
THE UNIVERSITY OF HULL

USE OF PROGRAM AND DATA-SPECIFIC HEURISTICS
FOR AUTOMATIC SOFTWARE TEST DATA

GENERATION

being a Thesis subrnitted for the Degree of

Doctor of Philosophy

in the University of Hull

by

Mohammad Alshraideh

April 2007

Abstract

The application of heuristic search techniques, such as genetic algorithms, to the

problem of automatically generating software test data has been a growing interest

for many researchers in recent years. The problem tackled by this thesis is the devel­

opment of heuristics for test data search for a class of test data generation problems

that could not be solved prior to the work done in this thesis because of a lack of an

informative cost function. Prior to this thesis, work in applying search techniques

to structural test data generation was largely limited to numeric test data and in

particular, this left open the problem of generating string test data. Some potential

string cost functions and corresponding search operators are presented in this thesis.

For string equality, an adaptation of the binary Hamming distance is considered,

together with two new string specific match cost functions. New cost functions for

string ordering are also defined. For string equality, a version of the edit distance

cost function with fine-grained costs based on the difference in character ordinal

values was found to be the most effective in an empirical study.

A second problem tackled in this thesis is the problem of generating test data for

programs whose coverage criterion cost function is locally constant. This arises be­

cause the computation produced by many programs leads to a loss of information.

The use of flag variables, for example, can lead to information loss. Consequently,

conventional instrumentation added to a program receives constant or almost con­

stant input and hence the search receives very little guidance and will often fail to

find test data. The approach adopted in this thesis is to exploit the structure and

behaviour of the computation from the input values to the test goal, the usual in­

strumentation point. The new technique depends on introducing program data-state

scarcity as an additional search goal. The search is guided by a new fitness function

Abstract ii

made up of two parts, one depending on the branch distance of the test goal, the

other depending on the diversity of the data-states produced during execution of

the program under test.

In addition to the program data-state, the program operations, in the form of the

program-specific operations, can be used to aid the generation of test data. The

program-specific operators is demonstrated for strings and an empirical investigation

showed a fivefold increase in performance. This technique can also be generalised to

other data types. An empirical investigation of the use of program-specific search

operators combined with a data-state scarcity search for flag problems showed a

threefold increase in performance.

Acknowledgements

First and foremost I thank my supervisor, Dr. Leonardo Bottaci, who has been

a constant source of stimulation and encouragement throughout my research. His

patience advice and constructive criticism helped me to stay on track and remain

motivated, whatever difficulties I faced, as well as providing an example of scholar­

ship that will remain with me throughout my life. Without his guidance, this work

could not have been accomplished.

I would also like to thank Dr Yiannis Papadopoulos for his helpful support and

comments throughout this project.

I would to thank Dr. Marc Roper for for useful and helpful discussions.

Thanks also go to all the staff in the Department of Computer Science in particular

Dr Chandra Kambhampati, Helen EI-Sharkawy, Joan Hopper and Colleen Nicholson

for their help.

Thanks also to my best friend Woakil Ahamed for his support.

Finally, I would like to thank my parents and brother for their love and support.

Thanks to my wife, for her love, understanding and assistance during the preparation

of this thesis.

Thanks must also go to The university of Jordan for funding this research work.

III

Publications

• Mohammad Alshraideh, Leonardo Bottaci

Automatic Software Test Data Generation For String Data Using Heuristic

Search with Domain Specific Search Operators. Proceedings of the Third

UK Software Testing Workshop (UKTest 2005), University of Sheffield, UK,

September 5-6, 2005, pp.137-150.

• Mohammad Alshraideh, Leonardo Bottaci

Search-based Software Test Data Generation For String Data using program­

Specific Search Operators. Special Issue of Software Testing, Verification and

Reliability devoted to Extended Papers from the Third UK Testing Conference

(UKTest 2005), 16(3), September 2006,pp.175-203.

• Mohammad Alshraideh, Leonardo Bottaci

Using program data-state diversity in test data search. Testing: Academic &

Industrial Conference practice and research techniques (TAlC), London, UK,

August 29 -31, 2006, pp. 107 -114.

IV

Contents

Abstract

Acknowledgements

Publications

Contents

List of Figures

List of Tables

1 Introduction

1.1 Approaches to Automatic Test Data Generation

1.2 Applying Heuristic Search to Test Data Generation

1.3 Current Problems with Search Methods Applied to Test Data Gen-
eration

1.3.1 String test data ..

1.3.2 Loss of Information

1.4 Research Problem

i

iii

iv

v

viii

xii

1

2

3

4

4

5

6

1.5 Contributions of this Thesis 7

1.6 Overview of the Structure of this Thesis 7

2 Automatic Test Data Generation for Structural unit Testing 8

2.1 Methods for Data Generation

2.1.1 Static methods ..

2.1.2 Dynamic methods.

v

8

9

11

Contents

2.2 Evolutionary Testing

2.2.1 Early work ..

2.2.2 Dynamic test data generation

3 Search-based Software Test Data Generation for String Data using

VI

14

15

16

Program-Specific Search Operators 25

3.1 Introduction

3.2 Cost Functions and Search Operators for String Predicates

3.2.1 String search space

3.2.2 String equality cost functions

3.2.3 String ordering

25

26

27

33

45

3.3 Empirical Assessment of String Search Operators and Cost Functions 48

3.3.1 Experimental parameters.

3.3.2 Preliminary results

3.3.3 Results

3.4 Program-dependent Search Operators.

51

53

56

61

3.4.1 String operations biased towards program string literals. 66

3.4.2 Empirical assessment of program-specific search operators 67

3.4.3 Discussion......................... 69

3.5 Program-specific Search Operators for Non-string Data Types 69

3.6 Summary .

3.7 Estimating Number of Search Operator Invocations

4 U sing Program Data-state Scarcity in Test Data Search

4.1 Introduction

72

73

77

77

4.2 Problem of Flag Cost Function 78

4.3 Existing Techniques for Instrumenting Boolean Flag Variables 79

4.4 Data-state Scarcity as a Search Strategy 84

4.5 Data-state Scarcity Search by Maintaining Data-state Diversity 89

4.5.1 Existing diversity measures and methods

4.5.2 Diversity control methods

4.5.3 Data-state distribution diversity metric

89

90

93

Contents vii

4.5.4 Data-state distribution histogram

4.5.5 Clustering histograms ..

99

· 101

4.6 Instigating Data Scarcity Search. . 104

4.7 Sampling the Data-state to Produce the Data-state Distribution . 104

4.8 Empirical Investigation . . .

4.8.1 Experimental setup.

4.8.2 Experimental programs.

4.8.3 Results..........

4.9 Combining Program-specific Operators with Data Search

4.10 Summary

· 106

· 106

· 107

· 109

· 112

· 118

5 Conclusions and Future Work

5.1 Summary of Achievements . .

121

· 121

5.1.1 Generating string test data. . 121

5.1.2 Data-state scarcity search as a solution for flag problem. . 122

5.1.3 Using program-specific search operators. . 124

5.2 Limitations and Future Work · 125

A Test Programs 127

A.l Calc · 127

A.2 Cookie · 129

A.3 DateParse · 130

A.4 FileSuffix · 132

A.5 Stem · 134

A.6 Pat. · 140

A.7 Txt. · 143

A.8 Title · 144

A.9 FloatRegEx · 146

A.lO Polygon shape . · 149

References 151

List of Figures

1.1 Simple predicate example 3

1.2 Need to measure similarity of string s to World Cup in order to mea-
sure the cost of failure to execute the required branch. 5

1.3 Need to measure the flag to execute the required branch. 6

1.4 Objective function landscape for the example program with flag vari-
able of Figure 1.3 ., 6

2.1 Domain reduction algorithm

2.2 Chaining approach

2.3 Flowchart of test data generation using a genetic algorithm.

2.4 Example to show Tracey's objective function.

2.5 Objective function landscape of Tracey (Tracey, 2000) for example of

10

14

15

19

Figure 2.4. 19

2.6 Example program using min as cost for disjunction 21

3.1 The search space defined by the 8 3-bit strings and a single bit inver-
sion search operator. ., 30

3.2 The search space defined by the set of eight 3-bit strings and a right
bit-insert operator. 31

3.3 Simple branch requiring MN to be executed 35

3.4 Object function landscape for HD in 26 characters domain for ex­
ample in Figure 3.3. Cost of matching a string of 2 characters with
"l\1N" 35

3.5 Object function landscape for CD in 26 characters domain for example
in Figure 3.3. Cost of matching a string of 2 characters with "MN" . 38

3.6 Object function landscape for ED in 26 characters domain for example
in Figure 3.3. Cost of matching a string of 2 characters with "MN" . 39

Vlll

List of Figures

3.7 Object function landscape for OED in 26 characters domain for ex­
ample in Figure 3.3. Cost of matching a string of 2 characters with

IX

"l\1N" 42

3.8 Object function landscape for OD in 26 characters domain for ex­
ample in Figure 3.3. Cost of matching a string of 2 characters with
"MN" 43

3.9 Object function landscape for OD in 26 characters domain for exam­
ple in Figure 3.3. The first character is 'M', the cost varies only with
the 2nd character. .. 43

3.10 The mean rank of offspring produced by each kind of mutation oper­
ator during successive periods of search. The population size is 100
and a rank of 101 indicates offspring not sufficiently fit to enter the
population. 54

3.11 The number of executions of the program under test required to find
test data to achieve branch coverage (average over 20 trials). Equal
probability of character insertion, deletion and substitution. 56

3.12 The number of executions of the program under test required to find
test data to achieve branch coverage (average over 20 trials). Pro­
gressive increase in the probability of character substitution. 58

3.13 The average number of executions of the program under test required
to find test data to achieve branch coverage for sample programs
(average over 20 trials).. .. 59

3.14 A small search space of 9 strings with increment and decrement char-
acter mutations. The cost of each string compared to CA is shown. 63

3.15 The search space after the addition of a reverse search operator.. 63

3.16 The program Q renders the cost function unreliable. (costs to the
soultion shown against each node) . 64

3.17 The landscape of program Q. 64

3.18 The string domain 66

3.19 The number of executions of the program under test required to find
test data to achieve branch coverage (average over 20 trials) using
program-specific search operators. 67

3.20 A comparison of the number of executions of the program under test
required to find test data to achieve branch coverage (average over
20 trials) with and without program-specific search operators. Only
the values obtained with the ordinal edit distance are compared and
mutation is biased towards substitution. 68

3.21 Alternative internal variable example

3.22 To execute the target, b equal to ¥
70

71

List of Figures x

3.23 The possible mutation operator to move from candidate to goal string. 75

3.24 The actual and heuristic cost of gaussian mutation operator to move
from one character to Z with the 7-bits domain. 76

3.25 The number of executions of the program under test required to find
test data to achieve branch coverage by using OED and EOED. ... 76

4.1 Program fragment for which branch coverage data must be generated. 78

4.2 Example program with a flag variable problem. 79

4.3 Transformation of example program with a flag variable problem
from (Bottaci, 2002), alltrue = -0.015384615 when all elements in
the array are true. 80

4.4 A testable transformation of the program shown in Figure 4.2 . .. 81

4.5 A difficult to execute branch in a program with an integer "flag"
variable 83

4.6 A difficult to execute branch in a program (LOglO) for which no ex-
isting technique is effective. 84

4.7 The distribution of the lOglO values. Figure shows that function that
computes k is less locally constant than branch cost function; hence
it is easier to search for different values of k. 86

4.8 Number of test cases decreases as the number of zeros assigned to
product increases. 87

4.9 Program Mask checks that each character in an array has each odd
bit set. .. 87

4.10 Four different distributions showing how entropy varies according to
number and distribution of classes. 91

4.11 The structure of data-state distribution inside population . 94

4.12 Population before and after ranking using data-state distribution
equivalence class size. 96

4.13 The data-state distributions of two individuals 97

4.14 Hierarchical clustering example, using 6 data-state distributions 103

4.15 Data-state instrumentation of the program from Figure 4.6. 105

4.16 A difficult to execute branch in a program 107

4.17 Program compares a set of points with the sequence 0, 1, 2, ... , 15
and executes the target branch when fewer than one quarter of the
points disagree with the sequence. . 108

4.18 Flowchart of FloatRegEx example . 109

List of Figures

4.19 Plot showing the fitness landscape for the branch cost and the di­
versity cost in the program Log lO . For clarity of presentation, the
diversity cost plotted is the maximum entropy value (obtained when
the solution is found) less the entropy value after a given execution

Xl

of the program 110

4.20 The diversity in the program Orthogonal. For clarity of presentation,
the unique data-state distribution is normalised between 0 and 1. .. 111

4.21 (a) DSD histogram for AllTrue128 program is constructed when the
population size is equal to the data-state distribution size, (b) DSD
histogram after 520 program executions, (c) DSD histogram after
11000 program executions for true value of InCurrentPop. 113

4.22 A difficult to execute branch in a program FlagAvoid 115

4.23 The different paths to a solution to the test data generation problem
shown in Figure 4.22. 116

4.24 A comparison of the number of executions of the program under test
required to find test data to achieve branch coverage (averaged over
50 trials) with and without program-specific search operators. 118

5.1 (a) Existing approach to test data search depends on cost function
(b) New approach exploits the structure of the program to use the
constants and specific-search operators and intermediate data state
values 125

List of Tables

2.1 Deriving a cost function from branch predicates from (Korel, 1990) . 13

2.2 Tracey's objective functions for relational predicates. The value K,
K > 0, refers to a constant which is always added if the term is not
true 20

2.3 Test cases for example in Figure 2.6. Note differences in the larger
value are ignored. 21

2.4 Logical OT and logical and cost table (from (Bottaci, 2003)) 22

2.5 Cumulative or-cost and and-cost for the predicate a ~ b for the values
listed. 22

3.1 Relative frequency of character pairs in English text from (Leon, 2002) 29

3.2 The cost values and frequency in 26 characters domain (,A', ... ,'Z'),
number of fitness values = 11 i.e this restricts the search method. 36

3.3 OED example calculation

3.4 String ordering example using ordinal method

3.5 String ordering example using single character pair method

3.6 The JScript functions used for empirical investigation.. . .

3.7 The number of executions required to find test data to achieve branch

41

46

48

50

coverage (average over 50 trials). 61

4.1 Example of DSD histogram used to rank individuals. 100

4.2 The number of successful trials and the average number of test pro­
gram executions out of 50 required to find test data to achieve cov-
erage of the target branch. 110

4.3 The number of successful trials and the average number of test pro-
gram executions out of 50 required to find test data to achieve cover-
age of the target branch, when number of data-state distribution ~
population size. 114

Xll

List of Tables

4.4 Number of subject program executions to cover all branches, aver­
age of 50 trials was used, equivalence class was used for population

xiii

member ranking. 117

4.5 Number of subject program executions to satisfy all branches, average
of 50 trials was used, equivalence class was used for population mem­
ber ranking combined with program-specific search operators. When
number of data-state distributions 2: population size, DSD histogram
is used 119

Chapter 1

Introduction

Software testing covers a range of activities aimed at evaluating an attribute or ca­

pability of a program or system (Beizer, 1990). Usually, it is a process of executing

a program or system with the intent of finding failures (Myers, 1979). Because soft­

ware and digital systems are not continuous, testing boundary values is not sufficient

to guarantee correctness. All the possible values need to be tested and verified, but

obviously, for a realistic software module, complete testing is impractical. Therefore

testing must be selective.

Testing is done at different levels of the software:

1. Unit testing: which refers to the individual testing of separate units of a

software system. In object-oriented systems, these units typically are classes

and methods.

Unit testing may be structural (white box) or functional (black box).

(a) Structural testing: test case selection that is based on an analysis of the

internal structure of the component, typically the source code. Different

approaches to how test cases should be selected lead to different coverage

criteria, statement coverage, branch coverage etc.

(b) Functional testing: testing based on an analysis of the specification of a

piece of software without reference to its internal workings. The goal is

to test how well the component conforms to the published requirements

for the component.

1

Introduction 2

2. Integration Testing: exposes faults during the process of integration of software

components or software units and is specifically aimed at exposing faults in

their interactions. The integration approach could be either bottom-up, top­

down or a mixture of the two.

3. System testing: testing that attempts to discover defects that are properties

of the entire system rather than of its individual components.

4. Regression testing: retesting a previously tested program following modifica­

tion to ensure that faults have not been introduced or uncovered as a result

of the changes made.

This research is concerned with the automation of structural unit testing, in partic­

ular, the automatic generation of test data.

1.1 Approaches to Automatic Test Data Genera­
tion

Test data generation in white-box testing (source-code based testing) is a process of

finding program input on which a selected element (e.g. a not yet covered statement)

is executed. Finding such input test data manually can be very labour intensive and

expenSIve.

A number of different automatic software test data generation methods have been

investigated (McMinn, 2004). These methods may be placed into one of two broad

categories known as static methods and dynamic methods. Static methods aim to

analyse the static structure of the program under test in order to compute suitable

test cases. Static methods exploit control and data-flow information and may use

symbolic execution (King, 1975), (King, 1976), (Beizer, 1990) but the program under

test is not executed.

Dynamic methods aim to exploit information gained by execution of the program

under test. The most basic dynamic method is random test data generation (Duran

and Ntafos, 1984). In this method, test data is generated randomly. Each test case

Introduction

void func(int a) {
if (a == 0) {

//execution required
}

}

Figure 1.1: Simple predicate example

3

is then executed and either retained or discarded according to whether it executes

any test goals not executed by any other so far retained test case. Unfortunately, the

likelihood that a test, generated randomly, will execute a difficult to reach branch

is very low. As an example, consider the problem of generating an input to execute

the target branch of the program fragment shown in Figure 1.1.

The probability that a randomly generated input will set the variable a to be equal

to 0 may be very small. In general, random test data generation performs poorly

and is generally considered to be ineffective at covering all branches in realistic

programs (Coward, 1991).

1.2 Applying Heuristic Search to Test Data Gen­
eration

Heuristic search techniques such as genetic algorithms, simulated annealing and tabu

search are high-level frameworks which use heuristics to find solutions to problems

without the need to perform a full exhaustive enumeration of a search space (Reeves,

1995). They have been used to find acceptable approximations to the solution of

many NP complete problems.

Software testing normally aims to achieve certain measurable objectives. In fact,

many test generation techniques are based around some notion of the coverage of

the code. This coverage can be measured and incorporated into an objective or cost

function. Better test values should be rewarded with lower cost values, whereas

poorer test values should be penalized with higher cost values. With feedback from

the cost function, the search looks for better tests based on a heuristic evaluation

Introduction 4

of existing tests.

For example, in the program of Figure 1.1 suppose a test case is required to execute

the true branch. If the branch is not executed, many test cases will cause a == 0

to be false. The value of abs(a - 0) increases as a becomes far from O. A value of

4 has a better objective value than that of 10, since the objective function is better

(4 is more close to 0 than 10). The search is encouraged to search around the value

of 4, possibly encountering further "better" values, for example the values 1 or 2.

1.3 Current Problems with Search Methods Ap­
plied to Test Data Generation

A number of different decisions have to be made in order to adapt a heuristic search

technique to a specific problem, e.g. the way in which solutions should be repre­

sented so that they can be handled by the search. A good choice of encoding, for

example, will ensure that similar solutions in unencoded space are also neighbours

in representational space and the search will be moved easily from one solution to

another that has similar properties. Most important, however, a search can solve

a problem only if the cost function is informative. In many test data generation

problems it is difficult to find an informative cost function. The following section

gives some examples of such problems.

1.3.1 String test data

Current work in test data generation has been largely limited to programs whose

predicates compare numbers (Baresel et al., 2001), (Harman et al., 2002). Using

the numerical diffrence between numbers, it is easy to define cost functions for these

predicates. It is not obvious, however, how to compare non-numeric data types. An

example is the string data type.

Consequently, a problem that needs further research is how to automatically gen­

erate software test data for character strings. A simple branch coverage problem

is illustrated in Figure 1.2. The problem is to find an input string s so that the

Introduction

if (s == "World Cup") {
//TARGET

}

5

Figure 1.2: Need to measure similarity of string s to World Cup in order to measure
the cost of failure to execute the required branch.

required branch is executed. If s is such that the predicate fails, a cost is associated

with s. This cost is used to guide the search. Given the use of a particular search

technique such as a genetic algorithm, a key problem is how to compute a useful cost

for this predicate failure. For example, for two test cases 81 = Wirld Cup and 82

= World Cap the problem is to find which one, if any, should have the lower cost.

Until the problem of a cost function for string equality is solved it overly reduces

software testing approaches for applications in practice since string predicates are

widely used in programming.

1.3.2 Loss of Information

The computation produced by many programs leads to a loss of information. The

use of flag variables, for example, can lead to information loss. A flag variable is any

variable that takes on one of a few discrete values . A boolean is a special case of a

flag variable. Using flag variables in the predicate of conditions in programs produces

fiat cost function landscapes when computing the branch distance measure. If the

program has only relatively few input values which make the flag variable adopt a

desired value, it will be hard to find, without guidance, an input to set the flag to

the desired value.

The lack of information at the branch distance function causes plateaux in the

objective function landscape, one plane corresponding to the undesired value, or all

input vectors that do not execute the target, and one plane corresponding to the

desired value, or the required test data. No guidance is provided to the search as

to how to move from one plane in the objective function landscape to the other.

This is true in the example of Figure 1.3. The plateaux corresponding to the "false"

value of the flag can be seen clearly in Figure 1.4. If the search compares any input

Introduction

void Subject(int x) {

}

II ASSIGNMENT TO flag HERE
if (flag) {

Ilexecution required
}

Figure 1.3: Need to measure the flag to execute the required branch.

o x values

6

Figure 1.4: Objective function landscape for the example program with flag variable
of Figure 1.3

x with its neighbours, it does not know whether to move towards increased values

or decreased values, since the objective values returned for these inputs are exactly

the same. The search therefore becomes random.

1.4 Research Problem

The problem tackled by this thesis is the development of heuristics for test data

search for a class of test data generation problems that currently can not be solved

because of a lack of an informative cost function. These are the problem of generating

string test data and the problem of generating test data for programs whose coverage

criterion cost function is locally constant.

Introduction 7

1.5 Contributions of this Thesis

1. Presents new cost functions that can be used to instrument programs where

the test data is intended to cover program branches which depend on string

predicates such as string equality and string ordering.

2. New techniques for instrumenting programs where "flag variable" problem

exists that depend on data-state scarcity.

3. Use of program-specific search operators to improve performance of test data

search in general.

1.6 Overview of the Structure of this Thesis

This thesis is organized as follows:

Chapter 2 surveys the literature in automatic generation test data of structural

(white-box) testing. Chapter 3 introduces and describes the string problem. Some

potential string cost functions and corresponding search operators are

presented, program-specific search operators for string are introduced, then the

program-specific search operators are generalised to non-string data types.

Chapter 4 considers the internal variable problem, with particular focus on the flag

problem. Further work in the literature of relevance to the problem is evaluated. A

new technique for directing the search when the function that instruments the test

goal is not able to discriminate candidate test inputs is presented. The new

technique depends on introducing program data-state scarcity as an additional

search goal. The search is guided by a new evaluation (cost) function made up of

two parts, one depending on the conventional instrumentation of the test goal, the

other depending on the diversity of the data-states produced during execution of

the program under test.

Finally Chapter 5 summarises the conclusions and suggests some areas for further

work.

Chapter 2

Automatic Test Data Generation
for Structural unit Testing

Automatic test data generation research has concentrated on structural testing prob­

ably because in some ways it is easier to automatically generate test data for struc­

tural testing than functional testing. Structural testing allows visibility into internal

data structures and control flow. This ability to "see inside" the test object allows

the test generator to identify near miss test cases and thus guide a search process.

Automatic functional testing requires access to a machine readable specification

which is often absent.

2.1 Methods for Data Generation

Approaches for finding test data that execute structural elements according to some

coverage criteria are classed as either static or dynamic (McMinn, 2004).

The early years of structural test data generation were dominated by static methods,

which do not actually execute the code to be tested. Instead they attempt to find

the conditions that bring about the traversal of a given statement or path in the

program. Test data is then derived from these conditions. Dynamic methods on the

other hand actually execute the software under test, and employ analytical or search

techniques in order to find the relevant test data. Early dynamic methods employed

simple local searches, whereas more current methods use global search techniques

8

Automatic test data generation for structural(White Box) testing 9

such as evolutionary algorithms.

2.1.1 Static methods

Symbolic execution is a concept that was first introduced by King (King, 1976). It

is based on the idea of executing a program without providing values for its input

variables. The output will then in general be a term depending on these input

variables, rather than an actual value. This is usually described as a symbolic input

value and in turns produces a symbolic output value.

Clarke's work (Clarke, 1976) was one of the earliest in symbolic execution. For

the execution of a given path, symbolic execution works by statically traversing the

path in the code, building up representations of internal variables in terms of the

input variables. Branches within the code introduce constraints on the variables.

If these constraints are linear in nature they can be solved through the use of linear

programming techniques to find input data. If not, conjugate gradient methods are

used; however these require human interaction. For paths where the set of linear

constraints generated are found to be inconsistent, the path is deemed infeasible.

Clarke's work has several limitations. It requires the user to completely specify all

desired test paths. If array indices depend on input data, the system cannot resolve

the reference; the same problem occurs with pointers.

The approach of Ramamoorthy (Ramamoorthy and Chen, 1976) which was built on

Clarke's work suggested possible solutions to the array problem. Ramamoorthy's

approach delays the symbolic execution of an array when it is dependent on input

data until the constraint satisfaction stage. Values for variables upon which array

access depends are determined first. This allows the array access to be completely

determined. According to this method a new symbolic instance of the array will

be created which is identical to the previous instance except for the element in

question. However, this method significantly increases the complexity and memory

requirements of the symbolic execution system.

De!\1illo and Offutt (DeMillo and Offutt, 1991) developed a test data generation

Automatic test data generation for structural(White Box) testing 10

1- Each variable is assigned a domain that includes all possible values for that
type.

2- Do
{
by using information in a constraint, reduce variable's domain, this done as

follows(X, Y are variables, C is constant and R is a relational operator):
a - for constraints of the form X R C: reduce Domain of X.
b - for constraints of the form X R Y : reduce domain of X and Y.

} until (no further reductions are possible)

3- Input variable with the smallest domain is chosen, and a random value is
assigned to it.

4- Do from step 2 for all remaining variables using the assigned value(s).
5- If all variables have been assigned a value then success is achieved, otherwise

restart from step 1.

Figure 2.1: Domain reduction algorithm

technique called Constraint-based testing with the goal of killing program mutants

as part of a mutation testing strategy. A constraint system is derived which incor­

porates reachability and necessity constraints. Reachability constraints represent

conditions under which a given statement will be executed, and necessity constraints

describe conditions under which a mutant will be killed.

Symbolic execution is used to rewrite the constraints in terms of the input variables.

A search procedure known as domain reduction is used to attempt a solution to these

constraints. The domain reduction works by using information in the constraint

system to reduce the domains of the variables as shown in Figure 2.1.

This method is hampered by similar problems involving loops, viewing the array as

one variable, i.e. does not differentiate between individual elements in the array,

etc. Offutt et al. introduced a new technique (Offutt et al., 1997) with the intent

of solving some of the problems with constraint-based testing known as dynamic

domain reduction (DDR).

Automatic test data generation for structural(White Box) testing 11

The DDR procedure starts with several pieces of information: a flow graph, the

initial domains for all input variables, and two nodes representing the initial and

goal nodes. The first step is that a finite set of paths from the initial to the goal

node is determined. Then each path is analysed in turn. The path is traversed

and symbolic execution is used to progressively reduce the domains of values for

the input variables. When choices for how to reduce the domain must be made, a

search process is used to split the domain of some variable in an attempt to find

a set of values that allows the constraints to be satisfied. Finally, a test case is

chosen arbitrarily from within the reduced input domains. The DDR procedure has

partially solved the problems of the arrays and loops.

In summary, the major weakness of symbolic execution is the insufficient handling

of loops, dynamic data structure, arrays and procedures.

2.1.2 Dynamic methods

In actually executing the software under test, dynamic methods manage to overcome

some of the problems associated with static methods. The simplest dynamic test

data generation is to generate test data randomly. A random test data generator

randomly generates a set of inputs and then runs the program with these inputs

with the expectation that it might execute the selected target (statement, branch,

path). The disadvantage of this method is that it is not very effective in finding test

data for complex targets. Because of this disadvantage, random test data generation

is not considered suitable for real application programs.

The next attempt at test data generation based on actual executions of the

program was in 1976 (Miller and Spooner, 1976), when Miller and Spooner put

forward the idea that test data generation could be formulated as a numerical

optimisation problem. To utilise the method, the user must select a path in the

program and then produce a straight-line version of that program containing only

that path. Any conditionals are replaced by constraints. A function is then derived

which provides a real value estimate of how close the constraints are to being

Automatic test data generation for structural(White Box) testing 12

satisfied. This value is negative when any of the constraints are not satisfied and

positive when all constraints are satisfied. Numerical maximisation techniques can

then be employed using this function to find inputs to the program that satisfy the

constraints for the path.

The idea of Miller and Spooner was extended by Korel in 1990 (Korel, 1990). It

is based on actual execution of the program under test and function minimisation

algorithms. Test data are developed using actual values of input variables. The

program is executed by these input variables and its execution flow is observed. If

an undesirable execution flow is taken at some branch, then a real value function is

assigned to this branch. Function minimisation methods are used to automatically

find the values of input variables which cause this function to become negative and

the branch predicate to be true. This method has the advantage that it handles

loops, dynamic data structures and array.

In 1992 Korel (Korel, 1992) developed what became known as the goal-oriented

approach. The goal-oriented approach alleviates the path infeasibility problem en­

countered by eliminating the path selection stage. First, the test data generator

executes the program with an arbitrary input. While the program is being executed

the program execution flow is also observed. Then the search procedure decides

whether the execution should continue through the current branch or an alternative

branch should be taken because the current branch does not lead to the execution

of the selected statement. If an undesirable execution flow at the current branch is

observed, then a real-value function is associated with this branch. A function min­

imisation search algorithm is used to find a new input that changes the execution

flow at this branch.

It was shown that the problem of finding input data can be reduced to a sequence

of subgoals where each subgoal is solved using a function minimisation method that

uses branch predicates to guide the search process. The branch predicate is assumed

to be of the form E1 op E2, where E1 and E2 are arithmetic expressions and op is

a relational operator <, ::;, >, ~, =, #. A function of the form F reI 0 can

Automatic test data generation for structural(White Box) testing 13

then be derived, as shown in Table 2.1:

Branch Predicate Branch Function F Relation rel

E1 > E2 E2-E1 <

E1 ~ E2 E2- E1 < -

E1 < E2 E1-E2 <

E1 ~ E2 E1-E2 < -

E1 = E2 abs(E1-E2) -

E1 <> E2 abs(E1-E2) < -

Table 2.1: Deriving a cost function from branch predicates from (Korel, 1990)

F is a real-valued function, referred to as fitness function, which is positive or zero

if rel is < when a branch predicate is false or negative or zero if rel is = or :5 when

a branch predicate is true. The fitness function is evaluated for a program input by

executing the program and is used to guide the search. The problem is to find a

value of x that causes F(x) to be negative or zero.

In 1996 Korel proposed the chaining approach (Korel and Ferguson, 1996). In the

chaining approach, the mechanics of a path search takes place using the notion of

an event sequence. This incorporates some of the ideas of the influences graph. An

event sequence is basically a succession of program nodes. Each program node has a

set of variables associated with it called a constraint set, which can not be modified

from one node to the next (i.e. a definition-clear path has to be found for these

variables from one node in the sequence to the next). Formally, an event sequence

is a series of tuples ei = (ni' Si) where ni is a node of the program graph and Si

is the constraint set of variables associated with that node. The chaining approach

works as shown in Figure 2.2.

The chaining mechanism is therefore a secondary means of trying to force

execution of test goals. If inputs cannot be found to change the execution of some

problem node by means of a local search, the method implicitly tries to change the

Automatic test data generation for structural(White Box) testing

I. Initial sequence is «s, <1», (g, <1»>, where s is start node, g is
the goal node.

2. Assume that at node p, the normal function minimisation
method cannot bring about the execution of the program to g
(p becomes the problem node).

3. If the search fails, find the last definitions of the variables
used at p. (LD(p) = (d I, d2, .. ,dn)

4. a number of new event sequences are generated by inserting
the problem node p and one of the last definition nodes, with
the constraint set as follows:
EI = «s, <1», (dI, D(dI», (p,<I», (g,<I»>
E2 = «s, <1», (d2, D(d2», (p,<I», (g,<I»>

En = «s, <1», (dn, D(dn», (p,<1», (g,<1»>
From node di the control flow should progress to node g
along a definition clear path with respect to D(di).

Figure 2.2: Chaining approach

14

execution at the node by considering other nodes that can determine its outcome.

For this reason Korel suggested the use of a global optimisation technique for

future work, as local search methods tended to get stuck in local optimum.

Korel uses gradient decent combined with an exploratory phase. The exploratory

phase helps avoid getting stuck at a local optima. Other search methods are also

able to avoid local optima. These include simulated annealing and genetic algo­

rithms(GA). This leads to the developments of a collection of work known as Evo­

lutionary Testing.

2.2 Evolutionary Testing

Evolutionary algorithms (EAs) are search methods that take their inspiration from

natural selection and survival of the fittest in the biological world. EAs differ from

more traditional optimization techniques in that they involve a search from a "pop­

ulation" of solutions, not from a single point. The best-known kind of evolutionary

Automatic test data generation for structural(Wbite Box) testing

yes

initialise population with
random inputs

select parent(s)

use mutation and crossover
to produce offspring

Figure 2.3: Flowchart of test data generation using a genetic algorithm.

15

algorithms is genetic algorithms. Figure 2.3 shows the basic steps of a genetic al­

gorithm. First the population is initialised, either randomly or with user-defined

candidates. The genetic algorithm then iterates through an evaluate-select-produce

cycle until either a solution is found or some other stopping criterion applies. The

effectiveness of a genetic algorithm depends crucially on the reliability of the guid­

ance provided by the cost function. The cost function is a metric that evaluates

each candidate in terms of its "closeness" to a solution.

2.2.1 Early work

The history of applying genetic algorithms to software testing problems can be

traced back to 1992. The earliest referenced paper is Xanthakis et al. (Xanthakis

et al., 1992) where the testing prototype TAGGER is introduced. The system was

used for generating test data written in Pascal.

Automatic test data generation for structural(White Box) testing 16

The first PhD thesis in the area was by Sthamer (Sthamer, 1995) who studied the

use of GA as a test data generator for structural testing. The example programs

are small procedures written in ADA, including triangle classification, linear search,

remainder calculation, and direct sort. Sthamer applies GA to branch, boundary,

and loop testing, and also for mutation testing. He claimed that "GAs show good

results in searching the input. domain for the required test sets, however, other

heuristic methods may be as effective, too".

2.2.2 Dynamic test data generation

Pei et a1. (Pei et aI., 1994) concentrated on pathwise test data generation. By using

test data generation by G A they try to define if the selected subpath is feasible or not.

The Pei et a1. approach is better than the other systems (e.g. random and TAGGER

(Xanthakis et a1., 1992)) because it processes the whole path simultaneously.

Watkins (Watkins, 1995) deals with path coverage optimisation by GA, using the

popular triangle classification problem as an example. GA reached the same cov­

erage as the random method while sampling a smaller percentage of the complete

search space. The objective function penalizes individuals that follow already cov­

ered paths, by assigning a value that is the inverse of the number of times the path

has already been executed during the search.

Smith and Fogarty (Smith and Fogarty, 1996) studied test coverage optimization

by a hybrid version of GA and hill-climbing local search. Their application was also

the triangle classification problem. They claim that their system can generate test

sets that fully satisfy the given metric and reduce the size of evolved test sets.

In the technique used by Jones et a1. (Jones et aI., 1996), a path does not need

to be selected. The objective function is simply formed from the branch distance of

the required branch, no guidance is provided so that the branch is reached within

the program structure in the first place. Michael et a1. (Michael et a1., 1997) have

developed what is called the GADGET (Genetic Algorithm Data Generation Tool)

system, which is fully automatic and supports all C/C++ constructs. The system is

Automatic test data generation for structural(White Box) testing 17

used to obtain condition/decision coverage. They compared results with the random

method. GAs gained a much higher coverage than the random method.

Kasik and George (Kasik and George, 1996) have used a GA for emulating software

inputs in an unexpected, but not totally random way. The GA is used as a repeatable

technique for generating user events that drive conventional automated test tools,

so that the system can mimic different forms of novice user behaviour. The system

tries to represent how a novice user learns to use an application. The fitness value

is given according to how much the actions performed are guided by the individual

to resemble novice-like behaviour. The novice behaviour is described by a special

reward system that is built based on observations.

Wegener et a1. (Wegener and etl., 1996), (Wegener et a1., 1997), (Wegener and

Grochtman, 1998), (Wegner et a1., 1999), (Wegner et a1., 2000), (Baresel et al.,

2001) have studied the search of the execution time extremes of real-time software

with a GA. They have compared their results to the random testing and static analy­

sis. Their object software has mainly been some small examples or DaimlerChrysler

embedded automotive electronics software. They think that the static analysis and

evolutionary testing together can effectively find the lower and upper execution time

limits. They claim that there is not much support for temporal testing and often

testers just use the methods that are designed to test the logical correctness. In their

research, GA based testing was found to be much more effective than the random

testing and particularly effective when a problem has many variables and a large

input domain. Also they introduced the term "evolutionary testing" .

Pargas et a1. (Pargas et a1., 1999) have experimented with genetic algorithm based

test data generation for statement and branch coverage using a control-dependence

graph to guide optimization. They tested six relatively small test programs and

compared the results to the random method. Their approach clearly outperformed

the random method for three of the six test programs, for the other three programs

both methods found the optimal solution in the initial population. They suggest that

the use of a GA could be more beneficial for complex programs. A minimizing version

of the objective function of Pargas et a1., can be computed as (dependent-executed).

Automatic test data generation for structural(White Box) testing 18

The main problem with this objective function is the coarseness of the resulting

fitness landscape and the existence of several fitness plateau. This reduces the

ability of the fitness function to guide the search to the target. As many test cases

will have the same fitness values, it will have difficult to compare between these test

cases.

The PhD thesis by Tracey (Tracey, 2000) deals with automatic test data

generation for testing safety-critical systems. He uses simulated annealing and

genetic algorithms, but also random search and hill climbing as the optimization

methods. He defines the framework on how to use them for generating test data

for temporal WCET (Worst Case Execution Time) testing, assertion based testing,

and structural testing. In this work Tracey identifies the control dependent nodes

for the target structure. If an individual takes a critical branch from one of these

nodes, a distance calculation is performed using the branch predicate of the

required, alternative branch. This is computed using the functions of Table 2.2.

Tracey then uses the number of successfully executed control dependent nodes to

scale branch distance values. The published formula used by Tracey for computing

the fitness function is :

executed * branchdist
dependent '

where branchdist is the branch distance calculation performed at the branching node

where a critical branch was taken. This fitness function can lead to unnecessary local

optima in the objective function landscape. d~C:d:t increases but should decrease

and even depen~e~t although it decreases it can be dominated by branch distance. execu e

In the example of Figure 2.4, the control dependent nodes for the target structure

are identified. A distance is calculated using the branch predicate of the alternative

branch if an individual takes a critical branch from one of these nodes. In this

example, the first and second "if' statements are the critical nodes. A valley exists

where ~ * Ixl ~ Iyl and x =j:. O. Figure 2.5 shows the landscape of the example in

Figure 2.4.

Automatic test data generation for structural(White Box) testing

void landscape(int x, int y) {

if(x == O){

if (y == 0) {

Ilrequired executed

}

}

}

Figure 2.4: Example to show Tracey's objective function .

20

§l 15
iii
>
.§
g 10
:J

U.
CI>
>
U
CI> g 5

o
20

......

y -20 - 20

x

20

Figure 2.5: Objective function landscape of Tracey (Tracey, 2000) for example of

Figure 2.4.

19

Automatic test data generation for structural(White Box) testing 20

Relational Predicate Objective Function obj

Boolean if TRUE then 0 else K

a=b if abs(a - b) = 0 then 0 else abs(a - b) + K

a#b if abs(a - b) # 0 then 0 else K

a<b if a - b < 0 then 0 else (a - b) + K

a ::;b if a - b ::; 0 then 0 else (a - b) + K

a>b if b - a < 0 then 0 else (b - a) + K

a2:b if b - a ~ 0 then 0 else (b - a) + K

rva Negation is moved inwards and propagated over a

Table 2.2: Tracey's objective functions for relational predicates. The value K, K >

0, refers to a constant which is always added if the term is not true

The objective function of Barsel et a1. (Baresel et a1., 2001) normalizes branch

distance values (branchdist) into the range 0-1 using the following function:

normalizebd(branchdist) = 1 - U)(116r~nchd •• t

This is combined with another value called the approximation level (approach level),

calculated as follows:

approachlevel = dependent - executed - 1

The minimising objective function is zero if the target structure IS executed,

otherwise, the objective value is computed as:

approachlevel + normalizebd(branchdist)

All the previous cost methods ignore improvement in the cost of disjunction (min) of

the more costly operand. Consider, for example, the program fragment in Figure 2.6.

To execute the goal the values x and y should be equal to O. Suppose there are

test cases as shown in Table 2.3. The cost of the predicate is a fiat surface; even

Automatic test data generation for structural(White Box) testing 21

if(x == 0 I I y == O){

Ilexecuted target

}

Figure 2.6: Example program using min as cost for disjunction

the second test case is more "close" to solution than the others. Clearly, when

the operands have different truth values, the cost of the disjunction should be the

cost of the true operand. This leaves the cases where the operands have the same

truth value. In this case, a popular choice for the cost of a disjunction is the cost

of the operand with the lowest cost i.e. the cost function is the min function.

The common corresponding cost function for the conjunction is the max function.

The issue of cost functions to use for logical operators or and and is addressed by

Bottaci (Bottaci, 2003). The cost function of or and and are shown in Table 2.4,

where a and b are positive (false) and a', and b' are negative (true), a, b are never

zero.

1 10 1

1 1 1

1 99 1

1 999 1

1 50 1

Table 2.3: Test cases for example in Figure 2.6. Note differences in the larger value

are ignored.

These costs can be illustrated with an example showing three failed and two suc­

cessful attempts to execute the predicate a :::; b for various integer values of a and

b as shown in Table 2.5. The predicate cost function a - b when the predicate is

Automatic test data generation for structural(White Box) testing 22

a b aVb a/\b

a b ab a+b a+b

a b' b' a
I

b
I

b a a

I

b' a' + b'
I I

a b a
a'+b'

Table 2.4: Logical or and logical and cost table (from (Bottaci, 2003))

false and a - b - 1 when the predicate is true.

I a I b II cost I or - cost I and - cost I
8 3 5 5 5

6 3 3 15 8 '8

5 3 2 30 10 31

3 3 -1 -1 10

1 3 -3 -4 10

Table 2.5: Cumulative or-cost and and-cost for the predicate a :::; b for the values

listed

Bottaci (Bottaci, 2005) also suggests a new method of finding a cost for branch in

the loop as follows: Each reached branch maintains two cost values, both derived

from the associated predicate cost function. One cost value is the cost that all

attempts to execute the branch are successful. This is called the cumulative

and - cost. The other cost value is the cost that any attempt is successful, called

the cumulative or - cost. For example, in the following piece of code:

public f (int x){

for (int i =0; i< 3;i++){

Automatic test data generation for structural(White Box) testing 23

if ex == O){//costl , cost2, cost3 for each iteration 0,1,2 respectively

//Target executed

}

}

The accumulative cost according to Bottaci is (costl V cost2 V cost3) or

(costl 1\ cost2 1\ cost3), and this can be found depending on the previous equation

of disjunction or conjunction.

The value and - cost is positive and the value ar - cost is negative when both

branches at a conditional node have been executed. The cost values produced by

relational predicates are normalised to lie with in [-1, 1] using the following formula

(let c be the branch distance value):

{

II if c > 0 - He
_1 __ 1 if c < 0
1-e
o otherwise

Bottaci incorporates the two notions of branch distance and approximation level

into a single predicate expression based on the control dependency condition for

a branch. This condition is expressed as a conjunction of the predicates and the

evaluation function for AND is used. For each statement in the program under test

there is a reachabili ty condition such as: (P 1\ rv Q 1\ ...) V (R 1\ rv S 1\ ...), where

(P 1\ rv Q 1\ ...) is a single control dependency path to target and (R 1\ rv S 1\ ...)

is an alternative control dependency path to the target. Any non-reached branch

predicates for which a cost value is not available are given a maximum predicate

expression cost value that depends on the number of relational predicates in the

branch predicate. This maximum value is equal to the largest cost value that may

be generated at any branch predicate in the program after normalisation. This can

be calculated at compile time by counting the number of conjuncts in a conjunctive

predicate expression where each conjunct is a relational predicate which has a max

cost of 2.0 after normalisation. In the following example there are three relational

predicate expressions and so the max is equal 2.0 + 2.0 + 2.0 = 6.0 which is the

cost given to this branch if it is not reached.

Automatic test data generation for structural(White Box) testing

if (a == b && x == Y && t == w){

lido something

}

24

The cost of all the boolean expressions in the empirical work reported in this thesis

were calculated according to the above scheme.

Chapter 3

Search-based Software Test Data

Generation for String Data using

Program-Specific Search

Operators

3.1 Introduction

Current test data generation work (Baresel et al., 2001), (Harman et al.,

2002), (McMinn et al., 2005), (Korel, 1990) has been limited largely to programs in

which predicates compare numbers, as illustrated in the example below.

if (y == 30) {

//TARGET

}

These can be dealt with using cost functions discussed in the previous chapter.

25,
~

Search-based Software Test Data Generation for String Data 26

Unlike numeric equality predicates, string equality does not suggest a single straight­

forward cost function. In research that has considered string predicates, one ap­

proach has compared strings by comparing their underlying character bit string

representations using the bit Hamming distance as a cost function (Jones et al.,

1996). Another approach (Zhao, 2003) reduces the problem of string search to a

sequence of character searches. In this approach, only a character matching cost

function is used and characters are matched as numbers. There are a number of

string matching algorithms, used in information retrieval and biological applications,

which may be useful for defining cost functions but as yet none of these have been

applied to the problem of searching for string test data.

This chapter consists of two main parts. In the first part, some potential string cost

functions and corresponding search operators are considered, including two new cost

functions. These cost functions are assessed by comparing their performance on a

number of sample test programs. In the second part of this chapter, a new type of

search operator is introduced with the aim of biasing the search towards strings that

occur as literals in the program under test. The performance of the cost functions

when used with the new operators are assessed by again generating test data for

the sample programs. The results show that the new search operators provide a

substantial improvement in efficiency. The main contribution of this chapter is that

it provides a new method for searching for string test data and demonstrates that

it is potentially quite efficient.

3.2 Cost Functions and Search Operators for

String Predicates

This section considers the extent and nature of the string search space that is relevant

to programs in practice. It then considers some existing cost functions and some

new cost functions for the string predicates of equality and ordering.

Search-based Software Test Data Generation for String Data 27

3.2.1 String search space

Modern software uses 16-bit character strings. The space of strings formed from the

16-bit character set is huge, so much so that a search process may be prohibitively

slow to be of practical benefit. A preliminary investigation was thus done to try

to establish the size and structure of the space of strings that are used in practice.

A large body of software, the .NET Framework Shared Source Common Language

Infrastructure (SSCLI) (Stutz et aI., 2003), was scanned to extract string literals.

The strings were in turn scanned in order to produce a frequency distribution for the

occurrence of each character in a SSCLI string literal. In over 13 million characters,

only 850 were outside the 8-bit range. Over 99% of the characters were within the

range of the 95 "printable" characters from the space character to the tilde. In

practice, this means that the vast majority of the 16-bit character set need never

be explored when searching for test data for typical programs. The examination

of the SSCLI source code also showed that about 6% of the predicate expressions

are string predicate expressions and about 91% of the string predicates are string

equality.

In order to exploit the marked non-uniformity of the distribution of characters typi­

cally used in string processing programs, in the work reported here, characters were

restricted to have an ordinal value between 0 and 127, i.e. within the lower 7-bits.

Characters outside this range were excluded entirely because the vast majority of

programs do not require them. Since non-printing characters occur in the strings of

only a very small proportion of programs, it is probably better to deal with these as

a special case. This might be done by the tester, with a knowledge of the program

under test, setting the parameters of the search space to a specific set of characters.

It was also observed that many of the string literals consisted of English or English­

like text such as might be used for identifiers, the names given to products, organi­

sations, etc. This means that not all strings in the space of 7-bit character strings

are equally likely to be required as test data. It is clearly advantageous to bias the

search for strings according to the distribution of strings that occurs in practical

programs.

Search-based Software Test Data Generation for String Data 28

Given a relative frequency table for the occurrence of character pairs in English text,

a random English-like string may be constructed as follows. Initially, the first char­

acter is selected randomly from the English alphabet. The selection of subsequent

characters, however, is biased so that consecutive pairs of characters in the string

occur with the same relative frequency as they occur in English language texts, so

as example if the first character is 'A' then the second character will not be 'E'

because the probability of 'A' followed by 'E' is zero (Table 3.1). This approach

can be applied to natural languages other than English of course, providing the

language can be identified. Again, this is probably most easily done by the tester.

Some strings cannot be generated by this method, e.g. the string "ae", and so an

additional string generator generates strings with characters selected independently

and with a uniform random distribution.

The search space also depends on the minimum and maximum length of input string

that is generated. It is clearly inefficient to set a maximum length that is greater

than is required for a particular program. It is thus expected that the tester, with

knowledge of the program under test, will specify both the minimum and maximum

length of input string.

A random string from the set of "practical" strings may therefore be constructed by

selecting a random string length and then selecting, with some specified probability,

from strings generated from characters selected from a uniform distribution over the

7-bit character space or from English-like strings.

Search operators and the role of the cost function

The cost fUllction estimates the number of search operations that must be performed

to transform the candidate into a solution. Clearly, the number of search operations

required to transform a given candidate into a solution depends on the nature of the

transformation performed by each operator. This important dependence between

the cost function and the search operators can be illustrated by considering a simple

search problem over the set of eight 3-bit strings from 000 to 111. Assume that

Search-based Software Test Data Generation for String Data 29

A B C D E F G H I J K L M N 0 p Q R S T U V W x y Z

A 1 9 15 24 a 5 9 2 18 a 6 26 12 84 a 9 a 544 48 4 9 6 a 12 1
B 5 1 a 0 22 a a 0 3 0 a 8 a a 9 a a 5 1 1 10 a a a 5 a
c 15 a 2 a 18 a a 18 4 a 8 4 a a 21 a a 5 a 7 3 a a a 1 a
D 22 9 4 6 26 5 3 12 23 1 1 5 7 8 19 3 a 7 16 26 5 1 9 a 4 a
E 51 11 21 58 22 14 7 15 19 1 2 25 22 51 15 13 1 78 53 39 3 11 23 4 12 0
F 12 1 1 1 9 5 a 4 11 a a 4 2 1 18 1 a 8 2 17 4 a 2 a 1 a
G 11 2 1 1 13 1 2 16 8 0 a 3 1 2 11 1 a 6 4 7 3 a 2 0 1 0
H 53 1 1 1 140 1 a 3 45 o a 1 1 1 23 1 a 3 2 15 4 0 2 0 2 a
I 4 2 15 15 10 8 12 3 o a 4 17 17 83 11 3 a 13 40 43 0 7 3 1 a 1
J 1 a a a 1 a a a 1 0 a a a a 1 a a a a a 4 a a 0 a 0
K 3 1 0 0 14 1 0 1 7 0 a 1 a 4 2 o a a 2 2 0 0 1 0 1 a
L 19 2 117 30 5 1 2 22 a 2 26 2 1 19 1 a 1 5 7 4 1 2 0 14 a
M 21 3 0 0 31 1 a 2 11 o a 1 2 1 14 5 0 1 5 4 4 0 2 a 8 a
N 19 3 12 68 31 4 43 8 15 1 4 4 3 4 28 2 a 1 15 49 3 1 6 0 5 a
0 7 6 6 8 2 37 3 5 6 a 6 12 22 49 17 7 a 39 13 26 53 6 22 a 2 a
p 11 a 0 a 14 a a 2 5 a a 7 0 a 10 5 a 8 2 5 3 0 1 a 1 a
Q a a 0 a a 0 a 0 o a a a a a 0 o a a a 0 4 0 a 0 a a
R 23 3 5 9 61 4 5 6 23 o 4 5 6 8 25 3 a 6 17 19 5 2 5 a 10 0
S 31 5 8 3 34 5 2 23 23 1 3 6 6 4 26 9 1 2 20 50 9 1 11 0 2 0
T 27 5 5 3 35 4 1 153 35 1 1 8 5 3 53 2 0 13 16 26 8 o 14 a 7 0
u 3 2 6 3 3 1 6 1 4 0 1 16 4 17 0 8 a 20 16 22 a 0 1 a a 0
v 2 0 0 a 30 0 0 0 5 a 0 0 0 a 2 o 0 a 0 0 0 0 o a a a
w 31 0 0 1 18 0 0 20 18 o 0 1 1 5 13 o 0 1 2 2 a 0 1 0 1 a
x 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 o 0 o 0
y 8 3 3 3 6 3 1 4 5 0 0 2 3 2 17 2 0 1 9 9 1 1 5 0 1 a
z 0 0 0 0 1 a a a o 0 a 0 0 0 a o 0 0 0 0 0 0 o 0 o 0

Table 3.1: Relative frequency of character pairs in English text from (Leon, 2002)

Search-based Software Test Data Generation for String Data 30

011 goal

100 start

Figure 3.1: The search space defined by the 8 3-bit strings and a single bit inversion

search operator.

these strings constitute a set of inputs that is to be searched for the single input,

011, which executes the target branch as shown below.

pes) {

t = F(s);

if (t == 011) {

//TARGET

For simplicity of explanation, a simple hill-climbing search process will be used. In

each iteration, each candidate string s is submitted to the program P and the string

t is compared to the required or goal string by computing a Hamming distance. If

the candidate is not a solution new candidates are generated from it, in this example

by a search operator that inverts each bit to produce new candidate strings. The

string (or one of the strings) with the lowest cost is used as the start for the next

iteration. In this example, assume, initially at least, that F is the identify function

and that the initial candidate is 100 from which the bit-inversion search operator

generates the strings, 000. 110 and 101. The original string is discarded since the

lowest Hamming cost is now 2. One of the new strings is selected and the iteration

repeats. It is clear that this search converges rapidly to the goal string of 011.

The space induced by the bit inversion operator on the set of eight strings is shown

in Figure 3.1. Since each edge represents an application of the search operator, the

Search-based Software Test Data Generation for String Data 31

Figure 3.2: The search space defined by the set of eight 3-bit strings and a right

bit-insert operator.

Hamming distance between any two strings is precisely the number of applications

of the search operator required to "search" for one string from the other. As a

consequence of this, the Hamming distance is a reliable cost function for this space.

The reliability of the Hamming distance is, however, dependent on the use of the

bit inversion search operator. This can be illustrated by considering an alternative

search operator that right shifts a random bit into a given string and discards the

rightmost bit. The space produced by this operator is shown in Figure 3.2. Consider

again the problem of finding the solution string 011 by applying this new search

operator to the initial candidate 100. From Figure 3.2, it can be seen that this can

be achieved by two applications of the search operator. Notice, however, that in

this case, the Hamming distance (shown against each string) does not correspond

to the number of applications of the search operator required to reach the solution.

Moreover, if this Hamming distance were to be used to guide the search, the search

would follow a path from 100 to 010 to 001 where it would remain stuck at a

local minimum. For the right bit-insertion operator, the Hamming distance is not

a reliable cost function. An appropriate cost function would count the number of

right bit-insertion operations (equivalently, the edges between any two strings in the

space shown in Figure 3.2) between a given string and a solution string.

The above example illustrates a general principle concerning the duality between

search operators and cost functions. A realistic search problem, however, is com-

Search-based Software Test Data Generation for String Data 32

plicated by factors omitted from the example. The search operators are applied

to values in the input domain but the cost function is applied to values that are

arguments to the target branch predicate expression. The example avoids this issue

because F is assumed to be the identity mapping; in general, it is not. In the general

case, the cost function may lose some of its reliability but often it is still sufficiently

reliable to guide the search to a solution.

Mutation operators

There are three basic kinds of string mutation operator: deletion, insertion and

substitution. A single deletion operator was defined to delete a random character

from a given string. Two insertion operators were defined. The uniform insertion

operator inserts a character, selected randomly from the range 0 to 127, into a given

string at an insertion position selected randomly. Over time, random insertions

within an English-like string will reduce its English-like property. To counter this,

an English-like insertion operator was defined. This operator inserts a letter from

the English alphabet selected probabilistically according to letters that precede and

follow the insertion point. If the insertion point is not preceded or followed by a

letter from the alphabet, a random letter is inserted according to the frequency of

single English letters.

Two character substitution operators were defined. To accompany the binary Ham­

ming cost function (see below), a binary character substitution operator was defined.

This operator inverts a random bit within the 7 low order bits of a character. To

accompany the cost functions that compare the ordinal values of characters, a char­

acter substitution operator was defined to replace a character with another of a

similar ordinal value. The new character is selected from a Gaussian distribution

with mean at the given character. If the mean is selected then the new character is

chosen randomly from the characters adjacent to the mean. The standard deviation

of the distribution was set, rather arbitrarily, at 16.

Search-ba...<>ed Software Test Data Generation for String Data 33

3.2.2 String equality cost functions

Of the many string matching metrics in the literature (Navarro, 2001), some use a

vector space approach in which each string is equated with a point, in a Euclidean

space, say and the Euclidean distance between the two points is used to derive

a match cost. Another category of string matching metrics produces a distance

value in terms of the number of primitive operations, typically, insertion, deletion

and substitution of single characters, required to transform one string into another.

Functions differ in terms of the particular costs attached to the particular opera­

tions. In some applications, for example, it is more important to match digits than

letters or leftmost character matches may be more important than matches in other

positions. In a spelling correction application, for example, the cost of substituting

one character for another may depend on the proximity of the two characters on

the user's input keyboard or on-line dictionary. The approach of considering the

number of operations required to transform one string into another seems to be the

most promising for defining a cost function that estimates the number of search

operations required to transform a string to a solution. It is only this second type

of metric that is considered in this thesis.

Binary Hamming distance

Traditionally, many genetic algorithms have used a binary string representation for

candidates. The mutation operator has been bit inversion and binary Hamming

distance (H D) has been the cost function. This representation could be used for

character strings by simply working with the underlying bit representation of each

character. Once each string is converted to a bit string by concatenating the bit

patterns of each character, the Hamming distance of two equal length strings may

be easily computed.

Since character strings vary in length, a Hamming distance must be defined for

unequal length strings. The comparison of unequal length strings requires

consideration of the cost of inserting or deleting characters. Strictly, a binary

Search-based Software Test Data Generation for String Data 34

representation should allow only single bits to be inserted and deleted, which is

clearly inappropriate, but a character insertion can be considered to be 7

consecutive bit insertion operations. On the assumption that each bit operation

should have an equal cost, the cost of inserting additional bits or removing excess

bits was thus taken to be equal to the cost of mismatched bits. The Hamming

distance function was therefore extended so that any bits in one string that extend

beyond the length of the shorter string are counted as mismatched. More formally,

the distance between two strings A and B is

minlen i<7

HD(A, B) = (L L(AiIBi)) + 7(maxlen - minlen).
j=O i=O

where minlen, maxlen are the minimum length and maximum length of string A

and B, Ai and Bi are bits number i and 1 is X 0 R operator. For example if:

A = "SET"

B = "CASE"

HD(A, B) =(1010011 11000011)+(100010111000001) + (1010100 11010011)+ 7*1

H D(A, B) = 1 + 1 + 3 + 7 = 12

Strings are left-aligned, which may lead to unrepresentative costs because of a failure

to take account of deletion and insertion. An example is H D(XHELLO, HELLO) where

only one L matches and the cost is therefore relatively high.

A problem with standard binary encoding is the disparity that can occur between

solutions that are close to each other in unencoded solution space, but are far apart

in the encoded binary representation. For example in a standard binary encoding

the integer 63 is represented as 0111111, yet 64 is represented as 1000000. Therefore,

the crossover and mutation operators must change all 7 bits to move from one integer

value to the neighbouring other.

Another limitation in this method is the maximum number of fitness values it can

produce, which is ::; (7 * maxlen), where maxi en is the maximum length of the two

strings compared. The example program fragment in Figure 3.3 requires s = "MN"

to be executed. If the length of input string s is restricted and equal to 2 and the

Search-based Software Test Data Generation for String Data 35

if (8 == "MN") {

//TARGET

}

Figure 3.3: Simple branch requiring MN to be executed

10

9

8

7

6

5

4

3

2

'I
0
A A

Figure 3.4: Object function landscape for HD in 26 characters domain for example

in Figure 3.3. Cost of matching a string of 2 characters with "MN"

domain size is 128, then there are 128 * 128 different combinations of two characters

(... , "AA" , ... , "zz" , .. .) . The number of fitness values, however, is 7 * 2 = 14. So there

are (128 * 128)/ 14 ~ 1152 different input strings that have the same fitness value

(e.g. "MO" and "MM").

Suppose that the domain is restricted to 26 letters (,A', .. . , 'Z') . For this domain the

possible number of string combinations is 26 * 26 = 676. Table 3.2 shows the cost

values and the frequency of this cost value. As shown in this table the frequency

varies from 1 to 154 and the average is 676/14 = 48. Figure 3.4 shows the H D cost

landscape of program in Figure 3.3.

Search-based Software Test Data Generation for String Data 36

I Cost value I count I
0 1

1 8

2 32

3 78

4 130

5 154

6 137

7 86

8 39

9 10

10 1

Table 3.2: The cost values and frequency in 26 characters domain (,A', ... ,'Z'), num­

ber of fitness values = 11 i.e this restricts the search method.

Search-based Software Test Data Generation for String Data 37

Character distance

Rather than using a binary space in which to map characters and strings, characters

may be mapped into an ordinal space according to each character's ordinal value.

In this space, a substitution operator would be sensitive to the ordinal value of the

character it substitutes. This suggests a new cost function based on the pairwise

comparison of character values. This new cost function, called character distance

(C D) is defined as the sum of the absolute differences between the ordinal character

values of corresponding character pairs. For strings of unequal length, any character

without a corresponding character increases the cost by 128, the size of the character

search space. More precisely, let string s = S081 •.. Sk-l be of length k where Si is

the ordinal value of the ith character. Similarly, let string t = tOtl ... tl- l be a string

of length k ~ I then

i=k-l

CD(s, t) = L lSi - til + 128(1 - k).
i=O

Strings are left aligned and absent characters are treated as null characters. For

example if:

s = "SET"

t = "CASE"

CD(s, t) = lascii('S')-ascii('C') I
+ lascii('E')-ascii('A')1

+ lascii('T')-ascii('S')1

+ 128(4 - 3)

CD(s, t) = 183 - 671 + 169 - 651 + 184 - 831 + 128 = 149

Figure 3.5 shows the CD cost landscape of the program in Figure 3.3.

CD, like H D, is sensitive to the alignment of different length strings.

Edit distance

Of the many existing string comparison metrics used in information retrieval and

biological matching, the vast majority are derived from the edit distance. The edit

Search-based Software Test Data Generation for String Data 38

30

25

20

!!l
"iil 15 >

§
10

5

0
W

z

1st char
A

2nd char

Figure 3.5: Object function landscape for CD in 26 characters domain for example

in Figure 3.3. Cost of matching a string of 2 characters with "MN"

distance (ED) (or Levenshtein distance (Navarro, 2001)) is derived explicitly from

consideration of three operators that perform character insertion, character deletion

and character substitution. The edit distance between two strings is the minimum

number of deletions, insertions, or substitutions required to transform one string

into another. For example ED (TEST, TOT) = 2, because 1 deletion (or 1 insertion)

and 1 substitution is sufficient to match the two strings. The edit distance function

is defined by the recurrence relation below where s : a, t : b are character strings,

each consisting of a possibly empty string s, t , followed by the character a, b.

ED(s : a, t : b) = min(ED(s : a, t) + 1, ED(s, t : b) + 1, ED(s, t) + ED (a, b))

The edit distance of two characters is one unless they are equal, in which case it is

zero. The edit distance of an empty string and a given string is the length of the

given string.

In considering the suitability of the edit distance as a cost function, the size of the

range is important. The range of edit distance values is equal to the maximum

length of the two strings compared. Consider for example, that there are over 1010

strings in the space of strings of length 5 and yet only 6 edit distance values. This

Search-based Software Test Data Generation for String Data 39

2

1 .5

~ "' ;

~
§

...... :
0 .5

'. ':-

0
Z

z

1st char
1A A

2nd char

Figure 3.6: Object function landscape for ED in 26 characters domain for example

in Figure 3.3. Cost of matching a string of 2 characters with "MN"

means that the "surface" of the cost function produced by evaluating each point of

the search space with respect to a given goal will be largely fiat.

Figure 3.6 shows the ED cost landscape of the program in Figure 3.3, the objective

function contain 3 values (0, 1 and 2) and gives no guidance as to change from 'A'

to 'M'.

Ordinarily, such an indiscriminate cost function would provide little guidance to

the search but the cost function is nonetheless reliable given the search operators it

assumes. A cost of one for the substitution of a character by any other character

assumes a search operator which generates, in a single step of the search, all strings

that may be formed by a single character substitution. In a practical search, the

number of successors that such an operator would produce is too large to allow the

easy identification of the best successor.

A more practical substitution operator would produce a single string by substituting

a given character with a single character. If the new character value is defined

to be adjacent to that of the character it replaces, then the difference in ordinal

values estimates the number of substitution operations required to substitute one

Search-based Software Test Data Generation for String Data 40

character for another. The ordinal distance is also a reasonable estimate when

the new character value lies close to the original, as is the case with the Gaussian

character substitution operator.

To accommodate this kind of search operator, the edit distance function can be

modified to take account of the difference in character values whenever a character

is substituted. The edit distance of two characters can be taken to be equal to the

absolute difference in their ordinal values. The ordinal edit distance (OED) could

thus be defined as

OED(s : a, t : b) = min(OED(s : a, t) + k, OED(s, t : b) + k, OED(s, t) + la - bl)

where k is the insertion or deletion cost and a, b in la - bl are interpreted as ordinal

values.

To choose a value for k, note that the argument for the practicality of using a char­

acter substitution operator that, given a source string, produces a single modified

string, applies also to the insertion operation. A practical insertion operator would

therefore produce a single string by insertion of a single characterinto the source.

The number of insertion operations now required to insert a given character is a

function of the character set size. For this reason, the cost of insertion, k, was cho­

sen to be 128. Given that any match that can be achieved by an insertion into one

string can also be achieved by a deletion in the other, the cost of deletion was also

chosen to be 128.

Using 128 as the cost of insertion and deletion, however, gIves OED(XHELLO,

HELLO) = 128 and yet OED(GDKKN, HELLO) = 5 which is too low since the search

effort required to match GDKKN, HELLO, five substitutions, should be higher than

the effort to match XHELLO, HELLO, a single deletion. The problem is that

substitution costs become unreasonably low as corresponding character values

approach each other. The low, non-zero substitution costs were therefore offset

away from zero while retaining the maximum cost at 128 (the maximum cost is

127 but for consistency 128 is used). This was done by setting the substitution

cost to be 128/4 + 31a - bl/4 when la - bl > 0 and zero otherwise. This gives

Search-based Software Test Data Generation for String Data 41

C -- (67) A --(65) S -- (83) E -- (69)

0 128 256 384 512

S -- (83) 128
.. 44 ~ ~ 172 " 256

110 384
~ ~

E --(69) 256 .. 161.5 I " 79
.. 207 ~ 256

~

T --(84) 284 289.5 , 207 , '111.75 239.75 -

Table 3.3: OED example calculation

OED(GDKKN, HELLO) = 163.75 which is higher than 128. OED was thus defined as

OED(s : a, t : b) =

min(OED(s : a, t) + 128, OED(s, t : b) + 128, OED(s, t) + 128/4 + 31a - bl/4).

~ : ~ is an arbitrary value which was found to be effective, ~ : ~ was also tried and

was effective. The precise value is not important providing it is in the range ~ : ~

to 1 . 2
3 . 3'

For example if:

s = "SET"

t = "CASE"

OED(s, t) = 239.75, the solution is shown in Table 3.3.

Figure 3.7 shows the OED cost landscape of the program in Figure 3.3.

A significant difference between H D and CD compared to OED is that the cost

of OED does not depend on a left-most alignment of strings. For example, in

OED(XHELLO, HELLO) five characters match.

String ordinal distance

Zhao et al. (Zhao, 2003) propose a string comparison cost function. In this func­

tion, each character string is represented by a nonnegative integer. This integer is

constructed by regarding each character of the string as a "digit" in a base equal

to the character set size. If 128 is the size of the character set then the numerical

value of the string S = SOSI ••• Sk-l is ~(s) = 128k- l sO + 128k- 2S 1 + ... + 1282sk_3 +

Search-based Software Test Data Generation for String Data

90

80

7 0

60

!l50
"iii

j40
30

20

10

o
Z

1s t char
A A

2nd cha r

42

z

Figure 3.7: Object function landscape for OED in 26 characters domain for example

in Figure 3.3. Cost of matching a string of 2 characters with "MN"

128sk- 2 + Sk- l' The string ordinal distance cost function (0 D) is thus defined for

two strings s, t as OD(s , t) = I~(s) - ~(t)l.

For example if:

s = "SET"

t = "CASE"

~(s) = 84 *1280 + 69 * 1281 + 83 * 1282

~(s) =1368788

~ (t) = 69 * 1280 + 83 * 1281 + 65 * 1282 + 67 * 1283

~(t) = 141584837

OD(s, t) = I~(s) - ~(t)1 = 140216049

Figure 3.8 shows the OD cost landscape of the program in Figure 3.3. In this Figure

the valley in the fitness landscape along the line 1st char = 'M' appears to be hori­

zontal but is in fact descending towards (1st char = 'M', 2nd char = 'N') because the

gradient is only 13. This caused by the dominance of the cost function by the value

of the 1st char and illustrating the problem with the cost function. In Figure 3.9,

the gradient is visible because the cost varies only with the second character.

In practice, ~ (s) may be very large for long strings. 0 D may be too large to be

Search-based Software Test Data Generation for String Data 43

1500

Q) 1000 ::> ro
::0-

u;
0
u

500

z

1 s t c har 2nd c h a r

Figure 3.8: Object function landscape for OD in 26 characters domain for example

in Figure 3.3. Cost of matching a string of 2 characters with "MN" .

1 4 .-.--------.--------.--------.~,_--------_.--------,_----~

1 3

9

3

o L-LA--------~------~--------~M~N~---------S~-------W~----~Z

2 nd c h ar

Figure 3.9: Object function landscape for OD in 26 characters domain for example

in Figure 3.3. The first character is 'M', the cost varies only with the 2nd character.

Search-based Software Test Data Generation for String Data 44

represented using programming language provided integer data types even when

two strings differ in only a single character, if it is the leftmost character. Zhao

et a1. (Zhao, 2003) avoid integer overfiow because the algorithm that searches for a

matching string searches for only a single character at a time. This means that in

practice all string comparisons are in fact character comparisons. Used in this way,

the ordinal distance cost function becomes equal to the conventional cost functions

used for numeric predicates.

To search for a string match, one character at a time, however, is not usually efficient.

Circumstances arise in which good candidate solutions are neglected because of the

particular order in which character matches are pursued. Consider, as an example,

the search for a string to match HELLO. Consider further that GABCD and XELLO are

two candidates in this search but the first character only is being used to give a cost

for the match. Because H is closer to G than to X, the string XELLO is discarded in

favour of GABCD. This particular example is clearly a mistake. The general problem

is that a character by character search imposes the additional search problem of

finding an order in which character positions are to be matched. The example

program fragment below requires that the second character of the string be matched

before the first.

if (s[O] == 'H' && s[l] != 'E') {

s[O]='X';

} if (8 == "HELLO") {

//TARGET

}

If the ordinal distance cost function were to be used to compare strings rather than

characters it would penalise mismatches in the leftmost characters far more than

mismatches in the rightmost characters. Given that each character is equally likely

to be modified by a search operator, this difference in cost values renders the cost

function unreliable in many situations. The ordinal distance cost function is also very

sensitive to the lengths of the strings compared. For example, the distance between

Searcll-based Software Test Data Generation for String Data 45

HELLO and XHELLO is an order of magnitude higher than the distance between HELLO

and GABCD. For these reasons, the string ordinal distance was considered unsuitable

as a cost function for string equality.

3.2.3 String ordering

String test data may be required to satisfy string ordering predicates such as s < t.

String ordering may be determined from the ordinal value of each character in the

character set or it may be determined using language or culture-specific rules. It

is only the ordering induced by the character ordering that is considered here. But

this does not limit the work reported because the work relies only on the existence

of an ordering.

Ordinal value ordering

For a given maximum string length, and when all strings are right null padded if

required to achieve the maximum length, a set of strings may be totally ordered

according to the ordinal value of the string. When two strings are out of order, the

difference in ordinal values may be used as the cost OV, thus

OV(s, t, <) = ~(s) - ~(t) + 1, s ~ t

OV(s, t, <) = -OV(t, s, ::;), s < t

OV(s, t, ::;) = ~(s) - ~(t), s > t

OV(s, t, ::;) = -OV(t, s, <), s ::; t

This cost function has disadvantages, however. The problem of the very large values

it produces has already been mentioned. In addition, it is not clear that the cost

values produced are a reasonable estimate of the cost of satisfying a string ordering

predicate.

Table 3.4 shows how the cost function is computed for s < "T" where s is a string

variable. Before the comparison right fill short strings with 0 to make the strings's

length equal. Different values with different length are assigned to s to illustrate

the cost.

Search-based Software Test Data Generation for String Data 46

(s<'T")

s target value Result
·Z· 'T' 90 -84 + 1 7

'U· 'TO' (90 + 90 *128) - (84*128+ 0) + 1 859

'XX" 'TO· (88 + 88 * 128) - (84 *128) + 1 601

'WZ' 'TO' (90 +87 * 128)- (84*128) + 1 475

'WAA' 'TOO' (65 + 65 '128+ 87 '128' 128) -(84 '128 '128) + 1 57538

'TB' 'TO' (66 + 84 * 128) - (84 * 128) + 1 67

Table 3.4: String ordering example using ordinal method

In the majority of cases, when two random strings are compared for a given ordering,

it is only the most significant character of each string that is relevant. Consider,

for example, the cost of satisfying the predicate expression XYA < NKL. This pred­

icate may be satisfied by modifying only the first character in either string. This

observation motivated the definition of the following string order cost function.

Single character pair ordering

The cost of satisfying the predicate expression XY A < NKL should depend on the cost

of satisfying X < N since this is how the string predicate expression may be solved

with the least modification to the strings. A predicate such as X < N may be satisfied

by modifying either character. In general, the cost of satisfying a character predicate

is calculated according to the cost functions for numerical predicates (Bottaci, 2003).

In the case of <, it is the difference in ordinal values plus one, in the case of ~ it is

the difference in ordinal values.

For some string predicate expressions, there may not be a choice of character that

may be modified. For example, if the string alphabet consists only of the 26 letters

from A to Z then two characters must be modified to satisfy Z < A. Because twice

as many character modifications are required, such predicates are considered more

costly to satisfy.

In general, the cost of satisfying a string predicate expression may be based on the

Search-based Software Test Data Generation for String Data 47

number of character pairings where a single character modification is sufficient to

satisfy the string predicate expression. In the example XY A <NKL, a single character

modification is sufficient to satisfy the predicate expression only in the first pairing.

Until the first pairing is at least equal, modifying characters of subsequent pairings is

futile. In the example NNP <NNe, a single character modification in any three of the

character pairings is sufficient to satisfy the predicate expression and consequently

the cost of this example should be lower. The cost is highest when no such character

pairings exist.

On the basis of the above observations, a cost function, known as single character

pair (Sep) cost was defined. A cost for an unsatisfied string ordering predicate

expression is calculated as follows: for each character pair formed from corresponding

characters in two strings, left aligned and right null padded where necessary to be

of equal length, a character pairing cost is calculated. A character pairing cost is

calculated as follows: if no single character modification in that pair can satisfy the

string predicate expression, the cost for that pair is 2 x 128. 2 x 128 was chosen to be

significantly larger than 128 which is the largest possible cost for a single character

modification. If modification of a single character in a pair, a, b may satisfy the

string predicate then the cost for the pair is a - b + 1 assuming a < b is required.

The cost of the string predicate expression is the sum of the character pair costs

divided by the length of the longest string to give an average cost for the modification

of a character in a character pair. When two empty strings fail a string ordering

predicate, the cost is 2 x 128. For example the cost of is" aOxOOd" < "aOxf fc" (OxOO

is null or a character of zero ordinal value and Oxf f is a character of 127 ordinal

value) equal to ((a -a + 1) + 2* 128 + (d - c + 1))/3. For consistency with the cost

function for logical negation (Bottaci, 2003), the cost of a satisfied string ordering

predicate expression is the arithmetic negation of the cost of the logical negation of

the string predicate expression.

Table 3.5 shows how the cost function computed for s < "T" where s is a string

variable.

Search-based Software Test Data Generation for String Data 48

(s <' T')

s target value Result

'Z: 'T' (90 -84 + 1)/1 7

"ZZ" "TO" «90 -84 + 1) + (90 -0 + 1))/2 49

'XX' 'TO' «88 - 84 +1) + (88 - 0 + 1))/2 47

"WZ" "TO" «87- 84 +1) + (90 -0 +1))/2 47.5

"WAA" "TOO' «87 -84 +1) + (65 -0 +1) + (65 - 0 +1))/3 45.33

"TB" "TO" «84 - 84 + 1) + (66 -0 +1))/2 34

Table 3.5: String ordering example using single character pair method

3.3 Empirical Assessment of String Search Oper-

ators and Cost Functions

In order to assess the reliability of the cost functions introduced in the previous

section, an empirical investigation was done. A number of test programs were as­

sembled and for each program, an attempt was made to generate inputs to achieve

branch coverage. These programs, which include predominantly string predicates,

are described in Table 3.6. The size of each program is given as lines of code (LOC).

For each program, the total number of relational predicate expressions (RPE) in

each program is listed, and in parentheses, the number of them that are string rela­

tional predicate expressions; the remaining relational predicates are numeric. One or

more relational expressions may be combined with logical connectives into a branch

predicate. The number of branches is also listed. The source code for each test

object can be found in Appendix A.

Calc

This test object consists of one function, which takes an operator as string and two

numeric operands. The function returns the result if the current inputted operator

and operands are valid otherwise the function returns invalid-operation. The code

is modified; instead of using a symbol operator (e.g "+", "-", "*", "tan" , ...), the

Search-based Software Test Data Generation for String Data 49

code uses full operator name ("plus", "minus", "multiply", "tangent", ...). Also

there is a constraint to be sure that there is consistency between the operand and

the operators. For example if the operator is "sqrt" then the operand must have

a non-negative value; if the operator is "divide" the second operand must be non­

zero. The ranges used for the integer array values in the experiments were -10,000

to 10,000.

Cookie

This test object takes three input variables, name, val and site as string. The pur­

pose of this test object is to read a specific name-attribute pair from a cookie and

compare these values with input parameter values.

DateParse

This test object takes Day-name and Month-name as string parameters. The func­

tion validates name of day of the week and decodes name of month.

FileSuffi.x

The purpose of this test object is to check whether that the file suffix is consistent

with directory. This function takes directory and filename as string parameters,

then splits filename into (sub)strings at all OCClUrences of "." delimiter, returns a

vector of (sub)Strings (fileparts). It assigns the last part of fileparts to Suffix then

validates directory with the specific application name and validates Suffix with data

format which is consistent with the application name.

Order4

This function takes 4 string parameters and the main purpose of this function is to

check if 4 argument strings are in a specific increasing or decreasing order.

Pat

This test function takes two string parameters then checks for the presence of an

argument string x, within another argument string y, the presence of the reverse of

x, both x and its reverse and the two palindromes formed by concatenating the x

with its reverse.

Stem

This module is an implementation of the Porter stemming algorithm (or Porter

stemmer) which is a process for removing the most common morphological and

Search-based Software Test Data Generation for String Data 50

inflexional endings from words in English. Its main use is as part of a term normal­

isation process that is usually done when setting up Information Retrieval systems.

The code is adapted from (Martin, 2005). This test function consists of six func­

tions, the main function Subject takes one string argument.

Txt

The main goal of this test object is to convert English text into mobile telephone

txt by substituting abbreviations for common words (e.g "two" to "2", "you" to

"u", "bye the way" to "btw", ...). This test object takes 3 string parameters and

depending on the values of these parameters, translates the words and phrases into

an abbreviated txt form.

Title

The test object consists of one function which takes sex and title as string parame­

ters. The main purpose of this function is to validate that a person's title and sex

are consistent(e.g "male" and" "mr").

I Name I LOC I RPE (str) I Branches I
Calc 46 11 (11) 22

Cookie 23 6 (5) 10

DateParse 52 19 (19) 26

FileSuJJix 40 11 (10) 22

Order4 15 14(6) 6

Pat 62 14(10) 28

Stem 44 11(8) 16

Txt 29 11(11) 14

Title 36 21(21) 12

Table 3.6: The JScript functions used for empirical investigation.

Search-based Software Test Data Generation for String Data 51

3.3.1 Experimental parameters

Each of the cost functions and associated search operators were implemented in a

prototype test data generation tool. The tool has been constructed by modifying

the JScript (JavaScript) language compiler within the SSCLI and can therefore

be used to test functions within programs written in the JScript language. The

program must include directives to specify any input domain constraints that are to

be applied. The program is then parsed and semantic analysis is done. The tool then

inserts instrumentation code at each branch in the function. This instrumentation

code calculates the cost of each branch predicate whenever it is executed, for more

information refer to (Bottaci, 2005).

The cost of each relational predicate expression was calculated according to the cost

functions given in the previous section. Where branch predicate expressions consist

of two or more relational predicates joined by logical connectives, and, or and not,

the cost values were combined according to the scheme given in Bottaci (Bottaci,

2003). In the case of logical and, for example, the costs of the constituent operands

are added whenever they are both false. For nested branches, the costs of the

branches in the control dependency condition of the target branch were similarly

combined to provide an overall cost value for the candidate input. Unexecuted

branches were assigned a high fixed cost (see Chapter 2, page 21).

Input domains

As described in Section 3.2.1, all character values were restricted to an ordinal

range from 0 to 127 inclusive. A maximum string length of 20 was used to create a

large search space and thereby reduce, to a very low probability, the possibility of

achieving branch coverage by random data generation.

Search-based Software Test Data Generation for String Data 52

Genetic algorithm

The search was directed to generate data for one branch at a time. The order

in which the branches of the program were targeted was arbitrary except that no

nested branch was targeted before the containing branch. This is not, in general,

a good strategy since the search will become stuck at an infeasible branch but it is

adequate for the experimental purposes of this research given that all the branches

in the sample programs are feasible.

A steady-state style genetic algorithm, similar to Genitor (Whitley, 1989), was used

in this work. The cost function values computed for each candidate input were

used to rank candidates within the population in which no duplicate genotypes

are allowed. A probabilistic selection function selected parent candidates from the

population with a probability based on their rank, the highest ranking having the

highest probability. More specifically, for a population of size n, the probability of

selection is
2(n - rank + 1)

n(n - 1)

A single tree-structured representation was used, both for candidate inputs (pheno­

type) and for crossover and mutation (genotype). At the top-level, a candidate is

an array of objects in 1-1 correspondence with the parameters of the program under

test. Each object may be a primitive value, i.e. a number, character or string, or

an array. This representation has the advantage that all candidates have the same

structure. Candidates differ only in the lengths of strings and these occur only at

the leaf nodes of the structure.

Single point crossover was used. A cut-point within the tree structure was selected

randomly and the resulting parts were exchanged. If the cut-point fell within a

string and beyond the length of the shorter string then the single suffix from the

longer string was transferred to the shorter string as illustrated below.

parents offspring

Search-based Software Test Data Generation for String Data

GENERIATION

DATA I

GENER

DATAATION

53

A genetic algorithm has a number of parameters that may be modified to suit a

given problem. The size of the population and the frequency with which selected

candidates are mutated are two examples. In the context of test data generation, a

search algorithm must be able to perform effectively without significant human in­

tervention as such intervention is not cost effective hence no parameter was "tuned"

to suit any particular program under test. In the work reported here, a population

size of 100 was always used. At each evaluate-select-produce cycle, either muta­

tion or crossover was applied with equal probability. This means that a third of

selected candidates were mutated since two candidates are selected for a single ap­

plication of crossover. The mutation of a candidate consisted of a mutation to a

single randomly selected primitive value, in this case a string or a number. Of the

two character substitution mutations, only the binary bit inversion operator was

used when searching with the Hamming distance (H D) cost function, otherwise the

Gaussian substitution operator was used.

3.3.2 Preliminary results

There are three kinds of string mutation that may be applied: deletion, insertion

or substitution. Initially, the choice of which particular mutation to apply was

determined randomly with equal probability. During a number of preliminary runs

of the genetic algorithm, however, it was noticed that the effectiveness of the different

kinds of mutation operator (i.e. the rank of the offspring produced) varied according

to the stage in the search. The bar chart of Figure 3.10 shows the mean rank of the

offspring produced by each kind of mutation for successive periods of the search to

find data to execute a single branch in the Calc program.

The three different kinds of mutation operator are broadly equally effective in the

early part of a search but in the latter stages, only the substitution operator is

effective and no offspring produced by the deletion or insertion operator enter the

Search-based Software Test Data Generation for String Data

10

20

30

mean
rank of 40
offspring

50

60

70

80

90

100

deletion insertion substitution

D D

50 100 150 200 250 300 350 400 450 500

total number of offsping produced by all operators

54

Figure 3.10: The mean rank of offspring produced by each kind of mutation opera tor

during successive periods of search. The population size is 100 and a rank of 101

indicat es offspring not sufficiently fit to enter the population.

Search-based Software Test Data Generation for String Data 55

population.

In the latter stages of a search for a given target, all the candidate strings will usu­

ally be of the same length as the solution. Some of the characters will be correct and

others will be close in value. In such a situation, inserting or deleting a character

from any candidate string increases its cost beyond that of the lowest ranked can­

didate. Recall that the cost of an insertion or deletion is the same as the maximum

substitution cost.

Clearly, it is inefficient to produce and evaluate offspring that will inevitably be dis­

carded. To reduce this inefficiency, the frequency with which deletion and insertion

operations are applied may be reduced as the search progresses. The approach of

varying the rate at which different operators are applied has been used with genetic

algorithms (Davis, 1996) and is common in evolutionary strategies (Schwefel, 1995).

Adopting this approach, two sets of results are given in the following section. In

one set, the three mutation operators were always applied with equal probability. In

the other set, the relative frequency of deletion and insertion was reduced in three

stages during the search for a given target. For the first 300 offspring, all operators

were applied with equal probability. From 300 to 500 offspring, substitution was

five times more probable than deletion or insertion, from 500 to 700 offspring, sub­

stitution was ten times more probable than deletion or insertion and beyond 700,

substitution was twenty times more probable than deletion or insertion. These val­

ues were chosen without detailed analysis and on the basis of inspecting the record

of mean offspring rank for each of the three mutation operators for some of the

branches in the sample programs. In addition, whenever, the probability of substi­

tution was increased, the standard deviation of the Gaussian substitution operator

was reduced in order to localise the search. The initial reduction was from 16 to

10, the second reduction was to 6 and finally to 3. Again, no detailed analysis was

done to choose these figures, they were chosen only on the basis that they provide

a progressive decrease to a small value.

Search-based Software Test Data Generation for String Data 56

~ 90
CII ...
'5 80 c-

r 0 Hamming distance
ClIO 70 "'0
111 0
c'- 60
0><

I_ character distance

, , 0 ordinal edit distance
;: CII 50 ::J CI
U 111
CII ...

40)(CII
CII >

1

\

E 0
30 U

f!.s:. .
ClU 20 o c
... 111
Q. ... 10 _.&J
o ...
... 0 0 CII-

I t

.~ "11 ,......., J:aL rr
.&J
E
::J
C

program under test

Figure 3.11: The number of executions of the program under test required to find

test data to achieve branch coverage (average over 20 trials). Equal probability of

character insertion, deletion and substitution.

3 .3.3 R esults

For each type of string predicate, results are given for the number of test program

executions required to find test data to cover all branches.

E qua lity

The results shown in the bar chart of Figure 3.11 show the number of program

executions required to find input data to achieve branch coverage, averaged over 20

trials. The probability of character insertion, deletion and substitution was equal

throughout the search. These results provide some evidence that OED is the most

efficient of the three cost functions and that CD is more effective than H D. Overall,

OED is about a third more efficient than CD. The relative performance of OED

is consistent across all the programs apart from Pat. Pat does not require its

arguments to be any specific string as it is attempting to find two randomly chosen

strings that are equal in part. As such, P at presents relatively weak demands on

Search-based Software Test Data Generation for String Data 57

the test data.

To explain the poorer performance of H D and CD, recall that H D and CD left­

align strings and then compare corresponding characters and thus give relatively

high costs in comparing strings such as HELLO and XHELLO. This problem, however,

tends to occur most, early on in the search. Later in the search, for most of the

branches of the programs used in the study, the candidate strings have the correct

length and a number of corresponding characters match. In this situation, CD

and 0 ED give similar costs. Indeed, the more similar the compared strings, the

less likely that 0 E D will compute a cost via a deletion or insertion, since these

operations cost significantly more than a substitution of similar characters.

It should be noted that one of the most difficult search problems, which was pre­

sented by the FileSuflix program, was not related to the performance of any cost

function. A fragment of this program is shown below.

fileparts = file.Split(I.");

lastpart = fileparts.Length - 1;

if (lastpart > 0) {

if (fileparts[lastpart] -- "exe") {

//TARGET

}

In this program, an input string file is split into substrings at each occurrence of

the dot character. A branch predicate is then satisfied if at least two substrings are

produced and the last substring is equal to the string exe. Until a string is generated

that contains a dot, only one substring is produced and lastpart > 0 produces a

constant cost of 1 and so the search receives no guidance. Once a dot was inserted,

the search progressed steadily under the guidance of the cost function.

The results shown in the bar chart of Figure 3.12 again show the number of program

executions required to find input data to achieve branch coverage, averaged over 20

Search-based Software Test Data Generation for String Data 58

"C 45
I»

-= 40 ::J
C Hamming distance

tr
I» 0 35 ... 0
1/1 0

30 c: ...
0><

• character distance
,.

I 0 ordinal edit distance , .. I» 25 ::J C)
CJ CIS
I» ...

20)(I»
I» >
E 0 15 CJ

I,'

• \' , ,
l!! z:
C)CJ 10 o c:
... CIS
Q. ... 5 _.D
0 ...
... 0 0 1»-

t

,
ril~ ,

.D
E
:::l
c:

program under test

Figure 3,12: The number of executions of the program under test required to find

test data to achieve branch coverage (average over 20 trials). Progressive increase

in the probability of character substitution.

t rials but in this case the probability of charact er substitution was progressively

increased and the standard deviation of the distribution used by the Gaussian sub­

stitution operator to select the replacement charact er was reduced. Comparing these

results wit h those of Figure 3.11 , Figure 3.13 shows the average number of executions

over all programs according to cost function and mutation probabilities. It is clear

t hat there is a significant improvement in effi ciency to be gained from increasing the

probability of a substitution mutation. Note, however, that the superiority of the

ordinal edit cost function declines when the probability of a substitution mutation

is increased. This can be explained by noting that the ordinal edit dist ance will give

relatively low costs to matches such as (XHELLO, HELLO) compared to matches such

as (GDKKN, HELLO). Awarding (XHELLO, HELLO) a low cost is ineffective, however, if

deletion or insertion is rarely applied.

Search-based Software Test Data Generation for String Data 59

o equal mutation probabilities
• mutation biased to substitution

(/)x
40 c:: GI

.201
35 ... ca

j ...
U GI

30 GI >
)(0
GI U 25 Er.
caUO 20 ... c::o
OIcao o 150
0. ...
... 0
0'" 10
... 'C
GI GI 5 .o!::
E j 0 j C'
c:: e

Harn ' char. Ordin
rnmg D' acter d' al edit d'

Istance Istance Istance

cost function

Figure 3,13: The average number of executions of the program under test required

to find test data to achieve branch coverage for sample programs (average over 20

trials) ,

Search-based Software Test Data Generation for String Data 60

String ordering

The empirical assessment of string order relations such as ~ is not straightforward.

There is a reasonable probability of satisfying such an order relation given two

randomly selected strings, something that is most unlikely for an equality predicate.

A situation in which a predicate such as ~ is difficult to satisfy is when a constraint

such as s ~ t ~ u applies. Here the value of t may be difficult to find if s is close to

u. This problem becomes more difficult as s approaches u and in the limiting case,

the difficulty of satisfying s ~ t ~ u equals the difficulty of satisfying s = t = u. A

test program was thus required to impose a difficult to satisfy order relation on the

program inputs but not so difficult that the order relation was in effect an equality

relation. The program shown below was therefore written.

Order4(s. t. u. v) {

if «4 < s.Length && s.Length < 7) I I (4 < t.Length && t.Length < 7)

(4 < u.Length && u.Length < 7) I I (4 < v.Length && v.Length < 7» {

if (s < t && t < u && u < v) {

//TARGET

}

else if (s > t && t > u && u > v) {

}

}}

//TARGET

The lengths of the strings were restricted in order to make the target branches more

difficult to satisfy. Table 3.7 shows the number of executions required to find test

data to execute all branches averaged over 50 trials using each of the candidate cost

functions for string ordering. The results are given with and without the bias to

the substitution mutation operator. It also shows the average number of executions

required to find test data when a 2-valued cost function was used, i.e. a single cost

value for true and a single cost value for false. This indicates the difficulty of finding

Search-based Software Test Data Generation for String Data 61

program no mutation bias mutation bias

name Ordinal single Ordinal single random

value character pair value character pair

I Order4 I 1711 1622 1702 1813 I 23115 I

Table 3.7: The number of executions required to find test data to achieve branch

coverage (average over 50 trials).

test data by random search. 50 trials were used to distinguish more accurately the

performance of the cost functions compared to random search.

There is no evidence to suggest that se P is more or less efficient than OV in terms

of performance. There is also no advantage in increasing the probability of the

substitution operator. This is understandable given that the search is not aiming

to generate a fixed length string. As can be seen from the number of random

candidates generated before satisfying the order predicates, the order relations are

not particularly difficult to satisfy in this example and this may be true or order

predicates more generally. se P has practical advantages, though; it is easier to

implement since it does not require additional work to represent large numbers that

exceed the capacity of the native numerical types.

3.4 Program-dependent Search Operators

Many of the programs that process strings contain string literals. The examination

of the SSCLI code showed that about 65% of string predicate expressions contain a

string literal, also in (DeMillo and Offutt, 1988), DeMillo and Offutt showed that

58% of clauses are of the form x R c, where x is variable, c is a constant and R is

relational expression. So a program may match a string literal with a string input,

or a string derived from the input.

Search-based Software Test Data Generation for String Data 62

function f(s:string) {

if (s. Equals (IICHILDII) {

}

}

The first branch of this program is true when s = "CHILD". This suggests a

heuristic to guide the search for values for the strings s, namely, set s to a string

literal that appears in the program under test.

Another example is given below.

pes) {

t = F(s);

if (t == II AC II) {

//TARGET

If the string literal, i.e. AC were to be generated as a candidate solution and F is

the identity function, the search would produce a solution immediately. In general,

however, the relationship between the input string and the string comparison in

a branch predicate may not be so direct. In practice, F may not be the identity

function and the input may be processed by any number of statements before a

string comparison is made in a branch predicate. The effect of these statements is

to add a transformation to the search space.

The reliability of the cost function need not necessarily suffer as a result of such

transformations. To illustrate this, assume the function F reverses its input. In this

case, it is the input CA that executes the target branch, not the program literal AC.

For simplicity, assume a search space of only 9 strings as shown in Figure 3.14. The

bidirectional edges of the graph indicate possible string modifications by a search

operator that may only "increment" or "decrement" a single character in the string.

Against each string is shown the cost of that string compared to AC. The string

Search-based Software Test Data Generation for String Data 63

2 1 0
AA -- BA --- CA solution

2
3 AB -- BB --- CB 1

AC -- BC ---CC

4 3 2

Figure 3.14: A small search space of 9 strings with increment and decrement char­

acter mutations. The cost of each string compared to CA is shown.

AA -- BA

/
CA I' so utIon

AB --BB CB

/
AC --BC CC

Figure 3.15: The search space after the addition of a reverse search operator.

reverse operation performed by F does not reduce the reliability of the cost function

since the costs decrease steadily towards the solution CA.

In this example, using the program literal string AC as a candidate solution provides

the worst possible start for the search as the minimum distances from other strings

are all shorter. This observation prompted consideration of applying a search oper­

ator to counter the effect of F. Adding a string reverse search operator (reverse is

its own inverse) leads to the space shown in Figure 3.15. The minimum number of

applications of a search operator necessary to transform the initial input string AC

to the solution CA is now just one. Additional search operators reduce path lengths

but they do so at the expense of increasing the number of paths. In the particular

case of moving from AC to CA, however, the mean number of operations is reduced.

Although the addition of the reverse operator increases the number of edges, they

Search-based Software Test Data Generation for String Data 64

2 30
AA -- BA - -- CA I' so utton

2
3 AB -- BB --- CB 3

AC -- BC --- CC

4 3 2

Figure 3.16: The program Q renders the cost function unreliable. (costs to the

soultion shown against each node)

4

3.5

3

2.5

2

1.5

0.5

o
c

A A

Figure 3.17: The landscape of program Q.

c

Search-ba..<;ed Software Test Data Generation for String Data 65

are all shortcuts on paths from AC to CA.

It could be argued that the program P with the reverse operator F is unusual in not

reducing the reliability of the cost function. The potential advantage of seeding the

population with string literals and using "inverse string operations" as additional

search operators is not restricted, however, to programs for which the cost function

is always reliable. The following program, which reverses only selected strings, is an

example of a transformation that reduces the reliability of the cost function.

Q(6) {

if (6[0] == 'A' II 6[1] -- 'c' II (5[0] == 'c' && 5[1] -= 'A')) {

t = Reverse(s);

}

else {

t = s;

}

if (t == "AC") {

//TARGET

This can be seen from Figure 3.16 which shows a local minimum at strings with

equal first and second characters and Figure 3.17 shows the landscape of this pro­

gram. Nonetheless, even in this case, the addition of a reverse string search operator

overcomes the local minimum and also leads to a solution.

In moving from these particular observations to a general search strategy it is nec­

essary to accept that it is not, in general, possible to determine how a program

transforms its input. Indeed, if the inverse computation problem were decidable,

there would be no need to search for test data. It is possible, however, to assemble a

collection of search operators that perform the inverses of typical string processing

functions such as string concatenation, insertion and deletion. It is hoped that the

use of such operators, together with any string literals drawn from the program

under test, should, in general, improve the efficiency of the search.

Search-based Software Test Data Generation for String Data 66

Literals from program
"CHILD" 34%

biased character sequences
"he" more prob ." hh " 33%

33% any random string I
Figure 3.18: The string domain

3.4.1 String operations biased towards program string lit-

erals

To exploit the observations of the previous section, the random string generator

used to generate initial candidate solutions was extended to comprise two compo­

nents. One component is the former string generator which selected strings from

two distributions, a uniform distribution of strings with characters with a range of

ordinal values from 0 to 127 and an English-like distribution. The second compo­

nent generates strings that are either program literals or formed by concatenating

these literals. The reason for concatenating literals is that programs often test if

a string is a substring of another. Concatenating literals, rather than inserting a

single literal into an arbitrary string, increases the chances of selecting the required

literal and is also useful in the case in which the test program requires more than

one literal to be a substring of a string.

The current mutation operators will, over time, decrease the proportion of candi­

dates in the population that contain a program string literal. Consequently, three

additional mutation operators were defined. One operator deletes a program literal

from a given string if such a literal exists. An operator inserts a program literal or

the concatenation of two literals into the string it is mutating. Another operator

replaces a random substring of the string it is mutating with a program literal or

the concatenation of two literals. The length of the substring replaced is equal to

Search-based Software Test Data Generation for String Data

12

10

8

6

4

2

o

; [] Hamming distance

I. character distance
-- j

I 0 ordinal edit distance
I •

program under test

67

Figure 3.19: The number of executions of the program under test required to find

test data to achieve branch coverage (average over 20 trials) using program-specific

search operators.

that of the string to be inserted so that overall there is no change in length.

The reason for replacing an equal number of characters follows from a characteristic

of the search that was discussed earlier, i.e. the convergence of the search to a

population of strings with the same length, If a mutation operator modifies the

length of a candidate string then the cost function is likely to penalise it to the

extent that it does not enter the population.

3.4.2 Empirical assessment of program-specific search oper-

ators

The programs listed in Table 3.6, except Order4 and Pat which contain no string

literals, were used to assess the performance of the program-specific search operators.

The test tool collects program li terals during a traversal of the program abstract

syntax tree. Character literals are also collected and treated as strings. The random

string generator was set to generate each type of string, i.e. 7-bit character, English­

like and literal, with equal probability as shown in Figure 3.18.

Search-based Software Test Data Generation for String Data

30

25

20

15

10

5

o

[] no program search
operators

• program search
operators

program under test

68

Figure 3.20: A comparison of the number of executions of the program under test

required to find test data to achieve branch 'overage (averag ov r 20 trials) with

and without program-specific search operators. Only the values obtained with the

ordinal edit distance are compared and mutation is biased towards substitution.

Again, the aim was to find input data to exe ute all the branches in each of the

programs. For each program and cost function, 20 trials were done. The average

number of program executions required to achieve branch coverage over 20 trials is

shown in the bar chart of Figure 3.19. These results show a significant improvement

in performance compared to the results of the previous section, as can be seen in

Figure 3.20 which compares the results of the ordinal edit function with respect to

the use of program-dependent search operators.

Overall, the use of program-specific search operators leads to about a fivefold im­

provement in search efficiency. Note that the r suIts in Figure 3.19 show the perfor­

mance of the various cost functions to be broadly similar. This is probably explained

by the fact that, with program-specific search operators, much Ie s search is per­

formed and hence the cost function is likely to have less inHuence on the overall

performance. In the case of Stem , for example, no guided search was required.

The initial population strings, created from the program literals, were sufficient to

Search-based Software Test Data Generation for String Data 69

achieve branch coverage.

3.4.3 Discussion

A program may contain many string literals. For example, the Calc program con­

tains a switch statement in which each branch compares a string from the input

against a specific literal. Although the program may contain many literal strings,

in searching for test data to execute a specific branch, only one or two of these

literals may be useful. For this specific branch, mutation operators that introduce

the other literals will slow down the search. A very simple strategy which exploits

this observation is to bias the search for a given branch that contains one or more

literals to those literals. This strategy would have improved the performance of the

program-specific operators for almost all of the sample test programs. More gener­

ally, the literals that should be used to bias the search are those that appear in any

statement that may infiuence the branch predicate expression. Such literals could

be identified from a datafiow analysis of the program.

3.5 Program-specific Search Operators for Non-

string Data Types

Although the usefulness of program-specific operators has been demonstrated for

strings it seems clear that the technique generalises to other data types. This is

illustrated for the numeric data type in the example in Figure 3.21. Although none

of the three integer values 5, 10 and 20 that occur in the program are input values

that execute the target branch (to execute the target branch a = 10 and b = 15)

they do provide reasonable starting points for a guided search. To get the variable

b = 15, simply inverse the arithmetic operation plus (v = v + b) which is (20 =

5 + b) then b = 20 - 5.

Numerical types may be converted from integer and double as required by the input

Search-based Software Test Data Generation for String Data 70

void fl(int a, int b) {

int v = 5;

if (a == 10) {

v = v + b;

}

if (v == 20) {

II Target executed with a = 10, b = 15

}

}

Figure 3.21: Alternative internal variable example

domain. Numerical types may be also converted to character data type and vice

versa if possible. In general, adding the literal that appears in the program is not

straightforward. If the data types of the input parameters are integer but the literal

collected from the program is double, the input domain is different from the literal

data type: the literal data types are converted to confirm with the input domain

data type.

Figure 3.22 shows a program in which the first branch is executed when a .. 25.

The required branch is executed only when the first "if statement" is executed and

sin(b) = 1. This happens only when b = ¥. It is easy to execute this branch if the

mutation operator sequence of sin-1(6.0 - 5.0) is used to create a value for b. The

arithmetic operations in this program are : Plus and sin, the proposed mutation

operators to execute the required branch might be Minus and Arcsin.

This has motivated the introduction of additional genetic operators to increase the

performance of searching the program under test by analysis and extracting arith­

metic operators from the program under test, then reversing these operators to

induce the mutation operators.

Search-based Software Test Data Generation for String Data 71

void InverseSin (double a, double b) {

double v = 5.0;

if (a == 25.0) {

v = v + sin(b);

}

if (abs(v - 6.0) <= Double.Epsilon) {

//Target executed

}

}

Figure 3.22: To execute the target, b equal to ¥

In general, when any arithmetic operator! or trigonometric function2 occurs in the

program under test, this operator or function and its inverse are used as mutation

operators (e.g. Plus and Minus, sin and Arcsin). Note that Arcsin and Arccos are

used when the parameter is in the range (-1 to 1) only.

The polygon classification program can be seen in Appendix A. The program ha..o;; an

array of 6 or 8 of positive real numbers. The length of the array represents the figure

shape: 6 means the figure might be Triangle, 8 means the figure might be Square or

Rectangle or other Polygon. The first half of the input parameters (3 or 4) represents

the angles and the rest represents the side lengths of the figure sides. The goal of the

program is to determine the figure, Square, Rectangle, Triangle or other shape and

also if the figure is Triangle, to categorize the triangle type. The program consists

of 22 branches, all the branch cost functions have a gradient which illustrates the

usefulness of program-specific search operators for program where branch coverage

can be found by straight forward branch cost distance instrumentation. No branch

has a branch distance cost which is locally flat. The program was executed by GAs

Iplus, Minus, Multiply, Divide, Postlncrement, PostDecrement, Pow, Sqrt, Modulus and Ab­

solute value
2 sin, Arcsin, cos, Arccos, tan and Arctan

Search-based Software Test Data Generation for String Data 72

with and without using program-specific search operators and over an average of

20 trials the number of executions required to find test data to achieve all branch

coverage without using program-specific search operators was 43872; the number

of executions required to find test data with program-specific search operators was

1542. It is clear that there is a significant improvement in performance by using

program-specific search operators.

3.6 Summary

This chapter considers the problem of generating test data where the test data is in­

tended to cover programs branches which depend on string predicates such as string

equality and string ordering. Current work in automatic test data generation has

been limited largely to programs containing predicates that compare numbers and

almost no work has been done on generating test data to satisfy string predicates.

A dynamic test data generation approach is adopted and the problem is seen as

one of defining appropriate search operators and corresponding cost functions with

which to guide a search.

A relatively simple but important aspect of the search for string data is the definition

of the search space of strings. The space of 16-bit character strings is far larger than

the space that need be searched in practice, being the space restricted to strings

containing characters in the seven low-order bits.

For string equality, an adaptation of the binary Hamming distance was considered,

together with two new string specific match cost functions. New cost functions for

string ordering were also defined.

For string equality, a version of the edit distance cost function with fine-grained costs

based on the difference in character ordinal values was found to be the most effective

in a small empirical study. In addition, a progressive increase in the probability

with which the character substitution mutation operator is applied has also been

shown to improve the performance of the search. Two functions for string ordering

Search-based Software Test Data Generation for String Data 73

were investigated but there was no significant difference in their performance in the

limited empirical investigation.

The most significant improvement in performance, however, was obtained by ex­

ploiting the presence of string literals in programs that process string data. This

chapter presents program-dependent string search operators that focus the search

in the region of such string literals. In the empirical investigation, the use of these

operators was shown to give a fivefold increase in performance. The use of program­

dependent string search operators has been shown to be far more important than

the particular choice of cost function that guides the search.

3.7 Estimating Number of Search Operator Invo-

cations

Recall that the fitness function should estimate the number of search operators from

a given candidate to the solution. After the completion of the experiments in the

previous section, the question of estimating the cost of various search operators was

considered empirically. Given a specific search operator, it is possible to investigate

empirically, for a sample of candidates and goals, the actual number of invocations

of the operator required to generate a given goal from a given candidate can be

counted. To investigate this idea in concrete terms, the search operator OED was

considered.

As explained in Section 3.3.1, the cost of OED is computed as given:

OED(s: a,t: b) =

min(OED(s : a, t) + 128, OED(s, t : b) + 128, OED(s, t) + 128/4 + 31a - bl/4).

The previous experimental results show that if different length strings are

compared then any deletions or insertions are as effective as a single mutation.

However, when a candidate string has the same length as the goal string then a

deletion must be followed by an insertion. For example, OED(RAG, RARE) =
161.5, OED(ROAR, RARE) = 129. This means "ROAR" is more close to

Search-ba..'ied Software Test Data Generation for String Data 74

"RARE" than "RAG", even though moving from "ROAR" to "RARE" needs 3

substitutions and moving from "RAG" to "RARE" needs 1 insertion and 1

substitution. The question is which path, 3 substitutions or 1 insertion and 1

substitution is more likely to lead to the solution. The higher probability path

should have the lower cost in order to guide the search to path that is likely to

lead to the solution. To answer this question the probability of insertion, deletion

and substitution must be compared. Figure 3.23 shows the possible mutation

operators to move from candidate string to the goal string and the probability of

each operator is computed as follows:

p(deletion of character i) =! * ~ , where n is the string length.

p(insertion of character c at i) = ! * nll * 1~8'

It is very difficult to find theoretically the probability of substitution by using a

Gaussian distribution mutation operator because the new value may be right or

left of the mean (given character) and the search ignores the new value if it is not

better than the existing one. To find the probability of this mutation, a practical

experiment of 100 trials was done to find the actual cost to move from one

character to another with 7-bits domain(0 - 127). The actual result is shown in

Figure 3.24 and a heuristic approximation is computed and is shown in the same

Figure. The heuristic approximation cost to move from one character to another

character is given by the following equation:

character :itlerence + 11. So the final cost of EOED (Empirical ordinal edit distance)

will be computed as follows:

EOED(s : a, t : b) =

min(EOED(s : a, t) + 128, EOED(s, t : b) + 128, EOED(s, t) + 11 + la - bl/3).

The probability of deletion followed by insertion is :

Search-based Software Test Data Generation for String Data 75

Figure 3.23: The possible mutation operator to move from candidate to goal string.

(! * *) * (! * nll * 1;8) which is less than probability of substitution.

The results in Figure 3.25 show the number of program executions required to find

input data to achieve branch coverage, average over 20 trials while the probability

of character insertion, deletion and substitution was equal throughout the search.

This figure also shows comparison between number of program executions required

to find input data using OED and EOED. These results show that EOED is more

efficient than OED.

Search-based Software Test Data Generation for String Data 76

33 38 43 48 53 58 63 68 73 78 83 88 93 98 103 108 113 118 123

Figure 3.24: The actual and heuristic cost of gaussian mutation operator to move

from one character to Z with the 7-bits domain.

'0 50000
~
1.0

·S
0"
~ 40000

== ~ .S ~

:; ~ 30000
(J ..
~ 0
0< (J

~ .c:

~ ~ 20000
1.0 ~
t=Jl 1.0
o .&l
1.0 1.0

~..s 10000
o
1.0
~

.&l e
::s
=

o

program under test

Figure 3.25: The number of executions of the program under test required to find

test data to achieve branch coverage by using OED and EOED.

Chapter 4

Using Program Data-state

Scarcity in Test Data Search

4.1 Introduction

Search-based automatic software test data generation for structural testing depends

on the instrumentation of the test goal to construct a many-valued function which is

then optimised. The method encounters difficulty when the search is in a region in

which the function is not able to discriminate between different candidate test cases

because it returns a constant value. A typical example of this problem arises in the

instrumentation of branch predicates that depend on the value of a boolean-valued

(Hag) variable. Existing transformation techniques can solve many cases of the

problem but there are situations for which the existing transformation techniques

are inadequate.

This chapter presents a technique for directing the search when the function that

instruments the test goal is not able to discriminate between candidate test inputs.

The new technique depends on introducing program data-state scarcity as an addi­

tional search goal. The search is guided by a new evaluation (cost) function made

up of two parts, one depending on the conventional instrumentation of the test goal,

77

Using program data-state scarcity in test data search 78

the other depending on the diversity of the data-states produced during execution

of the program under test. The method is demonstrated for a number of example

programs for which existing methods are otherwise inadequate.

4.2 Problem of Flag Cost Function

A £lag variable is any variable that takes on one of a few discrete values. A boolean

is a special case of a £lag variable. Where the program has only relatively few input

values which make the internal £lag variable adopt a desired value, it will be hard to

find these inputs using random search, see the program in Figure 4.1. A predicate

which tests a £lag, produces a fitness function that yields either maximal fitness for

the special values or minimal fitness for any other value. The landscape induced

by the fitness function provides no guidance from lower fitness to higher fitness and

hence it is difficult to find inputs to execute such branches. In geometric terms, the

surface of values produced by the cost function for different inputs is fiat. In such

situations, the heuristic search performs no better than a random search.

boolean flag = false;

if (x == 3) {

flag = true;

}

//ASSIGNMENTS TO flag

if (flag) {

I/TARGET BRANCH

}

Figure 4.1: Program fragment for which branch coverage data must be generated.

Using program data-state scarcity in test data search

4.3 Existing Techniques for

Boolean Flag Variables

79

Instrumenting

A number of techniques have been proposed to tackle programs that contain boolean

flag variables. Bottaci (Bottaci, 2002) proposes a solution for programs in which the

flag variable is assigned a predicate expression (as opposed to a constant true or false)

as shown in the example program of Figure 4.2. This program iterates through an

array of 64 boolean values and determines if the values are all true.

AIITrue(boolean[] a) {

}

boolean alltrue = true;

for (i = 0; i < 64; i++) {

alltrue = alIt rue && a[i];

}

if (all true) {

//TARGET BRANCH

}

Figure 4.2: Example program with a flag variable problem.

In (Bottaci, 2002) it is suggested that the predicate expression that is used to set

the flag value is instrumented and the flag variable is replaced by a many-valued

variable that can hold the instrumented value of the predicate expression. Any

predicate expressions that use the boolean flag variable are rewritten to test the

instrumentation value. These predicate expressions can then be instrumented in the

usual way. The transformation is illustrated in Figure 4.3.

The logical constants are instrumented as -1.0 and 1.0. By defining a suitable cost

function to instrument the logical-and (Bottaci, 2003), where costAnd is an operator

defined by Table 2.4, page 21, a cost value can be accumulated as the loop iterates.

Using program data-state scarcity in test data search

AllTrue(boolean[] a) {

}

double alltrue = -1.0;

for (i = 0; i < 64; i++) {

alltrue = costAnd(alltrue, a[i]);

}

if (alltrue < 0) {

//TARGET BRANCH

}

80

Figure 4.3: Transformation of example program with a flag variable problem

from (Bottaci, 2002), alltrue = -0.015384615 when all elements in the array are

true.

The technique of replacing boolean values with cost values is inapplicable, however,

when the flag variable is assigned a constant true or false value, as occurs to the flag

variable in the program of Figure 4.1. In this case, Harman et al. (Harman et al.,

2002) (Harman et al., 2004) suggest the use of a program transformation to remove

internal flag variables from branch predicates, replacing them with the expression

that led to their determination. In the transformed version of the program, the

branch predicate is flag-free and can therefore be instrumented in a straightforward

way. Their approach, however, does not handle assignment to flags within loops. In

particular, 5 levels of program difficulty are identified and the given transformations

are effective only for the first 4 levels. The fifth level consists of programs in which

assignments are made to flag variables inside a loop that does not also contain the

target branch. The example program of Figure 4.2 is an example of a level 5 problem.

A testability transformation for loop assigned flags is, however, given by Baresel et

al. (Baresel et al., 2004) who extend the transformation approach for internal flags

assigned within loop structures. Two approaches are presented - a "coarse-grained"

transformation and a "fine-grained" transformation. Both forms of transformation

Using program data-state scarcity in test data search

AllTrue(boolean[] a) {

alltrue = true;

int counter = 0;

double fitness = 0.0

for (i = 0; i < 64; i++) {

if (alltrue && a[i]) {

}

}

alltrue = true;

fitness ++;

else {

alltrue = false;

}

counter++;

if (fitness == counter) {

//TARGET BRANCH

}

Figure 4.4: A testable transformation of the program shown in Figure 4.2

81

replace the original condition using the flag variable with a predicate of the form

counter = fitness, where counter is a variable incremented on each iteration of the

loop, and fitness is a variable which is incremented if a loop iteration was evaluated

in a "desired" manner. Figure 4.4 shows the result of applying the transformation

to the program of Figure 4.2.

A loop iteration is executed as desired when the flag is assigned the desired value.

For example, an iteration which assigns a false value to a flag required to be true

would not result in an increment of the fitness variable; whereas the avoidance of

Using program data-state scarcity in test data search 82

the assignment would. In this way, the search receives a higher level of guidance to

the input values which evaluate the original condition using the Hag in the desired

manner. This is because the objective function landscape now corresponds to the

predicate counter = fitness rather than the landscape containing the Hag, which

contains plateaux. The difference between the coarse-grained transformation and

the fine-grained transformation lies in the increment of the fitness variable within

the loop. The coarse-grained transformation simply increments the counter in a

uniform fashion. The fine-grained approach uses distances of key branch predicates

used within the loop to assign Hag values.

The chaining method of Korel (Korel and Ferguson, 1996) is an effective technique

for some programs that contain Hag variables. The chaining method attempts to

find inputs to execute a path from each last definition! of each variable used in the

unsatisfied branch predicate. In broad terms, the heuristic is that the execution of

a new path may produce a different value at the goal branch expression. In the

example All True program, there is only one path through the program up to the

target branch and hence the chaining method is ineffective.

For the transformation of Baresel et al. (Baresel et aI., 2004) to be applicable, it

must be possible to identify the desired and undesired assignments to a flag variable.

Sometimes this is not possible. As an example, consider the Orthogonal program

shown in Figure 4.5. This program determines whether two binary vectors are

orthogonal by computing the inner product. Each of the two input arrays consists

of integers with the value 0 or 1. The target branch is difficult to execute because for

almost all random inputs, the value of the integer product is set to 1. Even though

product is not a boolean variable, a "flag" variable problem arises because product

may take one of only two integer values. The transformation in (Baresel et aI., 2004)

requires that assignments to flag variables are replaced by conditional statements in

which the Hag is set true and also set false and the predicate of the conditional is

1 A last definition statement is simply a program node n that assigns a value to a variable

which may be potentially used at the problem node p. For it to be a last definition therefore, a

definition-clear path must exist between nand p

Using program data-state scarcity in test data search

Orthogonal(int []a, int []b) {

/ / a [i] and b [i] in [0, 1]

int product = 0;

for (i = 0; i < 64 && product -- 0; i++) {

product = a[i] * b[i];

}

if (product -- 0) {

//TARGET

}

83

Figure 4.5: A difficult to execute branch in a program with an integer "flag" variable

taken from the expression assigned to the flag. This is clearly inapplicable for the

Orthogonal program of Figure 4.5 since product is not a boolean variable.

The problem with the transformation of Baresel et al. (Baresel et al., 2004) is that

it attempts to move the computation done by a program from the sequence of data­

states it generates to the sequence of control-states produced and this movement is

not practical when the set of possible data-states is large.

The method of data-flow graph search, of Korel (Korel et al., 2005) searches for paths

that are selected from examination of the data dependence graph of the variables

that appear in the target branch predicate expression. In the example program of

Figure 4.5, all such paths begin with the initial assignment to product and then

take one or more iterations of the loop. By searching the space of paths, which in

this case is small, the solution is found. However these paths, except for the solution

path, all produce the same branch distance value and so the search is random. This

would be a problem if the arrays were very large.

Using program data-state scarcity in test data search 84

4.4 Data-state Scarcity as a Search Strategy

It is clear that it is not only programs that use boolean variables that, when in­

strumented, produce cost functions that are locally Hat. The program fragment of

Figure 4.6 computes the [OglO of x and then converts this value to an integer which is

used to access an array. In this program, the target branch cost function is constant

for all input values of x except for the single value x = 1.

void Log10(int x){

}

//x in [1, 100,000]

a[O] = 0;

a[1] = a[2] = a[3] = a[4] = a[5] = 1;

double y = log10(x);

int k = ceiling(y); //y in [0, 5]

if (a[k] == 0) {

//TARGET BRANCH

}

Figure 4.6: A difficult to execute branch in a program (LOglO) for which no existing

technique is effective.

Note that no existing technique is applicable to this program. The technique of

substituting cost values for boolean values (Bottaci, 2002) is not applicable since

there are no boolean expressions that can be effectively instrumented. There are

no variables that can be used in the transformation of Harman (Harman et al.,

2004). There is a single path through the program and so the path search methods

of Korel (Korel and Ferguson, 1996; Korel et al., 2005) are not applicable.

A necessary condition for the cost function to be able to guide the search is that

it should produce more than one value as it is applied to different inputs. This

suggests a possible search strategy, namely search for inputs that produce a range

Using program data-state scarcity in test data search 85

of values for the variable a [k] in the predicate expression.

To produce a greater range of values for a [k], the search may be guided towards

inputs that produce values for a [k] that are different from those that have so far

been produced in the search. The search may be guided in this way providing inputs

that produce so far unencountered values for a [k] are given a lower cost whenever

they are encountered. In practice, a collection of random inputs will not produce

diverse values at a[k]. Voas (Voas and Miller, 1995) introduces the notions of

information loss and the domain/range ratio. The information loss of a mapping is

the ratio of the size of the domain to the size of the range. The ratio can also be

applied to any subset of a mapping. The information loss from the input to the value

of a [k] is extreme for a very large part of the input domain. The information loss

from x to k is not so extreme in that only 90% of the inputs map to a single value k

= 5, 9% of the inputs map to a single value k = 4 and so on. Figure 4.7 shows the

distribution of these values. In a population of 100 individuals, selected randomly,

there is a reasonable probability of encountering inputs that produce values of k

that are 4 or 3. If the search is directed to these inputs, then inputs that produce a

value of 2 will be found. Such inputs are rarer than those that produce 4 or 3 and

so the search is directed to consider inputs similar to those that produced a value

of 2, with the result that inputs producing 1 and finally 0, will eventually be found.

Pursuing data-state scarcity is also an effective strategy for finding an input to

execute the required branch in the Orthogonal program of Figure 4.5. This program

implements a mapping from integer array pairs (a, b) to the integer product, a

constant mapping for the vast majority of the input domain. A problem arises if the

values of the variable product are examined in the predicate expression of the target

branch; here rare values are in practice never encountered. Consider, however, the

values assigned to product within the loop. A number of zeros and possibly a single

one may be assigned here. Without considering probabilities in detail, it is clear

that the number of inputs assigning a given number of zeros to product decreases

as the number of zeros increases (see Figure 4.8). These inputs may be identified as

producing rare data-states and hence the search may be directed to the region in the

Using program data-state scarcity in test data search 86

k

branch cost

1 10 100 1000 10000 1000000

x

Figure 4.7: The distribution of the lOglO values. Figure shows that function that

computes k is less locally constant than branch cost function; hence it is easier to

search for different values of k.

vicinity of these rare inputs. Directing the search towards inputs that produce rare

patterns of assignments is an effective strategy for changing the final value assigned

since this value changes when the maximum number of' zeros is assigned.

Consider another example for which existing techniques are inadequate, the program

Mask shown in Figure 4.9. This program checks that each character in an array

conforms to the bit mask 1010101. There are 16 values that may be assigned to

x. In general, we may expect the bits within x to tend towards zero as the array is

iterated (assuming the data in the array is relatively random) since once a bit in x

becomes zero, it will remain so. This means that although x within the loop may

take a number of values, x in the branch predicate expression is almost constant

with the value O.

Although x in the predicate expression is almost constant, a greater range of values

is assigned within the loop where it is thus possible to identify relatively rare values.

In a reasonably large population of inputs, a small number of inputs will assign the

relatively rare value of 1010101 a higher number of times than is typical among

the inputs that have so far been executed. By directing the search towards these

rare inputs, the search is directed to inputs that produce more than a single value

Using program data-state scarcity in test data search 87

30 -

25

>- 20 u
c
\I)

15 ::s
C"
\I)

10 ... -
5

0

0 2 3 4 5 6 7 8 9 10 11 12

number of zeros assigned to product

Figure 4.8: Number of test cases decreases as the number of zeros assigned to

product increases.

Mask(char[] a) {

}

char x = Ox55; II 1010101

for (i = 0; i < 10; i++) {

x = x & a[i]; Ilbitwise and

}

if (x == Ox55) {

IITARGET BRANCH

}

Figure 4.9: Program Mask checks that each character in an array has each odd bit

set .

Using program data-state scarcity in test data search 88

for x in the branch predicate expression. Once this occurs, the cost function at the

branch predicate expression may guide the search to a solution. The solution is any

array which contains characters all of which have the four mask bit set, and there

are 8 of these characters.

The data-state scarcity search strategy may be outlined as follows:

When the inputs encountered so far in the search have produced a population of

equal cost function values, i.e. the cost function surface so far encountered is fiat,

then it is assumed that there is a constant mapping from the majority of the input

domain values to the values that are supplied as arguments to the cost function.

Such a mapping cannot fail to produce an almost flat cost surface, irrespective of

the cost function used. If the mapping is implemented in a progressive manner

with respect to information loss, i.e. the information loss from input values to

intermediate values, such as k in LoglO is not as high as that from input values to

cost function inputs, then it is possible to instrument the intermediate values. If

the information loss for different regions of the input domain is not uniform then a

few intermediate values will predominate and other values will be rare. As shown

in the LOglO example, the probability of value k = 5 is 90% but the probability

of value k = 0 is l00~OO' To guide the search to generate new intermediate values

(values of k = 4, 3, ... in the example of Figure 4.7), the search must be directed

to inputs that increase the diversity of intermediate data-state values. By guiding

the search towards inputs that produce diverse, as yet unencountered and therefore

rare intermediate values, the likelihood increases of finding an input that produces

as yet unencountered values as arguments for the cost function.

Directing the search towards inputs that produce rare intermediate values is not

necessarily directing the search towards inputs that solve the test goal. The cost

functions are certainly different. The purpose of directing the search towards inputs

that produce rare intermediate values is to provide inputs that produce a variety of

arguments to the cost function that instruments the test goal. Only when this cost

function receives a range of values can it produce a non-flat cost surface.

Using program data-state scarcity in test data search 89

4.5 Data-state Scarcity Search by Maintaining

Data-state Diversity

The concept of diversity in the population has been studied in the literature. For ex­

ample, when the GA fails to find the global optimum, the problem is often attributed

to premature convergence, which means that the sampling process converged on a

local rather than the global optimum. Several methods for maintaining population

diversity have been proposed to combat premature convergence in conventional GAs.

These methods rely on various of similarity between individuals in the population.

In this thesis, the purpose of investigation existing diversity measures is to consider

how they can be used to augment the existing fitness function, which consists of the

branch distance, to guide the search towards rare data-state values.

4.5.1 Existing diversity measures and methods

Biological diversity denotes the differences among individuals in a population, which

in nature connotes structural and behavioural difference. The term "variety" was

used by Koza (Koza, 1992) to represent the number of different genotypes in a

population. In simple form, genotype diversity measures the number of unique

individuals (Langdon, 1999). Genotype diversity does not consider fitness. Two

individuals are equal if they contain exactly the same structure and content.

An edit distance based on string matching was used by O'Reilly (O'Reilly, 1997).

He uses single node insertions, deletions and substitutions to transform two genotype

trees to be equal in structure and content. De Jong et al. (de Jong et al., 2001) used

Levenshtein distance (see Chapter 3), which matches two trees at the root node.

If the two different nodes match, they score a distance of 0, otherwise they score

a distance of 1. The Levenshtein distance can be normalised by dividing the sum

of all different nodes by the size of the smaller tree. The measure represents the

number of node changes that need to be made to either tree to make them equal in

structure and content.

Using program data-state scarcity in test data search 90

Keijzer (Keijzer, 1996) used ratio of unique genotype subtrees over total subtrees to

measure the subtree variety and the ratio of the number of unique individuals over

the size of the population as program variety. Keijzer also used a distance measure

between two individuals as the number of distinct genotype subtrees the individuals

share.

In addition to genotype diversity, fitness diversity has also been investigated.

Fitness diversity, also known as phenotype diversity measures the number of

unique fitness values in a population. Fitness entropy is calculated by grouping the

fitness values into equivalence classes (Rosca, 1995). Given k classes in the current

population, let Pi be the proportion of the population which belongs to class i.

Fitness entropy is then defined as,

Figure 4.10 shows how entropy increases as number of classes increases and decreases

as distribution becomes less uniform. The high fitness entropy in genetic algorithms

describes the presence of many unique fitness values in the population, where the

population is evenly distributed over those values. Low fitness entropy describes a

population which contains fewer unique fitness values as many individuals have the

same fitness.

4.5.2 Diversity control methods

Given the various similarity measures discussed in the previous section, they may be

incorporated into the genetic algorithm in different ways. Some common methods

are listed below:

1. restricting the selection procedure (crowding models) (Booker, 1982). Crowd­

ing induces niches by forcing new individuals to replace those that are similar

genotypically. This is completed by using a "steady-state" GA which cre-

Using program data-state scarcity in tes t data sear 11 91

Entropy = 0.30

0.5, 0.5

Entropy = 0.70

0.2, 0.2 0.2, 0.2 ,0.2

Entropy = 0.14

0.1, 0.9

Entropy = 0.45

om, 0.05, 0.1, 0.2, 0.64

Figure 4. 10: Four different distributions showing how entropy varies according to

number and distribution of classes.

Using program data-state scarcity in test data search 92

ates new individuals one at a time, inserting them into the population by

replacement of existing individuals. In the crowding algorithm, an individual

is selected for replacement by selecting a subset of the population randomly

and then selecting the member of that subset that is similar to the individual.

2. restricting the mating procedure (assortative mating) (DeJong, 1975). The

general philosophy of restricted mating makes the assumption that if two sim­

ilar parents are mated, then the offspring will be similar. Assortative mating

algorithms restrict crossovers to occur between similar individuals.

3. explicitly dividing the population into subpopulations (common in parallel

GAs). In parallel GAs the population is explicitly divided into smaller sub­

populations. Each subpopulation is separated from the others in the sense

that it evolves independently with occasional migrations of individuals from

one subpopulation to another. Based on concepts from population genetics,

the idea here is that random genetic drift will cause each subpopulation to

search different regions of the domain and that migration will communicate

important discoveries among the subpopulations. Local mating algorithm.'l

(Collins and Jefferson, 1991) arrange the population geometrically (e.g., in a

two-dimensional plane) and crossovers occur only between individuals that are

"near" one another geographically. The idea is that random genetic variation

will lead to subgroups of individuals, each exploring different regions of the

search space. These methods can slow down convergence time dramatically,

but by themselves cannot maintain stable separate subpopulations.

4. modifying the way fitness is assigned (fitness sharing) (Goldberg, 1989). Fit­

ness sharing (Deb and Goldberg, 1989), (Goldberg and Richardson, 1987)

induces subpopulations by penalizing individuals for the presence of other

similar individuals in the population, thereby encouraging individuals to find

productive uncrowded niches. Fitness sharing leaves the standard GA un­

changed and simply modifies the way in which fitness values are computed2•

2The sharing function, introduced by Goldberg (Goldberg, 1989), is a function used to explicitly

define the degree of sharing and maps genotype similarity into the degree of sharing:

Using program data-state scarcity in test data search 93

It is clear that the existing methods for maintaining diversity discussed in the previ­

ous section are inadequate in themselves for the problem of a locally constant branch

distance function. Phenotype diversity will make little impact when the space of

individuals is large relative to the population. Fitness diversity is ineffective because

it assumes that the search is able to find inputs that have a variety of fitness values.

In the problems described in this thesis, the cost function is locally constant and

such inputs are very difficult to find.

The problem that must be solved is that the fitness function, if it is only the branch

distance, is locally constant. The solution is to extend the fitness function to include

a measure of scarcity of data-state values.

4.5.3 Data-state distribution diversity metric

Recording program data-state values

At a single assignment statement in the program under test, the values assigned

may be stored in a histogram. The domain of the histogram is the domain of the

variable to which values are assigned, although of course only non zero frequencies

need be stored. For each candidate test case, the data-state distribution is recorded

in a histogram of data-state values assigned to each relevant variable in the program

under test. Initially, these are the variables that are in the branch predicate. This

means that for a single program execution the data-state distribution is recorded

as a set of histograms. A histogram of a given variable assignment containing rare

data-state values is called a rare histogram and so it is possible to speak of histogram

scarcity compared to the histograms of the same variable but in other individuals in

the population. Figure 4.11 shows the relation between population and histograms.

fi
- fitness of individual

shared tness - Total degree of sharing

!s(Xj) = n f(x,) , where, s is the predefined sharing function and d is the phonotype or
L: s(d(xj, Xj))
j==1

genotype similarity (distance) function.

A simple sharing function s would be the identity function.

Using program data-state scarcity in test data search 94

Population

1r
Individual1 I Assigment1 :

~
{(value1 • frequency1) •...• (valuem • frequencym)}

Individual2

Individual3 I Assigment2 I ...
... I . .. I ...

Individualn I Assigmentk : I-
I""

Data state distribution 1

Figure 4.11: The structure of data-state distribution inside population

Data-state values are recorded for discrete value types only (e.g. integer, character,

string, etc.). The values assigned to fioating point variables are not recorded because

it is most unlikely that two or more randomly selected floating point inputs will be

equal. In addition, real-valued arithmetic operations and functions applied to these

inputs are unlikely to produce equal results. When the fioating point values assigned

to a variable are unique across all assignments to that variable across the population,

it can be argued that diversity is present. In addition, the cost functions for the

relational operators cannot produce constant values unless they receive constant

inputs. In the LOglO example program (Figure 4.6 as seen in page 84), random

inputs lead to unique (across the population) values assigned to y. The distribution

of values assigned to y is heavily skewed but this alone is not responsible for the

locally constant cost values. In fact the histograms of values assigned to y are unique

across the population.

Using program data-state scarcity in test data search 95

Methods for measuring data-state distribution diversity in the population

The aim is to rank individuals of equal branch cost on basis of similarity of data­

state distribution to other individual in the population. This requires a measure of

similarity or distance between data-state distributions.

A simple method to identify test cases which produce rare data-state values, is to

group test cases into classes on the basis of equal histogram sets. This is a binary­

valued distance measure, equal or not equal. Two histogram sets are equal if the

histograms they contain are equal. This is a strong criterion for grouping histogram

sets but is justified on the grounds that only one of the variables used by the cost

function need take a different value in order to modify the computed cost.

The fitness function should measure both branch distance and data-state scarcity.

For constant branch distance, the fitness of an individual is a function of the data­

state diversity it contributes to the population. In the case where the branch dis­

tance values in the population are all equal, the size of the data-state distribution

equivalence class to which the individual belongs is used for population member

ranking.

More formally, let the equivalence classes of individuals under equal data-state distri­

bution be grouped into sets of equal sized classes and then let these sets be ordered

according to increasing equivalence class size to produce a data-state equivalence

class sequence (as shown Figure 4.12).

The rank of an individual is the position in this sequence of the set that contains the

data-state distribution equivalence class to which it belongs. The fitness fUIlction

for an individual with a data-state distribution in a given class is:

branchC ost + classSize - 1

This is zero when a solution is found because the branch cost is zero and the his­

togram of values assigned is unique, this assumes that the GA has not already found

the solution and so the equivalence class size is one.

Using program data-state scarcity in test data search 96

Population belore ranking Population after ranking

Individuals Fitness Data state distributions Individuals Rank

i1 c1 {v1 , 11 } i18 1

i2 c1 {v2,12} 110 2

i3 c1 {v1, In 115 2

i4 c1 {v2,12} 16 3
i5 c1 {v1, 11} 113 3

i6 c1 {v4,14} Class count Rank 114 3

i7 c1 {v2,12} {v5,15} 1 1 119 3

i8 c1 {v1, 11} {v3,13} 2 2 12 4

i9 c1 {v1, 11} {v4, f4} 4 3 14 4
i10 c1 {v3, f3} {v2, f2} 5 4 17 4

i11 c1 {v2, f2} {v1, f1} 8 5 111 4

i12 c1 {v1, f1} 120 4

i13 c1 {v4,14} 11 5

i14 c1 {v4,14} 13 5

i15 c1 {v3, f3} 15 5

116 c1 {v1, f1 } 18 5

117 c1 {v1, 11} 19 5
118 c1 {v5, f5} 112 5
119 c1 {v4, f4} 116 5
120 c1 {v2, f2} 117 5

Figure 4.12: Population before and after ranking using data-state distribution equiv-

alence class size.

Other dissimilarity distance measures may be defined. In general, assume that there

is a distance function d(XI, X2) defined between any two histograms Xl and X2. This

distance function is required to have the following properties for all X 1 and X2:

2. Non-negative, d(XI, X2) 2:: 0,

3. Zero for identical histograms, d(Xl,X2) = 0 if Xl = X2.

Two methods were considered to measure the distance between Xl and X2. These

methods are common in the literature on population diversity (Mattiussi et al.,

2004), and are applied to phenotype and genotype diversity, but here they are ap­

plied to data-state distributions.

1. Hamming distance: Each histogram is a set of (value, frequency) pairs. Two

histograms may be compared by the number of pairs in each histogram that

Using program data-state scarcity in test data search 97

I

r

I Individual x I L Individual y

/ ~ ~ r

Assignment 1 I I Assignment2 J I Assignment 1

"
, , ,.

Histogram 1 I I Histogram2 I I Histogram 1

~r , ,
~

Value Frequency Value Frequency Value Frequency

2 1 6 1 2 4

4 2 1 2 6 7
5 3 7 10 5 3

Data State Distribution 9 8

Data State Distribution

Figure 4.13: The data-state distributions of two individuals

are absent from the other. For example if

Xl = (VI, h), (V2, h), (V3, h) and

X2 = (VI, h), (V2'/4), (V4, 15) then

I

I

HD(Xl,X2) = 4, since (v2,h) and (v3,13) are absent from X2 and (v2,14) and

(v4,15) are absent from Xl· So the definition will be:

HD(Xl,X2) = IXl\X21 + IX2\Xll·
Extent Xl with IX2 \xli and give 0 counts.

Extent X2 with IXI \x21 and give 0 counts.

2. Euclidean distance: For each pair (v,!) in Xl, if (v, g) is present in x2 let

Ll = (f~g)2 else Ll = j2. For each pair (v,!) in X2, if (v,g) is present in Xl
let L2 = (f~g)2 else L2 = j2j then ED(Xl, X2) = Ll + £2.

The difference between Euclidian distance and the Hamming distance is that the

Euclidean distance is more sensitive to the frequency of data-state values.

Using program data-state scarcity in test data search 98

The number of histograms inside the data-state distribution may be different. from

one individual to other as this depends upon the number of relevant assignment

statements executed during the program execution. Figure 4.13 shows two individ­

uals, the first one executed two relevant assignment statements (8..'!signment 1 and

assignment2) then the data-state distribution consist of two histograms; the sec­

ond individual executed one relevant assignment statement (assignmentl) then the

data-state distribution consists of only one histogram. To find the distallce betweell

these two individuals, the cost of insertion or deletion of a histogram will be consid­

ered next. Assume a single, unmatched histogram, e.g. Assigment2 in Figure 4.13

compared to the empty histogram shown as yep.

The Hamming distance between individual x and individual y is:

HD(x,y) = 11, since (2,1) and (4, 2) are absent from Y1 and (2,4), (6,2) and (9,

1) are absent from Xl in addition to the cost of all pairs in X2 which are absent from

y¢ (the cost = 6).

The Euclidean distance between individual X and individual y calculated as follows:

ED(x, y) = ED(X1' Y1) + ED(X2' y¢)

ED(x, y) = (1-;4)2 + 22 + (3-;3)2 + (4-;1)2 + 72 + (3-;3)2 + 82 + 12 + 22 + 102

ED(x, y) = ~ + 4 + 0 + ~ + 49 + 0 + 64 + 1 + 4 + 100

ED(x, y) = 231.

The total distance between individual i and all other individuals in the population

called the population distance Pdi can be defined as:
n

Pdi = L d(i,j), where n is the population size, d is a distance function (e.g.
j=l

Hamming distance or Euclidian distance) between two individuals i and j.

The sum of the distances from each individual to all the other individuals in the

population is a measure of how similar an individual is to the population as a whole.

Pdi can be used to rank individuals within the population, i.e. the individual

with the largest Pdi has the highest rank. This is called the maximum population

Using program data-state scarcity in test data searci] 99

distance measure. During the search, this leads to a replacement strategy based

on the contribution of diversity of the offspring to the population where it will be

included. An individual of the population with a lower contribution of data-state

distribution diversity than the one provided by the offspring will be replaced.

In more detail, let us assume that an offspring, x, is returned from the recombination

phase and let i min be an individual in the current population P which has the

minimum population distance, let its distance be Pdi . Consider now the population

obtained by removing imin and adding x. Call this population pi and let i~lin be

the individual in the population p' that has the minimum population distance and

let its distance be Pd~. If P~ > Pdi then imin is replaced by x, otherwise x is

discarded.

4.5.4 Data-state distribution histogram

The fitness function based on the size of the equivalence class of data-state distribu­

tions directs the search to those individuals that are in equivalence classes of smallest

size. After some time the number of large equivalence classes will have been progres­

sively removed to make way for new individuals in smaller equivalence classes. This

may continue for a while until all the individuals are in singleton equivalence classes

and yet no solution has been found. The fitness function will then assign the same

rank to all individuals since the data-state equivalence classes in the population are

all the same size. In this case, the GA parent selection mechanism is random which

will lead to random search. Such a situation occurs in the Orthogonal program,

when the size of the array increased to be 128 instead of 64. In practice, a popula­

tion in which all equivalence classes have the same size is likely to occur only when

the number of classes is equal to the population size. Otherwise, different data-state

values are likely to have non-uniform distributions. For example, in LoglO , it is very

unlikely that the equivalence class for k = 5 will contain as many individuals as the

equivalence class for k = 3, say.

A possible remedy is to increase the population size and it would perhaps be useful

Using program data-state scarcity in test data search 100

Histogram Count InCurrentPop
A{O 1 2 3 4 5 6 7 8 3 True

17 23 20 20 21 67 4 70 6}

B{O 2 3 4 5 6 7
7 True 39 19 15 66 2715 67}

C{O 1 234 5 6 7
4 True 15 20 15 6 66 73 28 26}

D{O 1 2 3 4 5 6 7 19 True 48 5 4 15 97 4 70 6}

E{O 1 2 3 4 5 6
8 False 39 19 15 27 82 67 1}

Table 4.1: Example of DSD histogram used to rank individuals.

to repeat these experiments with a variety of different population size. Actually this

solution is impractical when there is a very large number of data-state distributions.

A solution is to record the histogram sets of data-state values produced by any in­

dividual during a particular search. These data-state distributions are recorded in

a histogram called a data-state distribution histogram or DSD histogram for short.

For each individual, a data value histogram set is stored in the DSD histogram as

shown in Table 4.1. If the same histogram set is produced for different individuals,

then the frequency count is increased. If an individual that produced a histogram

set is in the current population then InCurrentPop flag is set true. Fitness fUllction

now depends on the size of the histogram set frequency count in the DSD histogram

rather than the size of the class in the population. If a new individual has a fitness

(branch cost and histogram scarcity) equal to the fitness of the other members of

the population then it is added to the population, replacing an individual with the

most common histogram, even if the size of the histogram class is one. The fitness

cost for an individual with a data-state distribution that has a frequency count of

f is

branchC ost + f - 1

This value is zero when the first solution is found.

In the case of the Orthogonal program, where lengths of the arrays are larger than

Using program data-state scarcity in test data search 101

the population size, the DSD histogram is constructed when the individuals in the

population all belong to their own equivalence class (of size 1). New individuals with

histogram sets that are not in the DSD histogram are added to the population and an

arbitrary individual is removed, since all individuals in the population have the same

histogram scarcity. This part of the search is random. After some time, however, Ilew

individuals may have histogram sets that have already been seen before, i.e. they are

present in the DSD histogram. These individuals are less fit than any in the current

population and are not added to the population because their histogram sets have

been generated at least twice and all individuals in the population have a histogram

set that has been seen just once only. The repeat occurrence of the histogram sets

are noted, however, in the DSD histogram by incrementing the frequency count for

the relevant histogram set. In this way, a variety of frequency counts will arise

in the DSD histogram and lead to the individuals in the population have different

fitness values. Once this occurs, the GA fitness based selection of the individuals

for reproduction is restored and the GA search can find a solution.

DSD histogram can be used from the start but it increases the memory requirements

and the search time.

4.5.5 Clustering histograms

There is a potential problem with the use of the DSD histogram is that it can

become very large. An alternative method to the DSD histogram is to cluster the

individuals in a population once the individuals are all in equivalence classes of size

1. Clustering is the classification of similar data-state distributions into classes so

that the set of data-state distributions share some common trait. If the number of

clusters is less than the population size, then cluster size can be used to measure

the scarcity of the histograms of the individuals that it contains. This does not

ensure that all cluster sizes will not be equal but it does decrease the likelihood.

This method requires more time to compute the clusters but only a fixed amount of

additional memory.

Using program data-state scarcity in test data search 102

The rank of an individual in the population is the same as illustrated in Section 4.5.3

except that the size of the cluster to which an individual belongs is used instead of

the size of the equivalence class to which it belongs.

To perform clustering a distance measure between data-state distributions is re­

quired. The simplest measure would be using the Euclidean distance as described

in Section 4.5.3.

In the following sections, it is shown how two common clustering techniques Illay be

adapted to cluster the individuals in the population.

Hierarchical clustering

The hierarchical clustering algorithm takes as input the number of desired classes

k, and the distances between every pair of individuals. The algorithm is as follows:

• Start with n classes (population size), each containing a single data-state dis­

tribution.

• For i = n - 1 down to k

- Find the closest pair of data-state distributions, call these A and B, and

remove them from the set of classes.

- Generate a new class C, containing the data-state distributions A and B.

- Generate new distances from class C to all the other remaining classes.

The distance between class C and some other class D is the average

distance between the elements of C and the elements of D.

Figure 4.14 shows a possible clustering for a set of 6 data-state distributions. The

fitness function for an individual with a data-state distribution in a given cluster is:

branchCost + cluster Size - 1

The value may not be zero when a solution is found but it does decrease towards

individuals that have dissimilar data-state distributions.

Using program data-state scarcity in test data search

(0

8
8

(a)

(0
8 8

(b)

103

Figure 4.14: Hierarchical clustering example, using 6 data-state distributions

K-means algorithm

K-means (MacQueen, 1967) is one of the simplest unsupervised learning algorithms

for clustering. The procedure sets a certain number of clusters (k clusters) fixed at

the onset. The main idea of the K-mealls algorithm is to assign each point to the

cluster whose centre is nearest. The centre is the average of all the points in the

cluster. Example: The data set has three dimensions and the cluster has two points:

X = (Xl, X2, X3) and Y = (YI, Y2, Y3). Then the centroid Z becomes Z = (Zl' Z2, Z3),

where Zl = (Xl + yd/2, Z2 = (X2 + Y2)/2 and Z3 = (X3 + Y3)/2.

The algorithm can use the square Euclidean distance between the data-state distri­

butions as follows:

• Choose the number of classes, k.

• remove k individuals, chosen randomly, from the population to form the centres

of k classes.

• for i = 1 to n - k

1. Assign each remaining individual to the nearest class centre.

2. Recompute the new class centres.

Using program data-state scarcity in test data search 104

The main advantage of this algorithm is its simplicity. Its disadvantage is that it

does not yield the same result with each run, since the resulting clusters depend on

the initial k random selections. To solve this problem, the initial k individuals can

be selected according to the total Euclidean distance (Pdi) from those individuals

to all other members of the population. Starting the clusters with the most distant

individuals is a heuristic for selecting widely spaced clusters.

4.6 Instigating Data Scarcity Search

Data scarcity search should be instigated only when the branch cost function has

become constant (locally fiat) and program transformation techniques and path

search techniques are either inapplicable or ineffective. Detecting that the search

has stopped converging, stagnation, can be done by monitoring the average or best

population fitness. In the work reported here, stagnation was defined as no improve­

ment in the best cost value after 50 offspring. At this point, data-state scarcity

search was introduced immediately since it was known that for the selected example

programs, no transformation technique was applicable.

4.7 Sampling the Data-state to Produce the

Data-state Distribution

Recording data-state information is a computational cost that need not be incurred

until data-state scarcity search is instigated. This can be done by re-instrumenting

the program under test. To sample the data-states, the variables that appear in the

predicate expression of the target branch are identified and from the data depen­

dency graph, the variables that affect the variables of the predicate expression are

also identified. Input variables are excluded. In order to identify rare data-state

values it is necessary to instrument the distribution of values that are assigned to

these variables. To do this, each definition of a variable (e.g. an assignment state-

Using program data-state scarcity in test data search 105

ment) , providing it is not the assignment of a compile-time constant, is associated

with a histogram in which is recorded the values assigned and the number of times

any particular value is assigned. The instrumentation of the program shown in Fig­

ure 4.6 is shown in Figure 4.15. lnst () returns the value of its first argument after

adding this value to the histogram associated with the variable definition that is

labeled by the second argument. Note that the array a is not instrumented since it

is assigned only constant values. In general, however, the instrumentation of values

assigned to an array is a problem that was ignored for this work.

void Logl0(int x){

}

//x in [0, 100000]

a[O] = 0;

a[l] = a[2] = a[3] = a[4] = a[5] = 1;

double y =lnst(log10(x), "y1");

int k = lnst (ceiling(y), "k1 ") ;

if (a [k] == 0) {

//TARGET BRANCH

}

Figure 4.15: Data-state instrumentation of the program from Figure 4.6.

A program with a loop may generate a large number of different values for a par­

ticular variable assignment which will lead to an impractically large number of his­

togram classes. To limit the number of classes in the histogram, the rate at which

assigned values are sampled is progressively reduced as the number of classes in­

creases. Initially all values assigned are recorded until the number of assignments

(each assignment is recorded in a histogram) x k equals a positive constant s, set

to 1000 for this work, where k is the maximum number of values stored in one his­

togram. At this point, the sampling rate is halved so that only each second value is

recorded. This does not directly limit the number of new classes but it does reduce

Using program data-state scarcity in test data search 106

the rate at which they may be created. If the number of class equals 28 then the

sampling rate is again halved, and so on. This scheme biases data-state sampling to

states that are produced early on in the computation. There will be programs for

which this bias is advantageous and programs for which it is not. Given that the

performance implications of the scheme are unclear, at the moment the scheme can

be justified only on the basis of the simplicity of implementation.

4.8 Empirical Investigation

The data-state scarcity strategy was investigated by generating test data for the

example programs, AllTrue, Orthogonal, Log10, Mask and the three programs

Error, CountEqual and FloatRefEx, of which the latter two are described later on.

4.8.1 Experimental setup

The tool used here is the same as described in Section 3.3, Page 48. In the work

reported here, a population size of 100 was always used. This parameter was not

"tuned" to suit any particular program under test. In a steady state update style

of genetic algorithms (as used in this work), new individuals that are sufficiently

fit are inserted in the population as soon as they are created. Full branch coverage

was attempted for each of the programs under test. Each branch was taken as the

individual target of the search, unless it was fortuitously covered during the search

for test data for another branch.

GAs search generates inputs for the function containing the current structural target.

A vector of floating point, integer, characters and string variable values correspond­

ing to the input data is optimized. The ranges of each variable are specified. The

test subject is then called with this input data. The criterion to stop the search

was set up to terminate the search after 100,000 executions of the program under

test if full coverage was not achieved. Individuals were recombined using binary and

real-valued (one-point and uniform) recombination, and mutated using real-valued

Using program data-state scarcity in test data search 107

mutation. Real-valued mutation was performed using "Gaussian distribution" and

"number creep" .

4.8.2 Experimental programs

The program CountEqual shown in Figure 4.16 determines if more than half the

characters in a string are equal to the respective preceding character.

CountEqual(char[] a) {

int equal = 0;

for (i = 0; i < 64; i++) {

}

string s = match(a[i] + n+n, a, i);

equal = equal + s.Length - 1;

i = i + s.Length - 1;

if (floor(equal / 32) -- 1) {

//TARGET

}

Figure 4.16: A difficult to execute branch in a program

The variable equal is likely to be zero or close to zero. In such cases, the value of

equal / 32 is invariably zero. For randomly selected inputs, the histogram of values

assigned to equal will be skewed towards zero. Directing the search towards inputs

that produce rare histograms will direct the search towards inputs in which the

histogram of values assigned to equal is less skewed towards zero, which increases

the probability of finding an input with a relatively high value for equal. The target

branch is executed when equal has the value 32.

The program FloatRegEx is shown in Appendix A and its flowchart is shown in

Figure 4.18. This program implements a finite state machine to recognise floating

point numbers with an optional exponent. The state transitions of the finite state

Using program data-state scarcity in test data search

Error(int[] a) {

}

//a[i] in [-100000, 100000]

int error = 0;

int errorsum = 0;

for (i = 0; i < 16; i++) {

error = abs(a[i]) - i;

errorsum = errorsum + min(l, abs(error»;

}

if (floor(errorsum / 4) < 1) {

//TARGET

}

108

Figure 4.17: Program compares a set of points with the sequence 0, 1, 2, ... , 15 and

executes the target branch when fewer than one quarter of the points disagree with

the sequence.

machine are defined in an array. The program is a single loop that reads each

character of the input string and, together with the current state, accesses the next

state from the array. The target branch is executed when the state corresponding

to a number with an exponent is reached. For random character strings, this is a

difficult state to reach.

Clearly, the set of test programs assembled is a biased collection but the purpose

of the investigation is to show the effectiveness of data scarcity search for a class of

program for which existing techniques are not effective.

Using program data-state scarcity in test data search 109

Figure 4.18: Flowchart of FloatRegEx example

4.8.3 Results

Number of data-state distributions is less than population size

In order to assess the fitness function when the branch distances of the population

are all equal and the number of the data-state distributions is less than population

size, in this case, the size of the data-state distribution equivalence class to which the

individual belongs and the population distance Pdi are used for popUlation member

ranking. Test data was generated for each program and the number of program

executions required to find data for a given program was noted. This was done for

50 trials and the average taken.

The results in Table 4.3 show the average number of executions required to find test

data when equivalence class and distance between data-state distributions (Ham­

ming distance and Euclidean distance) were used. There is no evidence to suggest

that one method is more or less efficient than the others in terms of performance

but using equivalence class for popUlation member ranking needs less computation

than using Hamming distance and Euclidean distance.

Using program data-state scarcity in test data search 110

Program Successes Equivalence class HD ED

AIITrue 50 4651 6563 8218

Orthogonal 50 8004 10814 9325

Logl0 50 2184 1641 1641

Mask 50 1119 3251 2074

CountEqual 50 9421 9652 9936

Error 50 8719 12362 12251

FloatRegEx 50 11081 12354 11832

Table 4.2: The number of successful trials and the average number of test program

executions out of 50 required to find test data to achieve coverage of the target

branch.

0.8

1

__ Diversity cost j
0.6 ~~-::---.JIIk-~--~~~ Branch cost

0.4 1---.",...

0.2

o 500 1000 1500 2000 2500

Number of Subject Executions

Figure 4.19: Plot showing the fitness landscape for the branch cost and the diversity

cost in the program LogJO. For clarity of presentation, the diversity co t plotted is

the maximum entropy value (obtained when the solution is found) les the entropy

value after a given execution of the program.

Using program data-state scarcity in test data search 111

~ Entropv - Unique Hist.
5~========~====~~==;:==~

O~------r-----~~----~~----~
o 2000 4000 6000 8000

tlumber of subject execution

Figure 4.20: The diversity in the program Orthogonal. For clarity of presentation,

the unique data-state distribution is normalised between 0 and 1.

No figures for the number of executions required to execute the target branch without

using data-state scarcity search are given, since no solutions were found after 100,000

executions of the program under test.

Figure 4.19 shows how the data-state scarcity cost descreases during the progr of

the search for a single run to find test data for program LoglO . The branch cost is

1 for all but one point, i.e. when the solution is found.

Figure 4.20 shows the increasing diversity and unique data-state distribution (caled

between 0 and 1 for simplicity of representation) during the progress of the search

for a single run to find test data for the Orthogonal program in Figure 4.5.

Number of data-state distributions is greater than or equal to the popu-

lation size

In order to assess the three methods of fitness function definition when the number of

histograms is 2:: population size, the sample of programs is modified for this purpose,

i.e AIITrue128 means the AIITrue program in Figure 4.4 is modified by making

the array length equal to 128 instead of 64. This means the number of histograms

will be increased to 128. The DSD histogram for the All True128 program i shown

Figure 4.21a, all equivalence class of size 1. The search in this part is random.

Using program data-state scarcity in test data search 112

After a time of execution, new test cases may have data-state distributions that are

already in the DSD histogram. This increases the count of these test cases and these

test cases become common and less fit as shown in Figure 4.21b, the DSD histogram

of the same program after 520 offspring.

For K-means clustering and hierarchical clustering the number of clusters is selected

to be equal to ~, where n is the population size. This value was chosen without

detailed analysis.

A problem was identified in hierarchical and K-means clustering algorithms, that

when we are building the cluster, sometimes there is more than one closest cluster.

Assume we have a cluster A, which has the same distance to both clusters Band

C. The algorithm at that point chooses one, arbitrarily. Say the algorithm chooses

cluster B, thus forming cluster A'. Now cluster A' has a particular distance to

cluster D which may be very different from the distance it would have had if the

algorithm had chosen C and A to form A'.

The results in Table 4.3 show the number of program executions required to find

input data to achieve branch coverage, averaged over 50 trials. These results provide

some evidence that DSD histogram is the most efficient of the three methods and

that hierarchical is more efficient than the K-means. The reason for the poorer

performance of K -means is related to the previous problem and the selection of

initial k cluster.

4.9 Combining Program-specific Operators with

Data Search

When the fitness landscape becomes locally flat for large areas of the input domain,

data-state scarcity will be introduced to solve the problem but this does not exclude

the use of program-specific search operators. In this section data-state scarcity is

used with program-specific search operators in order to increase the performance of

the search. This can be illustrated by example in Figure 4.22 (FlagAvoid). This

Using program data-state scarcity in test data search 113

1.5

>-
0
c
'" :::>

I 0.5

0

'<8
,.c-O l'

"3
,.c-'''1'

.98,.c-
30 l'

83,.c- 6'a S.],.c-;>. ~,.c-.90 l' 1,,1' ,.c-80 l' '$1'

data state distributions

(a)

80

60
>-
0
c 40 '" :::>

I 20

0

'<8
,.c-o l'

"3
,.c-'''1'

.98,.c-
30 l'

8.J
,.c-1,,1'

6'a
,.c-80 l'

"3,.c-
?"1' ~,.c-.901'

data state distributions

- --
(b)

500

400

>- 300 0
c
'" :::> 200 I

100

0

'O?,.c-
<'1'

.9<,.c-
381'

??,.c-
"'1'

8<,.c-
881'

1?,.c-
8, l'

<??,.c-$I
'81'

'?,.c-
," l'

data state distribution

(c)

Figure 4.21: (a) DSD histogram for AllTrue128 program is constructed when the

population size is eq ual to the data-state distribution size, (b) DSD histogram after

520 program executions, (c) DSD histogram after 11000 program executions for true

value of I nCUTrentPop.

Using program data-state scarcity in test data search 114

Program K-means Hierarchical DSD histogram

AllTrue128 28325 23847 20005

AllTrue256 66135 58964 48632

Orthogonal 128 37945 33264 30987

Orthogona1256 73218 69258 62847

CountEqual128 41367 40988 37564

CountEqua1256 83214 82586 78645

Mask64 11387 12631 10456

Error64 46254 48299 39874

Table 4.3: The number of successful trials and the average number of test program

executions out of 50 required to find test data to achieve coverage of the target

branch, when number of data-state distribution ~ population size.

program iterates through an array of 64 double values, computes the sin of each

element of a then converts this value to an integer which is used in a branch predicate

that leads to the target. All flag assignments within the loop have to be avoided,

and the target could be covered only when all of the elements of array a are equal to

¥. Even though x is not a boolean variable, a "flag" variable problem arises because

x may take one of only two integer values (0, 1).

Consider, however, the values assigned to x within the loop. Most of the values

assigned to x will be zeros. The inputs that assign 1 to x may be identified a..'l

producing rare values and hence the search may be directed to the input region that

produces these rare values. Directing the search towards input that produces rare

values of x is an effective strategy for changing the final value when the maximum

number of ones is assigned. By using the program-specific search operators, although

none of the three integer values 0, 1, and 64 that occur in the program are input

values that execute the target branch (to execute the target branch all the elements

of the array must be equal to ¥), they do provide reasonable starting points for

a guided search. In particular, to set the variable a[i] = ¥, it is possible to

Using program data-state scarcity in test data search

void FlagAvoid(double[] a){

}

int x = 0;

double y = 0.0;

int i;

for(i = 0; i< 64; i++){

Y = Math.sin (a[i]); Ily in [-1, 1]

}

y = Math.abs(y);

x = Math.floorCy);

if (x != 1){

break;

}

Ily in [0, 1]

II x = 0 or 1 only

if ex == l){IIEXECUTED ONLY WHEN ALL VALUES OF a EQUAL TO 90.

Iitarget executed

}

Figure 4.22: A difficult to execute branch in a program FlagAvoid

115

invert the trigonometric function sin(a[i]) with parameter value equal to 1 which

is sin -1 (1) then a [i] = ¥. Figure 4.23 shows different paths to a solution to test

data generation problem shown in Figure 4.22.

Experiments performed using different programs listed in Table 4.3 in addition to

the FlagAvoid program were used to evaluate the performance of program-specific

search operators with data-state scarcity. The test tool collected program liter­

als and mathematical operators and determined the mutation operators during a

traversal of the program abstract syntax tree. Each program contained a specific

statement that could not be easily covered by GAs, due to a specific low probability

statement sequence required to be followed before the target is reached. The aim was

Using program data-state scarcity in test data search

program· specific

operation:t,.,sin"', ...

Vi in a'x=l

operation

GA no seeding

no Data scarcity
• domain =[-2n,2n]
... random search

.
.... Data scarcity .. • Vi in a'x=l

116

Figure 4.23: The different paths to a solution to the test data generation problem

shown in Figure 4.22.

Using program data-state scarcity in test data search 117

I program Name II Execution I

Orthogonal 55

Logl0 0

Mask 586

Count Equal 618

Error 11243

FloatRegEx 5751

FlagAvoid 3971

Table 4.4: Number of subject program executions to cover all branches, average of

50 trials was used, equivalence class was used for population member ranking.

to find input data to execute all the branches in each programs. For each program

50 trials were done. The average number of program executions required to achieve

branch coverage over 50 trials is shown in Table 4.4. These results show a significant

improvement in performance compared to the results without using program-specific

search operators, as shown in Figure 4.24, which compares the results of the data­

state scarcity search with and without using program-specific search operators when

equivalence class was used for population member ranking. The results in Table 4.5

show the average number of program executions required to achieve branch coverage

over 50 trials, when number of data-state distributions ~ population size when DSD

histograms was used.

The usefulness of using program data constants by itself without program functions

and operators has not been investigated here. Similarly we have not investigated

program operators and functions without data constants. There seems to be lit­

tle advantage in using each of these by itself, i.e the implementation cost is not

significantly reduced.

In example, Figure 4.17 (Error) the inclusion of literals from the program in the

integer domain will bias the search towards arrays that contain a greater than av-

Using program data-state scarcity in test data search

...
o -'C
~ ·s
g
... 0
u)..­

e)(
.2 ell

5 ~ u ...
CI) CI)

)(>
CI) 0
E U

~"fi
Ole o tel
~ ~

a..c -o ...
.8
E
;::,
e

o no program serch operators

900 I------------r:-J----t

400

118

Figure 4.24: A comparison of the number of executions of the program under test

required to find test data to achieve branch coverage (averaged over 50 trial) with

and without program-specific search operators.

erage proportion of the literals 0 , 1, 4, 16. These values are not helpful in finding

the solution array which is [0 , ±1 , ± 2, ± 3, ± 4, ... , ± 15]. In fact t he bias toward

the literals 0, 1, 4, 16 is counterproductive, as the bias towards literals imp d -s the

search, but using the program mutation operators ("-" and "+") may make a little

improvement.

In general, the use of program-specific search operators leads to about a threefold

improvement in search efficiency. In the case of LoglO , no guided search was required.

The solution of the target already exists in the initial population generated from the

program literals.

4.10 Summary

Programs that contain flag variables or otherwise generate almost locally flat ost

functions pose a problem for heuristic search algorithms that seek to minimise a cost

Using program data-state scarcity in test data search 119

I program Name "Execution I
Orthogona1128 81

Orthogona1256 362

Mask64 1746

CountEqua1128 6107

CountEqua1256 16984

Error64 38798

Table 4.5: Number of subject program executions to satisfy all branches, average

of 50 trials was used, equivalence class was used for population member ranking

combined with program-specific search operators. When number of data-state dis­

tributions 2: population size, DSD histogram is used.

function. Existing methods based on program transformations and data How search

are ineffective for many programs and some examples have been given to illustrate

the problem. A new approach of data-state scarcity search is shown to overcome

the problem. The solution is most appropriate for programs that have little scope

to exploit control flow diversity. Such programs contain few branches and may

be "data-driven" of which table-driven finite-state machines are an example. Two

fitness functions were investigated, one based on the grouping of equal data-state

distributions and another based on the distance between data-state distributions. A

limitation emerged when using grouping of equal data-state distributions and using

population distance (Pd) when the number of data-state distribution 2: population

size. A possible solution is to record the histogram sets of data-state values (DSD

histogram). Fitness function depends on the size of the histogram set frequency

count in the DSD histogram rather than the size of the class in the population.

There is a potential problem with the use of the DSD histogram is that it can

become very large. An alternative method to the DSD histogram is to cluster the

individuals in a population once the individuals are all in equivalence classes of

Using program data-state scarcity in test data search 120

size 1. The rank of an individual in the population depends on the size of the

cluster to which an individual belongs, instead of the size of the equivalence class to

which it belongs. The most significant improvement in performance, however, was

obtained by using program-specific search operators. In the empirical investigation,

the use of program-specific search operators was shown to give a threefold increase

in performance.

In general, the problem of almost locally fiat cost fUIlctions is such that no single

approach can be expected to solve the different cases in which it may occur. A

variety of techniques are required. This chapter describes one such technique.

Chapter 5

Conclusions and Future Work

5.1 Summary of Achievements

The original overall aims and objectives of this thesis were as follows:

1. Generation of string test data automatically.

2. Generation of test data for some programs that exhibit an almost constant

cost function at the test goal.

3. Demonstrating the effectiveness of program-specific search operators for many

types of test program.

5.1.1 Generating string test data

The examination of the SSCLI source code showed that about 6% of the predicate

expressions is a string predicate expression and yet work on test data generation has

so far been largely limited to numeric test data. For string equality predicates, the

following cost functions were investigated:

1. an adaptation of the binary Hamming distance (HD).

121

Conclusions and Future Work 122

2. character distance(CD), defined as the sum of the absolute difference between

the ordinal character values of corresponding character pairs.

3. ordinal edit distance (OED), a version of edit distance costs with fine-grained

costs based on the difference in character ordinal values and defined as

OED(s: a,t: b) = min(OED(s: a,t)+k,OED(s,t: b)+k,OED(s,t)+la­

bl) where s : a, t : b are character strings, each consisting of a possibly empty

string s, t, followed by the character a and b, k is the insertion or deletion cost

and a, b in la - bl are interpreted as ordinal values.

An ordinal value ordering in which the string is considered as a number with base

equal to the cardinality of the character set is unsuitable as a cost function for

string equality since it treats mismatches differently according to their location in

the string.

Ordinal edit distance was found the most effective in an empirical study. Three basic

kinds of mutation operators, deletion, insertion and substitution were used, initially

with equal probability but a progressive increase in the probability with which the

character substitution is applied and the standard deviation of the Gaussian sub­

stitution operator was reduced has been shown to improve the performance of the

search. This was done because later in the search the candidate strings tend to have

the same length as the required string. Two functions for string ordering were in­

vestigated, Ordinal value ordering and Single character pair ordering, but there was

no significant difference in their performance in the empirical investigation although

one is easier to implement.

5.1.2 Data-state scarcity search as a solution for flag prob­

lem

The computations performed by programs can result in a degree of "information

loss" when computing the branch distance measure, producing coarse or fiat objec­

tive function landscapes for structures within the program. This in turn results in

the search receiving little guidance to the required test data, and it typically fails.

Conclusions and Future Work 123

Existing methods are ineffective for many programs and some examples have been

given.

In an attempt to tackle this problem, Chapter 4 presents a new technique for di­

recting the search. The new technique depends on introducing program data-state

scarcity as an additional search goal. The search is guided by a new evaluation (cost)

function made up of two parts, one depending on the conventional instrumentation

of the test goal, the other depending on the diversity of the data-states produced

during execution of the program under test. Two fitness functions were investi­

gated, ranking of candidate solutions by grouping of equal data state distribution

and ranking by distance between data state distributions.

Using equivalence classes of data state distribution is ineffective when the number of

data state distributions equals the population size. A possible solution is to record

the histogram sets of data state values in a DSD histogram that is not limited in

size. Fitness function now depends on the size of the histogram set frequency count

in the DSD histogram rather than the size of the class in the population. The fitness

cost for an individual with a data state distribution that has a frequency count of

f is

branchC ost + f - 1

This value is zero when the first solution is found.

A potential problem with the use of the DSD histogram is that it can become very

large. An alternative method to the DSD histogram is to cluster the individuals in

a population once the individuals are all in equivalence classes of size 1. The rank

of an individual in the population depends on the size of the cluster to which an

individual belongs, instead of the size of the equivalence class to which it belongs.

FUll branch coverage was obtained in all experiments by using DSD histograms

and clustering histograms. The results provides some evidence that using DSD

histograms is the more efficient than other methods.

Conclusions and Future Work 124

5.1.3 Using program-specific search operators

Program-specific search operators aim to exploit the structure and behaviour of the

computation in the region in the program from the input variable to the test goal

rather than the test goal by itself. The structure of the computation can be used in

the search by using the functions available in the program under test as the basis

of search operators and constants to seed the search. This idea was applied first on

the string data problem. The examination of the SSCLI code showed that about

65% of string predicate expressions contains a string literal.

By exploiting the presence of string literals in programs that process string data, a

very significant improvement in performance was obtained. The program-dependent

string search operators that focus the search in the region of string literals were

presented in Chapter 3, and in the empirical investigation, the use of these operators

was shown to give a fivefold increase in performance. The program-specific search

operators have been demonstrated for strings but this technique can be generalised

to other data types.

In the case of numerical types, additional genetic operators were introduced to in­

crease the performance of search by analysing the program under test and extracting

arithmetic operators and trigonometric function presented in the program under test

and then using these functions and their inverse as additional mutation operators.

More generally, the proposed approach is to exploit the structure and behaviour of

the computation from the input x to the test goal, the usual instrumentation point.

Assume this computation sequence consists of the sequence of statements of the

form s = f (s) where sand s are expressions that reference the data-state and f is

a function. The proposed approach is illustrated in Figure 5.1.

The structure of the sequence can be used in the search by using the functions fl, ... ,

fn as the basis of search operators and constants to seed the search. The behaviour

of the sequence can be used in the search by examining the intermediate store values

sl, s2, ... to provide additional guidance to the search.

Program-specific search operators were combined with data-state scarcity search for

Conclusions and Future Work

sl = flex);
s2 = £2(s1);

y = fu(sn -1);
if{y = a) { II instrumentation here only, cost = abs(y - a)
}

(a)

sl = fl (x);
s2 = £2(sl);

y = fu(sn -1);
if{y= a) {
}

(b)

1/ data-state instrumentation

II test goal instrumentation, cost = abs(y - a)

125

Figure 5.1: (a) Existing approach to test data search depends on cost function

(b) New approach exploits the structure of the program to use the constants and

specific-search operators and intermediate data state values.

the flag problem in Chapter 4 and the empirical investigation of the use of program­

specific search operators was shown to give a threefold increase in performance.

However, applying program-specific search operators with conventional genetic al­

gorithms increases performance more than 25 times.

On the whole, program-specific search operators can be combined with other tech­

niques, e.g. transformation (Harman et al., 2004), data-state scarcity and conven­

tional genetic algorithms to increase the speed of search.

5.2 Limitations and Future Work

The data-state scarcity search method, as it currently stands, has some limitations

with respect to the type of programs that can be handled:

1. A program with a loop may generate a large number of different values for a

Conclusions and Future Work 126

particular variable assignment which lead to a large number of histograms. In

this work, the number of classes in the histogram is limited until the number of

assignment x k equals a constant s (set to 1000 for this work), where k is the

maximum number of values stored in one histogram. It is not clear how this

heuristic performs for programs that have large numbers of loop iterations.

2. The array is not instrumented in this work. It is not clear how large data

structure should be instrumented to collect data-state values.

There is also a potential problem in that the DSD histogram may become very large.

These limitations could be addressed in future work.

Appendix A

Test Programs

A.1 Calc

double Calc(String op. double argl. double arg2){

op = op.ToLower();

double result = 0.0

if (IIpi" == op) { //CONSTANT OPERATOR

result = System.Math.PI;

}

else if ("e" == op) {

result = System.Math.E;

} //UNARY OPERATOR

else if (IIsqrt" == op) {

result = System.Math.Sqrt(argl);

}

else if ("log" == op) {

result = System.Math.Log(argl);

}

127

Test Programs

}

else if ("sine" == op) {

result = System.Math.Sin(argl);

}

else if ("cosine" == op) {

result = System.Math.Cos(argl);

}

else if ("tangent" == op) {

result = System.Math.Tan(argl);

} //BINARY OPERATOR

else if ("plus" == op) {

result = argl + arg2;

}

else if ("subtract" == op) {

result = argl - arg2;

}

else if ("multiply" == op) {

result = argl * arg2;

}

else if ("divide" == op) {

result = argl / arg2;

}

return result;

128

Test Programs

A.2 Cookie

int Cookie(String name, String val, String site){

name = name.ToLower();

}

val = val.ToLower();

site = site.ToLower();

int result = 0;

}

if ("userid" == name) {

if (val.Length > 6) {

}

}

if ("user" == val. Substring (0 , 4» {

result = 1;

else if ("session" == name) {

}

if ("am" == val && "abc. com" == site) {

result = 1;

else {

}

}

result = 2;

return result;

129

Test Programs

A.3 DateParse

void DateParse(String dayname. String monthname){

var result : int = 0;

var month : int = -1;

dayname = dayname.ToLower();

monthname = monthname.ToLower();

if ("mon" -- dayname II

"tue" == dayname II

"wed" == dayname II

"thur" == dayname II

"fri" == dayname II

"sat" == dayname II

"sun" == dayname) {

result = 1;

}

if ("jan" == monthname) {

result += 1;

}

if ("feb" == monthname) {

result += 2;

}

if ("mar" == monthname) {

result += 3;

}

if ("apr" == monthname) {

result += 4;

}

130

Test Programs 131

if ("may" == monthname) {

result += 5;

}

if ("jun" == monthname) {

result += 6;

}

if ("jul" == monthname) {

result += 7;

}

if ("aug" == monthname) {

result += 8;

}

if ("sep" == monthname) {

result += 9;

}

if ("oct" == monthname) {

result += 10;

}

if ("nov" == monthname) {

resul t += 11;

}

if ("dec" == monthname) {

result += 12;

}

}

Test Programs

A.4 FileSuffix

int FileSuffix(String directory, String file){

/ /EG pathname = " ... WORD/FILE. DOC" ;

Object [] files;

String[] fileparts;

int lastfile = 0;

int lastpart = 0;

String suffix ;

fileparts = file.Split(".");

lastpart = fileparts.Length - 1;

if (lastpart > 0) {

suffix = fileparts[lastpart];

if ("text" == directory) {

if ("txt" == suffix) {

//print("text");

}

}

if ("acrobat" == directory) {

if ("pdf" == suffix) {

/ /print ("acrobat ") ;

}

}

if ("word" == directory) {

if ("doc" == suffix) {

/ /print ("word") ;

}

}

132

Test Programs

if ("bin" == directory)

if ("exe" == suffix)

//print("bin");

}

}

if ("lib" == directory)

if ("dll" == suffix)

//print("lib");

}

}

}

return 1;

}

}

//var ct = new CUT();

Ilct.Subject("word", "file.doc");

Ilct. Subject ("text", "file. txt") ;

Ilct.Subject("acrobat", "file.pdf");

Ilct.Subject("bin", "file.exe");

Ilct.Subject("lib", "file.dIP);

133

{

{

{

{

Test Programs

A.5 Stem

String Suffix(String s, int len) : {

//SUFFIX OF NO MORE THAN len CHARS

int slen = s.Length;

if (slen > len) {

return s.Substring(slen - len, len);

}

else {

return s;

}

}

boolean Consonant(String s, int pos) {

//CONSONANT AT pos

134

//CONSONANT EXCLUES VOWELS AND Y PRECEDED BY A CONSONANT, E.G TV

int slen = s.Length;

if (pos < 0 I I pos > slen - 1) {

return false;

}

switch (s[pos]) {

case 'a':

case 'e':

case 'i':

case '0':

case 'u': {

return false;

}

Test Programs

case 'y' : {

if (0 == pos) {

return true;

}

else {

return IConsonant(s, pos - 1);

}

}

default: {

return true;

}

}

}

boolean DoubleConsonant(String s, int pos) {

IIDOUBLE CONSONANT AT pos

135

IICONSONANT EXCLUES VOWELS AND Y PRECEDED BY A CONSONANT, E.G TY

int slen = s.Length;

}

if (pos < 1 I I pos > slen - 1) {

return false;

}

if (s [pos - 1] ! = s [pos]) {

return false;

}

return Consonant(s, pos - 1);

II does stem end with CVC?

Test Programs

}

boolean EndsWithCVC(String s){

int slen = s.Length;

if (slen < 3) {

return false;

}

if (!Consonant(s, slen - 1) I I Consonant(s, slen - 2)

I I !Consonant(s, slen - 3» {

return false;

}

char c = s[slen - 1];

return !(c == 'w' I I c -- 'x' I I c == 'y');

int stringMeasure(String s, int len){

II returns a CVC measure for the string

Illen IS LENGTH OF PREFIX OF s TO BE CONSIDERED

int n = 0;

int i = 0;

while (true) {

}

if (i >= len) {

return n;

}

if (!Consonant(s, i» {
break;

}

i++;

i++;

136

Test Programs

while(true) {

while(true) {

}

}

}

if (i >= len) {

return n;

}

if (Consonant(s, i» {

break;

}

i++;

i++;

n++;

while (true) {

}

if (i >= len) {

return n;

}

if (!Consonant(s, i» {

break;

}

i++;

i++;

II does string contain a vowel?

boolean ContainsVowel(String s, int len){

int i = 0;

137

Test Programs 138

while(i < len) {

if (!Consonant(s, i» {

return true;

}

i = i + 1;

}

return false;

}

int Subject(String s){

char c;

int i = 0;

s = s.TrimO;

if (s.Length < 2) {

return 0;

}

Ilall characters must be LOWERCASE

s = s. ToLowerO;

i = 0;

while(i < s.Length) {

if (s [i] > "z" II s [i] < "a"H

II return "Invalid term"· ,

return 0;

}

i = i + 1;

}

II IES -> I

if ("zies" == Suffixes, 4» {

Test Programs

s = s.Substring(O, s.Length - 2);

}

II ss -> S

else if ("ess" == Suffixes, 3» {

s = s.Substring(O, s.Length - 1);

}

II S ->

else if ("sses" == Suffixes, 4» {

s = s.Substring(O, s.Length - 1);

}

else {

s = s;

}

II end step1a

Ilstepib

if (s.Length < 3) {

return 0;

}

else II AT -> ATE

}

if ("stat" == Suffixes, 4) II

"bibl" == Suffixes, 4) I I

"lsiz" == Suffixes, 4» {

s = s + lie II ;

return 0;

}llend Stem

139

Test Programs

A.6 Pat

int Pat (String txt, String pat){

//SEARCH txt FOR FIRST OCCURRENCE OF pat OR REVERSE OF pat

//IF pat (STRING OF LENGTH AT LEAST 3) OCCURS IN txt, RTN 1

//IF REVERSE OF pat OCCURS IN txt, RTN 2

//IF pat AND REVERSE OF pat OCCURS IN txt, RTN 3

140

//IF PALINDROME CONSISTING OF pat FOLLOWED BY REVERSE pat OCCURS IN txt, RTN •

//IF PALINDROME CONSISTING OF REVERSE pat FOLLOWED pat OCCURS IN txt, RTN 5

int result = 0;

int i = 0;

int j = 0;

int txtlen = txt.Length;

int patlen = pat.Length;

String possmatch;

if (patlen > 2) {

String patrev = Reverse(pat);

for (i = 0; i <= txtlen - patlen; i++) {

if (txt[i] == pat[O]) {

possmatch = txt.Substring(i, patlen);

if (possmatch == pat) {

//FOUND pat

result = 1;

//CHECK IF txt CONTAINS REVERSE pat

for (j = i + patlen; j <= txtlen - patlenj j++) {

if (txt[j] == patrev[O]) {

possmatch = txt.Substring(j, patlen)j

if (possmatch == patrev) {

Test Programs

}

}

}

}

}

if (j == i + patlen) {

return 4;

}

else {

return 3;

}

else if (txt[i] == patrev[O]) {

possmatch = txt.Substring(i, patlen);

if (possmatch == patrev) {

//FOUND pat REVERSE

result = 2;

//CHECK IF txt CONTAINS pat

141

for (j = i + patlen; j <= txtlen - patlen; j++) {

if (txt[j] == pat[O]) {

possmatch = txt.Substring(j, patlen);

if (possmatch == pat) {

}

if (j == i + patlen) {

return 5;

}

else {

return 3;

}

Test Programs

} }

II

II

II

II

II

II

II

II

II

II

II

II

II

}

}

}

}

} Ilpat NOR REVERSE FOUND

}

return result;

var ct = new CUT();

print(ct.Subject("", "")); 110

110 print(ct. Subject (" " , "word"));

print(ct.Subject("word", 1111)); 110

print(ct.Subject("word", "or"));

print(ct.Subject("word", "wor"));

print(ct.Subject("word", "ord"));

print(ct.Subject("word", "row"));

print(ct.Subject("word", "dro"));

110

III

III

112

112

print(ct.Subject("worddrow", "dro"));

print(ct.Subject("worddrow", "ord"));

print(ct.Subject("wordxdrow", "dro"));

print(ct.Subject("wordydrow", "ord"));

142

115

114

113

113

Test Programs

A.7 Txt

void Txt(String wordl, String word2, String word3){

}

//CONVERT ENGLISH TEXT txt INTO MOBILE TELEPHONE TXT

IIBY SUBSTITUTING ABBREVIATIONS FOR COMMON WORDS

String result = "" . I

if (word1 == "two") {

result = "2";

}

if (wordl == "for" II word1 -- "four") {

result = "4";

}

if (word1 == "you") {

result = "u";

}

if (wordl == "and") {

result = "n";

}

if (wordl == "are") {

result = "r";

}

else if (wordl == "see ll && word2 == "you") {

result = "cu" ;

}

else if (wordl == "by" && word2 == "the" && word3 ==
result = "btw";

}

143

"way") {

Test Programs

A.8 Title

int Title(String sex, String title){

//CHECK PERSONAL TITLE CONSISTENT WITH SEX

title = title.ToLower();

int result = -1;

if ("male" == sex) {

if ("mr" == title

"sir" == title

II "dr" == title II

II "rev" == title II

"rthon" == title I I "prof" == title) {

result = 1;

}

}

else if ("female" == sex) {

if ("mrs" -- title II "miss" == title II

"ms" == title II "dr" == title II

"lady" == title II "rev" == title II

"rthon" -- title II "prof II == title){

result = 0;

}

}

else if ("none" == sex) {

if (lIdr" == title II "rev" == title II

"rthon" == title II "prof II == title){

result = 2;

}

144

Test Programs 145

}

return result;

}

Test Programs

A.9 FloatRegEx

public int [,J initilize () {

nextstate:int[,] = new int[8, 256];

String s = II II. . ,

int temp = int(s[O]);

for (int j = 0 ;j < 256

nextstate [0, j] = 0;

if(j >= 48 && j<= 57){

nextstate [1 , j J = 2;

nextstate [3, j] = 4;

nextstate [7 , j] = 7;

}

else{

nextstate [1 , j] = 0;

nextstate [3, j] = 0;

nextstate [7 , j] = 0;

}

s =" II • . ,

temp = int(s[O]);

if (j == temp)

nextstate [2 ,j] = 3;

else

nextstate[2,jJ = 0;

s = "e";

temp = int(s[O]);

if(j >= 48 && j<= 57)

nextstate[4,j] = 4;

j++){

146

Test Programs

}

}

else if(j == temp)

nextstate[4,j] = 5;

else

nextstate[4,j] = 0;

String s1 = "+";

temp1 = int(s1[0]);

s = "_";

temp = int(s[O]);

if (j -- temp II j == tempi)

nextstate[5.j] = 6;

else if(j >= 48 && j<= 57)

nextstate[5,j] = 7;

else

nextstate[5,j] = 0;

if(j >= 49 && j<= 57)

nextstate[6.j] = 7;

else

nextstate[6.j] = 0;

return nextstate;

int FloatRegEx(String input) {

int[.] nextstate = new int[8. 256];

nextstate = initilize();

int currentstate = 1;

int i =0;

while(currentstate != 7 && i< input.Length){

147

Test Programs

}

}

currentstate = nextstate[currentstate,int(input[i])];

i = i +1;

if(currentstate == 7){

I/Target executed

}

return 0;

148

Test Programs

A.I0 Polygon shape

void Shape(a double []) {

int length = a.Length;

double sinAnglel = Math.sin(a[O]);

double sinAngle2 = Math.sin(a[l]);

double sinAngle3 = Math.sin(a[2]);

double sinAngle4 = Math.sin(a[3]);

double vall = Math.abs(sinAnglel);

double val2

double val3

double val4

= Math.abs(sinAngle2);

= Math.abs(sinAngle3);

= Math.abs(sinAngle4);

II The shape is Polygon not Triangle

if(length == 8){

149

if «vall - 1.0)<=Double.Epsilon && (va12 - 1.0)<=Double.Epsilon &&

(va13 - 1.0)<=Double.Epsilon && (va14 - 1.0)<=Double.Epsilon){

if(a[4] == a[6] && a[5] == a[7] && a[4] == a[7]){

}

}

lIThe figure is Square

}

else if(a[4] == a[6] && a[5] == a[7]){

II The figure is Rectangle

}

else{

lIthe figure is neither Square nor Rectangle

}

lIThe figure is Triangle

Test Programs 150

}

else if(length == 6){

}

double TotalAngle = a[O] + a[l] + a[2];

if«TotaIAngle - Math.PI)<= Double.Epsilon){//Traingle figure

if«vall - 1.0)<=Double.Epsilon I I (val2 - 1.0)<=Double.Epsilon

I I (val3 - 1.0)<=Double.Epsilon){

}

//Right triangle: Has one 90 degree angle

}

else if(a[O] == a[l] && a[l] == a[2]){

//Equilateral triangle: All angles are the same (60 degrees)

}

else if «a[O] == a[1] II a[l] == a[2] II a[O] == a[2]) &&

(a[3] == a[4] I I a[4] == a[5] Ila[3] == a[5]»{

//Isosceles triangle: Has two angles the same and two sides the same

}

else if«a[O] != a[l] && a[1] != a[2] && a[O] != a[2]) &&

(a[3] != a[4] && a[4] != a[5] && a[3] != a[5]» {

//Scalene triangle:Has all three angles and all three sides different

}

else {

//The figure is not Triangle

}

References

A. Baresel, J. Wegener, and H. Sthamer. Evolutionary test environment for au­

tomatic structural testing. Information and Software Technology, 43(14):41·_·54,

2001.

A. Baresel, D. Binkley, M. Harman, and B. Korel. Evolutionary testing in the

presence of loop-assigned flags: a testability transformation approach. Proceedings

of the 2004 ACM SIGSOFT international symposium on Software testing and

analysis, pages 108-118, 2004.

B. Beizer. Software Testing Techniques. van Nostrand Rheinhold, New York, 2nd

edition, 1990. ISBN 0442206720.

L. B. Booker. intelligent behavior as an adaptation to the task environment. PhD

thesis, The University of Michigan, Ann Arbor, MI, 1982.

L. Bottaci. Instrumenting programs with flag variables for test data search by genetic

algorithm. Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO 2002, pages 1337-1342, 2002.

L. Bottaci. Predicate expression cost functions to guide evolutionary search for

test data. In Genetic and Evolutionary Computation Conference (GECCO 2003),

pages 2455-2464, July 2003.

L. Bottaci. Use of branch cost functions to diversify the search for test data. In

Proceedings of the UK Software Testing Workshop (UKTest 2005), pages 151-163,

University of Sheffield, UK, September 5-6, 2005 2005.

151

References 152

L. Clarke. A system to generate test data and symbolically execute programs. IEEE

Transactions on Software Engineering, 2:215-222, 1976.

R. J. Collins and D. R. Jefferson. Selection in massively parallel genetic. In R. K.

Belew and L. B. Booker, editors, Proceedings of the Fourth International on Ge­

netic Algorithms, page 249256, San Mateo, CA. Morgan Kaufmann, 1991.

P. Coward. Symbolic execution and testing. Information and Software Technique,

33(1):229-239, 1991.

L. Davis. Handbook of Genetic Algorithms. International Thomson Computer Press,

1996.

E. de Jong, R. Watson, and J. Pollack. Reducing bloat and promoting diversity

using multi-objective methods. In 1. e. a. In Spector, editor, Proceedings of the

Genetic and Evolutionary Computation Conference, pages 11--18, San Francisco,

CA. Morgan Kaufmann, 2001.

K. Deb and D. E. Goldberg. An investigation of niche and species formation in ge­

netic function optimization. In Proceedings of the Third International Conference

on Genetic Algorithms, page 4250, San Mateo, CA. Morgan Kaufmann, 1989.

K. A. Dejong. An analysis of the behavior of a class of thesis. PhD thesis, The

University of Michigan, Ann Arbor, MI, 1975.

R. DeMillo and A. Offutt. experimental results of automatically generated adequate

test sets. in proc. 6th Ann. Pacific Northwest Software Quality Con/., pages 209-

232, Sept. 1988.

R. DeMillo and A. Offutt. Constraint-based automatic test data generation. IEEE

Transactions on Software Engineering, 17(9):900-909, 1991.

J. Duran and S. Ntafos. An evaluation of random testing. IEEE Transactions on

Software Engineering, 1O(4):438-443, 1984.

References 153

D. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal

function optimization. In In Proceedings of the second international conference

on genetic algorithms, page 148154, Morgan Kaufmann, 1987.

D. E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning.

Addison Wesley, 1989. ISBN 0-201-15767-5.

M. Harman, L. Hu, R. Hierons, A. Baresel, and H. Sthamer. Improving evolu­

tionary testing by flag removal. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 1359~ 1366, 2002.

M. Harman, L. Hu, and etl. Testability transformation. IEEE Transaction on

software Engineering., 30(1):73~81, 2004.

B. Jones, R. H. Sthame, and D. Eyres. Automatic structural testing using genetic

algorithms. Software Engineering Journal, 11(5):299~306, 1996.

D. J. Kasik and H. G. George. Toward automatic generation of novice user test

scripts. Proceedings 1996 Confernce on Human factors in Computing Systems.,

pages 244-251, April 1996.

M. Keijzer. Advances in Genetic Programming 2 chapter 13, pages 259-278. MIT

Press, MA, USA, 1996.

J. King. A new approach to program testing. In Proceedings of the International

Conference on Reliable Software, pages 228--233, 1975.

J. King. Symbolic execution and program testing. Communications of the ACM, 19

(7):385-394, 1976.

B. Korel. Dynamic method for software test data generation. software testing. Ver­

ification and Reliability, 2(4):203-213, 1990.

B. Korel. Dynamic method for software test data generation. Software Testing,

verification and Reliablity, 2:203-213, 1992.

B. Korel and R. Ferguson. The chaining approach for software test data generation.

IEEE Transactions on Software Engineering, 5(1), January 1996.

References 154

B. Korel, M. Harman, and etl. Data dependence based testability transformation in

automated test generation. In 16th IEEE International Symposium on Software

Reliability Engineering (ISSRE'05), pages 245-254, 2005.

J. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

W. Langdon. Data structures and genetic programming: Genetic programming +
data structures = automatic programming! Genetic Programming, 1, 1999.

J. S. Leon. Frequency of character pairs in english language text (expected no of 0('­

curences per 463 characters). http://tigger. uic. edu/jleon/mcs425-s05/index. html

{OnLine 20/6/2005], 2002.

J. B. MacQueen. Some methods for classification and analysis of multivariate ob­

servations. In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics

and Probability, volume 1, pages 281-297, Berkeley, University of California Press,

1967.

P. Martin. The porter stemming algorithm. http://www. tartaru.~. org/ mar­

tin/index.html [on line] 07/09/2005, 2005.

c. Mattiussi, M. Waibel, and D. Floreano. Measures of diversity for populations and

distances between individuals with highly reorganizable genomes. Evolutionary

Computation, 12(4):495-515, 2004.

P. McMinn. Search-based software test data generation: A survey. Software Testing,

Verification and Reliability, 14(2):105-156, June 2004.

P. McMinn, D. Binkley, and M. Harman. Testability transformation for efficient

automated test data search in the presence of nesting. In Proceedings of the

Third UK Software Testing Workshop (UKTest 2005), pages 165-182, University

of Sheffield, UK, September 2005.

c. Michael, G. McGraw, M. Schatz, and C. Walton. Genetic algorithms for dynamic

test data generation: Technical Report RSTR-003-97-11. RST Corporation, Suite

250, 21515 Ridgetop Circle, Sterling VA 20166, 1997.

References 155

W. Miller and Spooner. Automatic generation of fioating-point test data. IEEE

Transaction on Software Engineering, 2(3):223--226, 1976.

J. Myers, Glenford. The art of software testing. New York , Wiley, 1979. ISBN

0471043281.

G. Navarro. A guided tour to approximate string matching. ACM Computing

Surveys, 33(1):31-88, March 2001.

A. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction provedure for test

data generation. Software practice and Experience, 29(2):167-193, 1997.

U. M. O'Reilly. Using a distance metric on genetic programs to understand genetic

operators. In IEEE International Conference on Systems, Man, and Cybernetics,

Computational Cybernetics and Simulation, 5:4092-4097, 1997.

R. Pargas, M. Harrold, and R. Peck. Test-data generation using genetic algorithms.

Software Testing, Verification and Reliability, 9(4):263-282, 1999.

M. Pei, D. Erik, Z. Goodman, and Z. Kaixang. Automated software test data

generation using a genetic algorithm. Technical report, 1994.

C. V. Ramamoorthy and W. T. Chen. On the automated generation of program

test data. IEEE Transactions on Software Engineering, 2(4):293-300, December

1976.

c. R. Reeves. Moderm Heuristic Techniques for Combinatorial Problems. 1995.

J. Rosca. Entropy-driven adaptive representation. Proceedings of the Workshop on

Genetic Programming: From Theory to Real- World Applications, 1995.

H. P. Schwefel. Evolution and Optima Seeking. Wiley, New York, 1995.

J. E. Smith and T. C. Fogarty. Evolving software test data - ga's learn self expression.

Evolutionary Computing., 1996.

H. Sthamer. The Automatic Generation of Test Data Using Genetic Algorithms.

PhD thesis, University off Galmorgan, Pontypridd, Wales, 1995.

References 156

D. Stutz, T. Neward, and G. Shilling. Shared Source eLI Essentials. O'Reilly, first

edition, March 2003. ISBN 0-596-00351-x.

N. Tracey. A search-based automated test-data generation framework for safety

critical software. PhD Thesis, University of York, 2000.

J. M. Voas and K. W. Miller. Software testability: The new verification. IEEE

Software, 12(3):17-28, May 1995.

A. Watkins. The automatic generation of test data using genetic algorithms. In

Proceedings of the Fourth Software Quality Conference, page 300309, 1995.

J. Wegener and etl. Systematic testing of real-time systems. proceddings of the

4th Europen Conference on Software Testing Analysis and Review (EuroStar

1996), Amsterdam, Netherlands, 1996.

J. Wegener and M. Grochtman. Verifying timing constraints of real-time systems

by means of evoultionary testing. Real- Time Systems, 15:275-298, 1998.

J. Wegener, G. K., M. Grochtmann, H. Sthamer, and B. Jones. Testing temproral

corrctness of real-time systems by means of genetic algorithms. proceddings of the

10th International Software Quality Week, San FranciSCO, USA, May 1997.

J. Wegner, H. Pohlheim, and H. Sthmar. Testing the temporal behaviour of real­

time tasks using extended evolutionary algorithms. proceeding Of the 7th Europen

Conference on Software Testing Analysis and Review, Barcelona, Spain, December

1999.

J. Wegner, R. Pitschinz, and H. Sthmar. Automated testing of real-time tasks.

Proceedings of the 1st Intrenational Workshop on Automated program Analysis,

Testing and Verification, Limerick, Ireland, June 2000.

D. Whitley. The genitor algorithm and selective pressure: Why rank-based al­

location of reproductive trials is best. Proceedings of the Third International

Conference on Genetic Algorithms (ICGA-S9), pages 116-121, 1989.

References 157

S. Xanthakis, C. Ellis, and C. Skourlas. Application of genetic algorithms to soft­

ware testing. In 5th International Conference on Software Engineering and its

Applications, pages 625-636, 1992.

R. Zhao. Character string predicate based automatic software test data generation.

In Third International Conference On Quality Software, pages 255-263, 2003.

