED(x, y) = (1-;4)2 + 22 + (3-;3)2 + (4-;1)2 + 72 + (3-;3)2 + 82 + 12 + 22 + 102 

ED(x, y) = ~ + 4 + 0 + ~ + 49 + 0 + 64 + 1 + 4 + 100 

ED(x, y) = 231. 

The total distance between individual i and all other individuals in the population 

called the population distance Pdi can be defined as: 
n 

Pdi = L d(i,j), where n is the population size, d is a distance function (e.g. 
j=l 

Hamming distance or Euclidian distance) between two individuals i and j. 

The sum of the distances from each individual to all the other individuals in the 

population is a measure of how similar an individual is to the population as a whole. 

Pdi can be used to rank individuals within the population, i.e. the individual 

with the largest Pdi has the highest rank. This is called the maximum population 
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distance measure. During the search, this leads to a replacement strategy based 

on the contribution of diversity of the offspring to the population where it will be 

included. An individual of the population with a lower contribution of data-state 

distribution diversity than the one provided by the offspring will be replaced. 

In more detail, let us assume that an offspring, x, is returned from the recombination 

phase and let i min be an individual in the current population P which has the 

minimum population distance, let its distance be Pdi . Consider now the population 

obtained by removing imin and adding x. Call this population pi and let i~lin be 

the individual in the population p' that has the minimum population distance and 

let its distance be Pd~. If P~ > Pdi then imin is replaced by x, otherwise x is 

discarded. 

4.5.4 Data-state distribution histogram 

The fitness function based on the size of the equivalence class of data-state distribu­

tions directs the search to those individuals that are in equivalence classes of smallest 

size. After some time the number of large equivalence classes will have been progres­

sively removed to make way for new individuals in smaller equivalence classes. This 

may continue for a while until all the individuals are in singleton equivalence classes 

and yet no solution has been found. The fitness function will then assign the same 

rank to all individuals since the data-state equivalence classes in the population are 

all the same size. In this case, the GA parent selection mechanism is random which 

will lead to random search. Such a situation occurs in the Orthogonal program, 

when the size of the array increased to be 128 instead of 64. In practice, a popula­

tion in which all equivalence classes have the same size is likely to occur only when 

the number of classes is equal to the population size. Otherwise, different data-state 

values are likely to have non-uniform distributions. For example, in LoglO , it is very 

unlikely that the equivalence class for k = 5 will contain as many individuals as the 

equivalence class for k = 3, say. 

A possible remedy is to increase the population size and it would perhaps be useful 
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Histogram Count InCurrentPop 
A{O 1 2 3 4 5 6 7 8 3 True 

17 23 20 20 21 67 4 70 6} 

B{O 2 3 4 5 6 7 
7 True 39 19 15 66 2715 67} 

C{O 1 234 5 6 7 
4 True 15 20 15 6 66 73 28 26} 

D{O 1 2 3 4 5 6 7 19 True 48 5 4 15 97 4 70 6} 

E{O 1 2 3 4 5 6 
8 False 39 19 15 27 82 67 1} 

Table 4.1: Example of DSD histogram used to rank individuals. 

to repeat these experiments with a variety of different population size. Actually this 

solution is impractical when there is a very large number of data-state distributions. 

A solution is to record the histogram sets of data-state values produced by any in­

dividual during a particular search. These data-state distributions are recorded in 

a histogram called a data-state distribution histogram or DSD histogram for short. 

For each individual, a data value histogram set is stored in the DSD histogram as 

shown in Table 4.1. If the same histogram set is produced for different individuals, 

then the frequency count is increased. If an individual that produced a histogram 

set is in the current population then InCurrentPop flag is set true. Fitness fUllction 

now depends on the size of the histogram set frequency count in the DSD histogram 

rather than the size of the class in the population. If a new individual has a fitness 

(branch cost and histogram scarcity) equal to the fitness of the other members of 

the population then it is added to the population, replacing an individual with the 

most common histogram, even if the size of the histogram class is one. The fitness 

cost for an individual with a data-state distribution that has a frequency count of 

f is 

branchC ost + f - 1 

This value is zero when the first solution is found. 

In the case of the Orthogonal program, where lengths of the arrays are larger than 
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the population size, the DSD histogram is constructed when the individuals in the 

population all belong to their own equivalence class (of size 1). New individuals with 

histogram sets that are not in the DSD histogram are added to the population and an 

arbitrary individual is removed, since all individuals in the population have the same 

histogram scarcity. This part of the search is random. After some time, however, Ilew 

individuals may have histogram sets that have already been seen before, i.e. they are 

present in the DSD histogram. These individuals are less fit than any in the current 

population and are not added to the population because their histogram sets have 

been generated at least twice and all individuals in the population have a histogram 

set that has been seen just once only. The repeat occurrence of the histogram sets 

are noted, however, in the DSD histogram by incrementing the frequency count for 

the relevant histogram set. In this way, a variety of frequency counts will arise 

in the DSD histogram and lead to the individuals in the population have different 

fitness values. Once this occurs, the GA fitness based selection of the individuals 

for reproduction is restored and the GA search can find a solution. 

DSD histogram can be used from the start but it increases the memory requirements 

and the search time. 

4.5.5 Clustering histograms 

There is a potential problem with the use of the DSD histogram is that it can 

become very large. An alternative method to the DSD histogram is to cluster the 

individuals in a population once the individuals are all in equivalence classes of size 

1. Clustering is the classification of similar data-state distributions into classes so 

that the set of data-state distributions share some common trait. If the number of 

clusters is less than the population size, then cluster size can be used to measure 

the scarcity of the histograms of the individuals that it contains. This does not 

ensure that all cluster sizes will not be equal but it does decrease the likelihood. 

This method requires more time to compute the clusters but only a fixed amount of 

additional memory. 
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The rank of an individual in the population is the same as illustrated in Section 4.5.3 

except that the size of the cluster to which an individual belongs is used instead of 

the size of the equivalence class to which it belongs. 

To perform clustering a distance measure between data-state distributions is re­

quired. The simplest measure would be using the Euclidean distance as described 

in Section 4.5.3. 

In the following sections, it is shown how two common clustering techniques Illay be 

adapted to cluster the individuals in the population. 

Hierarchical clustering 

The hierarchical clustering algorithm takes as input the number of desired classes 

k, and the distances between every pair of individuals. The algorithm is as follows: 

• Start with n classes (population size), each containing a single data-state dis­

tribution. 

• For i = n - 1 down to k 

- Find the closest pair of data-state distributions, call these A and B, and 

remove them from the set of classes. 

- Generate a new class C, containing the data-state distributions A and B. 

- Generate new distances from class C to all the other remaining classes. 

The distance between class C and some other class D is the average 

distance between the elements of C and the elements of D. 

Figure 4.14 shows a possible clustering for a set of 6 data-state distributions. The 

fitness function for an individual with a data-state distribution in a given cluster is: 

branchCost + cluster Size - 1 

The value may not be zero when a solution is found but it does decrease towards 

individuals that have dissimilar data-state distributions. 



Using program data-state scarcity in test data search 

(0 

8 
8 

(a) 

(0 
8 8 

(b) 

103 

Figure 4.14: Hierarchical clustering example, using 6 data-state distributions 

K-means algorithm 

K-means (MacQueen, 1967) is one of the simplest unsupervised learning algorithms 

for clustering. The procedure sets a certain number of clusters (k clusters) fixed at 

the onset. The main idea of the K-mealls algorithm is to assign each point to the 

cluster whose centre is nearest. The centre is the average of all the points in the 

cluster. Example: The data set has three dimensions and the cluster has two points: 

X = (Xl, X2, X3) and Y = (YI, Y2, Y3). Then the centroid Z becomes Z = (Zl' Z2, Z3), 

where Zl = (Xl + yd/2, Z2 = (X2 + Y2)/2 and Z3 = (X3 + Y3)/2. 

The algorithm can use the square Euclidean distance between the data-state distri­

butions as follows: 

• Choose the number of classes, k. 

• remove k individuals, chosen randomly, from the population to form the centres 

of k classes. 

• for i = 1 to n - k 

1. Assign each remaining individual to the nearest class centre. 

2. Recompute the new class centres. 
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The main advantage of this algorithm is its simplicity. Its disadvantage is that it 

does not yield the same result with each run, since the resulting clusters depend on 

the initial k random selections. To solve this problem, the initial k individuals can 

be selected according to the total Euclidean distance (Pdi ) from those individuals 

to all other members of the population. Starting the clusters with the most distant 

individuals is a heuristic for selecting widely spaced clusters. 

4.6 Instigating Data Scarcity Search 

Data scarcity search should be instigated only when the branch cost function has 

become constant (locally fiat) and program transformation techniques and path 

search techniques are either inapplicable or ineffective. Detecting that the search 

has stopped converging, stagnation, can be done by monitoring the average or best 

population fitness. In the work reported here, stagnation was defined as no improve­

ment in the best cost value after 50 offspring. At this point, data-state scarcity 

search was introduced immediately since it was known that for the selected example 

programs, no transformation technique was applicable. 

4.7 Sampling the Data-state to Produce the 

Data-state Distribution 

Recording data-state information is a computational cost that need not be incurred 

until data-state scarcity search is instigated. This can be done by re-instrumenting 

the program under test. To sample the data-states, the variables that appear in the 

predicate expression of the target branch are identified and from the data depen­

dency graph, the variables that affect the variables of the predicate expression are 

also identified. Input variables are excluded. In order to identify rare data-state 

values it is necessary to instrument the distribution of values that are assigned to 

these variables. To do this, each definition of a variable (e.g. an assignment state-
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ment) , providing it is not the assignment of a compile-time constant, is associated 

with a histogram in which is recorded the values assigned and the number of times 

any particular value is assigned. The instrumentation of the program shown in Fig­

ure 4.6 is shown in Figure 4.15. lnst () returns the value of its first argument after 

adding this value to the histogram associated with the variable definition that is 

labeled by the second argument. Note that the array a is not instrumented since it 

is assigned only constant values. In general, however, the instrumentation of values 

assigned to an array is a problem that was ignored for this work. 

void Logl0(int x){ 

} 

//x in [0, 100000] 

a[O] = 0; 

a[l] = a[2] = a[3] = a[4] = a[5] = 1; 

double y =lnst(log10(x), "y1"); 

int k = lnst (ceiling(y), "k1 ") ; 

if (a [k] == 0) { 

//TARGET BRANCH 

} 

Figure 4.15: Data-state instrumentation of the program from Figure 4.6. 

A program with a loop may generate a large number of different values for a par­

ticular variable assignment which will lead to an impractically large number of his­

togram classes. To limit the number of classes in the histogram, the rate at which 

assigned values are sampled is progressively reduced as the number of classes in­

creases. Initially all values assigned are recorded until the number of assignments 

(each assignment is recorded in a histogram) x k equals a positive constant s, set 

to 1000 for this work, where k is the maximum number of values stored in one his­

togram. At this point, the sampling rate is halved so that only each second value is 

recorded. This does not directly limit the number of new classes but it does reduce 
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the rate at which they may be created. If the number of class equals 28 then the 

sampling rate is again halved, and so on. This scheme biases data-state sampling to 

states that are produced early on in the computation. There will be programs for 

which this bias is advantageous and programs for which it is not. Given that the 

performance implications of the scheme are unclear, at the moment the scheme can 

be justified only on the basis of the simplicity of implementation. 

4.8 Empirical Investigation 

The data-state scarcity strategy was investigated by generating test data for the 

example programs, AllTrue, Orthogonal, Log10, Mask and the three programs 

Error, CountEqual and FloatRefEx, of which the latter two are described later on. 

4.8.1 Experimental setup 

The tool used here is the same as described in Section 3.3, Page 48. In the work 

reported here, a population size of 100 was always used. This parameter was not 

"tuned" to suit any particular program under test. In a steady state update style 

of genetic algorithms (as used in this work), new individuals that are sufficiently 

fit are inserted in the population as soon as they are created. Full branch coverage 

was attempted for each of the programs under test. Each branch was taken as the 

individual target of the search, unless it was fortuitously covered during the search 

for test data for another branch. 

GAs search generates inputs for the function containing the current structural target. 

A vector of floating point, integer, characters and string variable values correspond­

ing to the input data is optimized. The ranges of each variable are specified. The 

test subject is then called with this input data. The criterion to stop the search 

was set up to terminate the search after 100,000 executions of the program under 

test if full coverage was not achieved. Individuals were recombined using binary and 

real-valued (one-point and uniform) recombination, and mutated using real-valued 
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mutation. Real-valued mutation was performed using "Gaussian distribution" and 

"number creep" . 

4.8.2 Experimental programs 

The program CountEqual shown in Figure 4.16 determines if more than half the 

characters in a string are equal to the respective preceding character. 

CountEqual(char[] a) { 

int equal = 0; 

for (i = 0; i < 64; i++) { 

} 

string s = match(a[i] + n+n, a, i); 

equal = equal + s.Length - 1; 

i = i + s.Length - 1; 

if (floor(equal / 32) -- 1) { 

//TARGET 

} 

Figure 4.16: A difficult to execute branch in a program 

The variable equal is likely to be zero or close to zero. In such cases, the value of 

equal / 32 is invariably zero. For randomly selected inputs, the histogram of values 

assigned to equal will be skewed towards zero. Directing the search towards inputs 

that produce rare histograms will direct the search towards inputs in which the 

histogram of values assigned to equal is less skewed towards zero, which increases 

the probability of finding an input with a relatively high value for equal. The target 

branch is executed when equal has the value 32. 

The program FloatRegEx is shown in Appendix A and its flowchart is shown in 

Figure 4.18. This program implements a finite state machine to recognise floating 

point numbers with an optional exponent. The state transitions of the finite state 
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Error(int[] a) { 

} 

//a[i] in [-100000, 100000] 

int error = 0; 

int errorsum = 0; 

for (i = 0; i < 16; i++) { 

error = abs(a[i]) - i; 

errorsum = errorsum + min(l, abs(error»; 

} 

if (floor(errorsum / 4) < 1) { 

//TARGET 

} 
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Figure 4.17: Program compares a set of points with the sequence 0, 1, 2, ... , 15 and 

executes the target branch when fewer than one quarter of the points disagree with 

the sequence. 

machine are defined in an array. The program is a single loop that reads each 

character of the input string and, together with the current state, accesses the next 

state from the array. The target branch is executed when the state corresponding 

to a number with an exponent is reached. For random character strings, this is a 

difficult state to reach. 

Clearly, the set of test programs assembled is a biased collection but the purpose 

of the investigation is to show the effectiveness of data scarcity search for a class of 

program for which existing techniques are not effective. 
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Figure 4.18: Flowchart of FloatRegEx example 

4.8.3 Results 

Number of data-state distributions is less than population size 

In order to assess the fitness function when the branch distances of the population 

are all equal and the number of the data-state distributions is less than population 

size, in this case, the size of the data-state distribution equivalence class to which the 

individual belongs and the population distance Pdi are used for popUlation member 

ranking. Test data was generated for each program and the number of program 

executions required to find data for a given program was noted. This was done for 

50 trials and the average taken. 

The results in Table 4.3 show the average number of executions required to find test 

data when equivalence class and distance between data-state distributions (Ham­

ming distance and Euclidean distance) were used. There is no evidence to suggest 

that one method is more or less efficient than the others in terms of performance 

but using equivalence class for popUlation member ranking needs less computation 

than using Hamming distance and Euclidean distance. 
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Program Successes Equivalence class HD ED 

AIITrue 50 4651 6563 8218 

Orthogonal 50 8004 10814 9325 

Logl0 50 2184 1641 1641 

Mask 50 1119 3251 2074 

CountEqual 50 9421 9652 9936 

Error 50 8719 12362 12251 

FloatRegEx 50 11081 12354 11832 

Table 4.2: The number of successful trials and the average number of test program 

executions out of 50 required to find test data to achieve coverage of the target 

branch. 
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Figure 4.19: Plot showing the fitness landscape for the branch cost and the diversity 

cost in the program LogJO. For clarity of presentation, the diversity co t plotted is 

the maximum entropy value (obtained when the solution is found) les the entropy 

value after a given execution of the program. 
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Figure 4.20: The diversity in the program Orthogonal. For clarity of presentation, 

the unique data-state distribution is normalised between 0 and 1. 

No figures for the number of executions required to execute the target branch without 

using data-state scarcity search are given, since no solutions were found after 100,000 

executions of the program under test. 

Figure 4.19 shows how the data-state scarcity cost descreases during the progr of 

the search for a single run to find test data for program LoglO . The branch cost is 

1 for all but one point, i.e. when the solution is found. 

Figure 4.20 shows the increasing diversity and unique data-state distribution ( caled 

between 0 and 1 for simplicity of representation) during the progress of the search 

for a single run to find test data for the Orthogonal program in Figure 4.5. 

Number of data-state distributions is greater than or equal to the popu-

lation size 

In order to assess the three methods of fitness function definition when the number of 

histograms is 2:: population size, the sample of programs is modified for this purpose, 

i.e AIITrue128 means the AIITrue program in Figure 4.4 is modified by making 

the array length equal to 128 instead of 64. This means the number of histograms 

will be increased to 128. The DSD histogram for the All True128 program i shown 

Figure 4.21a, all equivalence class of size 1. The search in this part is random. 
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After a time of execution, new test cases may have data-state distributions that are 

already in the DSD histogram. This increases the count of these test cases and these 

test cases become common and less fit as shown in Figure 4.21b, the DSD histogram 

of the same program after 520 offspring. 

For K-means clustering and hierarchical clustering the number of clusters is selected 

to be equal to ~, where n is the population size. This value was chosen without 

detailed analysis. 

A problem was identified in hierarchical and K-means clustering algorithms, that 

when we are building the cluster, sometimes there is more than one closest cluster. 

Assume we have a cluster A, which has the same distance to both clusters Band 

C. The algorithm at that point chooses one, arbitrarily. Say the algorithm chooses 

cluster B, thus forming cluster A'. Now cluster A' has a particular distance to 

cluster D which may be very different from the distance it would have had if the 

algorithm had chosen C and A to form A'. 

The results in Table 4.3 show the number of program executions required to find 

input data to achieve branch coverage, averaged over 50 trials. These results provide 

some evidence that DSD histogram is the most efficient of the three methods and 

that hierarchical is more efficient than the K-means. The reason for the poorer 

performance of K -means is related to the previous problem and the selection of 

initial k cluster. 

4.9 Combining Program-specific Operators with 

Data Search 

When the fitness landscape becomes locally flat for large areas of the input domain, 

data-state scarcity will be introduced to solve the problem but this does not exclude 

the use of program-specific search operators. In this section data-state scarcity is 

used with program-specific search operators in order to increase the performance of 

the search. This can be illustrated by example in Figure 4.22 (FlagAvoid). This 
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Figure 4.21: (a) DSD histogram for AllTrue128 program is constructed when the 

population size is eq ual to the data-state distribution size, (b) DSD histogram after 

520 program executions, (c) DSD histogram after 11000 program executions for true 

value of I nCUTrentPop. 
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Program K-means Hierarchical DSD histogram 

AllTrue128 28325 23847 20005 

AllTrue256 66135 58964 48632 

Orthogonal 128 37945 33264 30987 

Orthogona1256 73218 69258 62847 

CountEqual128 41367 40988 37564 

CountEqua1256 83214 82586 78645 

Mask64 11387 12631 10456 

Error64 46254 48299 39874 

Table 4.3: The number of successful trials and the average number of test program 

executions out of 50 required to find test data to achieve coverage of the target 

branch, when number of data-state distribution ~ population size. 

program iterates through an array of 64 double values, computes the sin of each 

element of a then converts this value to an integer which is used in a branch predicate 

that leads to the target. All flag assignments within the loop have to be avoided, 

and the target could be covered only when all of the elements of array a are equal to 

¥. Even though x is not a boolean variable, a "flag" variable problem arises because 

x may take one of only two integer values (0, 1). 

Consider, however, the values assigned to x within the loop. Most of the values 

assigned to x will be zeros. The inputs that assign 1 to x may be identified a..'l 

producing rare values and hence the search may be directed to the input region that 

produces these rare values. Directing the search towards input that produces rare 

values of x is an effective strategy for changing the final value when the maximum 

number of ones is assigned. By using the program-specific search operators, although 

none of the three integer values 0, 1, and 64 that occur in the program are input 

values that execute the target branch (to execute the target branch all the elements 

of the array must be equal to ¥), they do provide reasonable starting points for 

a guided search. In particular, to set the variable a[i] = ¥, it is possible to 
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void FlagAvoid(double[] a){ 

} 

int x = 0; 

double y = 0.0; 

int i; 

for(i = 0; i< 64; i++){ 

Y = Math.sin (a[i]); Ily in [-1, 1] 

} 

y = Math.abs(y); 

x = Math.floorCy); 

if (x != 1){ 

break; 

} 

Ily in [0, 1] 

II x = 0 or 1 only 

if ex == l){IIEXECUTED ONLY WHEN ALL VALUES OF a EQUAL TO 90. 

Iitarget executed 

} 

Figure 4.22: A difficult to execute branch in a program FlagAvoid 
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invert the trigonometric function sin(a[i]) with parameter value equal to 1 which 

is sin -1 (1) then a [i] = ¥. Figure 4.23 shows different paths to a solution to test 

data generation problem shown in Figure 4.22. 

Experiments performed using different programs listed in Table 4.3 in addition to 

the FlagAvoid program were used to evaluate the performance of program-specific 

search operators with data-state scarcity. The test tool collected program liter­

als and mathematical operators and determined the mutation operators during a 

traversal of the program abstract syntax tree. Each program contained a specific 

statement that could not be easily covered by GAs, due to a specific low probability 

statement sequence required to be followed before the target is reached. The aim was 
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Figure 4.23: The different paths to a solution to the test data generation problem 

shown in Figure 4.22. 
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I program Name II Execution I 

Orthogonal 55 

Logl0 0 

Mask 586 

Count Equal 618 

Error 11243 

FloatRegEx 5751 

FlagAvoid 3971 

Table 4.4: Number of subject program executions to cover all branches, average of 

50 trials was used, equivalence class was used for population member ranking. 

to find input data to execute all the branches in each programs. For each program 

50 trials were done. The average number of program executions required to achieve 

branch coverage over 50 trials is shown in Table 4.4. These results show a significant 

improvement in performance compared to the results without using program-specific 

search operators, as shown in Figure 4.24, which compares the results of the data­

state scarcity search with and without using program-specific search operators when 

equivalence class was used for population member ranking. The results in Table 4.5 

show the average number of program executions required to achieve branch coverage 

over 50 trials, when number of data-state distributions ~ population size when DSD 

histograms was used. 

The usefulness of using program data constants by itself without program functions 

and operators has not been investigated here. Similarly we have not investigated 

program operators and functions without data constants. There seems to be lit­

tle advantage in using each of these by itself, i.e the implementation cost is not 

significantly reduced. 

In example, Figure 4.17 (Error) the inclusion of literals from the program in the 

integer domain will bias the search towards arrays that contain a greater than av-
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Figure 4.24: A comparison of the number of executions of the program under test 

required to find test data to achieve branch coverage (averaged over 50 trial ) with 

and without program-specific search operators. 

erage proportion of the literals 0 , 1, 4, 16. These values are not helpful in finding 

the solution array which is [0 , ±1 , ± 2, ± 3, ± 4, ... , ± 15]. In fact t he bias toward 

the literals 0, 1, 4, 16 is counterproductive, as the bias towards literals imp d -s the 

search, but using the program mutation operators ("-" and "+") may make a little 

improvement. 

In general, the use of program-specific search operators leads to about a threefold 

improvement in search efficiency. In the case of LoglO , no guided search was required. 

The solution of the target already exists in the initial population generated from the 

program literals. 

4.10 Summary 

Programs that contain flag variables or otherwise generate almost locally flat ost 

functions pose a problem for heuristic search algorithms that seek to minimise a cost 
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I program Name "Execution I 
Orthogona1128 81 

Orthogona1256 362 

Mask64 1746 

CountEqua1128 6107 

CountEqua1256 16984 

Error64 38798 

Table 4.5: Number of subject program executions to satisfy all branches, average 

of 50 trials was used, equivalence class was used for population member ranking 

combined with program-specific search operators. When number of data-state dis­

tributions 2: population size, DSD histogram is used. 

function. Existing methods based on program transformations and data How search 

are ineffective for many programs and some examples have been given to illustrate 

the problem. A new approach of data-state scarcity search is shown to overcome 

the problem. The solution is most appropriate for programs that have little scope 

to exploit control flow diversity. Such programs contain few branches and may 

be "data-driven" of which table-driven finite-state machines are an example. Two 

fitness functions were investigated, one based on the grouping of equal data-state 

distributions and another based on the distance between data-state distributions. A 

limitation emerged when using grouping of equal data-state distributions and using 

population distance (Pd) when the number of data-state distribution 2: population 

size. A possible solution is to record the histogram sets of data-state values (DSD 

histogram). Fitness function depends on the size of the histogram set frequency 

count in the DSD histogram rather than the size of the class in the population. 

There is a potential problem with the use of the DSD histogram is that it can 

become very large. An alternative method to the DSD histogram is to cluster the 

individuals in a population once the individuals are all in equivalence classes of 
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size 1. The rank of an individual in the population depends on the size of the 

cluster to which an individual belongs, instead of the size of the equivalence class to 

which it belongs. The most significant improvement in performance, however, was 

obtained by using program-specific search operators. In the empirical investigation, 

the use of program-specific search operators was shown to give a threefold increase 

in performance. 

In general, the problem of almost locally fiat cost fUIlctions is such that no single 

approach can be expected to solve the different cases in which it may occur. A 

variety of techniques are required. This chapter describes one such technique. 



Chapter 5 

Conclusions and Future Work 

5.1 Summary of Achievements 

The original overall aims and objectives of this thesis were as follows: 

1. Generation of string test data automatically. 

2. Generation of test data for some programs that exhibit an almost constant 

cost function at the test goal. 

3. Demonstrating the effectiveness of program-specific search operators for many 

types of test program. 

5.1.1 Generating string test data 

The examination of the SSCLI source code showed that about 6% of the predicate 

expressions is a string predicate expression and yet work on test data generation has 

so far been largely limited to numeric test data. For string equality predicates, the 

following cost functions were investigated: 

1. an adaptation of the binary Hamming distance (HD). 
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2. character distance(CD), defined as the sum of the absolute difference between 

the ordinal character values of corresponding character pairs. 

3. ordinal edit distance (OED), a version of edit distance costs with fine-grained 

costs based on the difference in character ordinal values and defined as 

OED(s: a,t: b) = min(OED(s: a,t)+k,OED(s,t: b)+k,OED(s,t)+la­

bl) where s : a, t : b are character strings, each consisting of a possibly empty 

string s, t, followed by the character a and b, k is the insertion or deletion cost 

and a, b in la - bl are interpreted as ordinal values. 

An ordinal value ordering in which the string is considered as a number with base 

equal to the cardinality of the character set is unsuitable as a cost function for 

string equality since it treats mismatches differently according to their location in 

the string. 

Ordinal edit distance was found the most effective in an empirical study. Three basic 

kinds of mutation operators, deletion, insertion and substitution were used, initially 

with equal probability but a progressive increase in the probability with which the 

character substitution is applied and the standard deviation of the Gaussian sub­

stitution operator was reduced has been shown to improve the performance of the 

search. This was done because later in the search the candidate strings tend to have 

the same length as the required string. Two functions for string ordering were in­

vestigated, Ordinal value ordering and Single character pair ordering, but there was 

no significant difference in their performance in the empirical investigation although 

one is easier to implement. 

5.1.2 Data-state scarcity search as a solution for flag prob­

lem 

The computations performed by programs can result in a degree of "information 

loss" when computing the branch distance measure, producing coarse or fiat objec­

tive function landscapes for structures within the program. This in turn results in 

the search receiving little guidance to the required test data, and it typically fails. 
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Existing methods are ineffective for many programs and some examples have been 

given. 

In an attempt to tackle this problem, Chapter 4 presents a new technique for di­

recting the search. The new technique depends on introducing program data-state 

scarcity as an additional search goal. The search is guided by a new evaluation (cost) 

function made up of two parts, one depending on the conventional instrumentation 

of the test goal, the other depending on the diversity of the data-states produced 

during execution of the program under test. Two fitness functions were investi­

gated, ranking of candidate solutions by grouping of equal data state distribution 

and ranking by distance between data state distributions. 

Using equivalence classes of data state distribution is ineffective when the number of 

data state distributions equals the population size. A possible solution is to record 

the histogram sets of data state values in a DSD histogram that is not limited in 

size. Fitness function now depends on the size of the histogram set frequency count 

in the DSD histogram rather than the size of the class in the population. The fitness 

cost for an individual with a data state distribution that has a frequency count of 

f is 

branchC ost + f - 1 

This value is zero when the first solution is found. 

A potential problem with the use of the DSD histogram is that it can become very 

large. An alternative method to the DSD histogram is to cluster the individuals in 

a population once the individuals are all in equivalence classes of size 1. The rank 

of an individual in the population depends on the size of the cluster to which an 

individual belongs, instead of the size of the equivalence class to which it belongs. 

FUll branch coverage was obtained in all experiments by using DSD histograms 

and clustering histograms. The results provides some evidence that using DSD 

histograms is the more efficient than other methods. 
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5.1.3 Using program-specific search operators 

Program-specific search operators aim to exploit the structure and behaviour of the 

computation in the region in the program from the input variable to the test goal 

rather than the test goal by itself. The structure of the computation can be used in 

the search by using the functions available in the program under test as the basis 

of search operators and constants to seed the search. This idea was applied first on 

the string data problem. The examination of the SSCLI code showed that about 

65% of string predicate expressions contains a string literal. 

By exploiting the presence of string literals in programs that process string data, a 

very significant improvement in performance was obtained. The program-dependent 

string search operators that focus the search in the region of string literals were 

presented in Chapter 3, and in the empirical investigation, the use of these operators 

was shown to give a fivefold increase in performance. The program-specific search 

operators have been demonstrated for strings but this technique can be generalised 

to other data types. 

In the case of numerical types, additional genetic operators were introduced to in­

crease the performance of search by analysing the program under test and extracting 

arithmetic operators and trigonometric function presented in the program under test 

and then using these functions and their inverse as additional mutation operators. 

More generally, the proposed approach is to exploit the structure and behaviour of 

the computation from the input x to the test goal, the usual instrumentation point. 

Assume this computation sequence consists of the sequence of statements of the 

form s = f (s) where sand s are expressions that reference the data-state and f is 

a function. The proposed approach is illustrated in Figure 5.1. 

The structure of the sequence can be used in the search by using the functions fl, ... , 

fn as the basis of search operators and constants to seed the search. The behaviour 

of the sequence can be used in the search by examining the intermediate store values 

sl, s2, ... to provide additional guidance to the search. 

Program-specific search operators were combined with data-state scarcity search for 
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sl = flex); 
s2 = £2(s1); 

y = fu(sn -1); 
if{y = a) { II instrumentation here only, cost = abs(y - a) 
} 

(a) 

sl = fl (x); 
s2 = £2(sl); 

y = fu(sn -1); 
if{y= a) { 
} 

(b) 

1/ data-state instrumentation 

II test goal instrumentation, cost = abs(y - a) 
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Figure 5.1: (a) Existing approach to test data search depends on cost function 

(b) New approach exploits the structure of the program to use the constants and 

specific-search operators and intermediate data state values. 

the flag problem in Chapter 4 and the empirical investigation of the use of program­

specific search operators was shown to give a threefold increase in performance. 

However, applying program-specific search operators with conventional genetic al­

gorithms increases performance more than 25 times. 

On the whole, program-specific search operators can be combined with other tech­

niques, e.g. transformation (Harman et al., 2004), data-state scarcity and conven­

tional genetic algorithms to increase the speed of search. 

5.2 Limitations and Future Work 

The data-state scarcity search method, as it currently stands, has some limitations 

with respect to the type of programs that can be handled: 

1. A program with a loop may generate a large number of different values for a 
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particular variable assignment which lead to a large number of histograms. In 

this work, the number of classes in the histogram is limited until the number of 

assignment x k equals a constant s (set to 1000 for this work), where k is the 

maximum number of values stored in one histogram. It is not clear how this 

heuristic performs for programs that have large numbers of loop iterations. 

2. The array is not instrumented in this work. It is not clear how large data 

structure should be instrumented to collect data-state values. 

There is also a potential problem in that the DSD histogram may become very large. 

These limitations could be addressed in future work. 



Appendix A 

Test Programs 

A.1 Calc 

double Calc(String op. double argl. double arg2){ 

op = op.ToLower(); 

double result = 0.0 

if (IIpi" == op) { //CONSTANT OPERATOR 

result = System.Math.PI; 

} 

else if ("e" == op) { 

result = System.Math.E; 

} //UNARY OPERATOR 

else if (IIsqrt" == op) { 

result = System.Math.Sqrt(argl); 

} 

else if ("log" == op) { 

result = System.Math.Log(argl); 

} 
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} 

else if ("sine" == op) { 

result = System.Math.Sin(argl); 

} 

else if ("cosine" == op) { 

result = System.Math.Cos(argl); 

} 

else if ("tangent" == op) { 

result = System.Math.Tan(argl); 

} //BINARY OPERATOR 

else if ("plus" == op) { 

result = argl + arg2; 

} 

else if ("subtract" == op) { 

result = argl - arg2; 

} 

else if ("multiply" == op) { 

result = argl * arg2; 

} 

else if ("divide" == op) { 

result = argl / arg2; 

} 

return result; 
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A.2 Cookie 

int Cookie(String name, String val, String site){ 

name = name.ToLower(); 

} 

val = val.ToLower(); 

site = site.ToLower(); 

int result = 0; 

} 

if ("userid" == name) { 

if (val.Length > 6) { 

} 

} 

if ("user" == val. Substring (0 , 4» { 

result = 1; 

else if ("session" == name) { 

} 

if ("am" == val && "abc. com" == site) { 

result = 1; 

else { 

} 

} 

result = 2; 

return result; 
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A.3 DateParse 

void DateParse(String dayname. String monthname){ 

var result : int = 0; 

var month : int = -1; 

dayname = dayname.ToLower(); 

monthname = monthname.ToLower(); 

if ("mon" -- dayname II 

"tue" == dayname II 

"wed" == dayname II 

"thur" == dayname II 

"fri" == dayname II 

"sat" == dayname II 

"sun" == dayname) { 

result = 1; 

} 

if ("jan" == monthname) { 

result += 1; 

} 

if ("feb" == monthname) { 

result += 2; 

} 

if ("mar" == monthname) { 

result += 3; 

} 

if ("apr" == monthname) { 

result += 4; 

} 

130 



Test Programs 131 

if ("may" == monthname) { 

result += 5; 

} 

if ("jun" == monthname) { 

result += 6; 

} 

if ("jul" == monthname) { 

result += 7; 

} 

if ("aug" == monthname) { 

result += 8; 

} 

if ("sep" == monthname) { 

result += 9; 

} 

if ("oct" == monthname) { 

result += 10; 

} 

if ("nov" == monthname) { 

resul t += 11; 

} 

if ("dec" == monthname) { 

result += 12; 

} 

} 
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A.4 FileSuffix 

int FileSuffix(String directory, String file){ 

/ /EG pathname = " ... WORD/FILE. DOC" ; 

Object [] files; 

String[] fileparts; 

int lastfile = 0; 

int lastpart = 0; 

String suffix ; 

fileparts = file.Split("."); 

lastpart = fileparts.Length - 1; 

if (lastpart > 0) { 

suffix = fileparts[lastpart]; 

if ("text" == directory) { 

if ("txt" == suffix) { 

//print("text"); 

} 

} 

if ("acrobat" == directory) { 

if ("pdf" == suffix) { 

/ /print ("acrobat ") ; 

} 

} 

if ("word" == directory) { 

if ("doc" == suffix) { 

/ /print ("word") ; 

} 

} 
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if ("bin" == directory) 

if ("exe" == suffix) 

//print("bin"); 

} 

} 

if ("lib" == directory) 

if ("dll" == suffix) 

//print("lib"); 

} 

} 

} 

return 1; 

} 

} 

//var ct = new CUT(); 

Ilct.Subject("word", "file.doc"); 

Ilct. Subject ("text", "file. txt") ; 

Ilct.Subject("acrobat", "file.pdf"); 

Ilct.Subject("bin", "file.exe"); 

Ilct.Subject("lib", "file.dIP); 
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A.5 Stem 

String Suffix(String s, int len) : { 

//SUFFIX OF NO MORE THAN len CHARS 

int slen = s.Length; 

if (slen > len) { 

return s.Substring(slen - len, len); 

} 

else { 

return s; 

} 

} 

boolean Consonant(String s, int pos) { 

//CONSONANT AT pos 
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//CONSONANT EXCLUES VOWELS AND Y PRECEDED BY A CONSONANT, E.G .... TV 

int slen = s.Length; 

if (pos < 0 I I pos > slen - 1) { 

return false; 

} 

switch (s[pos]) { 

case 'a': 

case 'e': 

case 'i': 

case '0': 

case 'u': { 

return false; 

} 
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case 'y' : { 

if (0 == pos) { 

return true; 

} 

else { 

return IConsonant(s, pos - 1); 

} 

} 

default: { 

return true; 

} 

} 

} 

boolean DoubleConsonant(String s, int pos) { 

IIDOUBLE CONSONANT AT pos 
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IICONSONANT EXCLUES VOWELS AND Y PRECEDED BY A CONSONANT, E.G .... TY 

int slen = s.Length; 

} 

if (pos < 1 I I pos > slen - 1) { 

return false; 

} 

if (s [pos - 1] ! = s [pos]) { 

return false; 

} 

return Consonant(s, pos - 1); 

II does stem end with CVC? 
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} 

boolean EndsWithCVC(String s){ 

int slen = s.Length; 

if (slen < 3) { 

return false; 

} 

if (!Consonant(s, slen - 1) I I Consonant(s, slen - 2) 

I I !Consonant(s, slen - 3» { 

return false; 

} 

char c = s[slen - 1]; 

return !(c == 'w' I I c -- 'x' I I c == 'y'); 

int stringMeasure(String s, int len){ 

II returns a CVC measure for the string 

Illen IS LENGTH OF PREFIX OF s TO BE CONSIDERED 

int n = 0; 

int i = 0; 

while (true) { 

} 

if (i >= len) { 

return n; 

} 

if (!Consonant(s, i» { 
break; 

} 

i++; 

i++; 
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while(true) { 

while(true) { 

} 

} 

} 

if (i >= len) { 

return n; 

} 

if (Consonant(s, i» { 

break; 

} 

i++; 

i++; 

n++; 

while (true) { 

} 

if (i >= len) { 

return n; 

} 

if (!Consonant(s, i» { 

break; 

} 

i++; 

i++; 

II does string contain a vowel? 

boolean ContainsVowel(String s, int len){ 

int i = 0; 
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while(i < len) { 

if (!Consonant(s, i» { 

return true; 

} 

i = i + 1; 

} 

return false; 

} 

int Subject(String s){ 

char c; 

int i = 0; 

s = s.TrimO; 

if (s.Length < 2) { 

return 0; 

} 

Ilall characters must be LOWERCASE 

s = s. ToLowerO; 

i = 0; 

while(i < s.Length) { 

if (s [i] > "z" II s [i] < "a"H 

II return "Invalid term"· , 

return 0; 

} 

i = i + 1; 

} 

II IES -> I 

if ("zies" == Suffixes, 4» { 



Test Programs 

s = s.Substring(O, s.Length - 2); 

} 

II ss -> S 

else if ("ess" == Suffixes, 3» { 

s = s.Substring(O, s.Length - 1); 

} 

II S -> 

else if ("sses" == Suffixes, 4» { 

s = s.Substring(O, s.Length - 1); 

} 

else { 

s = s; 

} 

II end step1a 

Ilstepib 

if (s.Length < 3) { 

return 0; 

} 

else II AT -> ATE 

} 

if ("stat" == Suffixes, 4) II 

"bibl" == Suffixes, 4) I I 

"lsiz" == Suffixes, 4» { 

s = s + lie II ; 

return 0; 

}llend Stem 
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A.6 Pat 

int Pat (String txt, String pat){ 

//SEARCH txt FOR FIRST OCCURRENCE OF pat OR REVERSE OF pat 

//IF pat (STRING OF LENGTH AT LEAST 3) OCCURS IN txt, RTN 1 

//IF REVERSE OF pat OCCURS IN txt, RTN 2 

//IF pat AND REVERSE OF pat OCCURS IN txt, RTN 3 
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//IF PALINDROME CONSISTING OF pat FOLLOWED BY REVERSE pat OCCURS IN txt, RTN • 

//IF PALINDROME CONSISTING OF REVERSE pat FOLLOWED pat OCCURS IN txt, RTN 5 

int result = 0; 

int i = 0; 

int j = 0; 

int txtlen = txt.Length; 

int patlen = pat.Length; 

String possmatch; 

if (patlen > 2) { 

String patrev = Reverse(pat); 

for (i = 0; i <= txtlen - patlen; i++) { 

if (txt[i] == pat[O]) { 

possmatch = txt.Substring(i, patlen); 

if (possmatch == pat) { 

//FOUND pat 

result = 1; 

//CHECK IF txt CONTAINS REVERSE pat 

for (j = i + patlen; j <= txtlen - patlenj j++) { 

if (txt[j] == patrev[O]) { 

possmatch = txt.Substring(j, patlen)j 

if (possmatch == patrev) { 
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} 

} 

} 

} 

} 

if (j == i + patlen) { 

return 4; 

} 

else { 

return 3; 

} 

else if (txt[i] == patrev[O]) { 

possmatch = txt.Substring(i, patlen); 

if (possmatch == patrev) { 

//FOUND pat REVERSE 

result = 2; 

//CHECK IF txt CONTAINS pat 
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for (j = i + patlen; j <= txtlen - patlen; j++) { 

if (txt[j] == pat[O]) { 

possmatch = txt.Substring(j, patlen); 

if (possmatch == pat) { 

} 

if (j == i + patlen) { 

return 5; 

} 

else { 

return 3; 

} 
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} } 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

} 

} 

} 

} 

} Ilpat NOR REVERSE FOUND 

} 

return result; 

var ct = new CUT(); 

print(ct.Subject("", "")); 110 

110 print(ct. Subject (" " , "word")); 

print(ct.Subject("word", 1111)); 110 

print(ct.Subject("word", "or")); 

print(ct.Subject("word", "wor")); 

print(ct.Subject("word", "ord")); 

print(ct.Subject("word", "row")); 

print(ct.Subject("word", "dro")); 

110 

III 

III 

112 

112 

print(ct.Subject("worddrow", "dro")); 

print(ct.Subject("worddrow", "ord")); 

print(ct.Subject("wordxdrow", "dro")); 

print(ct.Subject("wordydrow", "ord")); 
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115 

114 

113 

113 
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A.7 Txt 

void Txt(String wordl, String word2, String word3){ 

} 

//CONVERT ENGLISH TEXT txt INTO MOBILE TELEPHONE TXT 

IIBY SUBSTITUTING ABBREVIATIONS FOR COMMON WORDS 

String result = "" . I 

if (word1 == "two") { 

result = "2"; 

} 

if (wordl == "for" II word1 -- "four") { 

result = "4"; 

} 

if (word1 == "you") { 

result = "u"; 

} 

if (wordl == "and") { 

result = "n"; 

} 

if (wordl == "are") { 

result = "r"; 

} 

else if (wordl == "see ll && word2 == "you") { 

result = "cu" ; 

} 

else if (wordl == "by" && word2 == "the" && word3 == 
result = "btw"; 

} 
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"way") { 
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A.8 Title 

int Title(String sex, String title){ 

//CHECK PERSONAL TITLE CONSISTENT WITH SEX 

title = title.ToLower(); 

int result = -1; 

if ("male" == sex) { 

if ("mr" == title 

"sir" == title 

II "dr" == title II 

II "rev" == title II 

"rthon" == title I I "prof" == title) { 

result = 1; 

} 

} 

else if ("female" == sex) { 

if ("mrs" -- title II "miss" == title II 

"ms" == title II "dr" == title II 

"lady" == title II "rev" == title II 

"rthon" -- title II "prof II == title){ 

result = 0; 

} 

} 

else if ("none" == sex) { 

if (lIdr" == title II "rev" == title II 

"rthon" == title II "prof II == title){ 

result = 2; 

} 
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} 

return result; 

} 
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A.9 FloatRegEx 

public int [,J initilize () { 

nextstate:int[,] = new int[8, 256]; 

String s = II II. . , 

int temp = int(s[O]); 

for (int j = 0 ;j < 256 

nextstate [0, j] = 0; 

if(j >= 48 && j<= 57){ 

nextstate [1 , j J = 2; 

nextstate [3, j] = 4; 

nextstate [7 , j] = 7; 

} 

else{ 

nextstate [1 , j] = 0; 

nextstate [3, j] = 0; 

nextstate [7 , j] = 0; 

} 

s =" II • . , 

temp = int(s[O]); 

if (j == temp) 

nextstate [2 ,j] = 3; 

else 

nextstate[2,jJ = 0; 

s = "e"; 

temp = int(s[O]); 

if(j >= 48 && j<= 57) 

nextstate[4,j] = 4; 

j++){ 
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} 

} 

else if( j == temp) 

nextstate[4,j] = 5; 

else 

nextstate[4,j] = 0; 

String s1 = "+"; 

temp1 = int(s1[0]); 

s = "_"; 

temp = int(s[O]); 

if (j -- temp II j == tempi ) 

nextstate[5.j] = 6; 

else if(j >= 48 && j<= 57) 

nextstate[5,j] = 7; 

else 

nextstate[5,j] = 0; 

if(j >= 49 && j<= 57) 

nextstate[6.j] = 7; 

else 

nextstate[6.j] = 0; 

return nextstate; 

int FloatRegEx(String input) { 

int[.] nextstate = new int[8. 256]; 

nextstate = initilize(); 

int currentstate = 1; 

int i =0; 

while(currentstate != 7 && i< input.Length){ 
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} 

} 

currentstate = nextstate[currentstate,int(input[i])]; 

i = i +1; 

if(currentstate == 7){ 

I/Target executed 

} 

return 0; 
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A.I0 Polygon shape 

void Shape(a double []) { 

int length = a.Length; 

double sinAnglel = Math.sin(a[O]); 

double sinAngle2 = Math.sin(a[l]); 

double sinAngle3 = Math.sin(a[2]); 

double sinAngle4 = Math.sin(a[3]); 

double vall = Math.abs(sinAnglel); 

double val2 

double val3 

double val4 

= Math.abs(sinAngle2); 

= Math.abs(sinAngle3); 

= Math.abs(sinAngle4); 

II The shape is Polygon not Triangle 

if(length == 8){ 
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if «vall - 1.0)<=Double.Epsilon && (va12 - 1.0)<=Double.Epsilon && 

(va13 - 1.0)<=Double.Epsilon && (va14 - 1.0)<=Double.Epsilon){ 

if(a[4] == a[6] && a[5] == a[7] && a[4] == a[7]){ 

} 

} 

lIThe figure is Square 

} 

else if(a[4] == a[6] && a[5] == a[7]){ 

II The figure is Rectangle 

} 

else{ 

lIthe figure is neither Square nor Rectangle 

} 

lIThe figure is Triangle 
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} 

else if(length == 6){ 

} 

double TotalAngle = a[O] + a[l] + a[2]; 

if«TotaIAngle - Math.PI)<= Double.Epsilon){//Traingle figure 

if«vall - 1.0)<=Double.Epsilon I I (val2 - 1.0)<=Double.Epsilon 

I I (val3 - 1.0)<=Double.Epsilon ){ 

} 

//Right triangle: Has one 90 degree angle 

} 

else if(a[O] == a[l] && a[l] == a[2] ){ 

//Equilateral triangle: All angles are the same (60 degrees) 

} 

else if «a[O] == a[1] II a[l] == a[2] II a[O] == a[2]) && 

(a[3] == a[4] I I a[4] == a[5] Ila[3] == a[5]»{ 

//Isosceles triangle: Has two angles the same and two sides the same 

} 

else if«a[O] != a[l] && a[1] != a[2] && a[O] != a[2]) && 

(a[3] != a[4] && a[4] != a[5] && a[3] != a[5]» { 

//Scalene triangle:Has all three angles and all three sides different 

} 

else { 

//The figure is not Triangle 

} 
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