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Abstract 

The radio frequency (RF) spectrum is a scarce natural resource, currently regulated locally by 

national agencies. Spectrum has been assigned to different services and it is very difficult for 

emerging wireless technologies to gain access due to rigid spectmm policy and heavy 

opportunity cost. Current spectrum management by licensing causes artificial spectrum 

scarcity. Spectrum monitoring shows that many frequencies and times are unused. Dynamic 

spectrum access (DSA) is a potential solution to low spectrum efficiency. In DSA, an 

unlicensed user opportunistically uses vacant licensed spectrum with the help of cognitive radio. 

Cognitive radio is a key enabling technology for DSA. In a cognitive radio system, an 

unlicensed Secondary User (SU) identifies vacant licensed spectrum allocated to a Primary 

User (PU) and uses it without harmful interference to the PU. Cognitive radio increases 

spectrum usage efficiency while protecting legacy-licensed systems. 

The purpose of this thesis is to bring together a group of CR concepts and explore how we can 

make the transition from conventional radio to cognitive radio. Specific goals of the thesis are 

firstly the measurement of the radio spectrum to understand the current spectrum usage in the 

Humber region, UK in the context of cognitive radio. Secondly, to characterise the performance 

of cyclostationary feature detectors through theoretical analysis, hardware implementation, and 

real-time performance measurements. Thirdly, to mitigate the effect of degradation due to 

multipath fading and shadowing, the use of -wideband cooperative sensing techniques using 

adaptive sensing technique and multi-bit soft decision is proposed, which it is believed will 



introduce more spectral opportunities over wider frequency ranges and achieve higher 

opportunistic aggregate throughput. 

Understanding spectrum usage is the first step toward the future deployment of cognitive radio 

systems. Several spectrum usage measurement campaigns have been performed, mainly in the 

USA and Europe. These studies show locality and time dependence. In the first part of this 

thesis a spectrum usage measurement campaign in the Humber region, is reported. Spectrum 

usage patterns are identified and noise is characterised. A significant amount of spectrum was 

shown to be underutilized and available for the secondary use. The second part addresses the 

question: how can you tell if a spectrum channel is being used? Two spectrum sensing 

techniques are evaluated: Energy Detection and Cyclostationary Feature Detection. The 

performance of these techniques is compared using the measurements performed in the second 

part of the thesis. Cyclostationary feature detection is shown to be more robust to noise. The 

final part of the thesis considers the identification of vacant channels by combining spectrum 

measurements from multiple locations, known as cooperative sensing. Wideband cooperative 

sensing is proposed using multi resolution spectrum sensing (MRSS) with a multi-bit decision 

technique. Next, a two-stage adaptive system with cooperative wideband sensing is proposed 

based on the combination of energy detection and cyclostationary feature detection. 

Simulations using the system above indicate that the two-stage adaptive sensing cooperative 

wideband outperforms single site detection in terms of detection success and mean detection 

time in the context of wideband cooperative sensing. 

ii 



Preface and Acknowledgements 

This PhD thesis investigates the relationship between the radio spectrum today (command and 

control) and radio spectrum tomorrow (Dynamic Spectrum Access/Cognitive Radio). The topic 

of this thesis can be traced back to some eight years ago. I was in process of finishing my 

studies in Electronic Engineering at Tripoli University, Libya, and was provided with the 

opportunity to do my final project at GPTC Company on the subject of "Radio Frequency 

Spectrum Management (VHF&UHF)". After graduating I took part in several training courses 

including a nine months training programme in Germany (Spectrum Monitoring and Direction 

Finder), six months in Iran (Microwave Link), three months in Egypt (Computer Security 

Network) and one month in UK (Data Analysis). In 2009 I was provided with opportunity to 

get my Masters degree at the University of Hull and the title of m.y Master thesis was System 

Model for the Evaluation of Interference (Cosite Analysis Model). Nick Riley acted as 

supervisor. After graduating I took part in a six months training program in GPTC Company 

in telecommunication called "Install and measurement radio mobile cellular". 

In 2012 I was provide with the opportunity to study for my PhD degree at University of Hull. 

The proposal was to follow with my Master thesis subject area "Wireless System Technologies" 

but with different topic. Nick Riley acted as supervisor. Motived by advances in wireless 

technology and after a lot of discussion we agreed to consider the challenge of spectrum today 

and spectrum tomon-ow (Dynamic Spectrum Access/Cognitive Radio). This new proposal 

iii 



became the beginning of this PhD research (see chapter 1 ). In the last 3 years I worked in 

several studies on this topic which result in the presented thesis. For most of this period I carried 

out my research working at spectrum measurement and spectrum sensing in the context of 

cognitive radio, from both practical and simulation point of view. 

Several people have been influential during my PhD research. Nick Riley acted as supervisor 

in my Master degree. After this period he stimulated me to continue doing research on cognitive 

radio and to write a PhD thesis. I benefitted from his suggestions and support through the years, 

particularly, in the writing up stage. He also stimulated me to work together with researchers 

outside the University. Kevin Paulson also helped me considerably during the years. During 

my PhD I contributed to several meetings at COST Action IC0905 TERRA, led by Arturas 

Medeisis. He supported me in number of ways, for instance stimulating me to go to get a grant 

to present my work at several meetings and workshops as well as to attend training courses. 

Besides Arturas, three more people have supported within Cost Action project. They are Oliver 

Holland, Keith Nolan and Alexander M. Wyglinsk. I am also grateful to the members of my 

PhD committee for their useful comments. 

Last but not the least, I would also like to thank my family for the support they provided me 

through my entire life and in particular, I must acknowledge my Wife and my Mother, without 

whose love, encouragement and editing assistance, I would not have finished this thesis. 

iv 



List of Contents 

Abstract .................................................................................................................................. i 

Preface and Acknowledgements .......................................................................................... iii 

List of Contents ...................................................................................................................... v 

List of Tables .......................................................................................................................... x 

List of Figures ........................................................................................................................ xi 

List of Abbreviations ........................................................................................................... xiv 

Chapte1• l: Introduction .......................................................................... ........................... 1 

1,1 Overview ................................................................................................................................. 1 

1.2 Motivation and Objectives ...................................................................................................... 3 

1.3 Thesis Outline .......................................................................................................................... 5 

1.4 Thesis Contributions ................................................................................................................ 8 

1.5 Collaboration and Presentations (C & P) ................................................................................. 9 

1.6 Publications ........................................................................................................................... 10 

Part I: Radio Spectr1un Today and Radio S1>ectrum 'fo1no1•ro,v 

Chaptcr2: The Radio S1,ect:I'llll1 and Dynamic S1,ectrumAcccss ....................... 14 

2.1 Background ............................................................................................................................ 14 

2.2 History of Radio Spectrum .................................................................................................... 14 
2.2.1 Approaches for Radio Spectrum Regulation ..................................................................... 15 
2.2.2 Basic Rules of Spectrum Regulation .................................................................................. 16 

2.3 Organisations that Regulate the Radio Spectrum ................................................................. 16 
2.3.1 International Telecommunication Union, ITU (Global Co-ordination) ............................. 17 
2.3.2 European Union (EU) ......................................................................................................... 17 
2.3.3 Examples of National Spectrum Management Authorities ............................................... 18 

2.4 licensed and Unlicensed Spectrum ....................................................................................... 19 

V 



2.4.1 The Difficulty of Spectrum Licensing ................................................................................. 20 

2.4.2 Unlicensed Spectrum as an Alternative ............................................................................ 20 

2.4.3 Tragedy of Radio Spectrum Regutation ............................................................................. 21 

2.5 Dynamic Spectrum Access {Radio Spectrum Tomorrow) ...................................................... 22 

2.5.1 Dynamic Spectrum Exclusive Use Model .......................................................................... 22 

2.5.2 Open Sharing Model .......................................................................................................... 23 

2.5.3 Hierarchical Access Model ................................................................................................. 23 

2.6 Key Parameters ..................................................................................................................... 24 

2.7 Chapter Summary .................................................................................................................. 26 

Chapter3: lntrmlul'tion to Software Dcfin�-d Radio a1ul Cognitive Radio ... 27 

3.1 lntroduction ........................................................................................................................... 27 

3.2 Microelectronics Evolution and its Impact on Communication Technology ........................ 28 

3.3 Software Defined Radio ........................................................................................................ 29 

3.3.1 History of SDR Development ............................................................................................. 29 

3.3.2 Main Components of SDR�Based System Architecture ..................................................... 30 

3.3.3 SDR Technology ................................................................................................................. 32 

3.3.4 Available SDR Platforms .................................................................................................... 34 

3.4 Cognitive Radio ...................................................................................................................... 37 

3.4.1 Cognitive Radio Definition ................................................................................................. 37 

3.4.2 Cognitive Radio Network Architecture .............................................................................. 38 

3.4.3 Cognitive Capability of a Cognitive Radio .......................................................................... 39 

3.5 Chapter Summary .................................................................................................................. 41 

Part II: Measure1nent Phase Using Low 'l'hne Resolution 

(S1tcetrtnn An11lyse1·) 

Chapter4: Historical Spectrmn Oc..npancy Measurements and Lesson 

Learned in the Context of CR ............................................................................................... 43 

4.1 lntroduction ........................................................................................................................... 43 

4.2 Global Spectrum Occupancy Measurements (Previous Campaigns) .................................... 44 

4.3 Shared Spectrum Company (SSC) .......................................................................................... 45 

4.3.1 SSC Campaigns During 2003 .............................................................................................. 45 

4.3.2 SSC Campaigns During 2004 .............................................................................................. 45 

4.3.3 SSC Campaigns During 2005 .............................................................................................. 46 

4.3.4 SSC Campaigns During 2007 .............................................................................................. 46 

4.3.5 SSC Campaigns During 2009 .............................................................................................. 46 

4.3.6 Comparing Global Spectrum Occupancy Measurements ................................................. 47 

4.4 Lessons Learned During Measurements Setup ..................................................................... 49 

4.4.1 Influence of Antenna Selection ......................................................................................... 50 

4.4.2 Influence of Spectrum Analyser on the Measurements ................................................... 53 

4.4.3 Influence of Frequency and Time Dimension .................................................................... 56 

Yi 



4.4.3.1 Influence of Frequency Dimension ........................................................................................ 56 

4.4.3.2 Influence of TI me Dimension ................................................................................................. 59 

4.4.4 Data Post-Processing ........ ,. , .............................................................................................. 60 

4.5 Threshold lmpact. .................................................................................................................. 61 

4.5.1 An Adaptive Threshold Setting Approach ......................................................................... 63 

4.6 Chapter Summary ........................................................... ....................................................... 64 

Chapter/;: Spectrum Oeet1J>aJ1cy Survey in Cognitive Radio: Measurement 
ruulAnalysis .................................................................................................................................... 65 

5.1 lntroduction ........................................................................................................................... 65 

5.2 Radio Spectrum Measurement ............................................................................................. 66 

5.2.1 Measuring Radio Spectrum Usage .................................................................................... 66 

5.2.2 Spectrum Study .................... ................................................................... .......................... 66 

5.2.3 Spectrum Measurement System ....................................................................................... 67 

5.2.4 Measurement Sites ........................................................................................................... 68 

5.2.5 Data Acquisition ......................................... ....................................................................... 72 

5.3 Measurement Setup .............................................................................................................. 73 

5.4 Data Processing ..................................................................................................................... 74 

5.5 Analysis of Spectrum Occupancy .......................................................................................... 75 

5.5.1 General View of Spectrum Occupancy .............................................................................. 75 

5.5.2 Occupancy Metrics ............................................................................................................ 76 

5.5.3 Urban Area High Point (Location 1) ................................................................................... 77 

5.5.3.1 Result and Main Observations ............................................................................................... 81 

5.5.4 Urban, Suburban and Rural (Using Vehicle) ...................................................................... 82 

5.5.4.1 Urban Area Ground Points ................................................. ................................................... 82 

5.5.4.2 Rural, Suburban Locations ............................................. ........................................................ 85 

5.6 Chapter Summary .................................................................................................................. 86 

Part Ill: Spectrtun Sensing and Analysis Using Higb Thne 

Resolution (USRP2) 

Chapter6: SpL'CO'llm Sensing Technology ..................................................................... 89 

6.1 lntroduction ........................................................................... ................................................ 89 

6.2 Passive Awareness and Active Awareness ............................................................................ 90 

6.2.1 Passive Awareness ............................................................................................................. 90 

6.2.2 Active Awareness .............................................................................................................. 91 

6.3 Spectrum Sensing Techniques ............................................................................................... 92 

6.4 Primary Transmitter Detection (Non-Cooperative Sensing) ................................ ................. 94 

6.4.1 Energy Detection .......................................................................................... ..................... 95 

6.4.2 Cydostationary Feature Detection .................................................................................... 98 

6.4.3 Matched Filtering ......................................................................................... , .................. 100 

6.4.4 Other Sensing Methods .......................... ......................................................................... 101 

vii 



6.4.5 Performance Assessment of Well-Known Spectrum Sensing Techniques ED, CFD, MF and 
Other Techniques ........................................................................................................................ 103 
6.4.6 Simulation Platform for Spectrum Sensing Techniques ED, CFO and MF ....................... 104 

6.5 Comparison of Various Sensing Methods ........................................................................... 105 

6.6 Cooperative and Two-Stage Adaptive Sensing .................................................................... 107 

6.7 Chapter Summary ................................................................................................................ 107 

Cbapter7: Cyelostationary Feature Detection .......................................................... 109 

7.1 lntroduction ......................................................................................................................... 109 

7.2 Goals, Framework and Approach ........................................................................................ 111 

7.3 Cyclostationary Process ....................................................................................................... 112 
7 .3.1 Model of the Cyclostationary Signal ............................................................................... 113 

7 .3.1. l Cyclic Autocorrelation Function {CAF) ................................................................................. 113 

7.3.1.2 Spectral Correlation Density Function (SCF) ........................................................................ 114 

7.3.1.3 Spectral Coherence Function (SOF) ..................................................................................... 115 

7 .3.2 Benefits of the SCF/SOF ................................................................................................... 116 
7.3.3 Evaluation of Cyclic Spectral Analysis Algorithms .............................. ............................. 117 

7.3.3.1 Time Smoothed FFT Method ............................................................................................... 117 

7.3.3.2 FFT Accumulation Method (FAM) ........................................................................................ 118 

7.3.3.3 Strip Spectral Correlation Algorithm (SSCA) ........................................................................ 119 

7 .4 Channel Noise Analysis ........................................................................................................ 120 
7.4.1 Path Loss Model and Ranging ......................................................................................... 121 
7 .4.2 Path Loss Exponent Estimation ....................................................................................... 122 

7.5 Methodology ....................................................................................................................... 123 
7.5.1 Cyclostationary Feature Analysing System ...................................................................... 123 
7.5.2 Experimental Setup ......................................................................................................... 125 

7.6 Analysis and Results ............................................................................................................ 126 
7.6.1 Performance Measurement Overview ............................................................................ 126 
7.6.2 Path Loss Exponent Analysis .................. ......................................................................... 128 

7.6.2.1 Open Sky Scenario (LOS Football Field) ............................................................................... 129 

7.6.2.2 Open Sky Scenario (Reflector and Shadowing) .................................................................... 130 

7.6.2.3 Indoor Scenario (LOS/NLOS) ................................................................................................ 131 

7.6.2.4 RF Shielded Room ................................................................................................................ 134 

7.6.2.S Brief summary ...................................................................................................................... 134 

7.6.3 SNR and Observation Time .............................................................................................. 135 

7.7 Chapter Summary ................................................................................................................ 136 

Part IV: Siuudation Phase, Cooperative Wideband Spectrum 

Sensing 

Cbapter8: Cooperative Wideband S1,ecirmn Sensing ........................................... 139 

8.1 tntroduction ......................................................................................................................... 139 

8.2 Challenges in Non-Cooperative Sensing .............................................................................. 141 

viii 



8.3 Cooperative Sensing ............................................................................................................ 142 

8.3.1 Centralised and Distributed Sensing ............................................................................... 142 

8.3.2 Data and Decision Fusion ................................................................................................ 142 

8.4 Wideband Spectrum Sensing .............................................................................................. 144 

8.4.1 Dual-stage Spectrum Sensing .......................................................................................... 145 

8.4.2 Wideband Cooperative Sensing ...................................................................................... 146 

8.5 Proposed System Model for Wideband Cooperative Spectrum with Multi-Bit Hard Decision 

in Cognitive Radio using MRSS Technique . ............................................................................ ......... 146 

8.5.1 Multi-Resolution Spectrum Sensing Method .................................................................. 147 

8.5.1.1 Wavelet-based MRSS ........................................................................................................... 148 

8.5.2 Performance Analysis of Multi Threshold using Multi-bit Hard Combination Technique 

................................................................................................ ..................................................... 149 
8.5.3 Proposed Algorithm using MRSS technique .................................................................... 151 

8.5.4 Simulation Results and Discussion .................................................................................. 152 

8.5.4.1 Coarse and Fine Resolution Sensing Results for a Node ...................................................... 1S2 
8.5.4.2 Effect of Number of Nodes and Number of Transmitters ................................................... 153 
8.5.4.3 Comparing Three-Bit Hard Combination with traditfonal Hard Combination . .................... 154 

8.6 Proposed System Model for Two-stage Adaptive Spectrum Sensing ................................. 156 

8.6.1 Performance Assessment and Comparison of Two-stage Detector with One Stage 

Detector ....................................................................................................................................... 159 

8.6.2 Performance of Adaptive Two-Stage Combined Sensing ................................................ 160 

8.6.3 Optimisation of Mean Detection Time using Two-Stage Adaptive Sensing .................... 162 

8.7 Proposed System Model for Wideband Cooperative Spectrum Sensing with Multi-Bit Hard 

Decision using Two-stage adaptive sensing . ................................................................................... 164 

8.7.1 System Description .......................................................................................................... 165 

8.7.2 Simulation Results and Discussion .................................................................................. 167 

8.8 Chapter Summary ................................................................................................................ 168 

Part IV: Conclusion ancl Ji'uture ,vork 

Chapter9: Conelusion and Future Work .................................... ........ ......................... 172 

9.1 Future Research Directions ................................................................................................. 175 

Refere11res ..................................................................................................................................... 177 

A1>pe11dix: Spectrmn Measure1nent Platf01•m, Simnlink Mo,lel and Matlab 

Code ................................................................................................. .......................................... ....... 191 

A.1 Control Subsystem (Spectrum Analyser) .................................................................................. 191 

A.1.2 Algorithm Control Script (Spectrum Analyser) ................................................................... 193 

A.2 Cyclostationary Feature Detection) .......................................................................................... 194 

A.2.1 Design of Experiments (USRP2) .......... ...... ......................................................................... 194 

A.2.2 Simulink Model .................................................................................................................. 194 

A.3 Simulation Model (Cooperative Wideband Spectrum Sensing) ............................................... 196 

ix 



List of Tables 

Table 3.1: Comparison of DSPs, GPP, FPGAs and ASICs [49) ................................................... 32 

Table 4.1: Characteristics of Antennas . ................................................................................... 50 
Table 4.2: Impact of Amplification on the Activity Detected for Wireless Band . ................... 55 
Table 4.3: Impact of the Amplification Configuration ............................................................. 56 
Table 4.4: Impact of the RBW on the Activity Detected Between 137 and 400MHz .............. 59 
Table 4.5: Calculate Thresholds and Corresponding Duty Cycles . ...................................... , ... 62 

Table 5.1: Location of Measurement Sites Urban/Suburban Sites . ........................................ 71 
Table 5.2: Location of Measurement Sites Rural Sites . ........................................................... 71 
Table 5.3: Spectrum Analyser Configuration ........................................................................... 73 
Table 5.4: Average Duty Cycle Statistics .................................................................................. 81 
Table 5.5: Top Level Measurement Statistic . .......................................................................... 83 

Table 7.1: Three Important Functions Derived in Cyclostationary Feature Detection . ........ 116 
Table 7.2: Time Smoothed Method Design Parameters [167) .............................................. 120 
Table 7.3: Path Loss Exponents for Different Environments (180] . ...................................... 122 
Table 7.4: Location Factor. .................................................................................................... 124 
Table 7.5: Path Loss Exponents in Each Locations, Path Loss Exponent Difference &Variance . 
................................................................................................................................................ 135 

X 



List of Figures

Figure 1-1: Thesis organisation .................................................................................................. 6 
Figure 1-2: Platform Architecture Overview . ............................................................................ 6 
Figure 2-1: Classification of Dynamic Spectrum Access Schemes [12, 31J .............................. 22 
Figure 2-2: Opportunistic Spectrum Access Concept [36) ....................................................... 24 
Figure 3-1: Main Components of SOR-Based System Architecture ......................................... 31 
Figure 3-2: Radio Block Diagram, Highlighting the Separation between Digital, and Analog 
Parts, Programmable, Configurable and Fixed Hardware Parts [50] . ..................................... 33 
Figure 3-3: Cognitive Radio Network Architecture [73] .......................................................... 38 
Figure 3-4: Cognitive Cycle of Cognitive Radio [15] . ............................................................... 40 

Figure 4-1: Bar Graph of the Spectrum Occupancy in Each Band (30-960 MHz) . ................... 48 
Figure 4-2: Bar Graph of the Spectrum Occupancy in Each Band (960-2900 MHz) . ............... 48 
Figure 4-3: Measurement Setup .............................................................................................. 50 
Figure 4-4: Average Received Signal with/without External Amplifier over the Full TV Band . 
.................................................................................................................................................. 52 

Figure 4-5: Average Received Signal at CH30 and CH33 . ........................................................ 53 
Figure 4-6: Influence of the Frequency Bin on the Activity GSM1800 . ................................... 57 
Figure 4-7: Influence of the Frequency Bin on the Activity Band UMTS . ................................ 57 
Figure 4-8: Average Duty Cycle per Hour for TV Broadcasting and GSM Band ....................... 59 
Figure 4-9: Flow Chart of Post-Processing ............................................................................... 61 
Figure 4-10: Average Duty Cycle as Function of the Decision Threshold for Different Systems . 
............................................................................. ..................................................................... 62 

Figure 5-1: Measurement Equipment Employed in this Study: Antenna, Preamplifier and 
Spectrum Analyser at Urban Area (Hull University) . ............................................................... 69 
Figure 5-2: Measurement Equipment Employed in this Study: Antenna, Preamplifier and 
Spectrum Analyser at Rural Area (Humber region) . ................................................................ 70 
Figure 5-3: Measurement Locations in Urban Environment (Hull city) . ................................. 72 

xi 



Figure 5-4: Measurement Locations in Suburban/ Rural Environment (Humber region) . ..... 72 

Figure 5-5: Data Processing Procedure . .................................................................................. 74 

Figure 5-6: Received Power versus the Frequency Band (80 MHz-2700 MHz) ....................... 76 

Figure 5-7: Occupancy Measurement from 180 MHz to 400 MHz . ........................................ 79 

Figure 5-8: Occupancy Measurement from 470 MHz to 850 MHz ......................................... 79 

Figure 5-9: Occupancy Measurement from 880 MHz to 960MHz . ......................................... 80 

Figure 5-10: Occupancy Measurement from 1710 MHz to 1880MHz . ................................... 80 

Figure 5-11:0ccupancy Measurment from 1900MHz to 2500MHz ........................................ 80 

Figure 5-12:Band By Band Average Duty Cycle Statistics . ....................................................... 81 

Figure 5-13:Average Duty Cycle Statistics in Locations 2-15 for TV Band Compared to 

Location 1 .................................................................................................................................. 84 

Figure 5-14:Normalised Average DC Statistics in Locations 2-15 for TV Bands (470-860 MHz) . 

.................................................................................................................................................. 85 

Figure 5-15:Average DC Statistics in Locations 17 To 31 for TV Bands: TV (470-862 MHz) .... 85 

Figure 6-1: Spectrum Awareness ............................................................................................. 90 

Figure 6-2: Classification of Spectrum Sensing Techniques .................................................... 93 

Figure 6-3: Block Diagram of Energy Detection .. ..................................................................... 95 

Figure 6-4: Threshold Setting in ED: Trade-off between Missed Detection and False Alarm. 97 

Figure 6-5: Block Diagram of Cyclostationary Feature Detection . .......................................... 99 

Figure 6-6: Block Diagram of Matched Filter Detection ........................................................ 100 

Figure 6-7:(A)Comparison of Spectrum Sensing&{B)Performance of the Spectrum ensing.103 

Figure 6-8:Probability of Detection vs Probability of False Alarm Spectrum Sensing 

Techniques ED, MF, CFD with SNR=Od8 And SNR=6d8 . ........................................................ 105 

Figure 6-9:Comparison of Spectrum Sensing Methods ......................................................... 106 

Figure 7-1: SCF of BPSK under different SNR/observation time compared with PSD, using 

27, 213and 217BPSK Symbols [154) . ................................................................................... 110 

Figure 7-2: Fourier Expansion of Periodic Signal for Feature Extraction ............................... 113

Figure 7•3: Theoretical SCF Magnitude for BPSKi QPSK and SQPSK with Carrier Frequency 

[170) . ...................................................................................................................................... 116 

Figure 7-4: Practical Implementation of Time Smoothed FFT Method [176) . ...................... 118 

Figure 7-5: Time Smoothed FFT Method [143], [7] . .............................................................. 118 

Figure 7-6: Description of the FFT Accumulation Method Algorithm [173] .......................... 119 

Figure 7-7: Description ofthe SSCA Method Algorithm [166], [167) .................................... 120 

Figure 7-8: Different Kinds of Fading Processes Such as Path Loss, Shadowing and Multipath 

that can occur in a Real Scenario ........................................................................................... 121 

Figure 7-9: Framework Structure of Cydostationary Feature Analysing System .................. 123 

Figure 7-10: Test Bed for Experiments . ................................................................................. 125 

Figure 7-11: Matlab System Block Diagram . ........................................................................ 125 

Figure 7-12: Received Power vs Frequency and Cyclic Frequency ...................................... 128 

Figure 7-13: Experiment Setup for Path-Loss Measurement Locations at Hull University ... 129 

Figure 7-14: A) SCF/PSD Path Loss at Football Field with LOS 8) Photographs 8) Fit Curve 

Slopes ..................................................................................................................................... 130 

xii 



Figure 7-15:SCF/PSD Path Loss outside Building with NLOS . .....................................•.......... 131 

Figure 7-16: SCF/PSD Path Loss outside Building with LOS ................................................... 131 

Figure 7-17: SCF/PSD Path Loss at PhD Researcher Room .................................................... 133 

Figure 7-18: SCF/PSD Path Loss at Hallway Gate with LOS . .................................................. 133 

Figure 7-19: SCF/PSD Path Loss at Hallway Gate with NLOS .......................•......................... 133 

Figure 7-20: SCF/PSD Path Loss at Anechoic Chamber . ........................................................ 134 

Figure 7-21: SCF Vs PSD with Varying SNR and Observation Time ........................................ 136 

Figure 8-1: Comparison of the Performance of proposed Data Fusion Rules ....................... 143 

Figure 8-2: Block Diagrams for MRSS Wideband Sensing Algorithms ................................... 148 

Figure 8-3: Energy Distribution of Primary User Signal and Noise . ....................................... 149 

Figure 8-4: Energy Regions of Softened Three Bits Hard Combination ................................ , 150 

Figure 8-5: Block Diagram of the Cooperative Wideband Sensing of the Proposed Scheme . 

................................................................................................................................................ 152 

Figure 8-6: Result of Coarse Sensing Of 430-530 MHz Band ................................................. 152 

Figure 8-7: (A) Detection versus SNR for Four Different Numbers of Nodes, (B) Detection of 

Transmitter 3 versus SNR for Three Different Scenarios ....................................................... 153 

Figure 8-8: (A)Detection versus SNR (B) False Alarm versus SNR ......................................... 155 

Figure 8-9:Two-Stage Adaptive Spectrum Sensing Detectors ............................................... 157 

Figure 8-10:Detection Performance against SNR Comparison of the Two Stage Detector with 

One Stage Oetector ................................................................................................................ 160 

Figure 8-11: Mean Detection Time Comparison of Proposed Spectrum Sensing 

Cyclostationary Detector, Energy Detector and Two-Stage Adaptive ................................... 162 

Figure 8-12: Probability Of Detection of the Proposed Two-Stage Adaptive Detector As 

Compared to A Single Stage ED And Cyclostationary Detector ............................................. 162 

Figure 8-13: Mean Detection Time Comparison for Varying P _Kand 8 . ............................... 164 

Figure 8-14:Architecture of Wideband Cooperative Sensing Using Two Stage Adaptive 

Detection ................................................................................................................................ 165 

Figure 8-15: ROC Curves Comparison of Non- Wideband Cooperative Detector With 

Wideband Cooperative Detector under Different Fusion Rule . ............................................ 168 

Figure 8-16: Detection Performance against SNR Comparison of Two-Stage Adaptive 

Detection Non-Cooperative Detector with Cooperative Detector ........................................ 168 

xiii 



List of Abbreviatio11s 

ADC 

AWGN 
BB 

SS 
BW 

BWA 
CAF 

CCDF 

CDF 

CEPT 
CORVUS 
CPC 
CPS 
css 

CR 
CFD 

CRN 
DAB 
DAC 
DARPA 
DC 
DCS 
DCT 

DECT 
DFS 
DL 

DRIVE 
DS 
DMR 
DSA 
DSP 
DTT 
DUT 

ED 
ECC 

Analogue to Digital Conversion 
Additive White Gaussian Noise 
Base Band 
Base Station 
Bandwidth 
Broadband Wireless Access 
Cyclic Autocorrelation Function 
Complementary Cumulative Distribution Function 
Cumulative Distribution Function 
European Conference of Postal and Telecommunications Administration 
Cognitive Radio Approach for Usage of Virtual Unlicensed Spectrum 
Cognitive Pilot Channel 
Cyclic Power Spectrum 
Cooperative Spectrum Sensing 
Cognitive Radio 
Cyclostationary Feature Detection 
Cognitive Radio Network 
Digital Audio Broadcasting 
Digital to Analogue Conversion 
Defence Advanced Research Projects Agency 
Duty Cycle 
Digital Cellular System 
Downlink Continuous Transmission 
Digital Enhanced Cordless Telecommunications 
Dynamic Frequency Selection 
Downlink 
Dynamic Radio for IP�Services in Vehicular Environments 
Downstream 
Digital Modular Radio 
Dynamic Spectrum Access 
Digital Signal Processor 
Digital Terrestrial Television 
Device Under Test 
Energy Detection 
Electronic Communications Committee 

xiv 



E-GSM
ETSI
FCC
FDD
FFT
FIR
FM
FAM
FSK
FPGA
FTP
GMDSS
GMSK
GPS
GSM
GPU
HF

IEEE 
IETF 
IF 
!MT
ISM
ITU
ITU-RR
ITS
JTRS
KUAR
LOS
MAC
MEMS
MLE
MRSS
NLOS
NSF
NRNRT
NRA
NTIA
Ofcom
OSA
PAMR
PC
PDF
PDSP
PFA
PHY
PMR
PSD
PTM
QoS
RAN
RBW

REM 
RF 
RMSE 
ROC 

Extended Global System for Mobile Communications 
European Telecommunications Standards Institute 
Federal Communications Commission 
Frequency Division Duplex 
Fast Fourier Transfonn 
Finite Impulse Response 
Frequency Modulation 
FFT Accumulation 
Frequency Shift Keying 
Field·Programmable Gate Array 
File Transfer Protocol 
Global Maritime Distress and Safety System 
Gaussian Minimum Shift Keying 
Global Positioning System 
Global System for Mobile Communications 
Graphics Processing Unit 
High Frequency 
Institution of Electrical and Electronics Engineers 
Internet Engineering Task Force 
Intermediate Frequency 
International Mobile Telecommunications 
Industrial, Scientific and Medical 
International Telecommunication Union 
ITU Radio Regulations 
Intelligent Transport System 
Joint Tactical Radio System 
Kansas University Agile Radio 
Line Of Sight 
Medium Access Control 
Microelectromechanical Systems 
Maximum Likelihood Estimation 
Multi Resolution Spectrum Sensing 
Non-Line Of Sight 
National Science Foundation 
National Radio Network Research Testbed 
National Regulatory Authorities 
National Telecommunications and Information Adminish·ation 
Office of Communications, Regulation Authority in United Kingdom, 
Opportunistic Spectrum Access 
Public Access Mobile Radio 
Personal Computer 
Probability Density Function 
Programmable Digital Signal Processor 
Probability of False Alarm 

Physical Layer 
Private/Professional Mobile Radio 
Power Spectral Density 
Point-To-Multipoint 
Quality of Service 
Radio Access Network 
Resolution Bandwidth 
Radio Environment Map 
Radio Frequency 
Root Mean Square Error 
Receiver Operating Characteristic 

xv 



ROSHT 
RRS 
RSPG 
RSS 
SCA 
sec 

SCP! 
SOR 
SCF 
CFO 
SFDR 
SOF 
SNR 
SSC 
SSCA 
SSE 
TAJPSP 
TS-CSS 
TDD 
TOMA 
TETRA 
TPC 
TV 

UDP 
UL 
UMTS 
USB 
USRP 
UWB 
VBW 
VI 
VI-IF 
VISA 
WARP 
WCDMA 
WRCs 
Wifi 
Wimax 
WLAN 
WRAN 
WMAN 

Recursive One-Sided Hypothesis Testing 
Reconfigurable Radio Systems 
Radio Spectrum Policy Group 
Received Signal Strength 
Software Communication Architecture 
Standards Coordinating Committee 
Standard Commands for Programmable Instruments 
Software Defined Radio 
Spectral Correlation Function 
Cyclostionary Feature Detection 
Spurious-Free Dynamic Range 
Spectral Coherence Function 
Signal-To-Noise Ratio 
Shared Spectrum Company 
Strip Spectral Correlation Algorithm 
Sum of Square Errors 
Tactical Anti Jam Programmable Signal Processor 
Two-Step Compressed Spectrum Sensing 
Time Division Duplex 
Time Division Multiple Access 
Terrestrial Trunked Radio 
Transmit Power Control 
Television 
User Datagram Protocol 
Uplink 
Universal Mobile Telecommunications System 
Universal Serial Bus 
Universal Software Radio Peripheral 
Ultra Wide Band 
Video Bandwidth 
Virtual Instrument 
Very High Frequency 
Virtual Instrument Standard Architecture 
Berkeley Emulation Engine) (BEE3) 
Wideband Code Division Multiple Access 
World Radio communication Conference 
Wireless Fidelity 
Worldwide Interoperability for Microwave Access 
Wireless Local Area Network 
Wireless Regional Area Network 
Wireless Metropolitan Area Network 

xvi 



Chapter 

Chapter 1: Introduction 
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1 
Introduction 

I.I Overvie,v

The rapid proliferation of wireless technologies along with greater bandwidth demands from 

users is expected to increase the demand for radio spectrum by orders of magnitude over the 

next decade. This demand for spectrum has been clearly reflected in spectrum auctions 

concluded in several countries [1, 2, 3] where exorbitant prices have been paid to obtain 

licenses for the small vestige of the radio spectrum. The other reason for this spectrum shortage 

is that propagation effects and technologies limit the natural frequency spectrum. The entire 

radio spectrum is already allocated to various wireless services, making it difficult for emerging 

wireless technologies to obtain spectrum for their operation. This increases the opportunity cost 

of the spectrum. The spectrum scarcity is not real but artificial and largely due to 

inefficient static spectrum allocation policies [4]. Current inefficiencies in spectrum utilisation 

might arise from a number of factors including: use of excessive guard bands between channels 

or services; pennanent assignments which are infrequently used and excessive geographical 

coordination distances. The early spectrum measurement campaigns conducted in USA 

showed the shocking result of underutilisation of spectrum which further confirms the claim of 

the inefficient spectrum allocation. Overall, similar findings were reported by various authors 

and studies, such as [5, 6, 7]. These occupancy studies suggest that the problem with spectrum 

scarcity arises not from the physical availabilities of spectrum being insufficient, but from the 

fact that allocated spectrum is poorly utilised. The outcome of these studies puts a question 

mark on the ability of the prevailing spectrum allocation policy to fulfil the growing demand 
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for spectrum for the future wireless services. The current spectrum management system is 

excessively rigid. It provides a license, which offers slow, cumbersome, and inefficient access 

to the spectrum. For instance, measurements made by the Federal Communication Commission 

(FCC), USA and Office of Communications regulator in the UK (Ofcom) within the TV bands 

have shown that a great part of the spectrum, although allocated, is virtually unused [8]. Such 

unused portions of the spectrnrn vary from place to place and time to time. Also, Ofcom 

revealed that over 50% of locations in the United Kingdom have more than 150 MHz of TV 

spectrum virtually available to be used [9]. For these reasons, in the last few years, several 

countries including the USA have already switched off analogue TV broadcasting in favour of 

Digital Terrestrial Television (DTT) broadcasting systems [JO] and digital switchover plans 

have driven a thorough review of TV spectrum exploitation. Even after the redeployment of 

the digital TV channels, the problem of an efficient utilisation of the allocated frequencies is 

still far from being solved. For example, there are still large terrestrial areas in which, although 

allocated, the TV channels remain unused, due to coverage problems. New spectmm allocation 

approaches such as the Dynamic Spectrum Access (DSA) method have been studied. This new 

concept implies that the radio tenninals have the capacity to monitor their own radio 

environment and consequently adapt to the transmission conditions on whatever frequency 

bands are available (adaptive radio). If this concept is supplemented with the capacity to 

analyse the surrounding radio environment in search of underutilised spectrum (white spaces), 

the term adaptive radio is extended to Cognitive Radio (CR). The efficient application of CR 

techniques along with software radio would enable an effective dynamic spectrum sharing 

environment for coexistence. 

The purpose of this thesis is to bring together a group of CR concepts and explore how we can 

make the transition from conventional radio to cognitive radio. Specific goals of the thesis are 

firstly the measurement of the radio spectrum to understand the current spectrum usage in the 

context of cognitive radio. Secondly, to investigate spectrum sensing techniques including use 

of simulation techniques and experimental measurement, specifically energy detection and 

cyclostationary feature detection. Thirdly, to mitigate the effect of degradation due to multipath 

fading and shadowing, the use of wideband cooperative sensing techniques is proposed, which 

it is believed will introduce more spectral opportunities over wider frequency ranges and 

achieve higher opportunistic aggregate throughput. 
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During recent decades, the demand for more radio spectrum has increased with the 

development of wireless communications. With the deployment of more wireless 

communications systems, most of the available spectrum has been statically allocated. 

However, recent measurements show an opposite situation: many licensed services transmit 

only sporadically, giving an overall spectrum occupancy of roughly 35%, even in the most 

crowded areas. It is precisely this inefficiency in the use of the frequency resources which has 

motivated the current research in cognitive radio technology. Ideally, cognitive radios have a 

perfect picture of the spectrum usage in a given place and at a given time, being able to smartly 

adapt the transmission scheme to perfonn opportunistic communication. 

Despite cognitive radio technology holding considerable promise in the proliferation of new 

wireless services, there still exist many technical challenges. These include understanding the 

current spectrum, reliable sensing of spectrum opportunities, interference free spectrum sharing, 

efficient spectrum handoff and coordination among CR users for secondary use of licensed 

spectrum. There is still a long way to go before the CR vision becomes a reality. More precisely, 

this thesis has focussed on a variety of problems involved in: Understanding the current 

spectrum usage of the different wireless services, characterising and experimentally evaluating 

detection methods with respect to minimum detectable signal levels, evaluation of the sensing 

time needed, robustness to noise uncertainty and implementation complexity and feasibility; 

and investigating improvements offered by a number of wideband collaborative radios, 

different fusion and threshold rules and spatial separation between cognitive radios. 

Empirical measurement of the radio environment to promote understanding of the current 

spectrum usage of the different wireless services is the first step towards deployment of future 

CR networks. Many measurement campaigns [11, 12] have been conducted worldwide in the 

context of cognitive radio. The results show underutilisation of the licensed spectrum 

temporally and spatially. The CR research attained further momentum from the outcome of 

these spectrum occupancy measurement campaigns. The results of the above mentioned 

campaigns are not directly applicable to general locations since the geographical characteristics, 

and the social environment, have an impact on the spectrum use. Empirical modelling of 

spectrum utilisation in the context of cognitive radio is a research area that still requires much 

more effort. The knowledge of the spectrum usage of licensed bands from the measurement 

campaigns will form the input for regulatory bodies to adapt spectrum reframing in certain 
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bands and provide motivation to introduce emerging technologies like cognitive radio for 

efficient spectrum utilisation. 

Spectrum sensing is the key issue in cognitive radio systems [13, 14]. Without a robust widely 

applicable spectrum sensing method, secondary users (without license) may cause intolerable 

interference to primary users (having license) or frequently introduce false alarms in their own 

communications. Two main methods have been exploited for spectrum sensing, namely energy 

detection [ 15] and cyclostationary features detection [ 16]. Energy detection is adopted in many 

studies due lo its simplicity; however, it suffers from the w1certainty of noise level [15J in low 

signal-to-noise ratio (SNR) regimes. An alternative approach is to exploit the periodic structure 

of the primary user's signal, i.e. cyclostationary features, by carrying out cyclic spectral 

analysis [17]. By using cyclostationary feature detection, noise can be significantly suppressed, 

thus achieving more robustness than energy detection. Even though there has been 

investigation of cyclostationary feature detection under noise, they are limited by the features 

in the propagation environment, its evaluation technique and its scope. Therefore, the 

characteristics of cyclostationary feature detection with real world signals in the presence of 

channel noise need to be investigated in detail, which quantify the performance of 

cyclostationary feature sensing techniques in various conditions. 

The essential requirements for spectrum sensing are fast, robust and reliable signal detection 

in a low signal-to-noise ratio (SNR) environment. In cognitive radio networks (CRN), the 

sensing performance of a single CR is often reduced by multipath fading, shadowing, and 

receiver uncertainty in the channel. To mitigate these effects, cooperative or in multiuser 

sensing techniques are being used [18, 19]. CR can detect the signals in a single/narrow 

frequency band or multiple/wide frequency bands. While present narrowband spectrum sensing 

algorithms have focused on exploiting spectral opportunities over a narrow frequency range, 

cognitive radio networks will eventually be required to exploit spectral opportunities over a 

wide frequency range from hundreds of Megahertz (MHz) to several Gigahertz (GHz) for 

achieving higher opportunistic throughput. Hence, as distinct from narrowband spectrum 

sensing, wideband spectrum sensing aims to find more spectral opportunities over a wide 

:frequency range and achieve higher opportunistic aggregate throughput. 

The research objectives of this PhD thesis address three main working parts: 

1) Empirical spectrum occupancy measurements in the Humber region, UK, and associated

modelling and analyses of cognitive radio potentials. 2) Investigation of the characteristics of 
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cyclostationary feature detection with real world signals under channel noise. 3) Proposal of 

new cooperative wideband spectrum sensing schemes with multi-bit hard decision in cognitive 

radio, which lead to energy-efficient and time-saving using two stages in the spectrum sensing 

process. 

In more detail these three areas are: 

1) The main goal of the empirical research work is to conduct spectrum occupancy

measurements in the Humber region, UK to identify typical low occupancy bands

suitable for deploying cognitive radio technology. The analytical research work

includes discussion of the potential of cognitive radio based on measurement and the

resulting need for spectrum for the addressed services. Overall, this activity is intended

to contribute to mitigation of spectrum scarcity.

2) The goal of this part of the research is to evaluate the performance of cyclostationary

feature detection from a practical implementation point of view to identify and

characterise the spectral correlation function (SCP) of a modulated signal under real

world channel noise and in particular to examine the perfonnance of the SCF under low

SNR conditions. This part included a comparison between energy detection and

cyclostationary feature detection performance.

3) In this part, wideband cooperative spectrum sensing algorithms are presented. The

distinct features and contributions of this section are a proposed system model for

wideband cooperative spectrum sensing with multi-bit hard decision in cognitive radio

using dual-stage sensing technique, where the power consumption and the time taken

for sensing are considerably reduced.

1.3 Thesis Outline 

This thesis is divided into five parts, as illustrated in Figure 1.1. A platform architecture 

overview of the thesis is illustrated in Figurel.2. In part I, Chapter 1 explains the motivation 

behind this research. Chapter 2 reviews existing wireless communication technologies that lead 

to the development of cognitive radio. Chapter 3 gives an introduction to software defined radio 

and cognitive radio and some examples of implementation and applications. 

The central part of this thesis is organised in three pai1s II, III and IV along with Lhe 

corresponding conclusions in Part V. Parts II and III deal respectively with low and high 

resolution measurements {Spectrum analyser and USRP2) and specify the methodological 
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aspects of the two spectrum measurement platforms employed in the context of this thesis. Part 

IV presents simulation techniques to further develop wideband cooperative sensing technique. 

Consisting each in future detail: 

Part I 

Introduction 

and Background 

L
Ch.4_Historical spectrum -

1 

occupancy measurement 
and lesson learned 

Ch.5 Spectrum Occupancy 
Survey in CR Application: 
Measurement and Analvsis 

J Ch.1 Introduction 

Ch.2 Radio Spectrum and 

J
! 

Dynamic Spectrum Access 

Ch.3 Software Defmed 
Radio and Cognitive Radio 

Thesis Structure 

� --------

' 
Ch.6_Spectrum 
S�n_sin_g Technology I

' 

L
Ch. 7 _ Cyclostationary 
Feature Detection 
- -·---

Simulation 

"' 

l ··-
Ch.8 Wideband 
Cooperative Sensmg 
in Context of CR 

PartV 

Conclusion 

Ch.9_Conclusion 
and Future Work 

Figure 1-1: Thesis organisation. 
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Figure 1-2: Platform Architecture Overview. 
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Part II Introduces historical spectrum occupancy measurements, and deals with various aspects 

related to the first employed measurement platform. Next, we evaluate the spectrum occupancy 

measurement over two chapters. First, Chapter 4 introduces and compares global spectrum 

occupancy measurements. We start with measurement challenges and methodological aspects 

to cope with the major drawback of previous spectrum occupancy studies by providing a 

unifying methodological framework for future spectrum measurement campaigns. Chapter 5, 

presents the results of an extensive spectrum measurement campaign that was carried out, 

taking into account the findings of Chapter 4, over a wide variety of locations and scenarios 

within in the Humber region, UK. Measurement results are exhaustively analysed in order to 

identify potential bands of interest for the future deployment of the DSNCR technology. 

Part III starts by presenting a state-of-the-art survey of spectrum sensing techniques. It then 

deals with various specific aspects related to the second measurement platform, based on the 

Universal Softvvare Radio Peripheral (USRP) and Matlab architecture, which is used to 

compare the performance of cyclostationary feature detection with energy detection from a 

practical implementation point of view. This pait involves two chapters: Chapter 6 provides an 

in-depth review of the operation of spectrum sensing. Aspects of spectrum sensing such as 

primary transmitter detection methods are discussed; Chapter 7 evaluates the performance of 

cyclostationary feature detection (CFO) estimation from a practical implementation point of 

view to identify and characterise the SCF features of modulated signal under real world channel 

noise and exainine the perfonnance of the SCF under low SNR environment with real world 

signal and compares it with energy detection. The outcome of this study concludes that under 

real world noise, SCF feature analysis shows improved performance under low SNR 

environment compared with the PSD method. 

In Part IV, Chapter 8, we proposed cooperative wideband spectrum sensing schemes with 

multi-bit hard decision in cognitive radio. First, we proposed a system model for wideband 

cooperative spectrum sensing with multi-bit hard decision in cognitive radio using multi 

resolution spectrum sensing (MRSS) technique. Next, based on this first, another algorithm is 

proposed using a two-stage adaptive sensing technique. The results show that the sensing time 

and energy consumption are both reduced significantly in the proposed schemes. 

Part V, Chapter 9 summarises the main conclusions derived from the investigation carried out 

in the thesis and suggests possible directions for future work. 
7 
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The main contribution of the work presented in this thesis is the study of the spectrum usage 

variation in frequency, time and special domain within Humber region, UK through extensive 

empirical spectrum measurement campaigns. Moreover, this thesis investigates the 

cyclostationary feature sensing method by considering practical demonstrations and 

experimentations. Finally, in order to combat some practical challenges in spectrum sensing 

such as low SNR, fading and noise uncertainty, all of which significantly degrade the 

performance of primary signal detection, we propose a new cooperative wideband detection 

scheme with an optimal fusion rule for cognitive radio based networks. 

The main thesis contributions (TCs) are as follows: 

[TC.I] Introduce and compare global spectrum occupancy measurements and address the 

major drawbacks of previous spectrum occupancy studies by providing a unifying 

methodological framework for future spectrum measurement campaigns. 

[TC.2] Investigate the spectrum utilisation of different bands at different geographical 

locations within the Humber region, UK and identify potential spectrum bands for 

the future deployment of CR technology. 

[TC.3] Compile a comprehensive study of potential signal detection techniques for 

spectrum sensing in CR systems. Specifically, outline the state-of-the-art research 

results, challenges and future perspectives of spectrum sensing in CR systems and 

also present a comparison of different methods. 

[TC.4] Design and implement the framework to identify and characterise cyclostationary 

feature detection in real time using SCF features of the modulated signal and 

examine the performance ofSCF under low SNR conditions with real world signals 

as compared with energy detection using power spectral density (PSD). 

[TC.5] Propose a system model for wideband cooperative spectrum sensing with multi-bit 

hard decision in cognitive radio using multi MRSS technique, where the power 

consumption and the time of sensing are considerably reduced. 

[TC.6] Propose a system model for wideband cooperative spectrum sensing with multi-bit 

hard decision algorithm using a two-stage adaptive sensing technique. The 

algorithm uses an adaptive technique along with first stage coarse detection, 

providing more sensing accuracy when compared to the first algorithm whilst 

maintaining reliable detection performance. 

8 



Chapter 1: Introduction 

1.:; Collaboration and Presentations (C & P) 

While the majority of the research described here was undertaken at the University of Hull, 

there were opportunities for collaborative study with, and presentations to external partners. 

Throughout the three-year study period the author conducted research in an area of great 

interest to companies, organisations and the University to combine his knowledge and 

innovation and to bring results to the widest possible audience. Author participation in 

network-building activities, mobility and collaboration, was undertaken at various levels within 

the cognitive radio research hierarchy. The work carried out also linked to various research 

collaboration programmes and initiatives, which are detailed below: 

Resear..t, Collaboration (C) 

[C.1] Collaboration between the author and Keysight (Agilent) has brought significant 

bring benefit to the author. The author was able attend several RF measurement 

training and workshop sessions. The most beneficial aspects was the opportunity 

for the author to borrow equipment such as a portable spectrum analyser. This 

equipment helped the author to make several measurements at different locations 

with less complexity, as well checking the calibration of our measurement 

platform. 

[C.2] COST Action IC0905 TERRA organisation meetings broadened the scope of 

educational benefits for the author, although the author attended only last several 

meetings. The author obtained a number of grants to contribute by presentations 

during COST Action meetings and by attending summer school training. 

Following this summer school the author was able to enrol in a wider sequence of 

online measurement training offered by participating Dublin University. Given 

that the Dublin platform was developed by the COST Action it is available by 

distance learning, so geographic separation of universities was not a barrier. The 

use of distance learning technologies adds flexibility; for example, the author 

accessed Web-based course material at his convenience. This approach gives 

access to a much broader range of disciplines and experts than traditional programs 

based within a single university. 

[C.3] Another type of collaboration occurred with PhD students employed at several 

universities including Northumbria University, Newcastle, De-Montfort 

University, Leicester and Belgrade University, Serbia. De-Montfort and Belgrade 
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University have a limited number of platfonns to do real time spectrum occupancy 

measurements as promotion for their research. So our real time measurements 

within the Humber region were exchangeable. Furthennore, the author 

collaborated with Newcastle University and took advantage of opportunities to 

network and learn from one another. Although the topics were different the same 

platform was used in both universities (USRP platform measurement using Matlab 

and Lab VIEW). These links have been explored in the thesis, taking advantage of 

active research programs with these universities 

Presentations (P) 

[P .1] Two Years of Research in Cognitive Radio (Wideband Spectrum Measurement 

and Wideband Cooperative Sensing). Meeting of the Cost Action IC0905 

(TERRA), 30 April 2014 (Vilnius, Lithuania). 

[P.2] Energy Efficiency using Wide Band Cooperative Sensing. Meeting of the Cost 

Action IC0905 (TERRA), Biel, Switzerland, 26-27 Nov. 2013. 

[P.3] Characterising Cyclostationary Features of Digital Modulated Signals with 

Empirical Measurements using Spectral Correlation Ftmction-TELFOR20I4, 

Belgrade Serbia, 24-28 Nov.2014. 

[P.4] Spectrum Occupancy Measurements, analysis and Lesson Learned in the Context 

of Cognitive Radio. The SthPhD Experience Conference 2014. University of Hull, 

14-15 April 2014.

[P.5] Evaluation of Interference between Antennas usmg Cosite Analysis Model. 

International conference in Advance Communication and Information 

Technology. Amsterdam, October 2012. 

1.6 Publications 

Spanning a period of three, the research for this thesis and related research has produces a 

number of papers in international journals, conferences, meetings and workshops. First we list 

the works that are already published and then we list the papers under evaluation . 

• Journal Publications 

(JP.l] Mehdawi, M., Riley, N. G., Paulson, K., Fanan, A., & Ammar, M. (2013). 

Spectrum occupancy survey in Hull-UK for cognitive radio applications: 

measurement & analysis. International Journal of Scientific & Technology 

Research, 2(4), 231-236. 
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[CP.1} Mehdawi, M., Riley, N. G., Ammar, M., & Zolfaghari, M. (2012, November). 

Comparing historical and current spectrum occupancy measurements in the 

context of cognitive radio. In Telecommunications Forum (TELFOR), 2012 

20th(pp. 623-626). IEEE. 

[CP.2] Mehdawi, M., Riley, N. G., Ammar, M., Fanan, A., & Zolfaghari, M. (2013, 

November). Cooperative wideband spectrum sensing with multi-bit hard decision 

in cognitive radio. In Telecommunications Forum (TELFOR), 2013 21 st (pp. 220-

223). IEEE. 

[CP.3] Mehdawi, M., Riley, N. G., Ammar, M., Fanan, A., & Zolfaghari, M. (2014, 

November). Experimental detection using cyclostationary feature detectors for 

Cognitive Radios. In Telecommunications Forum Telfor (TELFOR), 2014 

22nd(pp. 272-275). IEEE. 

[CP.4] Mehdawi, M., Riley, N. G., Ammar, M., Fanan, A., (2015, November). Spectrum 

sensing and lesson learned in the context of cognitive radio. 

In Telecommunications Forum Telfor (TELFOR), 2015 23nd (INSPEC Accession 

Number: 15701030). IEEE. 

[CP.SJ Mehdawi, M., Riley, N. G., Fanan, A., The influence of antenna selection on 

measured TV band occupancy in context of in the context of cognitive radio 

networks. In Telecommunications Forum Telfor (TELFOR), 2016 24nd.lEEE 

[CP.6] Ammar, M., Mehdawi, M., Riley, N. G., Fanan, A., Paulson, K., & Zolfaghari, 

M. "A Spectrum Sensing Test Bed based on Matlab and USRP2".(2013). Int'l

Conference Image Processing, Computers and Industrial Engineering

(ICIC!E'2014) Jan. 15-16, 2014 Kuala Lumpur (Malaysia).

[CP.7] A.M. Fanan, N.G. Riley, M. Mehdawi, M. Ammar, and M. Zolfaghari, "Survey: 

A Comparison of Spectrum Sensing Teclmiques in Cognitive Radio", Int'l 

Conference Image Processing, Computers and Industrial Engineering 

(ICICIE'2014) Jan. 15-16, 2014. 

[CP.8] Ammar, M., Riley, N. G., Mehdawi, M, A. F., & Zolfaghari, M. Physical Layer 

Security in Cognitive Radio Networks. International Conference on Artificial 

Intelligence, Energy and Manufacturing Engineering (ICAEME'2015) Jan. 7-8, 

2015 Dubai (UAE). 
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[CP. 9] AM. Fanan, N. G. Riley, M. Mehdawi, "Comparison of Propagation Models with 

Real Measurements Around Hull, UK", In Telecommunications Forum Telfor 

(TELFOR), 2016 24nd. IEEE 

[CP.10] Zolfaghari,M., lliley, N. G., Mehdawi, M., & Shen, J. (2013, November). 

A slot-loaded reduced-size CPW-fed aperture antenna for UWB applications. In 

Antennas and Propagation Conference (LAPC), 2013 Loughborough 

(pp.611-614). IEEE. 

Papers 1u1de1• )!)valuation 

[PUE. l] Energy-efficient and time-saving using wide-band cooperative spectrum sensing 

using Multi-bit decision with adaptive technique in cognitive radio networks. 

To be submited for publication, IEEE Journals Transactions & Magazines 

(undergoing of review by author). 

[PUE.2] Hybrid Detection Method for Improving Spectrum Sensing Performance in 

Cognitive Radio. To be submited for publication, Telecommunications Forum, 

November 2017 (undergoing ofreview by author). 

[PUE.4} The perfonnance of the cyclostationary feature detection method compared with 

the energy detection method under different real time measurement of channel 

impairment. To be submitted for publication, Elsevier Journal (undergoing review 

by author). 
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This part contains two chapters 

CHAPTER 2: Radio spectrum and Dynamic spectrum Access 

CHAPTER 3: introduction to Software Defined Radio and Cognitive Radio 
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Chapter 
----------------------------

2 
The Radio Spectrmn and 

Dyna1nic Spectrmn Access 

2.1 Background 

Radio spectrum is a natural resource which is used for a wide variety of services with some 

special characteristics [20}. The key characteristics of the radio spectrum are the propagation 

features and the amount of information that signals can carry. Utilisation of the radio spectrum. 

usually means emitting electromagnetic radiation at radio frequency (between 30 kHz and 300 

GHz). This may be needed for the intended services, but may often cause undesirable effects 

including interference for other services. For example, when communicating using commercial 

radio devices, unacceptable interference could be caused for dissimilar, neighbouring, radio 

receivers that may be sharing the same or similar spectrum. One of the more sensitive cases 

radio astronomy, where the required signals are at low levels and can easily suffer significant 

interference from conventional transmitters, even if they are distant from the radio astronomy 

receiver. Until today, radio spectrum regulation has been used to mitigate all such undesirable 

effects and is therefore, considered essential in order to enable reliable and efficient spectrum 

usage. By introducing this research topic we hope to illustrate that this situation may change 

with the establishment of cognitive radio and dynamic spectrum access. 

2,2I1isto1'Y of Radio Speetnuu 

In 1865, the physicist, Maxwell, demonstrated the theory of electromagnetic energy, which 

includes the phenomenon known as radio waves [21). His theory was confirmed by Henrich 

Hertz in 1888 when Hertz caused an electric discharge between two metal balls, from which 
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he projected radio waves across to a wire loop detection apparatus [22]. In 1895, Marconi 

realised the communication possibilities of artificially generated radio waves. In 1899 Marconi 

sent his first message across the English Channel and by 1901 he had spanned the Atlantic. 

The first time that tl1e world recognised the importance of radio communication was in April 

1912 , when the passenger liner Titanic, which represented the largest passenger steamship in 

the world in that time, hit an iceberg during its first voyage ever, and sank within only a couple 

of hours. This tragedy was not only one of the worst maritime disasters in history, but also 

because used as an early example of the need to introduce radio spectrum regulation. During 

that time many passengers were rescued because another ship received the radio emergency 

signals, but at the same time many passengers were lost because the radio receiver on board 

the nearest the ship was not operating during the night of disaster [23]. From that time, the use 

of radio communications has gained popularity as a result of Marconi's pioneering 

demonstrations and their role in the rescue of hundreds of lives during the tragic sinking of the 

Titanic. Hence radio became a topic of international debate, and was soon regulated by national 

authorities. For example, radio spectrum regulation in US was legalised as the Communication 

Act of 1934. The object of this Act was to guarantee services to the public. This process was 

adopted as radio spectrum regulation and since the beginning of the twentieth century, 

conummication services like telephony, radio and terrestrial broadcast television, have been 

regulated according to this model [24]. 

2.2.lApproacbes for Radio Spectnun Uegulatiou 

As the spectrum is a finite resource the regulation of radio spectrum is essential. In this context 

the radio spectrum can also be thought of as a non-renewable resource insofar as the timescale 

required, due to the large investment in infrastructure, for change of use of any part of the 

spectrum is long, typically 10 to 20 years. The regulation of spectrum can be differentiated into 

four approaches: Licensed spectrum for exclusive usage, licensed spectrum for shared usage, 

unlicensed spectrum and open spectrum [25]. 

Licensed spectrum for exclusive usage is imposed and protected through the regulator. The 

licensee has exclusive and transferable flexible usage rights for specific spectrum. This 

exclusive licensing was established to protect licensee's signals. For instance, the spectrum of 

frequency used by universal mobile telecommunication system (UMTS) which was sold in 

Europe is one example of an exclusive right for a license of spectrum. Licensed spectrum for 

shared usage is restricted only to specific technology. The spectrum assigned to digital 
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enhanced cordless telecommunication (DECT) which is used in Europe is an example of this 

model. A further example is the spectrum used for public safety services, where exclusivity is 

vital for reliable service conditions. In the case of unlicensed spectrum, the responsibility for 

technical compliance is transferred to the producer of the radio products which may be freely 

used by the purchaser. Although this is limited spectmm, this low-regulation approach lets 

innovators deliver millions of unlicensed offerings such as Wi-Fi hotspots. In Europe this type 

is known as 'license-exempt spectrum'. Using this band doesn't involve any right of the user 

for protection from interference. Open spectrum, also known as free spectrum is available for 

use by all. Open spectrum allows anyone to access this range of spectrum without any 

restriction. However, even this type of spectrum requires a minimum set of rules that are 

required for sharing spectrum. 

2.2.2Basic Rules ofSpcctnun lwgnlation 

According to [26] radio spectrum regulation promotes the development of spectrum access 

standards to balance six objectives: 

•!• Sufficient quality of service should be realisable to all radio systems depending on 

support application; 

•!• No radio should be blocked from spectrum access and from transmission for any 

extended time duration; 

•!• Spectrum regulation and standards must not slow down innovation in economically 

successful and rapidly changing wireless communication markets. 

•!• Available spectrum should be used efficiency, including spatial reuse of spectrum 

and solving the "tragedy of commons"; 

•!• Spectrum should be used in a dynamically adaptive way, taking the local 

communication environment including spectrum usage policies into account; 

•!• The cost of commercial radio devices should not be made to increase significantly 

through adoption of techniques mandated by radio regulation. 

2.3 Organisations that Reg·ulate the Radio S1Jectru1n 

Decisions relating to the choice of licensed spectrum for exclusive or shared usage, and 

declarations of spectrum as unlicensed or even open spectrum are undertaken by national and 

international institutions which are referred to as 'regulators'. In the following section, 

significant regulators will be briefly introduced. 
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2.3.I Inte1•nntional Teleeonun,ntlention Umon, ITU (Global 

Co-ordination) 

The ITU is known as the specialised agency of the United Nation which is responsible for 

information and communication technology, It is responsible for global coordination and 

sharing of the radio spectrum and prompts international cooperation to improve 

telecommunication infrastructure in the developing world as well as establishing worldwide 

standards. It has three sectors: Radiocommunication, Standardisation and Development. The 

ITU Radiocommunication sector (ITU-R) is one of the three sectors of the ITU and is 

responsible for radio communication. Globally, for all the regions of the world, frequency 

allocation processes are harmonised with the help of ITU-R. ITU agreement on spectrum 

allocation is set out in the ITU Radio Regulations (ITU RR). The Radio Regulations is the 

inter-governmental treaty text of the International Telecommunication Union [27J. The 

regulations cover both legal and technical issues. The planning, revision and adoption of the 

radio regulations are the responsibly of the World Radiocommunication Conferences (WRCs) 

of ITU, that take place every 2-3 years. These international conferences copes with many 

emerging services, with conflicting interests and business models in an attempt to modernise 

spectrum usage [27]. 

The ITU goals are to work as closely as possible with its members in order to define its 

activities to meet the ever-increasing and diverse needs of the world's developing and least 

developed countries. There are six regional groups that develop proposals at the regional level 

to be brought to the WRC, which include regional offices in Addis Ababa (for Africa), Brasilia 

(for Americas), Cairo (for the Arab States), Bangkok (for Asia and Pacific), a Europe 

coordination unit at the ITU headquarters (for European Countries), and several area offices, 

including Moscow (for CIS countries), all of which help maintain direct, sustained contact 

with national authorities, regional telecommunication organisations and other key 

stakeholders. 

2.3.2European U1Iion (EU) 

The spectrum regulation in European is carried out by the Electronic Communications 

Committee (ECC), which is responsible for radiocommunication and telecommw1ication of the 

European Conference of Postal and Telecommunications Administrations (CEPT). The CEPT 

was established in 1959 by 19 countries, which expanded to 26 during its first ten years. CEPTs 

activities include cooperation on commercial, operational, regulatory and technical 

standardisation issues. Today 48 countries are members of CEPT. The ECC produces four main 
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deliverables: ECC Decisions, ECC Recommendations, ECC Reports, and CEPT Reports. 

These are the results of the policy work and technical studies conducted to harmonise the use 

of spectrum across Europe and to improve market efficiency. All of their deliverables are 

developed in collaboration with national administrations and industry and are subject to public 

consultation. The main mission of ECC is provide common policies and regulation, harmonise 

the efficient use of radio spectrum and promote the interests of Europe on a worldwide basis. 

Everything decided by ECC is usually realised by CEPT member countries [26]. To assist the 

commission, two complementary bodies were set up following the Radio spectrum decision in 

2002, to facilitate consultation and to develop and support an EU Radio spectrum policy: 

The Radio Spectrum Policy Group (RSPG) approves the CEPT reports and associated 

technical implementation measure prepared by the conunission. Next, the Radio Spectrum 

Committee (RSC), was setup to facilitate consultation and to develop and support radio 

spectrum policy. 

In 1988, ETSI, the European Telecommunications Standards Institute, was created under the 

care ofCEPT, which transferred all of its telecommunication standardisation activities to ETSI. 

The ECC has a strong cooperation with ETSI in order to ensure coherence between ECC 

decisions and ETSI harmonised standards. ETSI is a non-profit organisation, whose mission is 

to produce globally-applicable standards for Infoimation and Communications Technologies 

(ICT), including fixed, mobile, radio, converged, broadcast and internet technologies. As noted 

above, CEPT deliverables are non-binding. This gives the National Regulatory Authorities 

(NRA) a large degree of flexibility when it comes to adapting these to country specific 

conditions, legacy usages and circumstances. 

2.3.3Exwnples of National Spect1•t11n M8llageinentAuthorities 

Based on the international allocations and regulatory provisions the NRAs grant access to 

spectrum for users. For instance, an EU member state has the right to set conditions on the use 

of spectrum rn1der the framework directive. These conditions can include appropriate limits 

that aim to avoid harmful interference to other radio services. These conditions can be 

hannonised on a European wide basis either through a European Commission spectrum 

decision or by an ECC decision or recommendation. Alternative, if no mandatory harmonised 

guidance is available, a regulatory deliverable can be developed on a national basis. 

At the national level, the use of radio spectrum in most countries is currently being managed 

by government agencies rather than by market forces. The biggest two telecommunications 
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regulatory authorities worldwide are UK, Office of Communications (Ofcom) and the US, 

Federal Communications Commission (FCC). Ofcom represents the regulatory authority in the 

United Kingdom (UK) and is responsible for regulation, management, licensing and 

assignment of radio spectrum. Ofcom was established in 2003 (taking over the radio -related 

work of the former Radiocommunication Agency (RA) as well as other UK regulatory bodies) 

and operates with a process of regulator consultation. Spectrum regulation in Ofcom involves 

three main supports: 

•!• Spectrum should be free of technology and usage constraint as far as possible, but this 

policy constraint should be only used where it can be justified; 

•!• It should be simple and transparent for a license holder to change the ownership and 

use of spectrwn; 

•!• The right of the spectrum user should be clearly defined and users should feel 

comfortable that that right will not be changed without good cause. 

The FCC and the National Telecommunication and Information Administration (NTIA) are 

both responsible for spectrum regulation in the USA. The FCC is responsible for spectrum used 

for non-government purposes and NTIA is responsible for spectrum used by government 

including military use. In 2003 the FCC identified three steps to improve the spectrum 

utilisation: 

•!• Improve the access in space, time and frequency domains; 

•!• Enable flexible regulation in permitting controlled access to licensed spectrum; 

•!• Stimulate efficient spectrum usage through policy. 

2.4Licensed and Unlicensed Spectrum 

Most of the radio spectrum is allocated in licensed radio services. Generally this is identified 

as exclusive usage plus command and control. The licensed spectrum covers the exclusive 

access to spectrum and spectrum sharing within the licensed spectrwn. In the case of exclusive 

spectrum usage, a license owner typically pays a fee for this benefit. The exclusive access has 

the advantage of preventing potential interference from different radio systems. In the case of 

spectrwn scarcity, licensed spectrum is highly valuable, usually leading to economic profits for 

the licensee as consumers need to pay to use it. The auctions in the countries of Europe for 

licensing spectrum of3G systems in 2000 are an example of this. Nowadays a frequently used 

licensing model is to license spectrum for shared usage restricted to specific technology, as 

well known as the command and control model. Emission parameters like maximum 
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transmission power and interference to neighbouring frequencies (such as out of band 

emissions) are restricted by the regulators. Regulation takes care of protection against 

interference and sometimes supports elementary coexistence capabilities such as dynamic 

channel selection [28]. 

2.4.l The Difficulty of Spectr,uu Licensing 

Spectrum licensing is very expensive, takes time and may be difficult to organise. As the 

number of new technologies increase dramatically, the licensing process constrains innovation, 

becoming a difficult barrier to overcome. Moreover, the inflexibility of exclusive usage rights 

arising from licensing spectrum in this way leads to inefficient spectrum utilisation, as the 

license prohibits the usage, by others, of the spectrum if it is underutilised or even unused by 

the license holder. Another problem with licensing is the duration of a license. Spectrum 

licenses typically expire after a decade and have to be renewed. TI1e temporal license gives the 

regulator the opportunity of intervening if the spectrum is underutilised or wasted. For example, 

the regulator could answer market demands in shifting, extending or reissuing licenses, and can 

thus accelerate the introduction of new teclmologies. On the other hand, a danger of temporal 

licenses is that uncertainty about future regulatory decisions may hold back investments. 

2.4.2Unlieensed Speetr,un as an Alternative 

As the technologies of radio communication increase so quickly, and consequent user demand 

for bandwidth increase the availability of an adequate amount of radio spectrum is crucial. The 

commercial success of wireless technologies operating in unlicensed band opened the door to 

rethinking about regulation policy. WLANs, Wi-Fi, WPANs and Bluetooth are examples. The 

term "unlicensed spectrum" refers to the frequency bands for which no exclusive licenses are 

granted and on which unregistered users potentially may operate wireless devices without 

specific user authorisations. Users of these spectrum bands do not enjoy exclusivity and can be 

subject to interference from other users, although regulators typically restrict the transmission 

power in these bands to limit interference. This is allowed for radio devices that satisfy certain 

technical (MPT specification) standards that mitigate potential interference. The usage rights 

of unlicensed spectrum are flexible and no dedicated spectrum access method is specified or 

required. 

Currently, there are many unlicensed frequency bands over the world, but two are considered 

to be the important: The Industrial, Scientific and Medical (ISM) band from 2400 to 2483MHz 

and frequency band between 5GHz and 6GHz. Despite the fact that the regulatory restriction 
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for the some bands are the same throughout different regulatory domains in world, regulation 

of some unlicensed spectrum differs essentially when comparing between countries. Recently, 

as TV bands in US and in UK, are ooderutilised, FCC and Ofcom proposed allowing unlicensed 

systems to have secondary usage of this spectrum. This plinciple will be discussed in detail in 

section 2.5. 

2.4.3Trngedy of Radio Spectrum Regtdation 

The success of unlicensed spectrum is drawing to a close, as the severe Quality of Service (QoS) 

constraints to spectrum access imposed by the upcoming multimedia applications cannot be 

fulfilled with today's means for coexistence. In the case of short distance wireless 

communication, spectrum demand is extremely localised and often sporadic. In such a scenario, 

the competition for shared spectrum is limited. Therefore, the regulatory instrument of 

restricting transmission, e.g., limiting the maximum emission power, is successful. In all other 

deployment scenarios, as for instance WLANs, unlicensed spectrum. usage is a victim of its 

own success: too many parties and different technologies are using the same unlicensed 

spectrum so that it is getting overused and thus less usable for all. In economics the 

phenomenon is referred to as "tragedy of commons". Additionally we can introduce the 

'tragedy of the anticommons" which refers to inefficient spectrum utilisation because of too 

restrictive regulation [29]. The tragedy of commons and the associated inefficient overuse of 

spectrum results in less investment in improved technology, and directly challenges the open 

access approach. Therefore, regulators impose restrictions such as limiting transmission 

powers. As a consequence, many alternative radio systems are not permitted to operate in such 

spectrum, which results again in inefficient lUlderutilisation of spectrum.. In [30] it is concluded 

that limiting spectrum sharing through spectrum regulation is the only way out of this tragedy. 

After we introduce the concept of dynamic spectrum access/cognitive radio in the next section, 

we will recognise that such statements are not really needed, as spectrum coordination can be 

realised with more flexible alternatives than restricting the amount of spectrum sharing. So 

what is the reality of spectrum. usage? How intensively is our radio spectrum utilised? Is the 

radio spectrum completely crowded? Is it really a scarce resource that we have to protect 

against too many undesirable usage scenarios?. 

We will show in Chapter 4 and Chapter 5 results of measurement campaigns, conducted around 

Hull and elsewhere in order to find the answers to these questions. Our results (Chapter 5) 

confirm what is already known from literature: the reality is different to what might be expected: 
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many frequency bands are not used at all, and the spectrum appears to be under-utilised for 

most of the time, in most locations. 

2.5 Dynamic Spectrum Access (Radio Spectrtun 

Tomorrow) 

Standing for the opposite of current static spectrum management policy, dynamic spectrum 

access methods are the tools that provide regulators with the flexibility needed in order to 

achieve a more efficient spectrum usage. The term dynamic spectrum access (DSA) has been 

coined to refer to an innovative solution proposing a procedure or scheme to share spectrum 

among wireless operators, technology and services in order to increase the overall spectrum 

utilisation. The concept of DSA is the essence of simplicity: listen to a channel, decide if it is 

being used, use it for a while, and keep checking to make sure no one who is entitled to its 

primary use or another cognitive radios (CR) are attempting to use it. As illustrated in Figure 

2.1, dynamic spectrum access strategies can be generally categorised under three models [31]: 

Dynamic Spectrum Exclusive Use Model, Open Sharing Model and Hierarchical Access Model. 

Dynamic Exduslve Use Model 
Open Sharing Model 

(Spectrum Commons Modtl) 
Hierarchical Acn,ss Model 

Spectrum Property Rights Dynamic Spectrum Allocation 
Spectrum Unckrlay 

(Ultra Wide &Ind) 

Spectrum Ovtrlay 

(Opportunistic Spectrum 11cuu) 

Figure 2-1: Classification of Dynamic Spectrum Access Schemes [12, 31]. 

2.5.l Dyna1nic Spectnun Exclusive Use Model 

In the exclusive use model for spectrum access, the radio spectrum is licensed to user/service 

to be exclusively used under certain rules. The basic plan of this type is to introduce flexibility 

in order to improve spectrum efficiency. Two approaches have been proposed under this model: 

spectrum property rights and dynamic spectrum allocation. Firstly; spectrum usage rights [32] 

can be transferred among users in different ways, as can other assets. This approach allows 

licensees to sell or lease some portion of their licensed spectrum and to freely choose the 

technology to be employed. This model plays an important role in driving the most profitable 

use of spectrum under this scheme. Although the licensees have right to lease and sell the 

spectrum, such sharing is not mandated by the regulation policy. Secondly; dynamic spectrum 
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allocation, as brought forth by the European DRiVE project [33, 34]. The main idea of this 

approach is to improve spectrum efficiency through dynamic spectrum assignment by 

exploiting the spatial and temporal traffic of different services. Similar to the current static 

spectrum allocation policy, such strategies allocate, at a given time and region, a portion of the 

spectrum to a radio access network for its exclusive use. This allocation, however, varies on a 

much faster scale than with the current policy. 

2.3.20pen Sharing Model 

In the shared use spectrnm access model, the radio spectrum can be simultaneously shared 

between a primary user (licensed user) and a secondary user (unlicensed user). It is referred to 

as spectrum commons. Supporters of this model draw support from the phenomenal success of 

wireless services operating in the unlicensed industrial, scientific, and medical (ISM) radio 

band (e.g., Wi-Fi). On the other hand, opponents of this proposal argue that it ultimately would 

result in a depletion of the shared limited resource in a scenario where too many nodes over­

exploit the common good and degrade its quality. 

2.6.31Iierarehleal Aeeess Model 

Built upon a hierarchical access structure with primary and secondary users, this model can be 

considered as a hybrid of the above two. It is adopted as a hierarchical structure that could 

distinguish between primary (licensed users) PU and secondary (license-exempt users) SU. 

The main idea from this model is to open licensed spectrum to secondary users while limiting 

the interference perceived by primary users. Two approaches to spectrum sharing between 

primary and secondary users have been considered: Spectrum Underlay and Spectrum Overlay. 

•!• Spectrum Underlay 

In the case of a spectrum underlay system, a secondary user can transmit concurrently 

with primary user. An example of this is ultra-wide band (UWB). This approach allows 

secondary users to potentially achieve short-range high data rates with very low 

transmission power. An advantage of such a system is that radios can be "dumb" since 

they do not need to sense the channel in order to defer to primary users [36]. 

•!• Spectrum Overlay 

In the case of spectrum overlay, a secondary transmitter has knowledge of the primary 

user's transmitted data sequence and how this sequence is encoded. Similar ideas apply 

when there are multiple secondary and primary users [35]. Therefore, to access the 

spectrum band, a secondary user has to perform spectrum sensing to detect the activity 

23 



Chapter 1: The Radio Spectrum and Dynamic Spectrum Access 

of primary users in that band as illustrated in Figure 2.2. This approach is also identified 

as opportunistic spectrum access (OSA) (36]. 

In particular, the spectrum overlay/OSA is one of the most popular rapidly growing research 

fields, impacting not only the engineering community but also political, regulatory and 

economical mechanisms. Although spectrum overlay/OSA is a particular model for DSA, it is 

frequently referred to as DSA. 

Power 

Frequency 

Spectrum holes 

Spectrum occupied by 
pnmary usors 

Figure 2-2: Opportunistic Spectrum Access Concept (36]. 

2.6 Key Parameters 

The main goal of this section is to define and discuss the key parameters, which will be used 

in the next chapters. This especially includes Duty Cycle and Spectrum Occupancy, Spectrum 

Usage, Spectrum Hole, White Space, PSD, Blind PSD, FFT bin, Resolution Bandwidth, 

Probability Distributions of Signal and Noise and Confused region. 

Occupancy is the percentage of time that the measured signal power exceeds a 

specified threshold. Spectrum Occupancy Rate is marked as the probability that the 

signal strength of a certain frequency bandwidth is occupied which means the signal is 

occupied when its signal power is above a particular threshold. 

Spectrum Holes is represent the potential opportunities for non-interfering (safe) use 

of spectrum and can be considered as multidimensional regions within frequency, time, 

and space. 

Duty Cycle (Measured occupancy) is used to measure spectrum occupancy. Duty cycle 

indicates how often the signal is seen on each channel during a simple period. The duty 

cycle is defined as the percentage of time a channel is occupied. Given a time-series of 

channel power measurements, the duty cycle can be calculated using: 

Signal Occupancy Period 
Duty Cycle(DC) 

= Total Measurement Duration X lOO%
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Band Spectrum Occupancy defined to be the average duty cycle of the channels 

within a band. The amount of spectrum occupied is then the product of the band 

spectrum occupancy and the bandwidth. 

White Space is refers to portions of licensed radio spectrum that licensees do not use 

all of the time or in all geographical locations. Several regulators around the world are 

moving towards allowing unlicensed access to these frequencies, subject to the proviso 

that licensed transmissions are not adversely affected. 

White Space (TV-Band) is a portion of spectrum in a band allocated to the 

broadcasting service and used for television broadcasting that is identified by an 

administration as available for wireless communication at a given time in a given 

geographical area on a non-interference and non-protected basis with regard to other 

services with a higher priority on a national basis. 

Sensing threshold (TV) is the maximum received power level from TV towers allowed 

to consider a channel free. If received power detected is above this threshold, the 

channel is occupied, if it is below it is available. 

Power Spectral Density (PSD) shows the strength of the variations (energy) as a 

function of frequency. In other words, it shows at which frequencies variations are 

strong and at which frequencies variations are weak. Computation of PSD is done 

directly by the method called FFT or computing autocorrelation function and then 

transforming it. 

Fast Fourier transform (FFT) algorithm computes the discrete Fourier transform 

(DFT) of a sequence, or its inverse. Fourier analysis converts a signal from its original 

domain ( often time or space) to a representation in the frequency domain and vice versa. 

Frequency Range and Resolution on the frequency axis of a spectrum graph depends 

on the sampling rate and the size of the data record. The FFT size defines the number 

of bins used for dividing the window into equal strips, or bins. Hence, a bin is a 

spectrum sample, and defines the frequency resolution of the window. 
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Resolution Bandwidth (RBW) determines the fast Fourier transform (FFT) bin size, 

or the smallest frequency that can be resolved. RB W is a fundamental form of 

measurement in the realm of spectral analysis, as it delivers the frequency accuracy, or 

precision, of a given measurement. 

Confused Region is the area which lies between two thresholds (between PU and noise 

curve or under upper bound threshold, Al and lower bound threshold, 112. In this region 

using single threshold detection of noise and PU signal is very difficult. It indicates that 

more paran1eters are required to quantify the reliability of each SU. 

Blind Sensing is the technique which do not rely upon a specific feature of the primary 

signal air interface. Non-blind schemes require primary signal signatures as well as 

noise power estimation to reliably detect PU. Total blind, requiring no a priori 

information to determine PU activity. 

2.7Chapter S1unmary 

In this Chapter, we presented an overview of radio spectrum today- regulation and spectrum 

usage, including history and tenninology, institutions that regulate the radio spectrum, and the 

concepts of licensed and unlicensed bands. We concluded that the cunent spectrum 

management model operates at both national and international level. In the current paradigm 

all decisions are made by spectrum regulator. This traditional spectrum management model is 

therefore commonly referred to as command and control, and has been shown to have its 

limitations. Furthennore, we discussed how current spectrum management approaches that 

divide spectrum into either licensed or unlicensed bands do not appear to be working well. 

However, sharing of spectrum appears to offer a way ahead but it can be difficult to gain the 

licence owners agreement to this. Hence, the idea of unlicensed access to licensed bands -

which will be called dynamic spectrum access (radio spectrum tomorrow) was introduced. The 

objective of dynamic spectrum access is to achieve a more efficient utilisation of the radio 

spectrum without interfering with primary users. Dynamic spectrum access strategies were 

presented and categorised under three models, exclusive use model, open sharing model and 

hierarchical access model. With respect to all dynamic spectrum access types, opportunistic 

spectrum access (OSA) was considered as the core technique of dynamic spectrum access 

(DSA), which has been extensively researched recently. 
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Chapter 

3 

lntroductio11 to Software 

Defined Radio and Cognitive 

Radio 

3.1 Introduction 

As we mentioned in the previous chapter, today's wireless networks are characterized by a 

fixed spectrum assignment policy. However, a large portion of the assigned spectrum is used 

sporadically and geographical variations in the utilization of assigned spectrum ranges from 

15% to 85% with a high variance in time. To this end, many approaches to Dynamic Spectrum 

Cognitive Radio (CR) and software-defined radio (SDR) concepts have been proposed. CR and 

SDR, are two of the most discussed topics in contemporary spectrwn management [37]. The 

terms SDR and CR were introduced by J.Mito]a in 1992 (38] and 1999 (39], respectively. 

Software defined radio is a radio communication system where components that in the past 

have been typically implemented in hardware are instead implemented by means of software. 

Cognitive Radio, usually built upon an SOR platform, is the technology allowing radio 

equipment to obtain knowledge of its radio environment and to dynamically adjust its 

operational parameters in order to improve its performance [40]. SDR and CR promise to bring 

about substantial benefits: Better utilisation of the radio spectrum (spectrum scarcity problem), 

opening the door for broadband usage, enabling open portability among different network 

technologies and allowing for economies of scale by their potential to harmonisine the needs 

of commercial, public safety and military users. 
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The rest of this Chapter is organised as follows: Section 3.2 delivers an overview around the 

evolution of microprocessor technology; Section 3.3 provides a brief summary of software 

defined radio including the history of SDR, main components of SDR, SDR technology and 

available SDR platforms. Section 3.4 provides an introduction to cognitive radio and cognitive 

radio network architecture. Section 3.5 summarises the Chapter. 

3.2 Microelect1-ouics Evolution and its Impact on 

Communication Technology 

There has been a rapid evolution of microelectronics over the past few decades. For example, 

Moore' s Law has described the long-term trend of the number of transistors accommodated on 

an integrated circuit. The doubling of the number of transistors per integrated circuit (per square 

cm) approximately every two years has improved processing speed and memory. The

microelectronics industry has significantly influenced the digital communication systems 

sector. As result digital communication transceivers are becoming more flexible, powerful, and 

portable. Microelectronics improvements have given rise to the possibility of implementing 

software-defined radio technology and baseband radio functions can now be entirely 

implemented in digital logic and software as well as some Intennediate Frequency (IF) 

functions. There are several types of microelectronics for software-defined radio 

implementation [ 41]: of which the following are significance 

Firstly, the general purpose microprocessor. This 1s very flexible in tenns of 

configurability, allows easy implementations of new digital communication modules, 

is not specialised for mathematical computations, and is potentially power inefficient. 

Secondly, Digital Signal Processor (DSP) is specialised for performing mathematical 

computations, allows easy to implementations of new digital communication modules, 

is potentially slow for computationally intensive processes but can be power efficient 

(e.g., used in cellular telephones). Thirdly, Field Programmable Gate Array (FPGA), is 

computationally powerful, but power inefficient and does not allow flexible easy to 

implementations of new modules. Fourthly, graphics processing unit (GPU), extremely 

powerful computationally, but does not permit easy implementations of new modules. 

A change of the hardware design of microelectronics paradigm will accelerate the appearance 

of mobile SDR tenninals. A system wide co-design will result in less power consumption, 

smaller chip area and higher integration density of future SDR terminals. SDR-based 

architecture and SDR technology will be introduced in more detail in the next section. 
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3.3 Software Defined l\adio 

The rapid evolution of microelectronics will support the feasibility of SDR. An SDR is a class 

of reconfigurable/reprogrammable radio whose physical layer characteristics can be 

significantly modified by software changes. It is capable of implementing different functions 

at different times on the same platform, it defines in software various baseband radio features, 

(e.g., modulation, error correction coding), and it possesses some level of software control over 

RF front-end operations, (e.g., transmission carrier frequency). A number of definitions can be 

found to describe software defined radio, also known as software radio. Software defined radio 

may be defined as: 

•!• A software defined radio is a radio transceiver where only the actual RF part is done in 

hardware, but the modulation, coding and media access part in software. This has 

become possible in part by the rise of both affordable as well as powerful Digital Signal 

Processors (DSPs) [42]. The key feature ofSDR is agility, power efficiency, and ease 

of manufacturing and ease of upgrading. 

Although definitions may vary to a certain degree regarding what constitutes an SDR platfonn, 

several key characteristics that generally define an SDR can be summarised in the following 

list [43]: 

•!• Multifunctionality: Possessing the ability to support multiple types of radio function 

using the same digital communication system platform; 

•!• Global mobility: transparent operation with different communication networks located 

in different parts of the world; 

•!• Compactness and power efficiency: Many communication standards can be supported 

with just one SDR platform; 

•!• Ease of manufacturing: Baseband fimctions are a software problem, not hardware 

problem. 

•:• Ease of upgrading : Finnware updates can be perfonned on the SDR platfom1 to enable 

functionality with the latest communication standards 

3.3.I llistory ofSDR DeveI01Hnent 

In fact, SDR is not new technology, it has been available since the 1980s. The tenn 'software 

radio' has been first used by the employees of E-Systems Inc. in a company newsletter in 

1984. One of the first public software radio initiatives was the U.S. DARPA-Air 

Force military project named SPEAKEASY [44]. The primary goal of the SPEAKEASY 

project was to use programmable processing to emulate more than 10 existing military radios, 
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operating in frequency bands between 2 and 2000 MHz. Another SPEAKEASY design goal 

was to be able to easily incorporate new coding and modulation standards in the future and was 

the first SDR platform to involve FPGA modules for implementing digital baseband 

functionality. The main goal of SPEAKEASY Phase I (1992-1995) was to demonstrate a radio 

for the U.S. Air Force tactical ground air control party that could operate from 2 :MHz to 2 GHz, 

and thus could interoperate with ground force radios (ability to develop a reconfigurable 

modem with an open architecture and demonstrate its feasibility). The objectives were to prove 

the potential of the SDR to solve interoperability issues and problems related to product 

lifecycle shortening, due to rapidly evolving technologies. In SPEAKEASY phase II, the first 

goal was to get a more quickly reconfigurable architecture, which allowing several 

conversations at once, in an open software architecture, with cross-channel cormectivity. The 

secondary goals were to make it smaller, cheaper, and weigh less. Joint Tactical Radio System 

(JTRS) is a family of military software radios. They are modular, multi-band and multi-mode 

networked radio systems. Examples of implementations of the JTRS for different purposes 

include the navy Digital Modular Radio (DMR) [45], WITS [46] by Motorola, the SDR-3000 

[47] by Spectrum Signal Processing Inc. and the NRL software radio, which is an outgrowth

of the JCIT. The JCIT is another military SDR, whereas the CHARIOT and Spectrum Ware 

were academic projects, although funded by DARPA[48]. 

3.3.2 Main Co111ponents ofSDR-Based Systein Architeeture 

Figure 3.1 shows the main components that play a vital role to enable the SDR concept. These 

key components, which have been identified in the literature [ 49] are as follows: Intelligent 

anterma, programmable RF modules, digital-to-analog (DAC) and analog-to-digital Converters 

(ADC), digital signal processor and interconnect technologies. 

1) The intelligent anterma front end can be split into the basic antenna elements, the

related array configuration and processing blocks. Antenna size is inversely

proportional to the operating radio frequency. The main activities in the antenna

domain to enable the SDR concept (to support the broad range of frequencies with

the same antenna elements) are in the array processing blocks and techniques to

improve the antenna system performance and intelligence.
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Figure 3-1: Main Components of SOR-Based System Architecture. 

2) Programmable RF modules: It is a challenging task to cover the entire frequency

band with the same piece of equipment. The essential RF components both in 

transmitters and receivers are band pass filters. In the SDR-based RF domain the real 

challenge is to design programmable band pass filters. One of the techniques employed 

for existing SDR systems is to use a bank of RF modules. The wideband synthesiser, 

Microelectromechanical systems (MEMS) and superconductor technologies and low 

noise high performance semiconductor processes are the subjects of active research in 

this domain recently. 

3) DAC and ADC are the doors between the physical and digital domains. The

realisation of a true SDR-based system depends upon their performance. In related 

literature, it is said that the goal of the SDR concept is to connect the converters directly 

to the antenna elements. The traditional converters are pushing the envelope to achieve 

better resolution and faster conversion rates. The super-conductivity and optical 

sampling techniques are the area of active research to achieve even higher performance. 

The optical sampling technique is a novel method to perform time-resolved 

measurements of optical data signals at high bit rates with a bandwidth that cannot be 

reached by conventional photodetectors and oscilloscope. However, the use of this 

optical technique has disadvantage of optical imperfection and high cost. 

4) DSP is the key element to realise software defmed radio based systems. The sampling

techniques, rate conversion and multi-rate processing DSP techniques have been 

instrumental in the progress of SDR. To implement DSP algorithms to facilitate SDR, 

the candidate technologies are Programmable Digital Signal Processors (DSP), 
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Application-Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays 

(FPGAs) and a mixture of them. 

5) Interconnect Technologies are required for an SDR enabled system to have the ability

to connect various independent functional blocks to set up a radio link. The interface 

standards need' to be developed within the framework of an interconnect technology. 

Three main interconnect architectures are Bus, Switch fabric and Tree. 

Table 3 .1 below summarizes the several aspects of the digital hardware performance associated 

with software radios. Developers have a variety of architectures to choose from when 

developing digital signal processing applications. Embedded systems generally use four 

different types of advance processing devices to execute digital signal processing: ASICs, 

FPGAs, general-purpose processors (GPPs) and DSPs. When selecting architectures for 

specific applications, developers must balance cost, power, performance, flexibility and 

reliability to meet the demands of their mission-critical operations. For each architecture, there 

is a different set of tradeoffs (49]. In addition, SoC FPGAs are a powerful new class of 

programmable devices that are applicable to a wide range of electronic designs. SoC FPGA 

devices integrate both processor and FPGA architectures into a single device. Consequently, 

they provide higher integration, lower power, smaller board size, and higher bandwidth 

communication between the processor and FPGA. They also include a rich set of peripherals, 

on-chip memory, an FPGA-style logic array, and high-speed transceivers. 

Table 3.1: Comparison ofDSPs, GPP, FPGAs and ASICs (49]. 

Time to 
Performance Price 

Devek>pment 
Power 

lflllre 
Stlnmary Market Ease FlexiJility 

ASIC 1w Excelent Exrellent fi!ir Good Pllor fi!ir 

OSP Exrelent Excelent Good Exrelent Excelent Excellent Exrellett 

FPGA Good Excelent Pou" Excelent Poor Good Fair 

GPP Good Q>od Fair Gooo Ftir Excelert Goo! 

3.3.3SDR Tecltnology 

The different components of a radio system are illustrated in Figure 3.2 referenced from [50]. 

Clearly, all of the digital components may be not be programmable, but the larger the 

programmable part (DSP/FPGA part on Figure 3.2), the more software the radio is. Dedicated 

circuits are usually needed, for which the term configurable is more apt than programmable. In 
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a typical SDR, the analog part is limited to frequency translation: from Radio Frequency (RF) 

to Intermediate Frequency band (IF), and from IF to baseband. The baseband is sampled and 

all the signal processing is done digitally. It is not always likely or practicable to develop a 

radio that incorporates all the features of a fully software defined radio. Some radios may only 

support a few features associated with software defined radios, whereas others may be fully 

software defined [50]. 
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Figure 3-2: Radio Block Diagram, Highlighting the Separation between Digital, and Analog 

Parts, Programmable, Configurable and Fixed Hardware Parts [SO]. 

In order to further the development of software defined radios and the Software 

Communication Architecture (SCA), industry at large formed the SDR Forum (recently 

renamed the Wireless Innovation Forum). This consortium of industry partners has been active 

in furthering the research and development ofSDR and furthermore has continued to grow and 

evolve. To encourage a common meaning for the term 'SDR', the SDR Forum proposes to 

classify SDR into five tiers [50]. 

Tier O corresponding to hardware radio which cannot be changed by software; Tier 1 

corresponds to software controlled radio with control functions implemented in 

software ; Tier 2 corresponds to software defined radio with digital baseband processing 

implemented in software; Tier 3 is the ideal software radio with sampling at the antenna 

to process the radio frequency signal in software; Tier 4 corresponds to the ultimate 

software radio which extends these capabilities with fast transition (millisecond) from 

one protocol to another. Tier 3 is the most popular definition ofSDR: the radio includes 

software control of modulation, bandwidth frequency range and frequency bands. Tier 

3 and Tier 4 are not realistic today. 
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Building an SDR terminal includes the choosing of a computing platform for the digital part, a 

sampling frequency and a radio front-end. In addition to the careful choice of a computing 

platform, the designer must make a trade-off between the sampling frequency and terminal 

complexity. For instance, sampling a signal at 4.9 GHz (hence with a necessary 10 GHz sample 

rate) is today not available with reasonable power consumption. Even with an evolution to 

lower power ADC, a high bandwidth ADC would produce more samples, hence require a more 

powerful or specialised platfonn. 

3.3.4Available SJ)R Platfonns 

There are various types of software defined radio platforms using various technologies. These 

technologies are often mixed and sometimes the term configurable is more appropriate than 

programmable for them. Note that when designing a complete SDR system from scratch, it is 

very important to have a hardware platform that is both sufficiently programmable and 

computationally powerful, as well as a software architecture that can allow a communication 

system designer to implement a wide range of different transceiver realisations. In this section, 

we first study some of well-knovm SDR hardware platforms followed by the software 

architectures. 

SDR Hardware Platforms: 

Universal Software Radio Peripheral (USRP): One of the most well-known of all SDR 

hardware platforms. It is a product of Matt Ettus (Ettus Research LLC), which is 

considered to be a relatively inexpensive hardware for enabling SDR design and 

development [51]. All the baseband digital communication algorithms and digital 

signal processing are implemented on a computer workstation. USRP is open source, 

which allows for user customisation and fabrication. The USRP 1 and USRP2 platforms 

are a first and second generation of the USRP respectively. The USRP is composed of 

high frequency ADC/DACs which sample the signal at an intermediate frequency. A 

FPGA converts and stores the baseband signal. Most of the signal processing is done 

by a CPU connected to the FPGA by a USB link (USRP!) or an Ethernet link (USRP2). 

The platform is in widespread use and supported by third party software. It is aimed to 

work with GNU radio, but is also compatible with National Instruments Lab VIEW and 

Mathworks Matlab. Following the success of the USRPJ & USRP2, Ettus Research 

officially released several new versions of the platform recently. USRPxx platform is 

optimised for designing and deploying next generation wireless communications 
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systems and for RF applications from DC to 6 GHz, and provides options for GPS 

Disciplined Synchronisation, MIMO configurations and embedded systems. Example 

application areas include white space radios, mobile phones, public safety radio, land 

mobiles, broadcast TV, FM radio, satellite navigation and amateur radio bands. 

Other well-known SDR hardware platforms are Kansas University Agile Radio 

(KUAR), Rice Wireless Open-Access Research Platfmm (WARP), Berkeley 

Emulation Engine3 (BEE3) and Intelligent Transport System (ITS). The KUAR 

hardware [52] has been promoted through the Defense Advanced Research Projects 

Agency (DARPA) as a next generation (XG) program. The complete system was 

developed in simulink and implemented in Xilinx VHDL by generating the VHDL code 

from Simulink models using a rnodalism of mentor graphics. The WARP (wireless 

open-access research platform of Rice University) is a scalable and extensible 

programmable platform, built for prototyping advanced wireless networks [53]. It has 

programmability of both physical and network layer protocols on a single platform. The 

BEE3 is new generation of Berkeley Emulation Engine-2[54]. It is jointly developed 

by Microsoft Research, UC Berkeley and BEE cube Inc. It is useful for most 

computationally intensive real-time applications, employing a high-speed multiple 

FPGA-based real-world prototyping and development platform. ITS is from National 

Institute of Information and Communications Technology (NICT) of Japan, who 

developed a software-defined radio platforn1 so-called NISTITS. It is specially 

designed for mobile communication, wireless LAN and digital terrestrial TV [55]. 

SDR Software Platforms: 

MathWorks offers support for the USRP with the communications system toolbox, 

which supports Universal Hardware Driver (UHD) to provide a real-time connection to 

the USRP family of radios directly from Matlab and Simulink. RF signals can be 

received from a USRP radio, and the data processed in real-time using Matlab functions 

or Simulink blocks [56]. Similarly, RF signals can be transmitted from Matlab or 

Simulink by streaming data to USRP radios. Parameters such as centre frequency, gain 

and interpolation or decimation rates can be configured directly from Matlab or 

Simulink. Other software environments that support USRP are GNU Radio, Lab VIEW 

and OpenBTS (open source software). 
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Other well-known software platforms are GNU Radio, Open-Source SCA 

Implementation Embedded (OSSIE), Wireless Open-Access Research Platform for 

Network (W ARPnet) and Cognitive Radio Open Source System (CROSS). GNU Radio 

is an open source software development toolkit that provides the signal processing 

runtime and processing blocks to implement software radios using readily-available, 

low cost external RF hardware and commodity processors (51]. The radio applications 

are written in Python, while the performance critical signal processing components are 

implemented in C++. GNU Radio Companion (GRC) is a graphical tool for creating 

signal flow graphs and generating flow-graph source code. Thus, the developer is able 

to implement real-time, high throughput radio systems in a simple-to-use, rapid­

application development environment. OSSIE is Virginia Tech open source software 

whose core framework is based on the JTRS software communications architecture 

(SCA) [57]. The OSSIE is an object-oriented SCA operating environment, where signal 

processing components are written in C++.The operating environment, often referred 

to as the core framework, implements the management, configuration, and control of 

the radio system. Every OSSIE component is considered as having two parts: one part 

realising the signal processing and another managing the SCA infrastructure. The 

OSSIE waveforms are described in an XML that is used to describe component 

properties and interconnections between components in a waveform. W ARPnet is an 

SDR framework that is built around client server architecture in Python (58]. The 

WARPnet uses PCAP (Packet Capture) application programming interface to 

communicate with the WARP board directly. To allow the Python-based client/server 

to access PCAP, the Python Pcap extension (Pcapy) module is required. With 

WARPLab, one can interact with WARP nodes directly from the Matlab workspace 

and signals generated in Matlab can be transmitted in real-time over-the-air using 

WARP nodes. CROSS is open source cognitive radio architecture [59]. It consists of 

five core component categories (modules); cognitive radio shell (CRS), cognitive 

engine (CE), policy engine (PE), service management layer (SML), and software­

defined radio host platform. The CROSS is a modular cognitive radio system 

framework that uses socket com1ections for inter-component communication. The 

cognitive radio shell library and API are implemented in C++, the other modules can 

be implemented in any language that support a TCP/IP socket interface. 
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3.4Cognitive Radio 

Cognitive radio (CR) is one of the new long term developments taking place in radio receiver 

and radio communications teclmology. After SDR which is slowly becoming more of a reality, 

CR and cognitive radio teclmology will be the next major step forward enabling more effective 

radio communications systems to be developed. The idea for cognitive radio has come out of 

the need to utilise the radio spectrum more efficiently, and to be able to maintain the most 

efficient form of communication for the prevailing conditions. By using the levels of 

processing that arc available today, it is possible to develop a radio that is able to look at the 

existing spectrum, detect which frequencies are clear, and then implement the best form of 

communication for the required conditions. In this way cognitive radio technology is able to 

select the frequency band, the type of modulation, and power levels most suited to the 

requirements, prevailing conditions and the regional regulatory requirements. 

3.4.l Cognitive Radio Definition 

Cognitive radio is a broad concept and has different meanings in different contexts (60,61, 62]. 

The term cognitive radio has been coined by Mitola as an intelligent radio which is aware of 

its surrounding environment and capable of changing its behavior to optimise the user 

experience {62, 63]. Therefore, a cognitive radio has three important characteristics: awareness, 

cognition, and adaptability. Slightly different cognitive radio characterisations are given in 

[64,65]. Awareness is the ability of the radio to measure, sense, and be aware of its environment 

and internal states. A radio may exhibit different levels of awareness such as spectrum 

awareness, location awareness, user awareness, network awareness, etc. Cognition, is the 

ability to process information, learn about the environment, and make decisions about its 

operating behavior to achieve predefined objectives. Adaptability, is the capability of adjusting 

operating parameters for the transmission on the fly without any modifications on the hardware 

components. This capability enables the cognitive radio to adapt easily to the dynamic radio 

environment. More pertinent definitions of a cognitive radio are given by 

Haykin [63,66] and by Jondral [67]: 

• S. Haykin [63,66]: "Cognitive radio is an intelligent wireless communication system

that is aware of its surrounding environment (i.e. its outside world), and uses the 

methodology of understanding-by-building to learn from the environment and adapt its 

internal states to statistical variations in the incoming RF stimuli by making 

corresponding changes in certain operating parameters ( e.g. transmit power, carrier­

frequency and modulation strategy) in real-time, with two primary objectives in mind: 
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highly reliable communications whenever and wherever needed and efficient utilisation 

of the radio spectrum." 

• F. K. Jondral [67]: "A CR is an SDR that additionally senses its environment, tracks

changes, and reacts upon its findings. A CR is an autonomous unit in a communications 

environment that frequently exchanges information with the networks it is able to 

access as well as with other CRs." 

From these definitions, two main characteristics of CR can be identified: cognitive capability, 

i.e. the ability to capture information from the radio environment, and reconfigurability, which

enables the transmitter parameters to be dynamically programmed and modified according to 

the radio environment. 

3.4.2Cognitive Radio Network Architecture 

The components of the infrastructure-based CR architecture, as shown in Figure 3.3, can be 

classified in two groups as the primary network and the CR network [73]. The primary network 

is referred to as the legacy network that has an exclusive right to certain spectrum bands. 

Examples include the common cellular and TV broadcast networks. In contrast, the CR 

network does not have a license to operate in the desired band. Hence, the spectrum access is 

allowed only in opportunistic manner. 

Unlicensed band 

a.condary network S.condary networt!. 
(without lnf1'Htructu,.) (wtth lnflMtructure) 

Figure 3-3: Cognitive Radio Network Architecture [73) 
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A primary network is defined as an existing network infrastructure that has a license for 

exclusively accessing a certain spectrum band. Examples include the common cellular and TV 

broadcast networks. The basic components of primary networks are as follow: 
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Primary user and Primary base station: A primary user has a license to operate in a 

certain spectrum band. This access can only be controlled by a primary base station and 

should not be affected by the operations of any CR users. A primary base station is a 

fixed infrastructure network component that has a spectrum license, such as the base 

station transceiver system (BTS) in a cellular system. In principle, these do not have 

any CR capability for sharing spectrum with CR users. 

A secondary or unlicensed network is defined as a network, with fixed infrastructure or based 

on ad hoe communication principles, without license to operate in a desired band. Hence, 

spectrum access is allowed only in an opportunistic. A secondary network is composed of: 

CR user, base station and spectrum broker: A CR user has no spectrum license. Hence, 

additional functionality is required to share the licensed spectrum band. In 

infrastructurewbased networks, the CR users may only be able to sense a certain portion 

of the spectrum band through local observations. They do not make decisions on 

spectrum availability and just report their sensing results to the CR base station. A CR 

base station is a fixed infrastructure component with CR capabilities. It provides singlew

hop connection, without a spectrwn access license, to CR users within transmission 

range and exerts control over them. A spectrum broker (or scheduling server) is a 

central network entity that plays a role in sharing the spectrum resources among 

different networks. It is not directly engaged in spectrum sensing. It just manages the 

spectrum allocations among different networks according to the sensing infonnation 

collected by each network. 

Alternatively, CR network can also have the cognitive nodes communicating with each other 

via ad-hoe poinHowpoint connections "without infrastructure" over either the licensed or the 

unlicensed bands as shown in as shown in Figure 3.3. While alleviating the infrastructure cost, 

such infrastructureless CR networks have increased networking complexity. In the absence of 

a controlling centralized entity, cognitive radio nodes in a distributed CR networks jointly 

coordinate their spectrum access decisions to share the available spectral opportunities. Thus, 

global mechanisms such as networkwwide synchronization might be needed for spectrum access 

coordination. 

3.4.3 Cognitive Capability of a Cognitive Radio 

The cognitive capability of a cognitive radio is defined as the ability of the cognitive radio 

transceiver to sense the surrounding radio environment, analyse the captured information and 
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accordingly decide the best course of action(s) in terms of which spectrum bands are to be used 

and the best transmission strategy to be adopted. Such a cognition capability allows a cognitive 

radio to continually observe the dynamically changing surrounding radio environment in order 

to interactively formulate appropriate transmission plans to be used. However, in order to 

achieve these objectives, cognitive radio is required to adaptively modify its characteristics and 

to access radio spectrum without causing interference to the primary licensed users. The 

cognitive cycle of cognitive radio operation as a secondary radio system is shown in Figure 3.4. 

Steps of the cognitive cycle are: spectrum sensing, spectrum decision, spectrum sharing and 

spectrum mobility [73]. 

f,w,,..,..", 

Chann.l Copac,ty 

Figure 3-4: Cognitive Cycle of Cognitive Radio [15]. 

•:• Spectrum sensing: A CR user can allocate only an unused portion of the spectrum. 

Therefore, a CR user should monitor the available spectrum bands, capture their 

information, and then detect spectrum holes. Spectrum sensing may be performed in 

cooperative and non-cooperative fashions. 

•:• Spectrum decision: Based on the spectrum availability, CR users can allocate a channel. 

This allocation not only depends on spectrum availability, but is also determined based 

on internal (and possibly external) policies. The spectrum decision function is divided 

into two steps: the characteristics of the spectrum holes detected in different spectrum 

bands are analysed and, the operating band is then selected based on the user Quality of 

Service (QoS) requirements 

•:• Spectrum sharing: Because there may be multiple CR users trying to access the spectrum, 

this function is aimed at providing a fair spectrum access to the coexisting secondary users 

and/or networks by coordinating the access to the available spectrum holes. 
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•!• Spectrum mobility: Since CR users are regarded as visitors to the spectrum, the objective 

of the spectrum mobility function is to ensure a seamless communication during 

transitions between different spectrum bands while avoiding harmful interference. Also, 

transfer of CR to a different available channel and/or spectrum band may be triggered by 

other reasons (preservation or improvement of the QoS, for example). 

3.G Cha1>ter S1uumary

Due to the command and control approach used in traditional spectrum licensing, the radio 

spectrum cannot be utilised efficiently. Therefore, a new spectrum licensing approach is being 

developed which improves the flexibility of spectrum access. This flexibility will be achieved 

through the use of cognitive radio implemented using software defined radio. Overall, in this 

Chapter, we firstly provide some insight into the various microprocessor technologies that are 

currently available to be implemented as part of an SDR hardware prototype. Secondly, we 

give a brief history of and motivating factors for, SDR, including the SPEAK.EASY program 

that proved the potential of the SDR concept for military radios and the ongoing JTRS program. 

JTRS will replace the hardware intensive military radios with the more flexible, interoperable 

SDRs in the future. Next, the main components of SDR, SDR technology and SDR hardware 

platform and software architectures are introduced. Finally, we gave a literature survey of 

cognitive radio including different CR definition. Additionally, cognitive radio network 

architecture and cognitive capability of cognitive radio was discussed. 
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Tune Resol11tion (Spectrltm Analyse1•) 

This part contains two chapters 

CHAPTER 4: Historical Spectrum Measurements and Lesson Learned in Context of CR. 

CHAPTER 5: Spectrum Occupancy Survey in Cognitive Radio: Measurement and Analysis. 
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Chapter 

4 

------------------------

Historical Spectrmn Occttpancy 

Measurements and Lesson 

Learned in the Context of CR 

4.1 Introduction 

We have suggested in previous Chapter that cognitive radio and SDR technology leads to result 

in efficient spectrum utilisation. However, before we attempt to assess the potential 

improvement available through use of CR we need to understand and recognise the actual 

occupancy of the licensed bands. Detailed and long term spectrum occupancy campaigns 

provide understanding and prediction of primary user activity, which is considered an essential 

step toward improving accuracy and the decision making process in cognitive radio. Actual 

measurements clearly show that the licensed spectrum is underutilised continuously across 

time and space; many white spaces which are not utilised may be identified readily [74]. 

Although previous spectrum measurement campaigns followed broadly similar approaches, a 

detailed analysis reveals the lack of a common and appropriate evaluation methodology. As 

pointed out in [75], different measurement strategies can result in widely divergent answers. 

Therefore, the availability of a common and reliable evaluation methodology would be 

desirable not only to prevent inaccurate results but also to enable the direct comparison of 

results from different sources and different campaigns. The main objective of this Chapter is 

to introduce and compare global spectrum occupancy measurements, and to mitigate the major 

drawback of previous spectrum occupancy studies by providing a unifying methodological 

framework for future spectrum measurement campaigns. 
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The rest of the Chapter can be grouped as follows: In section 4.2 we give an overview of global 

spectrum occupancy measurements. Since the Shared Spectrum Company (SSC) is the leading 

developer of spectrum management solutions, section 4.3 discusses the spectrum occupancy 

investigation by SSC. Next, comparison between global spectrum occupancy measurements 

are illustrated. In section 4.4 we discuss lessons learned during these measurements, which 

involve various factors to be considered when defining strategies for specific radio spectrwn 

measurements such as antenna selection, influence of spectrum analyser and data post 

processing. Finally, section 4.5 summarises the conclusions. 

4.2 Global S1>ect1•tun Occupancy Measure1nents 

(P1•evious Campaig;ns) 

Summarising the results of measurement campaigns for spectrum utilisation involves 

examining several spectrum surveys covering a wide frequency range at different locations and 

scenarios to detennine the actual spectrum utilisation. Several spectrum surveys have been 

conducted with some covering a wide frequency range and some more specific to a particular 

radio technology. For greater detail [76] summarises previous spectrum measurement and the 

main technical aspects of various broadband spectrum measurement campaigns. This section 

reviews some of the campaigns performed in different parts of the world in the context of 

cognitive radio application. The first spectrum occupancy measurements campaign to be 

considered here was performed in USA by the National Telecommunication and Information 

and Administration (NTIA) [77]. The next large scale spectrum occupancy measurement was 

done by Marc McHenry and funded by the National Science Foundation (NSF) [78]. The 

occupancy in many American cities was found to be always below 25% and it is suggested that 

this is due to the higher detection threshold used, between -90 and -105 dBm. Robin Chiang 

et.al conducted spectrum occupancy measurements in New Zealand [11]. This campaign, 

conducted in the frequency range between 806 MHz and 2750 MHz, indicated that, on average, 

the actual spectral usage in this band is only about 6.2%. The average occupancy for the band 

80 MHz and 5850MI-Iz was found to be only 4.5% in the spectrum survey of Singapore [79}. 

The spectrum occupancy measurements conducted in the frequency range from 75 MHz to 3 

GHz in an outdoor urban environment of Barcelona, Spain is presented in [80]. The 

measurements are analysed and compared to the official spectrum regulations. A common 

finding among these studies is that a significant amount of spectrwn available is indeed heavily 

underutilised at the moment. Since the Shared Spectrun1 Company (SSC), a pioneer in the 

development of spectrum management solutions, has been promoting the more efficient use of 
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RF spectrum, we are reviewing the campaigns of SSC in more detail in the following section 

as good examples of campaigns to date. 

4.3Sha1•ed Spectrum Co1upany (SSC) 

SSC may be considered as the first company to file comments at the Federal Communications 

Commission (FCC) proposing the shared use of "white spaces" in the television band for 

broadband Internet access. Over the past 12 years, SSC has become a leading expert and 

innovator in the development of cognitive radio technologies. SSC pioneered the research and 

development of dynamic spectrum access (DSA) technology for the U.S. Department of 

Defence. The company's spectrum utilisation measurements are among the most cited in the 

wireless industry, and it has operated a spectrum observatory globally. Given the keen interest 

in the prime RF spectrum bands between 30 MHz and 3 GHz, SSC collected worldwide 

spectrum usage data at its spectrum observatory in these bands over last decade, mostly in 

America. Other studies have been also carried out in Europe. The following description of 

spectrum occupancy measurements campaigns u ndertaken by SSC (section 4.3.1 to 4.3.6) are 

based upon data extracted from references [68-72]. 

4.8.l SSC Ca,npaigns During 2008 

Campaigns done between 10 - 12 June 2003 by Mark McI-Ienry of Shared Spectrum and Max 

Vilimpoc from New America measured the utilisation of the radio frequency spectrum in the 

immediate vicinity of New America's offices [68]. The location of the measurement site in an 

urban and highly pedestrian area just north of Dupont Circle, Washington offered an ideal 

vantage from which to measure spectrum utilisation during peak business hours. Accordingly, 

the analysis was perfonned over a range of frequencies covering both civilian and military use. 

Measurements were made in all bands in the 30 MHz to 3000 MHz range. The total spectrum 

occupied divided by the total spectrum available in the bands is used to find the overall 

occupancy value of 38%. 

4.8.2SSC Catnpaigns During 2004 

The spectrum occupancy measurements of SSS's 2004 campaign were performed in Vienna, 

Virginia. From this site, data was collected from 7 April 2004 until 16 April 2004(69]. TI1e 

spectrum occupancy measurements were made over multiple bands from 30 MHz to 3000 MHz. 

The overall average occupancies were 3.4%, 6.9% and 13.1 % at Great Falls, Tyson's Comer 

and Arlington in Virginia respectively, and the occupied spectrum was 87.62 MHz, 178.24 

MHz and 292.57 MHz from total band of 3000MHz. Next, as part of National Science 

Foundation National Radio Network Research Testbed (NRNRT) program, Shared Spectrum 

45 



Chapter 4: Historical Spectrum Occupancy Measurement and Lesson Learned 

Company made extensive spectrum occupancy measurements from August 30 to 16 December, 

2004 in one of the most densely populated areas in the United States, New York City, as well 

as in Vienna City, Virginia. These locations and events were specifically selected for study of 

spectrum occupancy during a period of extraordinarily high communications use. 

Measurements were made in all bands in the 30 MHz to 3000 MHz range. The total spectrum 

occupied divided by the total spectrum in the bands is used to find the overall occupancy value 

ofl3%. 

4.3.3SSC C,unpaigns During 2005 

Reference [70] describes spectrum occupancy measurements perfonned by the Shared 

Spectrum Company in conjunction with the Wireless Interference Lab of the Illinois Institute 

of Technology in Chicago, Illinois from November 16 to 18, 2005. Based on results of the 

study, it was concluded that the overall average spectrum usage during the measurement period 

was 17.4%. Occupancy varied from less than 1% in the 1240- 1300 MHz Amateur Band, to 

70.9% in the 54 MHz-88 MHz band. Thus, no more than 17.4% of the spectrum opportunities 

(in frequency and in time) were utilised in Chicago during a high use period when measured 

from an elevated location. 

4.3.4SSC C:unpaigns During 2007 

In 2007 the spectrum occupancy measurements were performed by Shared Spectrum Company 

with a receiver at the top of the Commission for Communications Regulation building in 

Dublin, Ireland from April 16 through to April 18, 2007[71]. Dublin is the most densely 

populated city in Ireland and in this report it is shown that the spectrum occupancy during a 

high usage period in a normal work week is only 13.6% in this city. Next, spectrum occupancy 

measurements were performed by Shared Spectrum Company at the Loring Commerce Centre, 

Limestone, Maine from September 18 to 20, 2007. These measurements were made during a 

normal work week and it was concluded that the average spectrum usage during the 

measurement period was 1.7%. Occupancy varied from less than 1% to 24.65% (470- 512 MHz) 

in the measurement period. 

4.3.:lSSC C:unpaigns During 2009 

Given the keen interest in the prime RF spectrum bands between 30 MHz and 3 GHz, SSC 

collected spectrum usage data at its spectrum observatory in these bands over a three·and�a­

half day period in the autumn 2009[72J. Two data collection antennas were placed on the 

rooftop ofits seven·story, Vienna, Virginia headquarters building. The building is located in a 

dense urban area near Washington, DC. It was concluded that the average spectrnm usage 
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during the measurement period was 21 %. Occupancy varied from less than 0.1% to 77 % 

(174-216 MHz) in the measurement period. 

4.3.6Co111pw-ing Global Spectnun Occupancy Measure1nents 

In this section we have the collected and grouped together all data collected by SSC during the 

campaigns described above, to compare global results and draw conclusions. Figure 4. I and 

Figure 4.2 provide graphic comparisons of the band by band occupancy in USA and Europe 

with the results of study perfonned from 2003 to 2009 in a different cities. The aggregate results 

of this comparison shows that spectrum utilisation average is very low. This proves that the 

inefficient usage of frequency spectrum is a problem not only in USA, but also in European 

countries. We believe that dynamic spectrum access technology can be used to harvest a large 

amount of this unoccupied spectrum worldwide. 

Overall, this survey has presented data and briefly discussed some of the conclusions the can 

be drawn from them. Spectrum usage data was collected from 30 MHz to 3 GHz at a single 

location or multi locations. An analysis of the data indicates that a number of spectrum bands 

may be excellent candidates for reallocation and/or spectrum sharing. Given the urgent need to 

identify more additional spectrum for mobile broadband applications, this data should serve as 

a motivation to perform a more detailed analysis to confirm the results herein. 

We conclude that any future analysis should include the following. 

•!• Measurements should be taken at numerous locations. This would eliminate any 

bias introduced by the single location used in the current analysis. 

•!• Some measurements should focus on urban areas while others would be wide area. 

Wide area results could be made aerially using planes or balloons. The wide area 

measurements should focus on rural areas and help underscore any differences with 

urban spectrum usage. The relation between measurements made at high points and 

at ground level is discussed in section 5.5.4.L 

•!• Measurements should be taken at fixed and mobile locations and should be taken 

indoors and outdoors. 

•!• More inMdepth analysis should be undertaken of selected bands (e.g., TV auxiliary, 

etc.) that offer the greatest potential for sharing. Analysis parameters such as the 

detection threshold should be optimised for each band, and non-measurement 

factors (e.g., the challenges involved in protecting receiveMonly satellite stations) 

should be accom1ted for where necessary. 
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Figure 4-1: Bar Graph of the Spectrum Occupancy in Each Band (30-960 MHz). 
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Figure 4-2: Bar Graph of the Spectrum Occupancy in Each Band (960-2900 MHz). 
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4.4 Lessons Learnetl During Measure1nents Setup 

There are various factors to be considered while defining strategy for specific radio spectrum 

measurements which are mentioned in [75]. Some of these are basic parameters that every 

spectrum measurement strategy should clearly specify: frequency (frequency span and 

frequency points to be measured), resolution bandwidth, location (measurement site selection), 

direction (antetma pointing angle) and time (sampling rate and measurement period). In 

previous measurements, different configurations have been used ranging from simple steps, 

which connect antenna direct by to a spectrum analyser [82] to more sophisticated and complex 

designs [81,83). The study presented in this thesis is based on a spectrum analyser setup where 

an external device is added in order to improve the detection capabilities of the system, which 

leads to more accuracy and reliability. A detailed scheme is shown in Figure 4.3. The design is 

composed of four broad band antennas covering the frequency from range from 30 to 3000 

MHz, and a low noise preamplifier to enhance the overall sensitivity and the ability to detect 

weak signals, and spectrum analyser connected to a computer to record the spectrum activity 

data. 

Selecting the right antenna plays a crucial role in determining the overall perfonnance of 

measurement system to understand and to improve the received signal. Degradations and 

failures in the antenna system will cause poor measurement. Furthermore, to obtain additional 

measurement signal to noise ratio (SNR) amplification is used. The existing trade-off between 

sensitivity and dynamic range must be taken into account. Thus, the correct pre-amplifier has 

to be chosen based on the specific measurement needs (which are also related to the needs of 

the CR system itself). Although most spectrum analysers include an internal amplifier, in some 

measurement conditions an external amplifier is also preferred. The reason behind this is that 

some measurement SNR is lost between the antetma port and spectrum analyser. However, to 

improve the system Noise Figure (NF) a low noise pre-amplifier is often located very close to 

the antenna. This amplifier will compensate for cable loss and increase the system sensitivity. 

This condition only applies if the measurement system is limited by internal noise, which is 

indeed the case above about 30 MHz. On the other hand, it is worth noting that choosing an 

amplifier with the highest possible gain is not always the best option in broadband spectrum 

surveys where a wide range of input signals may present. Overall, the reasonable design 

criterion when selecting the antenna and pre-amplifier to be used is to guarantee that the 

different received signal strengths lie within the overall system dynamic range. In the next 

subsections the influence of antenna selection, influence of spectrum analyser, influence of 
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spectrum measurement and influence of frequency and time aspects will be introduced in more 

detail. 
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Figure 4-3: Measurement Setup. 

4.4.l Influence of Aute1u1a Selection 

Spectrum analyzer 
Agilent E4407B 
9 kHz-26GHz 

An antenna is simply an electronic component designed to transmit and receive radio frequency 

signals (broadcast radio, TV, etc.). Different antenna types are used for different radio 

frequencies and for different coverages. Antenna selection can be one of the most confusing 

parts of designing a spectrum measurement platform. The two core types of antennas are 

omnidirectional and directional. A typical problem encountered with modern wideband 

measurement is the choice of suitable antennas. Table 4.1 reviews some of the characteristics 

of basic antennas that will be used for our signal measurements throughout our research. 

Table 4.1: Characteristics of Antennas. 

Type and product 1Ds Gain Class of antenna Bandwidth 
Discone Antenna Low/2.2dBi Omnidirectional 25-2000 MHz

(D130NJ) 
Digital Antenna Low/ 3.5dBi Omnidirectional 470-860MHz

(DTA218 ) 
Bilog Antenna Medium/ 6-7dB Directional 30-3000MHz

(CBL6143) 
Yagi TV antenna High/ 12.SdBi Directional 470-862 MHz

(RX20A/B/T) 

In the course of choosing the optimal antenna we always find ourselves comparing 

manufacturer's specifications. An alternative approach is to simply compare the measured 

signal levels of one antenna to another. In the following experiment we compare the 
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relative field performance of four antennas and choose the most suitable and accurate. The four 

antenna types that have been employed in this study are a Bilog Antenna (CBL6143 ,designed 

by Prof. Andy Marvin and Dr. Stuart Porter of the University of York), Omnidirectional 

Discone antenna (DTA218 Digital antenna) and a Yagi antenna (TV antenna RX20A/Bff). 

The platform in this scheme was configured as in Figure 4.3. Overall, the antennas covered the 

range from 30 to 3000 MHz connected by a lm RF cable to the preamplifier. The GPIB bus 

was used for logging the trace data onto the hard disk of a PC and for transferring control 

command sequences to the spectrum analyser. A manual switch was used to choose a given 

antenna. All measurements of antennas are made back to back, as quickly as possible, in order 

to minimise the error contribution from time variant signals and environmental conditions. The 

only parameter being compared here is received signal level, a function of an 

antenna's sensitivity and gain. Antennas were located at exactly the same spot and at exactly 

the same height (with one qualifier as follows), were carefully positioned using the same cables 

and same amplifier were used, and the elapsed time between measurements was minimised as 

much as possible. The spectrum analyser being used is the Agilent E4407B. The measurements 

were performed on the rooftop of the Applied Science building at the University of Hull. This 

measurement site (GPS location latitude 53.74° North, longitude 0.34° West) was used to 

investigate TV band signals. Occupied channels available at the measurement location include 

channels 22, 25, 27, 28, 30, 33, 35, 53 and 60. The only thing being measured here is 

the relative received level of one antenna compared to another. 

The general characterisation of the traffic density at the TV frequency bands with different 

antennas is described in this section. The spectrum occupancy measurements have been 

conducted with four different antennas, to investigate the effect of the antenna on the spectrum 

activity a cross whole TV band and with specific TV channels. The first and second 

measurements were conducted using Discone antenna and DTA218 Digital antennas, 

respectively, which are considered as omnidirectional antennas. The third measurement was 

performed using the Yagi antenna. The fourth measurement was conducted using the Bilog 

antenna. Antennas 3 and 4 are consider as directional antennas. We compare the performance 

of received signals measured over the TV band using the four antennas as shown in Figure 4.4. 

As expected, a higher received signal is observed with directional antennas than the 

orrmid.irectional antennas. A significantly higher spectral activity is observed by using an 

external amplifier for both the directional antennas and omnidirectional antennas. We have also 

noted that the duty cycle of spectrum occupancy of the TV band (470-862 MHz) using the 
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Bilog antenna is greater than with the other antennas. This may be due to another channel being 

received from another broadcasting aerial since that antenna combines electromagnetic 

characteristics of both bi conical and log periodic antennas into one assembly. 
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Figure 4-4: Average Received Signal with/without External Amplifier over the Full TV Band. 

More specifically, Figure 4_5 compares the performance of receive antenna signals at specific 

channels (CH30, centre frequency 545MHz, and CH33, centre frequency 570MHz) for the four 

different antennas. Firstly, the analysis compares the Discone antenna (2.2dBi gain) with 

DTA218 antenna (3.5dBi gain). We see that the omnidirectional DTA218 provides better 

sensitivity, since the received signal is 2-4 dB higher at CH 33(and at the rest of the TV 

channels). Secondly, the analysis compares the Bilog Antenna (6-7dBi gain) with the Yagi 

UHF TV antenna (12.5dBi gain). Both are models of directional antenna and capable of 

measuring the complete TV frequency band. Although the Yagi has 5-6dBi gain more than 

Bilog antenna, the Bilog antenna provides better sensitivity, since this received signal has a 4 

dB higher. Moreover, the Bilog antenna has about 3 to 4 dB better sensitivity than the Yagi 

UHF TV antenna across the majority of the TV band spectrum as shown in shown in Figure 

4.4. One exception is at CH53 and CH60, where the Bilog sensitivity slightly drops off at the 

low end channel (beginning of Frequency Channel), but at the high end channel (ending of 

Frequency Channel), the measured channel responses where similar. Taking into account 

all the received signal power over all TV channels with and without external amplifier we could 

conclude that the Bilog antenna sensitivity is compares well to the others. The significant 
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differences observed for the TV channels captured are as follows: at CH33 the observations 

show that the Bilog antenna exhibits about 1-3 dB stronger response compared to the Yagi 

antenna, and that the Bilog antenna exhibits about 10-18 dB stronger response compared to 

omnidirectional antennas. As we mentioned previously, this is due to the specification of the 

Bilog antenna which combines unmatched accuracy with very high gain over the complete 

frequency range. It also combines the advantages of a biconical antenna and those of a log 

periodic antenna in a single high end EMC/EMI antenna with an extremely high accuracy over 

the full specified frequency range. 

545.833 570 

hequenc:y [MHz) 

Figure 4-5: Average Received Signal at CH30 and CH33. 

Generally, our system comprises four broadband receiving antennas, which are wideband 

antennas with directional and omnidirectional receiving patterns. The exceptionally wideband 

coverage (allowing a reduced number of antennas in broadband spectrum studies) and the 

omnidirectional feature ( allowing the detection of licensed signals coming from any directions) 

make Bilog and DTA218 antennas attractive for radio measurement and monitoring 

applications. In this studies, directive antennas e.g., Bilog antennas may be used at fixed 

locations to improve the system's sensitivity at the cost of an increased complexity in the 

measurement procedures. However, to reduce complexity where a secondary user needs to 

detect licensed signals coming from any direction and different locations positions to avoid 

interference with the primary user, and the DTA218 omnidirectional antennas are preferable. 

4.4.2 luflueuce of Spectrtun Analyser on tbe Measure1nents 

To get accurate measurements with an undistorted input signal, the spectrum analyser settings 

must be correctly set for application-specific measurements, and the measurement procedure 

optimised to take best advantage ofthe specifications. A spectrum analyser's ability to measure 

low-level signals is limited by the noise generated inside the spectrum analyser. This sensitivity 

to low-level signals is affected by the analyser settings. To measure the low-level signal, the 

spectrum analyser's sensitivity must be improved by minimising the input attenuator, 
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narrowing down the resolution bandwidth (RBW) filter, and using a preamplifier. These 

techniques effectively lower the displayed average noise level (DANL) and reveal the low­

level signal. In this section, firstly, we will quantify the impact of sensitivity on the detected 

primary activity by taking the account of the average duty cycle of each band of PSD to provide 

simple characterisation of the temporal behaviour of a channel. Secondly, the effect of the 

amplification configuration on the outcome of the measurement will be illustrated. 

1) The effect of amplification on the results from measurements on the GSM900 and wireless

band (900-1300MI-lz) will be discussed in two cases: The GSM900 uplink and the GSM900 

downlink has been chosen since, contrary to the TV band, GSM channels exhibit considerable 

time variability as calls come and go and provide the opportunity to study duty cycle in the 

context of CR. The wireless band (900-1300) has been chosen since it has very weak signal 

activity. 

In case of GSM900, when the GSM uplink direction is measured without any 

amplification, some PSD signals are detected resulting in an overall average Duty Cycle 

(DC) for the GSM900 uplink of 2.0 % for the entire band. When only the external

amplifier is connected, a higher number of primary signals are detected and the 

resulting average DC of GSM900 uplink is 8.1 %. These results indicate that, when 

measuring the GSM uplink primary activity at our measurement location, an estimation 

error of nearly 6.0% was observed due to insufficient amplification. When the downlink 

GSM downlink is measured, the results obtained without amplification conclude that 

the GSM downlink band is subject to moderate/high usage levels with average duty 

cycle 63.34%, whereas the results obtained with amplification reveal that such band is 

actually overcrowded, with an average DC of 92.5 %, thus resulting in an absolute 

estimation error of 92.5%-63.3%=29.2%. Hence, poor sensitivity levels resulted in 

severe underestimation of primary activity since an estimation error of 29.2% was 

observed in this case. 

In the case of wireless band (900-1300 MHz, with exception oftlte GSM downlink), 

we compared the amplification with four different scenarios: without amplification, 

with internal amplification only, and external amplification only and with both internal 

and external amplification. Without amplification the average duty cycle of band was 

around 3.1%. By including the internal amplifier (Average DC around 7.3%) and 

external amplifier (Average DC around 11.2%) and comparing the average duty cycle 
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it can be confirmed that the use of external amplifier provides better sensitivity 

improvements than the use of the spectrum analyser's built-in amplifier as shown in 

table 4.2. The external pre-amplifier enables the detection of some signals that are not 

detected with the spectrum analyser's built-in amplifier. On the other hand, both 

amplifiers are required in order to properly detect the presence of licensed systems 

(Average DC around 16.0%). 

These measurements were investigated using fixed threshold to estimate the average duty cycle 

of spectrum occupancy measurement with four different scenarios. The results indicate that 

amplification by itself is not enough: an appropriate amplification configuration is required in 

order to accurately estimate spectrum usage. 

Table 4.2: Impact of Amplification on the Activity Detected for Wireless Band. 

Spectrum analyser Average Duty cycle of 

wireless band 900-1300 MHz 

Without amplification 3.1% 

With internal amplification 7.3% 

With external amplification 11.2% 

With internal and external amplification 16.0% 

2) The effect of the amplification configuration on the outcome measurements will be discussed

in this section. This investigation was done during the Agilent (Keysight) Teclmologies 

workshop held in September 2104 in Shipley, Bradford. The workshop was a one day training 

involving signal measurement and signal analysis. During this workshop the spectrum analyser 

was tested with internal and external amplifiers. General, the use of amplification is a time­

tested way to improve measurement sensitivity and accuracy for small signals, especially those 

near the noise floor. As can be appreciated, spectrum analysers are in general characterised by 

high noise figures, which limit the minimum signal power that can be detected. By using 

amplifiers with lower noise figures internal preamps alone or along with those external to signal 

analysers, the sensitivity of the spectrum analyser may be improved, allowing measurement of 

low level signals. To quantify the detection capabilities under different amplification 

configurations, to develop our spectrum measurement platform, the signal was detected using 

four different scenarios (without amplifier, with internal amplifier only, with external low noise 

amplifier only and both amplifiers). As we can see in table 4.3, the best sensitivity is achieved 

when both amplifiers are simultaneously employed. It is worth noting that the use of amplifiers 

not only can reduce the overall noise figure but also the system's dynamic range. As it can be 
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appreciated in Table 4.3, the use of either the internal or external amplifier does not reduce the 

effective spurious-free dynamic range significantly. However, when both amplifiers are 

simultaneously activated, the resulting overall gain causes an appreciable reduction of the 

dynamic range, thus imposing a trade-off between the sensitivity and the dynamic range. So, 

by using an appropriate preamplifier with the spectrum analyser, we can obtain significant 

benefit to the system performance. Based on the table of results a suitable measurement 

strategy is to employ both amplifiers whenever possible (this provides the best possible 

sensitivity) and to deactivate the internal or external amplifiers (preferably in this order) in the 

presence of overloading signals received above the maximum tolerable input power (this can 

avoid the appearance of spurious responses while still improving sensitivity). Overall, noise is 

unavoidable in any measurement system. In the case of spectrum analysers, which are primarily 

designed for high dynamic range rather than low noise, a preamplifier is usually required to 

produce good quality measurements in many applications. In summary, a low-noise 

preamplifier may be beneficial if the measurement device under test has low gain or has a high 

noise figure. But if a measurement device under test already has significant positive gain, a 

preamplifier should not be used as adding further gain will increase the input noise levels and 

may also drive the instrument into the non-linear region or exceed the maximum input power 

to the instrument and thus damaging it. 

Table 4.3: Impact of the Amplification Configuration. 

Amplifiers None Internal External Both 

Noise Figure(dB) 30.0 16.0 8.0 5.0 

Sensitivity( dBm/I kHz) -118.0 -128.0 -138.0 -140.0

Dynamic range (dB) 88.0 86.0 87.0 84.0

4.4.3Influcncc of Frequency an,l 'l'hne Dhncnsion 

Despite the fact that the previous sections dealt with basic principles of spectral analysis, this 

section will discuss the proper selection of configuration parameters related to the influence of 

frequency and time aspects. 

4.4.3.l Influence of"Frequency Dimension 
Frequency dimension is an obvious parameter that can be adjusted in the measurement program. 

The two main frequency dimension parameters are: Frequency range and Resolution 

Bandwidth (RBW). \Vhere frequency range is the span of frequencies specified for making a 

measurement and RBW determines the fast Fourier transform (FFT) bin size, or the smallest 

frequency that can be resolved. 
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Firstly, in order that no signals wiU be missed by skipping over them in frequency, the band 

must be scanned in steps smaller than the resolution bandwidth. In previous spectrum 

measurement campaigns, the relation between the frequency range and signal bandwidth has 

received little attention. However, to achieve results with reasonable accuracy classifying 

emissions in bands with different channel widths this is important. Selecting a frequency bin 

size narrower than the signal bandwidth can give better accuracy results. Note that a bin is a 

spectrum sample, and defines the frequency resolution of the window, where N(Bins) = 

FFTsize /2 and frequency resolution FR = Fmax /N(Bins). Examples are measurement of 

GSM1800 and the UMTS downlink bands shown in Figure 4.6 and 4.7 respectively. In the case 

of GSM 1800, higher frequency bins tend to result in higher observed spectrum occupancy rates, 

as seen in Figure 4.6 and Figure 4.7. But, the behaviour in each case is different. In the case of 

the GSM1800 band, for frequency bins lower than the bandwidth of the transmitted signal (200 

kHz), the average DCs (53 .02% and 61.52%) indicate that the band is subject to moderate usage 

levels. For a frequency bin of 1.250 MHz, which is quite a bit large than the signal bandwidth, 

the obtained DC of 82.35% incorrectly concludes that the same band experiences a high level 

of utilisation. 
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Figure 4-6: Influence of the Frequency Bin on the Activity GSM1800. 
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Figure 4-7: Influence of the Frequency Bin on the Activity Band UMTS. 
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This phenomenon can be clarified as follows. Frequency bin values (e.g. frequency bin of 

1250 kHz) larger than the signal bandwidth (200 kHz active channel) lead to important 

overestimations of spectrum occupancy in regions with moderate activity levels, which in turn 

results in greater average DCs for the entire band. In the case ofUMTS the studies where the 

frequency bins are always lower than the signal bandwidth (5 MHz), the average DC increases 

with the frequency bin, and the difference is less significant (only 9.43% between 79.05kHz 

and 1250 kHz), as shown in Figure 4.7. This difference can indeed be qualified to the fact that 

for the lower frequency bins some frequency points lie within the UMTS channels' guard bands, 

where the DC is zero. As a result we could recognise that if the frequency bin is larger than the 

bandwidth of the signal being measured, spectrum occupancy is notably overestimated. On the 

other hand, occupancy estimation is reasonably accurate as long as the frequency bin size 

remains acceptably narrower than the signal bandwidth. 

A second parameter is based on consideration of Resolution Bandwidth (RBW). Narrowing 

the RBW increases the system's ability to resolve signals in frequency and decreases the noise 

floor, which in turn improves the ability to detect weak signals at the cost of increased 

measurement times. Table 4.4 shows the influence of the resolution bandwidth on the activity 

in the band between 137 and 400 MHz. This band represents transmission from several radio 

systems with various signal bandwidths, such as private mobile radio networks (12.5/25 kHz), 

wireless microphones (200 kHz) and digital audio broadcasting (1.54MHz). From table 4.4 we 

could conclude that a 10-kHz RBW can be considered as an adequate trade-off between 

detection capability (represented by the average DC) and measurement time (represented by 

the average sweep time). For instance, the 1 OkHz RBW configuration only misses the detection 

of 22.05%-19.41 =2.6% of licensed signals with respect to the 3kHz RBW configuration while 

it is able to capture 12.745s/1.147s=ll.17 times more PSD samples within the same 

measurement period. Wider RBWs result in shorter average sweep times but higher estimation 

errors, up to 18.42% for the 300 kHz RBW configuration. In addition, since signal bandwidths 

of less than 10 kHz are tmusual, a 10 kHz RBW is sufficient to resolve signals in frequency for 

most of the existing radio technologies. Based on the table results and observations, 10 kHz 

RBW can be considered as the most suitable choice for broadband spectrum research, offering 

trade-off between detection capability and required measurement time. This RBW will be used 

through the rest of our measurement campaign. 
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Table 4.4: Impact of the RBW on the Activity Detected Between 137 and 400MHz. 

RBW Average duty cycle Average sweep time 

lkHz 27.13% 114.73s 

3kHz 22.05% 12.74s 

lOkHz 19.41% L147s 

30k.Hz 14.01% 1.77 ls 

lOOkHz 12.81% 11.47ms 

300kHz 8.71% 5.5ms 

4.4.3.2 Influence of Time Dimension 

Time-domain analysis of spectrum measurements shows how a signal changes over time and 

is commonly defined by two parameters, sampling rate and the measurement period. Although 

sampling rate is controlled by the measurement device, measurement period can be easily 

controlled manually. Very different measurement periods have been considered in previous 

spectrum measurement campaigns, as it can be appreciated in [76]. The selected measurement 

period depends on the trade-off between the overall time required to complete the measurement 

campaign and the particular objectives of the measurement study. Some previous studies have 

been aimed at identifying spectrum usage patterns over long periods and understanding any 

potential seasonality in the visible spectrum usage. In former measurement campaigns different 

periods have been considered. For instance [84,85), suggested long-term measurement 

campaigns with measurement periods of several years to identify spectrum usage patterns over 

long periods. On the other hand, by considering the issue of resource utilisation the short-term 

evaluation and classification of spectrum usage is frequently more interesting since in practice 

it has impact on the behaviour and performance of cognitive radio. In such a case, long-term 

measurements are not necessary. In the context of cognitive radio we need to know how long 

spectrum should be measured to obtain a descriptive estimate of the actual spectrum usage. In 

order to answer this question the effects of the measurement of the TV band (CH22) and 

GSM900 was examined with time period of 1 hour, and of 24 hours. Results obtained during 

measurement campaign are different in these bands as shown in Figure 4.8. 

16:00 20:00 00.00 04.00 07.00 11.00 15.00 

Time[Hours) 

Figure 4-8: Average Duty Cycle per Hour for TV Broadcasting and GSM Band. 
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The utilisation of the TV band (CH22) indicate that the average DC for entire measured 

frequency point was a close to 100% as expected. This is because most occupancy data in our 

measurement bands (CH22 TV Channel) are stationary which do not vary with time and hence 

the instantaneous DCs matches the average value at every time instant. This conclusion is valid 

not only for TV but in general for transmitters with a constant temporal activity. However, 

GSM band exhibits an oscillating behaviour over time. When the entire band is considered, the 

instantaneous DC then notably differs from the average value. The utilisation of the GSM900 

MHz band varies with time throughout the day. The minimum value was between 23:00 and 

6:00 with an average DC of 19% to 21 % while measurements between 16:00 and 22:00 report 

average DC of50% to 60%. The average DC usage of band over the 24-hours is 39%. Overall, 

data show that the 24 h seasonal pattern is caused by the peak traffic of each day in 

10:00-17:00 local time. Although the common monitoring durations are 24h, working hours 

or another appropriate period hours in order to account for potential daily temporal patterns, 

our investigations show that the optimum duration of monitoring depends on the purpose of 

the occupancy measurement and the available a priori knowledge about the behaviour of the 

radio systems using the spectrum resource. 

4.4.4 Data Post-Processing 

Data post-processing is a way to filter significantly data from the mass of measurements. 

Therefore, this section will discuss methods used for post processing during measurements and 

examine the impact of such methods on the obtained spectrum usage information. Regardless 

of the objective of the measurement campaign, one of the key steps of data processing is to 

determine which captured PSD samples conespond to busy and ideal channels. Although there 

are several techniques for signal detection (referred to as spectrum sensing techniques), when 

there is no a prior information available probably the easiest method to both understand and to 

detect whether a channel is used by a licensed user is energy detection [87]. Spectrum detection 

methods will be introduced in more detail in Chapter 6. Throughout this work, the energy in 

the received waveform over an observation interval (sensing time) is measured and compared 

to a threshold value. If such an energy based spectrum sensing technique is used to analyse 

spectrum occupancy, then there are two distinct classes of data, represented by the noise and 

the signal itself. As a result, setting the decision threshold between these classes is basically a 

single threshold classification process to determine the average duty cycle. figure 4.9 

illustrates the general case of post-processing and data management. Firstly (part 1, in the 

figure), a reliability check is necessary because some information could have been lost during 
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the measurement process. Measurement information such as start frequency, stop frequency 

and RBW are loaded from the measurement information file. These values are also checked 

directly from the measured data. After this, the specific measured values corresponding to one 

cycle were loaded from the file containing measured data. The consistent data are saved as a 

binary data file for future analysis. This type of file consumes less space and is easy to operate 

with. At this point (part 2, in the figure), the threshold level value (threshold) is set. The 

measured values for frequency points above this level are marked as "occupied" by another 

service (primary user). Finally (part 3, in the figure), the quantifying parameters are evaluated. 

The most common parameter describing utilisation of the frequency spectrum is the Duty Cycle 

[88, 89, 90]. 

1 
r -------- - ------

cons,stency 1 
����--IIM check i---� 

Data from 

Receiver 

Final Results 
3 

. - - - - - - . - - -,

duty cycle i..' -'-I threshold • 

, calculation , level set 1 
I - - - - - - _1 I _ - _ _ _ _ _ I 

Figure 4-9: Flow Chart of Post-Processing. 

4.:iTbreshold Impact 

With respect to the data analysis procedure, threshold setting is considered to be the most 

difficult part as well as being vital to success. There are several threshold techniques for energy 

based spectrum sensing, primarily based on empirical data analysis [91, 92], histogram analysis 

[93], computation of receiver properties [94] and complementary cumulative distribution 

function (CCDF) techniques. Also, there exists a second category of algorithms to determine 

the decision threshold without a priori knowledge of the noise properties. Some examples are 

Otsu's algorithm [95] and the recursive one-sided hypothesis testing (ROSHT) algorithm 

proposed in [96,97]. The main drawback of these algorithms is that they are more complex and 

based on some assumptions that may not hold. Moreover, such assumptions are not necessary 

when noise properties are known as is often the case. Figure 4.10 illustrates the duty cycle 

dependence on the decision threshold for different inspected bands measured with our platform. 

As shown in Figure 4.10, the spectrum occupancy observed for various systems (expressed in 

terms of the duty cycle) may exhibit significant variations depending on the selected decision 

threshold (in some cases, with changes from I 00% to 0% for a variation of 5 dB or less). 
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Decision threshold (dBm) 

Figure 4-10: Average Duty Cycle as Function of the Decision Threshold for Different Systems. 

Another method to determine the decision threshold is to fix the decision threshold m decibels 

above the average noise level. The decision threshold as in the recommendation of the ITU 

spectrum monitoring handbook is 10 dB above the average noise floor [98]. However in some 

of the studies as in [99] and [100], the decision threshold was 3 to 6 dB above the average noise 

floor. Calculation of an appropriate decision threshold has a great impact on the estimation of 

the duty cycle. In the following experiment we will illustrate different values of m dB criterion 

threshold and choose the most approximate one. For this purpose a signal with wide diversity 

of licensed systems, low power transmitters and high power transmitters were investigated. 

Five different threshold (m dB criterion) are applied to the generated samples. Table 4.5 

summarises the calculated thresholds for the different cases m dB criterion. 

Table 4.5: Calculate Thresholds and Corresponding Duty Cycles. 

� 

8 dB above 7 dB above 6 dB above 5 dB above 4 dB above 

noise floor noise floor noise floor noise floor noise floor 

d 

1 08-4 00MHz 49.0% 5 4.5 % 59.0% 61.4 % 67 . 5 %

880-91 5 MHz 4.7 % 5.1 % 5.6% 6.9 % 13.6% 

4 7 0- 85 0MHz 11.9% 12. 7% 12.8 13.4% 1 5.4 

880-960MHz 3 0.5% 3 1.2% 3 1.7 32.1% 33.7% 

The comparison is performed based on the occupancy statistics obtained for several types of 

bands, namely bands allocated to a wide diversity of licensed systems ( 108-400 MHz and 4 70-

850MHz), low power transmitters (880-915 MHz and 1900-2500MHz). For example, when 

the decision threshold is lowered from the 8dB criterion to the 7dB criterion, a maximum 

amount of noise samples are allowed to lie above the decision threshold, which may be detected 
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as signal samples. Table 4.5 shows that the average DC for the 108-400 MHz band and 

880-915MHz band increases 5.5% (from 54.5% to 49.0%) and 0.4% (from 5.1% to 4.7.0%),

respectively, when moving from 8dB criterion to the ?dB. Another trend is observed for further 

lowered threshold with the 6dB, 5dB and 4dB criteria as shown in table 4.5. In the band above 

2500 MHz where signals are very week the m-criterion increases the average DC by the nearly 

same amount. The absence of licensed signals in these bands indicates that such increase is not 

caused by the detection of true weak signals but noise samples above the threshold. A similar 

behavior is also observed for bands with high-power transmitters such as TV and GSM 

downlink. In this case, this means that in such bands lowering the decision threshold below the 

maximum noise level with them-criterion does not result in the detection of some additional 

weak signals. Based on the obtained results at Table 4.5, the 5dB criterion can be considered 

as a reasonable trade-off between the improvement in the ability to detect weak signals and the 

overestimation error. This result has been used for our later measurements (Chapter5). 

However, Multi-bit hard Threshold using two-stage adaptive sensing is proposed in[Chapter8]. 

4,li.l An A,laptive Threshold Setting Approaelt 

The spectrum occupancy measurements performed in Chapter 5 are based on a fixed threshold 

to distinguish PU signals from noise. This may not be optimum in low SNR conditions where 

the performance of fixed threshold based detectors can vary from the targeted performance 

metrics substantially. Unlike the conventional fixed threshold based sensing algorithm, an 

adaptive spectrum sensing algorithm was proposed to dynamically adjust its energy threshold 

according to the signal to noise ratio in [Chapter8]. The goal of this technique is to select the 

upper and lower bounds of the detection threshold to be used with spectrum measurements 

(Digital TV pilot power measurements) for safe operation of cognitive radio devices that 

guarantees no harmful interference. For instance, if the detection threshold is continually 

raised, then at a point it will not be able to sense the legitimate TV signal, even a strong TV 

signal, and therefore with increasing detection threshold the rate of harm will go to I 00%. If 

the detection threshold is continually lowered, then at a point it will begin to sense the noise 

floor and therefore with decreasing detection threshold the rate of false alarm will go to 100%. 

Clearly, one cannot be too conservative as a really low detection threshold will ensure "no 

harm", but will also raise the rate of false alarm so high that the radio is never able to turn on 

and be of any practical use. 
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4.6 Cha1Jter Summary 

In this Chapter firstly we compare the results of spectrum measurement campaigns carried out 

by the SSC and other global research groups within the last decade. All presented results are 

based on real-life measurements. Overall, the comparison shows that the level of spectrum 

utilisation is consistently low. The obtained results demonstrated the existence of a significant 

amount of spectrum which is potentially available for the future deployment of cognitive radio 

systems. Next, we have discussed spectrum occupancy measurement setups in detail and have 

elaborated on the major design decisions and lessons learned. This part presented a 

comprehensive and in-depth discussion of several important methodological aspects that need 

to be taken into account when evaluating spectrum occupancy such as the influence of antenna 

selection, influence of spectrum analyser, influence of spectrum measurement and influence of 

frequency and time aspects. Finally, data post processing and the impact of threshold on the 

performance of spectrum detection was discussed. The results presented in this Chapter 

highlight the importance of carefully designing an appropriate methodology when evaluating 

spectrum occupancy in the context of cognitive radio. The outcome of this Chapter will be of 

great utility in the study outlined in following Chapters. 
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Chapter 

5 

------------------------

Spectrmn Occ11pancy Survey i11 

Cognitive Radio: Measure1nent 

and Analysis 

5.1 Int1'0duction 

Although several of spectrum occupancy measurements have been conducted worldwide as 

described in Chapter 4, an old management adage that is still accurate today says "you can't 

manage what you can't measure". Therefore, to estimate the degree of radio spectrum 

utilisation in a geographical region and hence to consider principles of actual radio spectrum 

management, a campaign of experimental measurements has been conducted. This Chapter 

describes the set of spectrum occupancy measurements performed at different geographical 

locations, within the UK in 2012, 2013 and 2014 and proposes long-term studies in multiple 

locations. The measurement campaign was undertaken covering a wide range of frequency. 

Observations provide evidence that the licensed spectrum is far from fully utilised in frequency. 

Measurements provide evidence of the spectral efficiency benefits that might be accrued by the 

dynamic reuse of the available spectrum. Such improved usage could break the current 

spectrum availability bottleneck. 

The reminder of this Chapter is organised as follows. Section 5.2 describes radio spectrum 

measurement, including spectrum measurement system, measurement sites and data 

acquisition. Section 5.3 describes the measurement setup. Section 5.4 describes the data 

processing, leading to the determination of occupancy metrics, spectrum occupancy and duty 
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cycle. Section 5.5 illustrates detailed analysis of spectrum occupancy measurement where 

results are presented and analysed. Section 5.6 summarises the conclusions. 

3.2 Radio Spectr1un Measurement 

This section presents a sophisticated radio spectrum measurement platform specifically 

envisaged and designed for spectrum occupancy surveys in the context of cognitive radio. We 

start by introducing the measurement of radio spectrum usage in section 5.2.1. Additional detail 

associated with spectrum study is explained in section 5.2.2. Spectrum measurements system 

are discussed in section 5.2.3. Measurement sites and data acquisition are introduced in 

section 5.2.4 and 5.2.5 respectively. 

ll.2.l Measuring Ra,lio Speetnnn Usage

To maximise the utility of the radio spectrum, .knowledge of its current usage is beneficial. 

While some coarse information can be attained from spectrum licenses, essential details, 

including the location of transmitters, transmitter output power, and antenna type, are often 

unknown. Additionally, licenses do not specify how often the spectrum is being occupied if at 

all. Furthermore, the local envirorunent affects the propagation of radio waves; while this effect 

can be simulated, the results offer only moderate precision. Hence, to categorise spectrum 

usage, measured data is vastly preferable to theoretical analysis. Several spectrum studies were 

performed to provide multidimensional usage information. These studies, improve upon past 

spectrum studies by resolving spectrum usage by nearly all of its possible parameters. Very 

few other wide bandwidth spectrum studies have been performed. 

ll.2.2 Speeirtllll Study

In these studies, spectrum usage was measured as a function of frequency, time and location 

type. The contiguous frequency range from 180MHz to 3000MHz was measured. This covers 

emitters from UHF TV, several land-mobile communication systems, radars (both air search 

and weather), satellites {uplink and downlink channels), fixed microwave services, and several 

passive bands. To measure spectrum usage in the time dimension, two schemes were employed. 

One measured the short-term usage of the spectrum, which provided a metric of spectrum usage 

over a span of a few minutes. This metric can aid in the identification of periodic spectrum 

users. The other method employed was designed to measure usage of the spectrum over the 

course of the day; determining if temporal variations exist and to what extent. To provide a 

statistically valid model of the spectral environment, a large number of data samples were taken. 

More than one thousand spectrum measurements have been taken over several months of 
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observation. The spectrum studies also determine the effects of the demographic location type. 

The degree of spectrum usage has been investigated in following region: Urban Hull city, 

suburban Hull city, and rural Hurn.her region, UK. 

li.2.3SJ)eCtl'lllD Measnrc1nent Syste1n

The spectrum. studies conducted required the design and construction of a spectrum 

measurement system composed of several hardware and software subsystems. A block diagram 

of the hardware that corn.posed the spectrum. measurement system. is shown in 

Figure 4.1 (Chapter 4), consisting of antenna sub-system, an RF-subsystem, a spectrum 

analyser, and finally a data acquisition and control system. 

1) An antenna system involving both omnidirectional and directional antenna was used

for spectrum occupancy measurement.. For the fixed high points used in urban studies, 

10 rn ofBeldenRG-8 9913 coaxial cable is used to connect the Bilog antenna. The rural 

and suburban sites offered the opportunity to mount the antenna on the roof of a car, 

hence shorter cable be used. In this case, 1 m of Belden RG-8 9913 coaxial cable is 

used to connect the DT A2 l 8 antenna. 

2) Amplification was performed by the RF sub system shown in Figure 4.l(Chapter 4).

From the antenna, signals pass through a low noise amplifier (LNA) with a high gain 

(+24 dBm). The LNA is needed to lower the total system's noise temperature, since the 

spectrum analyser used has a high noise figure (27 to 39 dB, depending on frequency). 

The noise figure of the RF- amplifier and spectrum analyser combination includes the 

antenna cabling. The LNA combination has an instantaneous spurious-free dynamic 

range that is better than that for the spectrum analyser alone as discussed in Chapter 4. 

For many of the spectrum measurements, the spectrum analyser limits the system's 

intermodulation performance and thus sensitivity, since the power of the 

intermodulation products is above the thermal noise floor. 

3) A spectrum analyser, Agilent E4407B, was used in this system to provide spectral

power measurement, over the complete frequency range. The setting for resolution 

bandwidth, detector type, span, sweep time, video bandwidth, reference level, 

attenuation level, and data collection method were chosen with the intent of maximising 

the probability of detection. Resulting from Chapter 4, a narrow 10 kHz resolution 

bandwidth was employed to maximise the detection of narrowband signals and to 

resolve the spectral content of wider bandwidth signals. Some measurements were 
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undertaken with 100 kHz resolution bandwidth to improve the ability to observe pulsed 

signals. It was determined that this wider bandwidth filter reduced sensitivity and 

spectral content information significantly with only an incremental benefit in the 

detection of pulsed signals; hence 10 kHz was employed for nearly all of the spectrum 

measurements. The span is the frequency range that the spectrum analyser covers in 

one sweep. While it would have been possible for the spectrum analyser's span to be 

set to cover the full range of measured frequencies, this would have produced coarse 

and inaccurate results. Spectrum analysers have a defined number of discrete frequency 

bins to store the results of a scan; for the Agilent E4407B we use 401 bins. To provide 

the maximum amount of valid data for analysis after collection, it was desired to 

transfer the measurements of every resolution bandwidth to the control and data 

collection system. The amount of time it takes the spectrum analyser to sweep through 

a span is known as the sweep time. The spectrum analyser can automatically select the 

minimum sweep time, which is limited by the rise time of resolution bandwidth filter 

being used. Shorter sweep times result in an understatement of received power. Larger 

sweep times increase the amount of time the resolution bandwidth filter rests at a given 

frequency. To eliminate this analogue form of averaging the video bandwidth was set 

to equal the resolution bandwidth. 

:l.2.4Measm-e1nent Sites 

There were several attributes used in the selection of the measurement sites. Most of previous 

spectrum occupancy studies are based on measurements performed in outdoor environments 

and more particularly in outdoor high points such as building rooftops and towers. The main 

advantage of high points is that they provide direct line-of-sight to various transmitters and 

therefore enable a more accurate measmement of the spectral activity. Nevertheless, this 

scenario may not be representative of the spectrum occupancy perceived by a secondary 

network in other more practical situations where the secondary antenna is not placed in a static 

high point (e.g., a mobile secondary user communicating inside a building or while walking in 

the street between buildings). The measurement of real network activities in additional 

scenarios of practical significance is therefore required for an adequate and full understanding 

of the use of spectrum. This study involves three scenarios. Two of the measurement sites 

urban/suburban are in the University of Hull and near to Hull city centre with the third rural 

site in the Humber region, UK. The high point urban measurement site (Location 1) is situated 

in Hull University, on the campus of the University. This site has direct line of sight with 
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several FM transmitters, analogue and DVB-T transmitter, GSM and UMTS base stations. 

Various base stations and telecommunication systems are already hosted in the University, 

including GSM and UMTS base stations which were a few tens of meters away from the 

measurement location. The urban/suburban spectrum study was performed in multiple places 

near to Hull city centre. The roof of the car was chosen since it offers a simple platform for the 

measurement system. For the rural measurements, multipoint measurement points located in 

the Humber region was chosen. At this locations, local population density is less. The 

measurement system was situated on the top of a car roof at the sites. The measurement 

equipment employed in this study is illustrated in Figure 5.1 & 5.2. The locations in terms of 

latitude, longitude and elevation are shown in Table 5.1 and Table 5.2. The locations of urban, 

suburban and rural sites were determined with a Global Positioning System (GPS) receiver. 

Figure 5.3 and Figure 5.4 shows the location of the urban, suburban and rural measurement 

sites with the map cropped. 

Urban area 

(Hull University) 

Figure 5-1: Measurement Equipment Employed in this Study: Antenna, Preamplifier and 

Spectrum Analyser at Urban Area (Hull University). 
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Rural area 

(Humber region) 

Figure 5-2: Measurement Equipment Employed in this Study: Antenna, Preamplifier and 

Spectrum Analyser at Rural Area (Humber region). 
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Table 5.1: location of Measurement Sites Urban/Suburban Sites. 

Locations latitude Longitude Antenna height 

locationl 53.7469444°

N 0.3444444°E 23m(roof of building) 

Location2 53.7869444°N 0.3644444°E 1. 7m(roof of car)

Location3 53. 7883333
°N 0.3858333

°

E 1.7m(roof of car) 

Location4 53.7736111°N 0.367524°E 1.7m(roof of car) 

Locations 53. 7716667
°N 0.3716667

°

E 1.7m(roof of car) 

Location6 53.7483333°

N 0.3747222°

E 1. 7m(roof of car)

Location7 53. 7 466667°N 0.3505556°E 1. 7m(roof of car)

Locations 53. 7558333°N 0.3494444°

E 1.7m(roof of car) 

Location9 53.7650300
°

N 0.34697 °E 1.7m(roof of car) 

LocationlO 53. 7896691 °N 0.303721°E 1.7m(roof of car) 

Locationll 53. 7799565
°

N 0.277533°E 1.7m(roof of car) 

Location12 53.8039620°N 0.332876°E 1. 7m(roof of car) 

Location13 53. 7340707°

N 0.399673°E 1.7m(roof of car) 

Location14 53.7466513°N 0.255875°E 1.7m(roof of car) 

LocationlS 53.7853486
°N 0.3184622°

E 1.7m(roof of car) 

Table 5.2: Location of Measurement Sites Rural Sites. 

locations latitude Longitude Antenna height 

Location16 53. 714768°

N 0.4434872°E 1.7m(roof of car) 

Location17 53.68002°N 0.46068°E 1.7m(roof of car) 

Location18 53.623660 
°N 0.430293°E 1.7m(roof of car) 

Location19 53.5844444°N 0.3494444°E 1.7m(roof of car) 

Location20 53.5508333°N 0.2841667°E 1.7m(roof of car) 

Location21 53.4741667°N 0.2961111 °E 1.7m(roof of car) 

Location22 53.4172222°N 0.2386111 
°

E 1.7m(roof of car) 

Location23 53.349776°N 0.182547°E 1.7m(roof of car) 

Location24 53.584146°N 0.421635°E 1.7m(roof of car) 

location25 53.5447667°N 0.6434167°E 1.7m(roof of car) 

location26 53.5706167°N 0.8293167
°E 1.7m(roof of car) 

Location27 53.5911167°N 0.9664167°E 1.7m(roof of car) 

Location28 53.6721°N 0.9645167°E 1.7m(roof of car) 

Location29 53.7355167
°

N 0.8641°E 1.7m(roof of car) 

Location30 53. 7706167°N 0.6928333°E 1. 7m(roof of car)

Location31 53.73075°N 0.55015°E 1.7m(roof of car) 
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Figure 5-3: Measurement Locations in Urban Environment (Hull city). 

Figure 5-4: Measurement Locations in Suburban/ Rural Environment (Humber region). 

5.2.5 Data Acquisition

The objective of this part is to establish a real-time system between PC and spectrum analyser 

by using general purpose interface bus (GPIB). The spectrum analyser converted the received 

signal into power versus frequency traces using an internal mixer, sampler, and a computational 

Fast-Fourier Transform (FFT) engine. The traces collected from the spectrum analyser were 

transferred to a computer. Matlab program provides an environment, which is needed for 

creating a virtual instrument (VI). The VI can then write and read data to or from the spectrum 

analyser. The datasets are analysed in Matlab and the final result is displayed through the 
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monitor. The created VI in this study has the complete functions of the spectrum analyser. The 

recorder function has been developed to create an automated process for test and measurement. 

All data is saved in a database as a collection of objects; with each object containing one sweep 

from the spectrum analyser. This format retains all the data produced by the spectrum analyser 

in its raw form, thus allowing for later postRprocessing. This data was later processed using 

Matlab functions to estimate the occupancy statistics and to produce time-frequency occupancy 

plots. 

5.3 Measure1nent Setup 

The main configuration parameters for the spectrum analyser are listed in Table 5.3. The 

measurement frequency range was divided into several blocks according to the local spectrum 

allocations and taking into account the transmitter signal bandwidth for each band. For example, 

GSM/DCS bands were measured with frequency spans of 45 MHz, which results in a frequency 

bin of 45 MHz//(401-1) - 122.5 kHz (i.e., narrower than the 200 kHz RF bandwidth of 

GSM/DCS signal. Taking the result obtained in Chapter 4, a 10 k}lz RBW was carefully chosen 

as an adequate trade-off between decision capabilities and required measurement periods. Each 

block was measured over a 10 min to 24 hour interval or several days, depending on the 

measurement locations. At the high point fixed location (University Campus) since the 

circumstance allowed untended option, a 24 hour measurement period was selected. In difficult 

locations, where the presence of an operator is required as well as an AC- power supply, 

measurement periods of hours were infeasible and were therefore shortened to 10-15 minutes. 

Furthermore, sweep time is automatically adjusted, and the reference level was adjusted in 

accordance with the maximmn power observed in each frequency range. 

Table 5.3: Spectrum Analyser Configuration. 

Parameter Value 
Frequency From (180 - 2700 MHz) 

Blockl 180: 400MHz B1ock2 470: 850MHz 

Frequency Range 
Block3 880 :915MHz B1ock4 915: 960MHz 
Block5 1710 :1800MHz Block61800 :1870MHz 
Block? 1900 :2500MHz B1ock8 2500: 2700MHz 

Frequency blocks Variable (45- 400) 
Freouencv bins 122.5.8 - 1250 kHz) 
Resolution Bandwidth (RBW) JO kHz 

Video Bandwidth (VBW) IOkHz 

Time Measured neriod I-24 hours or davs
Sweep time Auto (Selected by the SA)

Amplitude Reference level -20 to -40dBm
Scale 10 dB/division 

Input attenuation OdB 
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:;.4 Data Processing 

This section describes the steps taken to produce the spectrum occupancy graphs and values as 

shown in Figure 5.5. The numerical computational package Matlab was used for all processing 

after the signal capture. The whole process consists of four steps: raw data input, adaptive 

threshold setting, calculating the duty cycle of each channel and calculating the average duty 

cycle of the spectrum band. 

Raw Data Input 

• 
Adaptive Threshold Setting 

� 
Duty Cycle of Each Channel 

Calculating and olotting 

Average Duty Cycle of Spectrum Band 

Channel Calculating and plotting 

Figure 5-5: Data Processing Procedure. 

The values of data are the received power level values in dBm at the antenna output without 

any processing. We read the raw data from the measurement files into a M by N matrix, each 

with elements values of which is denoted by P
fm,tn as 

pf
�

,tN

1·
• 

I 

pfM,tN 

The subscripts of the powers are put into a two-dimensional array [fm][ tnJ. The rows subscript 

of the matrix fm denotes frequencies or channels we measure. And the columns subscript of 

the matrix tn records the time when channel m is swept for the n-th time. The dimensions of 

the matrix structure shown were computed based on the information stored in textual meta data 

file, enabling the data to be read into the computational environment or analysis toolkit. As 

each channel has a different power noise level, a threshold will be set for each band respectively. 

When the receive power is higher than this threshold a channel will be considered to be 

occupied and unavailable for use by a CR system. Given a time-series of channel power 

measurements, the duty cycle can be calculated using: 

Signal Occupancy Period 
Duty Cycle(DC) = X 100% =

Total Measurement Duration 
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Where t denotes the interval of time (also known as slot) during which a frequency bin is 

monitored during a frequency sweep, T is total measurement duration, ns is the number of 

slots in which a channel was deemed to be occupied, and N denotes the total number of 

frequency bines in the sweep. The band spectrum occupancy is defined to be the average duty 

cycle of the channels within a band. The amount of spectrum occupied is then the product of 

the band spectrum occupancy and the bandwidth. From a set of measurement data, assuming 

the energy detection model and measurements of power spectral density or received signal 

strength (RSS), we can determine the empirical duty cycle as follows. If an RSS sample at time 

ti and frequency point /1 is denoted with RSS (Ii, ti) ,the DC for each frequency point ft 

will simply be the empirical average. Mathematically, this can be expressed as following [80]. 

'f' _ I�a!, nc ti, t;)
fi - N· 

' 

Where the binary labels D.(tc,/D represent the spectrum occupancy at time ti and frequency 

point/,. The parameter y is the threshold used. 

n( . f,) 
_ /0, if RSS(t;,f,) < y 

t,, ' -
\1, if RSS(t;,f,) > y

5.5 Analysis of Spectr111n Occupancy 

is.is.I General View of Spectnnn Occupancy 

Before moving to our band by band spectrum occupancy analysis, in Figure 5.6, we show the 

received power versus frequency plot for the whole frequency range of the measurement study 

(180 MHz to 2700 MHz). Based on this first impression and following the local spectrum. 

allocations, the entire frequency range can then be divided into smaller blocks/spans. The 

frequencies below 900 MHz are primarily allocated for broadcast communication. Because of 

the nature of the high power broadcast channels, the communication channels were easily 

detected by the equipment. It is interesting to note that the band below I GHz appears to some 

extent occupied, despite the fact that the band above I GHz appears to be unused. While the 

band below 1 GHz may be fully occupied, we know that many of these legacy broadcast 

systems are not the most efficient users of spectrum (television and radio can benefit from 

modern digital compression) and many include carrier waves which convey no information but 

are necessary for simple envelope detection. In the low portion of the band the high occupancy 
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recorded may not correlate to efficient utilisation. On the other hand, the low occupancy 

recorded above 1 GHz may not necessarily mean that the spectrum is unutilised. Although it 

indicates that overall spectrum utilisation in the whole frequency range of our study might be 

very low, it does not give us a detailed picture of how spectrum is utilised in different bands 

allocated to different services. Therefore, for a better view of the band by band occupancy 

pattern, we will consider selected bands in more detail. 

The percentage time occupancy for every channel for each hour of the day was measured over 

full day period (start measurement at 29 October 2012 18:00PM and stop measurement at 30 

October 2012 18:00PM). The mean and standard deviation of the hourly occupancy is studied 

in order to establish which channels' occupancy remain constant over each of the 24 hours in 

a day, and which have a more unpredictable occupancy ( characterised by a higher standard 

deviation from the mean). 
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Figure 5-6: Received Power versus the Frequency Band {80 MHz-2700 MHz) 
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3.3.2 Occupancy Metrics 

Spectrum utilisation is characterised and quantified in the next section by means of three 

occupancy metrics, which are shown in the Figures presented in the following sections. The 

first graph in each Figure shows minimum, maximum and average values for each measured 

frequency. When considered together, minimum, maximum and average PSD provide a simple 

characterisation of the temporal behaviour of a channel. For example, if the three PSD values 

are quite similar, it suggests a single transmitter that is always on, experiences a low level of 
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fading and is probably not moving. At the other extreme, a large difference among minimum, 

maximum and average suggests a more intermittent use of the spectrum or a severely fading 

signal. The second occupancy metric, shown in the middle graph of each Figure, represents the 

instantaneous evolution of the temporal spectrum occupancy over the whole measurement 

period. Colour dots represent samples of busy channels, while the blue colour indicates the 

absence of licensed signals. The busy/idle state of each measured frequency is detennined 

following an energy detection principle. The third considered occupancy metric (occupancy 

level), which is shown in the lower graph of each Figure. This metric, represents the fraction 

of time that a certain channel or frequency range is observed as busy over a specified period of 

time, thus providing a more precise quantification of spectrum occupancy. For instance, in 

the figures below (5.7-5.9), a duty cycle of0% (DC-0) was obtained in almost band of Figures 

5.6 & 5.7. This result signifies that the band is almost unoccupied. This is an indication of the 

low penetration of devices that operate in this band that has little or no wireless network 

infrastructures. However, in the Figure 5.9 the results show high occupancy level, a duty cycle 

of 100%, (DC-I) was obtained in almost band of Figure 5.9(GSM Downlink). This result 

signifies that the band is almost occupied ( continuously broadcasts). 

6.6.3 Urban AI•ea lligb Point {Location I) 

The obtained measurement results which are shown in Figures 5.7, 5.8, 5.9, 5.10 and 5.11 at 

this location using Bilog antenna. As can be seen. the spectrum experiences a relatively 

moderate use below 1 GHz and a low usage between 1 and 2 GHz, whilst remaining mostly 

underutilised between 2 and 2.5 GHz. For example, Figure 5. 7 shows the frequency band 

180-400MHz. These bands are populated by a wide variety of narrowband systems, including

Private/Professional and Public Access Mobile Radio (PMR/PAMR) systems, FM audio 

broadcasting, aeronautical radio navigation and communication systems, maritime systems 

such as the Global Maritime Distress and Safety System (GMDSS), paging systems and fixed 

links, audio applications such as wireless microphones, Digital Audio Broadcasting (DAB) 

systems and satellite systems. Although these bands exhibit an average duty cycle of 6.9%, 

there is no significant amount of white space due to the narrowband nature of the systems 

operating on them or due to weak signal reception of the signal broadcasting. Several TV 

broadcasting station can be noticed in Figure 5.8 between frequency bands 470-720MHz. The 

power level of some of these stations is higher than others, as the broadcasting station is located 

closer to our building where the measurement was perfonned. The amount of occupancy is 

quite low which might be due to that the Ofcom have already performed the introduction of 
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DVBT in UK. Corresponding signals can be noticed in Figure 5.8 on 582 MHz (channel 22), 

514MHz (channel 26), 530 MHz (cham1el 28) and 56MHz (channel 30). In the frequency band 

720 to 850 MHz only two channels were detected during measurement, broadcast station 

(730 MHz, channel 53) and broadcast station (785MHz, channel 60). Over all, the average duty 

cycle of this band is 13%. 

Additionally, two interesting cases are observed above and below 1 GHz. Below l GHz is 

observed in the frequency bands allocated to GSM, the Extended GSM (E-GSM) 900 system 

operates in the 880-910 MHz (uplink) and 915-960 MI-Iz (downlink) bands as shown in Figure 

5.9. Above 1 GHz the highest spectrum usage is observed for the bands allocated the DCS 1800 

system operating on 1710-1785 MHz and 1805-1880 MHz (Figure 5.10). TI1ese two bands 

have average occupancy of 32.19% and 24.64 % respectively. Note that, the occupancy 

between the uplink and downlink sides are not identical. This result can be explained as follows. 

The control channels for GSM900, GSM1800 and WCDMA are constantly being broadcasted 

by the base stations on the Downlink (DL), thus the DL for these frequencies seems fully 

occupied as they are always transmitting with relatively high power. The uplink, on the other 

hand, for cellular system is based on active user communication through the network. If there 

is no active communication, there are still some periodic short-pulse transmissions on the 

uplink for location updating procedures which are too short to be picked up by analyser. Also 

note that GSM900 mobile stations have a higher transmit power than GSM1800, which 

explains the higher average duty cycle picked up by spectrum analyser. From Figure 5. I 0, it is 

observed that 3G uplink is totally unoccupied. The reason behind this outcome is the WCDMA 

is a spread spectrum system where the signal is modulated over larger bandwidth to give very 

low output transmission power, which might not be detectable with analyser and thus does not 

show any occupancy on the 3G uplink. 

Furthermore, looking at Figure 5 .11, it appears that most of the band from 1900 to 2500 MHz 

is almost unoccupied except UMTS system and ISM band. The average duty cycle of this band 

is 9 .4 7%. The occupancy estimates of these bands might not be the representative of the actual 

occupancy. These results could be explained as follows: Wireless Broadband Alliance (WBA) 

signals might not be detected at measurement point if the access points are close enough, 

satellite signal power might be much lower than the ambient noise when it reaches the ground, 

and the short wavelength of ISM band signals cannot penetrate through walls. Additionally, 

the frequency band (2400-2483 MHz) was used by well-known unlicensed industrial, scientific 

and medical (ISM). Devices in this band include microwave ovens, cordless phones, wireless 
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networking and wireless instrumentation devices. The spectrum plot indicates that the band is 

used, but the occupancy (duty-cycle) is low. That may be due to the location of the receiver 30 

m above the ground. Also there may have been low activity in the time period under study. The 

frequency band of2500 to 2700 MHz appears completely unused at this point. The occupancy 

estimates of these bands might not be representative of actual occupancy due to issues such as 

weak signals and penetration. Finally, it is worth noting as well that some spectrum bands 

appear as idle when judged by their average duty cycle. Nevertheless, the maximum PSD 

reveals that some primary users, although difficult to detect, are present in such bands. Some 

examples are the uplink bands for mobile communications, radio navigation and the 

ISM band. 
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5.5.3.l Result and Main Observations 

In this section, we summarise the major observations from the occupancy results of this study 

and identify the channels for long term studies in order to provide the policy makers with the 

necessary information for taking proper initiative to facilitate dynamic spectrum access 

technologies such as cognitive radio. Graphical presentations of the band by band average 

spectrum occupancy as well as the average spectrum occupancy for the whole band of study 

are shown in Table 5.4 and Figure 5.12. The average occupancy plot for the whole 180 MHz 

to 2700 MHz band is determined as follows. First we determine the average spectrum usage 

(in MHz) of each band as shown in Table 5.4 by multiplying the average occupancy of each 

band by its corresponding bandwidth. For example, average spectrum usage of 470 MHz to 

850 MHz band is 0.1346X (850-470) =51.1 MHz. Then, summing the spectrum usage of all 

bands and dividing it by the total available bandwidth 2700-80=2620, we get the average 

spectrum occupancy of 11.0% for the whole frequency bands of study. 

Table 5.4: Average Duty Cycle Statistics. 

Frequency range Average duty Cycle 
(MHz) (Measured occupancy % ) 

TH 5dB above noise floor 
108-180 61.1% 
180-400 6.9 % 
470-850 13.4% 12.4% 

880-960 32.1% 11.0% 

1710-1880 24.6% 
1900-2500 9.4% 
2500-2700 0% 9.9% 

Measurement Spectrum Occupancy, Hull city 

! : : : ! : : 
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Figure 5-12:Band By Band Average Duty Cycle Statistics. 
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Now using Table 5.4 result, the following useful information can be extracted: 

•:• Highest occupancy has been observed in the bands of GSM900 and GSM 1800 due to 

broadcasting downlink. 

•!• Low occupancy has been observed in the bands allocated for fixed/mobile services, and 

primary and secondary radar. But the lack of radar band occupancy might be due to the 

pulse rate of radar pulses not being captured by spectrum analyser sweep (if sweep is 

out of synchronisation with radar pulse it will never be seen). 

•!• The bands allocated for aeronautical radio navigation, fixed satellite, WBA and ISM 

appear to have low utilisation. Also, TV bands provide interesting opportunities for 

secondary usage. 

•!• Frequencies above l GHz are relatively underutilised except for the cellular bands. 

Although some frequencies in some bands are appeared to be used, the duty cycle is 

quite low. 

5.li.4 Urban, Suburban aud R1n'lll (Using Vehicle)

5.5.4.l Urbau Area Gro,md Points 
This section focused on studies of white spaces in the UHF television broadcasting frequencies 

from 470MHz to 862MHz, since the results shown in section 5.5.3 indicate that TV spectrum 

remains mostly unused. The experimental campaign was performed at the multiple locations. 

Figure 5.2 shows photographs of the experimental setup. The vehicle used for the experiments 

was author's private Vauxhall Astra car. The instrument is controlled by a laptop connected 

via an Ethernet interface. The results obtained at urban area high point (Location 1) used a TV 

omnidirectional antenna instead of the directional Bilog antenna. An omnidirectional TV 

antenna with 3.SdBi gain is used to capture signals from all the directions. The measurement 

was conducted during a weekend to measure the spectrum occupancy around the Humber 

region, UK. Coverage goals were achieved for rural, suburban and urban areas of Humber 

region. During this time the trial vehicle covered a total of nearly 500km. These measurements 

were challenging and complex from both a technical and a logistical point of view. 

Sophisticated spectrum measurement equipment (spectrwn analyser) and TV antenna were 

mounted on the vehicle to perform a preliminary spectrum utilisation survey. Table 5.5 gives 

an indication of the extent of the measurements tll1dertaken. 

The aim of this experiment is to measure TV bands and determine the impact of considering 

different outdoor locations at ground level on the spectral activity perceived by a secondary 

user with respect to that observed in an outdoor highpoint. 
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Table 5.5: Top Level Measurement Statistic. 

covered by vehicles during nearly 500km 

Number of individual spectrum measurement 15 locations urban and suburban 

16 locations suburban/ rural 

Total size of database created 832 Mbytes 

Each location was measured at a different time instant. So, the random component introduced 

by the presence of different transmissions at different time instants could be averaged by 

considering a sufficiently long enough measurement period. However, since supply power 

converter from 12 Volts battery power to 230 Volts AC to operate the spectrum analysis 

platfonn (spectrum analyser and preamplifier) was required in these measurements, periods of 

24 hours as in location 1 was infeasible and was therefore shortened to 10-15 minutes in 

locations (LOC2-LOC15). To reduce the impact of random components and make the results 

of locations 1 and 2-15 comparable, the average duty cycle obtained in locations 2-15 has been 

normalised by the average duty cycle in location 1 obtained when considering the samples 

corresponding to the same time interval. Therefore, if an average duty cycle DCk is obtained 

for location k (k = 2, 3, ... , 15) based on the samples captured during a 10 minute interval 

between time instants Tstsrt and Tstop 
the samples captured at location I between the same 

Tstsrt and Tstop 
values are used to compute an average duty cycle DC1 . The nonnalised average 

duty cycle [80] for location k is then obtained as 

DC• = DC.fDC,. 

This procedure reduces the randomness of the obtained results and enables a fairer comparison 

between the outdoor high point and the rest of outdoor positions. As result, altogether bands 

and locations measured in this test obtained normalised average DC lower than unity, meaning 

that the average DC observed at the ground level is in general lower than at high points. This 

is a consequence of the radio propagation blocking caused by buildings and other obstacles: 

under non-line-of-sight conditions, the direct path is often lost; only multipath propagation 

components attenuated are received, thus resulting in lower received signal levels and therefore 

in lower average DCs. From a practical point of view, this indicates that a secondary user at 

the ground level would perceive a higher amount of spectrum opportunities. Nevertheless, it is 

w01th highlighting that this observation should be interpreted carefully, taking into account the 

specific circumstances of each band. In the following, some particular bands of interest are 
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discussed. Figure 5 .13 show the average duty cycle statistics in locations 1 to 15 for TV band 

( 470-862MHz). 
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Figure 5-13: Average Duty Cycle Statistics in Locations 2-15 for TV Band Compared to 

Location 1. 

Figure 5.14 shows the spatial distribution of the normalised average DC for the TV bands. In 

the TV band, it can be clearly appreciated that the normalised average DC is lower in closed 

regions: in locations 2, 7 and 13, where radio propagation blocking caused by buildings is more 

intense such as between house and narrow streets, its value is lower than in other less closed 

regions such as locations 6, 8, 11 and 12 where the measurement were taken in open fields. 

Comparing locations 6, 7 and 8, location 7 exhibits the lowest normalised average DC in the 

case of TV, as expected due to propagation blocking. For instance, the normalised average 

values of 0.8% and 0.75% respectively were measured in locations 6 & 8, which are about a 

ratio of 4:1 when compared to the normalised average values of 0.2% obtained in locations 7. 

The result is not far-fetched because the locations described as location 6 and location 8 are 

open field areas, while location 7 is a residential area with narrow street. 
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Normalized average duty cycly TV band 
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Figure 5-14:Normalised Average DC Statistics in Locations 2-15 for TV Bands (470-860 MHz). 

:S.:S.4.2Rural, Suburl,an Locations 

This section presents the results obtained m suburban and rural locations based on 

measurements performed outdoors using a private Vauxhall Astra vehicle (the same platform 

used for urban location measurement). In this study, two identical measurement suites were 

deployed in suburban and rural locations, Humber region, UK. Each measurement involved 

multiple location measurements. Moreover, spectrum occupancy in this section is examined in 

the TV band as well, since the results shown in section 5.5.4 indicate that TV spectrum remains 

mostly unused. Normalised average duty cycle is no longer used in this section as there are 

several locations where spectrum occupancy is greater than at the urban high point (location I) 

due to some measurement locations receiving from more than one transmitter broadcasting. 

The obtained results of average duty cycle per location are shown in Figure 5 .15. 
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Figure 5-15: Average DC Statistics in Locations 17 To 31 for TV Bands: TV (470-862 MHz). 
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As can be seen, the overall spectrum occupancy is appreciably higher in the rural/suburban 

environment of the Humber region (average DC of 42.2%) than in the urban environment of 

Hull (average DC of22.1 %). In particular bands such as those allocated to broadcast services, 

e.g. TV (470-862 MHz) and DAB-T (195-223), where spectrum usage does not depend on the

number of users of the service, the results should be similar in both environments. However, 

it is worth noting that some of the TV channels were observed in the same state (busy or idle) 

in some locations , which can be explained by the fact that the distance between them is shorter 

than the coverage areas usually intended for TV transmitters and, as a result, some locations 

observe the same transmitters (Belmont transmitter). An exception was noticed in some 

measuring locations (channels), which may be due to another strong signal TV station (Emely 

Moor Transmitter). This clarifies why the average DC between suburban and rural 

measurements was unequal. In summary, the results obtained in this study indicate that 

spectrum usage is generally lower in sparsely populated areas. This indicates the existence of 

more spectrum opportunities for DSA/CR systems in these environments, which is in 

accordance with the conclusions of previous spectrum measurement campaigns (section5.5.3). 

5.6 Chapter Summary 

The first part of the work discussed in this Chapter, covers a set of long and short term 

observations of spectrum occupancy in the Humber region. The main aims of the work have 

been to discover which bands might be suitable for cognitive radio. Thus, powerful methods 

for the detection and exploitation of spectrum holes, based on observation of the radio's 

environment are essential for an efficient use of the wireless resource. The results obtained 

during the measurement campaign conducted in an urban environment (Urban High Points) 

demonstrated a significant amount of unused spectrum in these bands especially in the TV band 

region, as well between 1 GHz and 2 GHz except GSM1800 band. The unused spectrum could 

be potentially made available to future development of cognitive radio. Generally, the mean 

occupancy ratio over the whole band was as low as 11.0 %. The second part of work, section 

5.5.4, presents and compares the results obtained in sub-urban and rural environments. As 

opposed to sections 5.5.3 where the spectrum occupancy in fixed location was evaluated at 

different time instants, the measurements reported in section 5.5.4, were performed at various 

locations. Moreover, spectrum occupancy in this section is examined in the TV band. The 

obtained results indicate that in some bands such as those allocated to broadcast services, e.g. 

TV (470-862 MHz), where spectrum usage does not depend on the number of users of the 

service, the results are more similar in both environments. An exception was noticed in some 
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measuring locations (channels), where average duty cycle was higher. This may be due to the 

spectrum analyser receiving signals from more than one TV station at the same location. 

Overall, our measurements showed that the spectrum occupancy highly depends on the sensing 

location. Variability between sensing locations is to be expected but clearly confinned by 31 

measurement locations. However, to determine more objective spectrum utilisation, additional 

and more sophisticated methods will have to be employed and various locations will have to 

be analysed. Although the results collected were exclusively in the Humber region environment, 

UK, future work should involve further measurement campaigns in different cities (suburban 

and rural environments) in order to obtain a complete picture of the perspectives for future 

cognitive radio application. 
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6 
S11ectrmn Sensing Technology 

6.1 I11t1•oduction 

Although spectrum licensing offers an effective way to guarantee adequate quality of service 

for license holders, nevertheless, exclusivity also leads to inefficient use of the spectrum. The 

FCC reported in [102] that "while some bands are heavily used many other bands are not in 

use or used only part of the time". Indeed, in spite of the nominal absence of available spectrum, 

measurements of the radio frequency occupancy in previous Chapter (Figure 5.6) indicate that 

large portions of the frequency bands between 80 MHz-2700 MHz are not used for significant 

periods of time and locations. Cognitive radio technologies have been proposed for lower 

priority secondary user systems aiming at improving the spectral efficiency by sensing the 

environment and then filling the discovered gaps of unused licensed spectrum with their own 

transmissions [103]. The spectrum sensing is a crucial task and is by far the most important 

component for the establishment of cognitive radio. It is considered as the first step towards 

adaptive transmission in unused spectral bands without causing interference to primary users. 

The goal of this Chapter is to point out several aspects of spectrum sensing. We start by 

introducing the concept of passive awareness and active awareness in section 6.2. Additional 

details associated with active awareness are explained in section 6.3. Primary transmitter 

detection (non-cooperative sensing) methods are studied in 6.4. Comparison of various 

spectrum sensing methods are illustrated in 6.5. The cooperative sensing and two stage adaptive 

sensing techniques are introduced in section 6.6 and our conclusions are presented in 

section 6.7. 
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8.2 Passive Awareness and Active Awareness 

There are a number of ways in which cognitive radio system are able to perform spectrum 

sensing. These ways fall into one of two categories, active awareness and passive awareness. 

The classification of active and passive awareness presented in this Chapter are taken from a 

book about cognitive and cooperative networks [104]. Spectrum awareness is the task of 

obtaining awareness about spectrum usage and existence of primary users in a geographical 

area. This awareness can be classified into two forms: (1) an opportunistic one, where the 

secondary system recognises the spectrum use pattern individually by cooperative or by a non­

cooperative sensing and (2) the sharing information approach where the spectrum knowledge 

is distributed through beacons or using a control channel or by sharing databases of existing 

users. CR systems may employ either or both forms of awareness, thus the discussed 

approaches should not be viewed as mutually exclusive. Both active and passive awareness 

methods are considered in the following subsections. Figure 6.1 presents the classification of 

spectrum sensing awareness. 

Policy 

Based 

Database 

Approach 

Spectrum 

Awareness 

Cooperative 

Figure 6-1: Spectrum Awareness. 

6 . .2.l Passive Awareness 

Non-Cooperative 

In passive awareness, the spectrum use pattern is received from outside of one's own secondary 

communication system. Secondary Users (SUs) can obtain spectrum resources by negotiating 

with primary Users (PUs) [104], from Geolocation databases [105] or from a policy-based 

approach [107]. 

In systems based on negotiated spectrum use the primary system explicitly announces 

to secondary users information about the allocated frequencies and the available 

spectrum opportunities. For example, the base station of an existing (primary) 

communication system, such as television, broadcasts beacons that advertise the 

availability of licensed spectrum for secondary usage. This solution has a very high 
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infrastructural cost and requires some modifications of the current licensed systems. 

However, some CR networks implementations foresee the adoption ofa Cognitive Pilot 

Channel (CPC) to support cognitive operations such as spectrum allocation [106]. This 

dedicated channel could also be adopted to convey sensing infom1ation towards the SU 

nodes. 

In the policy-based approach, the radio regulation authority identifies a licensed band 

of the radio spectrum where use is low or the band is used with a deterministic pattern 

[107,108]. This band is then made available for secondary use. The authority assigns a 

set of policies that provide rules and constraints describing how this available band 

should be used. 

In systems based on a data base, a primary system or the radio regulation authority can 

maintain a table or database of frequency resources in its server and both primary and 

secondary users can update this table. The database solution is based on the consultation 

by the SU network of a database that stores the information on the spectral occupancy 

in the nodes locations and additional information, such as the maxirnwn permitted 

effective isotropic radiated power (EIRP) in each band. The advantage of this approach 

is that it is virtually error free and is not affected by radio channel characteristics. 

However, it is a quite expensive solution. Indeed the secondary nodes are required to 

incorporate some localisation technique ( e.g. GPS) and an Internet connection in order 

to access the database information. Moreover, additional costs are related to the design, 

implementation, maintenance and administration of the database, and to the costs for 

gathering the PU occupancy infonnation [111]. 

All these passive approaches are good in the sense that they can ensure interlerence-free 

commw1ication for the primary system, since the spectrum use is defined a priori. However, 

passive awareness increases the amount of control information needed in the system. 

Furthermore, passive approaches are not compatible with existing licensed systems and need 

high costs for gathering the inforn1ation [108]. 

6.2.2Active Awareness 

Active awareness, is defined by IEEE as "the act of measuring information indicative of 

spectrum occupancy" [112], it is also known as spectrum sensing. It consists therefore of the 

implementation of an autonomous process of the SUs that on the basis of the received signals 

analyse the spectrum. The idea of active awareness is to monitor spectrum by signal detection 
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methods so that we can identify those frequency bands which other systems are using. The 

method requires constant monitoring of the channel so that new primary users and possible 

vacant channels will be detected in near real time. When using spectrum sensing, the hidden 

terminal problem might cause problems when there is an obstacle between the secondary 

system and the primary transmitter. In this kind of situation the secondary user might have a 

good connection to a primary receiver but it cannot necessarily detect the primary transmitter. 

To overcome this kind of problem, we can use a longer sensing period to increase the 

measurement accuracy but this reduces the available time for transmission. Another method to 

overcome the hidden terminal problem is to use cooperative sensing. When a device operates 

in a cooperative mode, it shares the data, which it has collected from the spectrum environment, 

with other similar secondary users. Hence, the secondary user can have information about the 

primary user even though it cannot see it. The rest of this Chapter focuses on active awareness 

as the method for radio environment analysis. Techniques for active spectrum sensing have 

received much attention in recent years and so these will be discussed in more detail in 

following sections. The tenn spectrum sensing will be used in the remainder of this Chapter to 

refer to active awareness. 

6.3 Spectnun Sensing Tecbniques 

To be capable of sensing very weak signals, cognitive radios must have significantly better 

sensitivity than conventional radios [113]. Requirements for radio frequency (RF) frontend and 

analog-to-digital converters (ADC) are very demanding and have only recently become 

feasible. After reliable reception and sampling of the signal, digital signal processing 

techniques are utilised to further increase confidence in the data. Most of the recent spectrum 

sensing work focuses on primary transmitter detection based on local observations by 

secondary users. In [114], the spectrum has been classified into three types by estimating the 

incoming RF-stimuli, thus; black spaces, grey spaces and white spaces. Black spaces are 

occupied by high power local interferer some of the time and unlicensed users should avoid 

those spaces at those times. Grey spaces are partially occupied by low power interferers but 

they are still candidates for secondary use. White spaces are free of RF interferers except for 

an1bient noise made up of natural and man-made fonns of noise. White spaces are obvious 

candidates for secondary use. Before looking into the details of spectrum sensing methods, we 

summarise the typical grouping of spectrum sensing schemes in Figure 6.2 and highlight 

characteristic features of these sensing approaches. 
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Spectrum sensing 

Bandwidth of 

spectrum interest? 

1-Narrowband sensing

2-Wideband sensing

When to sense? 

1-Proactive sensing 

2-Reactive sensing

A prior information 

available? 

1-Non-blind sensing 
2-Semi-blind sensing
3-Total-blind sensing

Figure 6-2: Classification of Spectrum Sensing Techniques. 

Generally, spectrum sensing techniques can be classified into two main types, primary signal 

detection and interference detection. In addition, sensing techniques can be used both by 

cooperative and non-cooperative types of detection. Classification of spectrum sensing 

techniques presented in this section are partly based on [104,115]. In a non-cooperative 

primary-user signal detection approach, CR makes a decision about the presence or absence of 

PU based on its local observations of the spectrum. In comparison, cooperative detection refers 

to primary-user signal detection based spectrum sensing methods where multiple CRs 

cooperate in a centralised or decentralised manner to decide about the spectrum hole (in this 

context a "spectrum hole" is defined as an area of radio spectrum that is available for SU usage). 

Both of these approaches fall within the category of spectrum overlay wherein SUs only 

transmit over the licensed spectrum when PUs are not using that band. Conversely, the 

interference based detection approach, based on spectrum underlay, (wherein SUs are allowed 

to transmit concurrently with PUs under the stringent interference avoidance constraint) was 

analysed and declared to be non-implementable [116]. Depending on the application at hand, 

CR can opt for either narrowband or wideband sensing. Thus, the focus of CR will be on 

identifying narrow band spectrum holes or free wideband spectrum. To find spectrum 

opportunities, CR may adopt either a proactive (periodic) or reactive (on demand) sensing 

strategy. Either of the two approaches may be employed in the absence or presence of 

cooperation among CRs. A priori information required for PU detection is another important 

criterion upon which different spectrum sensing methods are classified. In this category, 

different primary-user signal detection based sensing techniques are categorised as non-blind, 

semi-blind or total-blind. Non-blind schemes require primary signal signatures as well as noise 

93 



Chapter 6: Spectrum Sensing Technology 

power estimation to reliably detect PU. Semi-blind schemes are relaxed in the sense that they 

need only a noise variance estimate to detect a spectrum hole. However, most practical sensing 

techniques are generally total blind and semi-blind, l'equiring no a priori information to 

determine PU activity. Fundamental to all these classifications is the need to detect the presence 

or absence of PU signals. In the next sections, we will focus on primary-user signal detection 

sensing based on both non-cooperative and cooperative approaches. 

6.4Primary Transmitte1• Detection (Non-Cooperative 

Sensing) 

In recent times, most of the researchers into CR have introduced sensing asserting that sensing 

algorithms can be classified in several detectors techniques. These techniques, indeed, are the 

strategies that can be adopted in sensing problems in the presence of single/multi receivers that 

operate on a single/ multiple frequency band. A variety of sensing methods are proposed in the 

literature to identify spectrum holes [117]. In general, the detection problem is analysed as a 

binary hypothesis model, defined as( 118]: 

{n(t),
x(t) = 

hs(t) +n(t), 

0 < t :5 T H
0

0 < t ,:; T H1

(6.1) 

where x(t) is the signal received by CR during observation window T , n(t) represents the 

additive white Gaussian noise (AWGN), s(t) represents the transmitted signal from a primary 

user which is to be detected and his the channel gain,, H0 and H1 denote the hypothesis of the 

absence and the presence, respectively, of the PU signal in the frequency band of interest. 

This is a classic binary signal detection problem in which the CR has to decide between two 

hypotheses, H0 
and H1 . H0 corresponds to the absence of a primary signal in the scanned 

frequency band while H1 indicates that the spectrum is occupied. It is important to point out 

here that under H 1, spectrum may be occupied by an incumbent or a secondary user. Hence, a 

sensing scheme is generally required not only to detect but also to differentiate between the 

primary and secondary user signals. Conventionally, the performance of a detection algorithm 

is restricted with its sensitivity and specificity [118] which are measured by the probability of 

detection P d and the probability of false alarm Pr, respectively. 

Pd is the probability of correctly detecting the PU signal present in the considered 

frequency band, 
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P
r 

is the probability that the detection algorithm falsely decides that PU is present in 

the scanned frequency band when it actually is absent. 

A number of methods have been proposed for identifying any spectrum usage opportunity in 

the scanned frequency band ranging from very simple energy detection to quite advanced 

cyclostationary feature extraction and waveform based sensing. Recent work mainly focuses 

on further sophistication of these basic techniques with an aim to making sensing results more 

robust and accurate at the same time [ 119]. The following subsections provide a brief overview 

of spectrum sensing techniques. This review provides a single unified reference guide to both 

classical and emerging trends in spectrum sensing for CR. 

8.4.l Energy Detection 

The energy detector based approach, also known as radiometry or periodogram, is the most 

common way of spectrum sensing because of its low computational and implementation 

complexities [121). In practice, energy detection (ED) is especially suitable for spectrum 

sensing when the CR cannot gather sufficient information about the PU signal since it does not 

require any prior information about the primary signal. It measures the energy in the received 

waveform over an observation time window [122]. The block diagram of the energy detector 

is shown in Figure 6.3. 

x(t) Band pass 

Filter 

Squaring 

Device 

Integrator Threshold 

Figure 6-3: Block Diagram of Energy Detection. 

First, the observed spectrum signal is pre-filtered with a band pass filter (BPF) of bandwidth 

W to select the desired frequency band. The filtered signal is then squared and integrated over 

observation window of length T. This gives an estimated energy content of the signal which is 

then compared with a threshold value depending on prevailing noise floor to decide about the 

presence of a PU signal in the scanned sub-band. Mathematically, this can be expressed with 

the following steps [121,122]. Let us assume that the received signal has the following simple 

form: 

y(n) = s(n) + w(n) (6.2) 
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where s(n) is the signal to be detected, w(n) is the additive white gaussian noise (AWGN) 

sample, and n is the sample index. Note that s(n) = 0 when there is no transmission by any 

primary user. The decision metric M (y) for the energy detector can be written [ 121] as 

N-1

M(y) = ! L ly(n)I'
n=O (6.3) 

where N is the length of the observation sequence, referred to as sample complexity. This 

output signal M(y) is compared to the threshold Ae in order to decide whether a signal is 

present or not. The Ae is set according to statistical properties of the output M when only noise 

is present. This is equivalent to distinguishing between the following two hypotheses: [122] 

H, , y(n) = w(n) (6.4) 
H1 , y(n) = s(n) + w(n) 

where H0 
is a null hypothesis stating that the received signal samples y(n) correspond to noise 

samples w(n) and therefore there is no primary signal in the sensed spectrum band, and 

hypothesis H1 indicates that some licensed user signal s(n) is present. 

The performance of the detection algorithm can be summarised with three probabilities: ,Pf,E 

and Pm,E. Pd,E is the probability of detecting a signal on the considered frequency when it 

truly is present. Thus, a large detection probability is desired. It can be formulated as 

Pd,E = Pr(M(y) > A,IH1) (6.5) 

P
r
,e is the probability that the test incorrectly decides that the considered frequency is occupied 

when it actually is not, and it can be written as 

Pr,e = Pr(M(y) > ,i,IHo) (6.6) 

Pm,E is the probability of not detecting a signal on the considered frequency when a signal is 

present. Consequently, large Pm E introduces unexpected interference to primary users. 

Pm,B = Pr(M(y) < A,IH1) (6.7) 

P m,E should be kept as small as possible in order to prevent underutilisation of transmission 

opportunities. The decision threshold Ae can be selected for finding an optimum balance 

between Pd,E and Pf ,E· However, this requires knowledge of noise and detected signal powers. 

The noise power can be estimated, but the signal power is difficult to estimate as it changes 

depending on ongoing transmission characteristics and the distance between the cognitive radio 
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and primary user transmitter. In practice, the threshold is chosen to obtain a certain false alarm 

rate [123], where Pr,e is fixed to a small value (e.g. :S5%) and Pd ,E is maximised. This is 

referred to as constant false alarm rate (CF AR) detection principle. Hence, knowledge of noise 

variance is sufficient for selection of a threshold. Setting the right threshold value is of critical 
importance, which we have already discussed in Chapter 4. The key problem in this regard is 

illustrated in Figure 6.4 which shows probability density functions of received signal with and 

without active primary user. 
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Figure 6-4: Threshold Setting in ED: Trade-off between Missed Detection and False Alarm. 

The probability of detection Pd,E, and probability of false alarm P
r
.e, of energy detection over 

the AWGN channel are approximated from [122] as 

Pa.E = Qm (jfy,J}:;) 

p 
_ I'(m/2, J..E/2)

f,E - f(m) 

( 6.8) 

(6.9) 

* Qm (.,.) is the generalised Marcum Q-function, which is widely used in radio

communications and has important applications in error performance analysis of digital

communication problems dealing with partially coherent, differentially coherent, and

noncoherent detections.

* I'(.) and f(.,.) are complete and incomplete gamma functions, respectively ,where

the gamma function is a component in various probability distribution functions, and

as such it is applicable in the fields of probability and statistics.

* y is the instantaneous SNR and Ae is the decision threshold of the energy detector, 

m = TW is the time bandwidth product, where samples were used to detect the 

presence of a signal of duration T and band limited to W. 

Key positive features of energy detection are the implementation simplicity and low 

computational complexity, which have motivated most of the recent work in spectrum sensing 
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for CR towards enhanced energy detection and its combination with other robust and accurate 

spectrum sensing methods [125]. ED needs to estimate only the noise power to set its threshold 

and does not require any information on primary transmission characteristics. This makes 

energy detection based sensing a semiwblind technique. On the other hand, the limitations of 

energy detection are addressed in [ 126, 128] and some hidden assumptions in conventional ED 

are unveiled more recently in [127,129]. The vital limitation of ED based spectrum sensing is 

the uncertainty in threshold setting to produce optimal sensing results, since it strongly depends 

on the accurate estimation of the noise power which changes temporally and spatially. 

Spectrum sensing results based on ED have limited reliability as energy observations are unable 

to differentiate between primary and secondary user signals which appears as a cost of semiw 

blind signal detection. Other limitations include poor performance under deep signal fades 

resulting from shadowing and fading and inability to detect spread spectrum signals. All these 

factors characterise ED with less robustness and low accuracy/reliability. 

6.4.2 Cyclostationai-y Featln·e Detection 

Cyclostationary Feature Detection (CFD) is a method for detecting primary user transmissions 

by exploiting the cyclostationary features of the received signals [130,131,132]. Wireless 

(digitally modulated) signals are in general coupled with sine wave carriers, pulse trains, 

repeating, spreading or hopping sequences or cyclic prefixes, which induce periodicity in the 

signal making them cyclostationary. This periodicity may result from modulation or even be 

deliberately generated to assist channel estimation (regularly transmitted pilot sequences) and 

synchronisation (preambles, midwambles etc.). Cyclostationary feature detection exploits the 

built win periodicity of received signals to detect primary transmissions in a background of noise 

[133]. Features that can be extracted include RF carrier, symbol rate and modulation type. The 

inherent periodicity in cyclostationary signals causes key statistical characteristics of PU signal 

like mean and correlation to repeat after regular time intervals. This introduces correlation 

between widely separated frequency components of the received primary signal which is 

identified in cyclostationary detection by examining the Cyclic Autocorrelation Function 

(CAF), or, equivalently in the frequency domain by Cyclic Spectral Density (CSD), also known 

as Spectrum Correlation Function (SCP). An illustration of a cyclostationary feature detector 

is presented in Figure 6.5. 
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Figure 6-5: Block Diagram of Cyclostationary Feature Detection. 

In general, a process is cyclostationary in the wide sense if its mean and autocorrelation are 

periodic or the sum of periodic functions of time. If there is more than one source of periodicity 
and the periods are not all commensurate, then the process is called almost cyclostationary 

since its parameters are almost periodic functions of time. An important characteristic property 

of a cyclostationary random process is that it exhibits spectral correlation, i.e., the complex 

envelopes of some pairs of frequency components have nonzero temporal correlation. This 

contrasts sharply with stationary processes, in which no pairs of distinct frequency components 
are correlated. It is the exploitation of this spectral correlation property of the signal of interest 

that leads to devices with superior tolerance to noise and interference as compared to 

radiometric devices. Mathematically, this can be expressed with the following steps [136,137]. 

The cyclic spectral density (CSD) function of a received signal can be written as 

M(f,a) = L R� e-J2rrfr 
r=-a (6.10) 

where 

Rf (r) = E[y(n + r)y*(n _ r)e-J2rran] (6.11) 

1s the cyclic autocorrelation function (CAF) and parameter a is the cycle frequency. It 

describes the frequency separation of the correlated spectral components [135). The CSD 

function outputs peak values when the cyclic frequency is equal to the fundamental frequencies 

of the transmitted signal x(t). Cyclic frequencies can be assumed to be known [136] or they

can be extracted and used as features for identifying transmitted signals [137]. The probability 

of detection, Pd, and probability of false alarm, P1 , of cyclostationary detection over an A WGN 

channel are approximated as 

2y Ac L Pd,C = 1 - [1 - Qm(-,?)]
O"w UA 

.le 

Pr,c = 1- (1- e -2oi)L

(6.12) 

(6.13) 
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where crJ, is the variance, ol = crJ,(kc + l)in which kc is the number of samples for detection,

L is the number of diversity branches, y is instantaneous SNR, Qm (.,.) is the generalised 

Marcum Q -function, and Ac is a predetermined threshold. 

The main positive point of feature detection is its ability to differentiate PU signals from 

interference and noise and even distinguish among different types of PUs. This derives from 

the fact that noise is in general (white) uncorrelated while every PU signal has a specific 

cyclostationary feature. Another important advantage is robustness to noise uncertainty which 

allows cyclostationary detector to identify primary transmissions more than 30 dB below the 

noise floor [136]. Therefore, feature detection outperforms ED especially in a low SNR regime. 

The hidden PU problem is much less likely to occur than with ED because of its high 

probability of detection. On the other hand, the limitations of feature detection arise from the 

cost of increased implementation complexity in terms of high processing requirements which 

results in a large sensing time. Specifically, this processing is required to extract cyclic 

frequencies (if not known a priori) from received primary transmissions which in tum also 

makes this approach non-blind. Also, short duration spectral opportunities cannot be exploited 

efficiently using this approach because of large observation time requirements. 

6.4.3Matched Filtering 

When the secondary users know information about a primary users signal a priori, it can detect 

the PU signal by either passing the received signal at CR through matched filter (MF) having 

impulse response matched to the incoming signal or correlating it with a known copy of itself. 

The optimal detection method is matched filtering [138], since a MF can correlate the already 

known primary signal with the received signal to detect the presence of the primary user and 

thus maximise the SNR in the presence of additive stochastic noise. The output of MF is 

compared with a threshold to decide about the presence or absence of PU signal. Figure 6.6 

depicts the block diagram of a matched filter. 
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Figure 6-6: Block Diagram of Matched Filter Detection. 
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Mathematically, this can be expressed with the following steps [138]. The signal r(t) received 

by CR is fed to the matched filter and is expressed mathematically as 

r(t) = hs(t) + n(t) (6.14) 

where in general s(t) is O if the PU is absent. The matched filter is equivalent to convolving 

the received signal r(t) with a time-reversed version of the kno'Wll signal or template as 

r(t) • s(T - t + ,) (6.15) 

where T is the symbol time duration and r is the shift in the kno'Wll signal. The probability of 

detection, Pd , and false alarm, P
r

, of a matched filter are given as 

(616) 

(6.17) 

where Q is the Gaussian complexity distribution function, E is the energy of the deterministic 

signal of interest, and aJ is the noise variance. 

The main advantage of matched filtering is the short time to achieve a certain probability of 

false alam1 or probability of mis-detection as compared to other methods, since a matched filter 

needs less received signal samples. Nevertheless, its implementation complexity and power 

consumption is too high [139], because matched-filtering requires cognitive radio to 

demodulate received signals. Hence, it requires perfect knowledge of the primary users 

signalling features such as bandwidth, operating frequency, modulation type and order, pulse 

shaping, and frame format. If wrong information is used for matched filtering, the detection 

performance will be degraded. 

6.4.40tlter Sensing Methods 

Other alternative spectrum sensing methods are waveform-based sensing, wavelet based 

spectrum sensing, filter bank and spectnun detection employing compressed sensing. In the 

following, we present a brief overview of these spectrum sensing methods. 

Wavefonn-based sensing can be used to decide whether a primary user is transmitting or not, 

if only a certain pattern is known from the received signals. Known patterns are usually utilised 

in wireless systems to assist synchronisation or for other purposes. Such patterns include 

preambles, midambles, regularly transmitted pilot patterns, spreading sequences etc. A 

preamble is a known sequence transmitted before each burst and a midamble is transmitted in 

the middle of a burst or slot. In the presence of a known pattern, sensing can be performed by 
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correlating the received signal with a known copy of itself [90}. This method is only applicable 

to systems with known signal patterns, and it is termed wavefonn-based sensing or coherent 

sensing. In [90], it is shown that waveform-based sensing outperforms energy detector based 

sensing in reliability and convergence time. Furthermore, it is shown that the performance of 

the sensing algorithm increases as the length of the known signal pattern increases. The wavelet 

transform was proposed for spectrum sensing for detecting edges in the Power Spectral Density 

(PSD) of wideband spectrum in the frequency domain for detecting one or more narrowband 

users [142]. Wavelet transforms in general are used to detect irregularities/ singularities in the 

power spectral density and thus proposed to be used for detecting spectral irregularities or in 

other words varying power levels in the spectral bands over a wide portion of the spectrum. 

The wavelet detection method avoids the requirement to have complex band pass architectures 

in the receiver for detecting narrowband users for wideband sensing; however, it requires a 

high sampling rate when operating in the discrete domain. 

A filter bank method is proposed in [143], where a set of band pass filters with low side-lobes 

are used to estimate the signal spectra. This is a very conventional method ( with hardware 

antecedent) for spectral estimation and could also possibly be used for spectrum sensing in 

cognitive radios. The major disadvantage of this method is obviously the requirement for many 

band pass filters in the receiver; on the other hand, considering multicarrier communications 

with filter bank structures already in the receivers this method could be conveniently utilised 

for spectrum sensing without too many additional requirements. 

Compressive sensing is a technique that can efficiently acquire a signal using relatively few 

measurements, by which unique representation of the signal can be found based on the signal's 

sparseness or compressibility in some domain. As the wideband spectrum is inherently sparse 

due to its low spectrum utilisation, compressive sensing becomes a promising candidate to 

realise wideband spectrum sensing by using subNyquist sampling rates. Spectrum detection 

based on compressed sampling is proposed in [144], where the authors have extended their 

approach of wavelets to wideband spectrum sensing using sub-Nyquist sampling by exploiting 

the sparse nature of wireless signals in frequency domain. This technique relies on the 

maximum sparsity order to determine the fundamental limit on the sampling rate which turns 

out to be unnecessarily high for the desired sensing performance and hence wasteful of sensing 

resources. To alleviate wasteful sampling, a Two-step compressed Spectrum Sensing (TS-CSS) 

scheme is proposed in (145]. 
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6.4.:S Performance Assess1neut of Well-Ku own Spectnun Sensing 

Techniques ED, CFD, MF and Other Teclutiqnes 

In this section, we compare the performance of three well-known algoritluns; energy detectors, 

matched filtering, and cyclostationary detection. During the comprehensive study of these three 

models of spectrum sensing techniques, criteria which directly affect performance and 

accuracy of each technique are discussed. In particular, these aspects for energy detection, 

matched filtering and cyclostationary detection are presented in Figure 6.7 A and 6.7B. A 

comparison has been made of time, cost, prior knowledge, and complexity for each technique 

in Figure 6. 7 A and how these aspects impact on the accuracy and performance as shown in 

Figure 6. 78. The performance comparison has been represented in three different values; low, 

medium and high. It can be clearly seen that the energy detection has short time, low cost, no 

prior knowledge and less complexity but correspondingly the accuracy and performance are 

low because these criteria rely on some factors such as suitable threshold selection and noise 

stability. It is unrealistic to expect to find these stationary factors in all the times and various 

places. On the other hand, the matched filter technique as illustrated in Figure 6.78 has good 

performance and high accuracy but at the expense of increasing the cost, more complexity and 

requiring perfect signal knowledge to operate these techniques. In contrast, cyclostationary 

analysis has slightly better performance and possesses higher accuracy than energy detection, 

but it needs long time, high cost and partial prior knowledge which makes it less complex than 

the matched filter. Therefore, each of these techniques has advantages and disadvantage where 

some advantages are at the expense of significant problems, which might impact directly on 

the technique working properly and effectively [146]. 
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6.4.6 Siinulation Platfo1•1n fo1· Speetr,nn Sensing Tecluliques ED, 

CFD and Ml<' 

This simulation has been carried out by implementing equations 6.8 and 6.9 (ED), 6.12 and 

6.13 (CFD) and 6.16 and 6.17 (MF) in Matlab code. Two different simulation processes are 

carried out. For the first simulation type, the SNR is kept at a fixed value ofOdB, and for the 

second simulation type, the SNR is kept at a fixed value of 6dB. The decision threshold range 

is varied between minimum and maximum threshold values. The two major parameters used 

as a performance measurement metrics to analyse the performance of the detection process are, 

probability of detection (Pd ) and probability of false alarm(P1 ). The performance of a spectrum

sensing technique is illustrated by the receiver operating characteristics (ROC) curve which is 

a plot of P
1 

versusPd . An extensive set of simulations have been conducted using the system 

model as described in the previous section. The emphasis is to analyse the comparative 

perfonnance of the three well-known spectrum sensing techniques. The results are shown in 

Figure 6.8. It is constructed by plotting the detection rate versus the false alarm rate. The curve 

is created by assuming a large range of thresholds. In the plot we compare the perfonnance of 

three different scenario energy detection, matched filter and cyclostationary detection. The 

simulation results of spectrum sensing techniques show in Figme 6.8 point out that the 

cyclostationary detector is better than the conventional energy detector. The cyclostationary 

feature detector does not assume full knowledge and therefore its performance cannot surpass 

that of the matched filter based. This is confim1ed in the plot. However, the cyclostationary 

detector performance is comparable to that of the matched filter which is based on full prior 

knowledge. This is clearly difficult to implement, and will be very expensive and very 

complicate to build in. Additionally, Figure 6.8 indicates that when SNR is increased to 6dB, 

all the proposed methods have low probability of false alarm and high probability of detection 

compared with SNR=OdB. Overall, the results in this section show that probability of detection 

starts working well with high SNRs. Matched filter detection is better than energy detection 

even with low SNRs. Taking into account the complexity of matched filter and uncertainty of 

energy detection, cyclostationary feature detection is better than both the previous detection 

techniques since it produces respectable results[l 46]. 
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Figure 6-8: Probability of Detection vs Probability of False Alarm Spectrum Sensing 

Techniques ED, MF, CFO with SNR=OdB And SNR=6dB. 

Similar results have been concluded in most of the previous published studies of perfonnance 

comparison of spectrum sensing method relying on theoretical analysis and numerical 

simulations. However, real world noise can be different from A WGN, and there are other 

factors to consider such as path loss, shadowing, multipath fading, and interference. These facts 

have motivated the author to examine the performance comparison of energy detection and 

cyclostationary feature detection with real measurement signals in the next Chapter. 

6.lS Comparison of Various Sensing Metbods

Although in section 6.4.5 we compared the performance of three well-known algorithms; ED, 

MF and CFD, in this section we will compare the detection performance of several other 

representative spectrum sensing algorithms. The selection of a sensing method is always a 

trade-off between accuracy and complexity. The comparison of the sensing methods given in 

the previous section is summarised in Figure 6.9. 

When nothing is known about the PU signal, ED happens to be most simple approach, but it 

fails in the presence of fading and noise uncertainties. Waveform-based sensing is more robust 

than energy detector and cyclostationarity based methods because of the coherent processing 

that comes from using deterministic signal component [147,148]. However, there should be 

a priori information about the primary user's characteristics and primary users should transmit 

known patterns or pilots. Advanced power spectrum estimation techniques such as wavelet 

based and filter bank spectrum achieve accuracy while sacrificing the simplicity of energy 

detection. As a matter of fact, some a priori knowledge about primary transmissions is 
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necessary to distinguish a primary signal from a secondary signal and interference/noise. 

Processing of this known information achieves reliability in detection at the cost of additional 

computational complexities. Such schemes are classified as non-blind and the type of the 

detection approach depends on the available information about primary signals. In particular, 

cyclostationary detection is suitable when cyclic frequencies associated with primary 

transmissions are known while coherent detection is preferred when pilot transmissions of the 

primary system are known. Blind sensing, based on received signal covariance matrix and other 

approaches achieves high accuracy with its computational complexity dependent on the sensing 

algorithm used. 

Sensing Accuracy 

power 
estimation 

Teclmique 
sensimi 

Complexity 

Figure 6-9: Comparison of Spectrum Sensing Methods 

Overall, while selecting a sensing method, some trade-offs should be considered. The 

characteristics of primary users are the main factor in selecting a method. Cyclostationary 

features contained in the waveform, existence of regularly transmitted pilots, and 

timing/frequency characteristics are all important. Other factors include required accuracy, 

sensing duration requirements, computational complexity, and network requirements. 

Estimation of traffic in a specific geographic area can be done locally (by one cognitive radio 

only) using one of the algorithms. However, information from different cognitive radios can 

be combined to obtain a more accurate spectrum awareness. In the following section, we 

present the concept of cooperative sensing where multiple cognitive radios work together to 

perform the spectrum sensing task collaboratively. 
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6.6Cooperative and Two-Stage A<laptive Sensing 

The key challenges associated with single-user-centric transmitter detection schemes, that 

prevent them achieving promised sensing performance under practical conditions include 

restricted sensing ability, high detection sensitivity requirements, vulnerability of primary 

receivers to secondary transmissions and spectrum sensing in multiuser environments. The 

above limitations of conventional spectrum sensing can be overcome by sharing the sensing 

information among spatially distributed CRs which leads to the concept of cooperative sensing 

[148]. It is well known from the theory of distributed detection that higher reliability and lower 

probability of detection error can be achieved when observation data from multiple, distributed 

sources is intelligently fused in a decision making algorithm, rather than using a single 

observation data set. Cooperation is proposed as a solution to problems that arise in spectrum 

sensing due to noise uncertainty, fading, and shadowing [149). Cooperative sensing decreases 

the probabilities of misdetection and false alarm considerably. Also, cooperation can solve 

hidden primary user problem and can decrease sensing time. 

To further improve the reliability of the detection, two-stage spectrum sensing scheme is 

designed, which has better perfonnance than single-stage techniques with relatively low 

computational complexity. Recent work [150] has reported the combination of ED with feature 

detection to benefit from complementary advantages of both the schemes by doing coarse 

detection using ED which is then made more reliable by fine detection employing 

cyclostationary detection. In Chapter 8, the author will explain in more detail the challenge of 

non-cooperative sensing and cooperative spectrum sensing and analyse how it can guarantee 

improved sensing performance with minimum incurred cost. 

6.7 Chapter S1umnary 

Spectrnm is a very valuable resource in wireless communication systems, and it has been a 

focal point for research and development efforts in recent decades. Cognitive radio, which is 

one of the efforts to utilise the available spectrum more efficiently through opportunistic 

spectrum usage, has become an exciting and promising concept. One of the important elements 

of cognitive radio is sensing the available spectrum opportunities. In this Chapter, passive 

awareness and active awareness concepts have been introduced. Active awareness of the 

spectrum sensing task are explained in detail. A variety of detection techniques were studied, 

compared and classified. Comparison of sensing algorithms revealed wide variability in their 

computational complexity for the targeted detection performance. Performance comparison of 
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basic spectrum sensing mechanisms such as, Energy Detection (ED) and Cyclostationary 

Feature Detection (CFD) along with the Matched Filter (MF) detection method is evaluated. 

From simulation results it is observed that the detection performance of the CFD method is a 

compromise technique, having better low SNR detection performance than energy detectors 

and less strict requirements than matched filters. Due to limitations of conventional spectrum 

sensing, and to mitigate the impact of such as multipath fading, shadowing and receiver 

uncertainty issues in spectrum sensing, cooperative spectrum sensing and two-stage adaptive 

sensing are introduced as a solution to come over these problems. 
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Chapter 

7 

------------------------

Cyclostationary Feature 

Detection 

7.I Introduction

To mitigate the impact of harmful interference with licensed users, detection algorithms have 

been shown to be an effective method to improve the detection performance [151,152]. 

Wireless signal detection can be performed using many different techniques. Each of these 

techniques has advantages and disadvantages in terms of theoretical and real world 

performance, which have already been mentioned in previous Chapters. Among these 

techniques, cyclostationary feature detection (CFD) can be viewed as a compromise technique, 

having better low signal-to-noise ratio (SNR) detection performance than energy detectors and 

less strict requirements than matched filters. Therefore the CFD is regarded as a promising 

technique for signal detection. 

Spectrum sensing at low SNR conditions is critical to mitigate the hidden transmitter problem 

and to enhance spectrum awareness. Cyclostationary feature detectors are considered to be one 

of the most robust detectors under noise uncertainties. CFD uses the cyclostationarity of a 

signal to detect its presence. Signals that have cyclostationarity exhibit correlations between 

widely separated spectral components. Functions that describe this cyclostationarity include 

the Spectral Correlation Function (SCF) and Spectral Coherence Function (SOF). In recent 

years, cyclostationary feature detection strategies have gained an increasing interest in the 

context of cognitive radio. This fact has been driven by the fact that CFD is able to differentiate 

PU signal from interference and noise and even distinguish among different types of PUs. This 

section reviews some of the campaigns perfmmed in cyclostationary feature detection. In [154] 
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it was shown that the SCF floor gets lower as the observation time (and computation budget) 

gets longer (by simulation), which indicates that SCF features can be detected under lower 

SNR environment with longer observation time as shown in Figure 7 .1. 

SCFfloor, 

2
11 

sym. 

-40 

z7, z13and z17 
represent the BPSK 
Symbols 

-20 -10 0 

SNR. in dB 
10 20 

Figure 7-1: SCF of BPSK under different SNR/observation time compared with PSD, using 27 , 

213 and 217 BPSK Symbols (154). 

In [153], the authors used a cyclostationary signature which is a unique identifier or watermark 

intentionally embedded in the signal and identified through SCF. They proved, using 

simulation, that the cyclostationary signature is sensitive to time variant Rayleigh multipath. 

In [156], the authors propose a method to improve CFD using the fact that SCF is robust to 

slow multipath fading, low SNR environments and is insensitive to unknown prior knowledge 

of received signal gain by simulation. Other researchers have used real experiments to 

understand the SCF in a limited manner. In [157], the real world performance of CFD was 

presented in the form of SCF through hardware implementation, overcoming its hardware 

limitation such as sampling clock offset by partially coherent feature processing. The author in 

[ 157] tried to relate the performance of his CFD to an experimental approach. But the noise 

used in his research was synthetic stationary white noise. In addition, through empirical 

experiments, it was shown in [158] that under multipath fading with static and dynamic states 

the SCF still shows its cyclostationary features in the cyclic frequency (o.) t O regions. 

Reference [157] focuses on implementing SCF in hardware and interpreting its limitations 

whereas [158] focuses more on stationary analysis under multipath and shadowing effects. 

The rest of the Chapter is organised as follows. In section 7.2 we address goals, framework and 

approach of Chapter. In section 7.3, we briefly describe the background to the cyclostationary 

process. Channel noise analysis is introduced in section 7.4. In section 7.5, we present 
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methodology aspects, describing the cyclostationary feature analysing system and 

experimental setup. In section 7.6, we present research analysis and research results. We 

conclude the Chapter in section 7. 7. 

7.2 Goals, Framewo1•k and Ap1Jroach 

The performance of SCF has not been investigated sufficiently under real-word n01se 

conditions. Instead, it has been proven in analytic/simulation manner or with real experiments 

using AWGN (synthetic noise) as noise. But real world noise, which often includes low level 

interference can be different from A WGN, and there are other factors to consider such as path 

loss, shadowing, multipath fading, and interference [160]. Although the log-normal 

shadowing model is built based on empirical experiments using the PSD of the signal, showing 

the effects of noise on signal power, however, the PSD when used for energy detection is 

shown to have worse performance under those multiplicative noise conditions [161]. There has 

been very limited research on a SCF-based path model in the context of cyclostationary sensing 

to identify the effects of noise like the PSD based (energy detection) log-normal shadowing 

model above. Therefore, the features of SCF under path loss, shadowing, multipath need to be 

investigated by varying path length and receiver location. Consequently, the goals of this 

research are: Firstly, to identify and characterise the difference between the cyclostationary 

features and energy features of modulated signals under channel noise in term of path loss, 

shadowing and multipath under various locations and with various transmitter/receiver 

separations. Secondly, to determine the performance difference between SCF and PSD under 

low SNR conditions with real world signals. 

During this research, frequency shift keying (2FSK) modulation is used with 20 kS/s symbol 

rate in the 2.415 GHz band. The signal is generated from a signal generator, Agilent E4438C, 

ESG vector signal generator. The universal software radio peripheral (USRP2), which is a 

software defined radio, is used as a receiver. The receiver and the transmitter are static (fixed 

locations) while taking measurements. To get the cyclostationary features of the modulated 

signal, SCF is used, and to get the energy features, PSD is used, both implemented using Matlab 

programs. Analysis of path loss is based on the "log-normal shadowing" for both indoor and 

outdoor experiments. Curve fitting to the measured data is performed using the Least Squares 

curve fitting method which minimises deviation from all data points. According to the goals 

stated above, an experimental approach was determined. To identify and characterise the SCP 

features of the modulated signal under real world channel noise, we measure the path loss 
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exponent of SCF and compare it to the path loss exponent of PSD. Experiments for path loss 

are performed by varying locations and distances. The resultant path loss for each location is 

analysed in terms of path loss exponents and variance of feature magnitudes. To observe the 

perfonnance of SCF under low SNR environment with real world signals, the SNR is changed 

by controlling the transmitted signal strength. Performance ofSCF under low SNR is compared 

with performance of the PSD. SNR and observation time are varied at a fixed distance and 

fixed location. 

f.3 Cyclostationary Process

The cyclostationary process analysis transforms a signal into a frequency-cycle domain instead 

of the time-frequency domain. This represents the signal as a cyclic process rather than a 

stationary one which is accurate since most of the waveforms of interest are cyclic in nature. 

Cyclostationary feature detectors are based on the identification of second-order 

cyclostationary characteristics, which are present in most of the communication signals that 

contain pilot sequences, carrier tones and frame headers, which are transmitted on a recurrent 

basis. Stationary processes exhibit a time-invariant mean and auto-correlation function, 

whereas a cyclostationary process has a time periodical probability distribution function. Wide­

sense stationary refers to time-invariant moments (such as mean, variance and higher order 

moments), while wide sense cyclostationarity means that the mean and the autocorrelation 

function of the signal are periodic {162]. From a mathematical point of view, if any higher 

order nonlinear transformation of a random signal generates a spectral line at cyclic frequencies 

other than zero, the signal is called cyclostationary [163]. A signal is said to be cyclostationary 

with a cycle frequency a, delay r and period T
0

, if and only if its delay conjugate product 

y(t) = x(t)i(t - ,) produces a spectral line at frequency a. 

The spectral correlation of a cyclostationary signal cannot be visible through use of 

conventional PSD function [164,165]. Cyclic spectral analysis or cyclostationary processing 

are the tools for investigating and extracting such cyclic features. A simple periodic signal with 

period (T,) and fundamental frequency (l/
I'o ), can be expressed as eq. 7.1 [166].

x(t) = x(t + r.,) 

Periodic signals can be represented using Fourier series coefficients x(t): 

The Fourier series expansion of x(t) is; x(t) = L ;:_
00 

akeikWot

(7.1) 

(7.2) 
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where, ak 
= -1 f x(t)e-fkwo, dt is the Fourier coefficient. 

Tor 
0 

The Fourier series expansion extracts certain features, in this case the period of the periodic 

signal. This is illustrated in Figure 7.2, with a repeated sine wave as the signal x(t). In the 

frequency domain, the spectral lines of Figure 7.2 are related to the Fourier coefficients ak · If 

we apply a quadratic transformation to our signal, we can extract its hidden periodicity due to 

the presence of modulation. 

Time domain 

a
J 

a_,

-2lT,

-3/T. -1/T 0 

2lT, • • •

a.� a�
Frequency domain·

Figure 7-2: Fourier Expansion of Periodic Signal for Feature Extraction. 

7.3.l Model of the Cyclostationary Signal 

The general properties of cyclostationary processes are derived starting from the Fourier series 

expansion of the autocorrelation function, which is periodic. The Fourier coefficient of the 

Fourier expansion of the periodic autocorrelation function of a cyclostationary signal is called 

the Cyclic Autocorrelation Function (CAF). The Fourier transform of CAF is called the 

Spectral Correlation Density Function (SCF). Mathematically, this can be expressed with the 

following steps [164,165,166,189,172]. 

7.3 .1.1 Cyclic Autocorrelation Fm1ction (CAF)

The CAF is a measure of the spectral correlation between time shifted versions of a 

cyclostationary waveform. The periodic autocorrelation function for a cyclostationary signal 

can be written (164) as, 

R
y
(t, r) = E[x(t)x(t, r)] (7.3) 

Here in eq. (7.3), E [.) stands for the statistical expectation operator, t is the time index, r is a 

time delay, and .x is the complex conjugate of x(t). If the autocorrelation function R
y
(t, r) is 

periodic, then the Fourier series decomposition can be performed and it yields: 

R (t r) = � +oo 

Ra(r)e2njat (7.4) Y ' L.a=-oo Y 
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where a is the cyclic frequency which ranges over all integer multiples of the fundamental 

frequency / . The Fourier coefficient R;(r) is called CAF and it can be defined according 
" 

to eq. (7.5), 

R"(r) = lim 2. f
T
/Z R (t, r) e-fznatdt 

Y T-100 T -T/2 Y (7.5)

where, T is an observation interval. The autocorrelation function of eq. (7 .5) can be replaced 

by the symmetric delay conjugate product and expressed as in eq. (7 .6), 

R"(r) = lim 2. fT/Z x(t +:':)x(t- C)e-i2""'dt 
y T-100 T -1'/2 2 2 (7.6) 

CAF may be viewed as the correlation in the time domain between two frequency-shifted 

values ofx(t) separated in frequency by a as below in eq. (7.7). 

1 - • • Rf(r) = lim -f'r u(t +-) v(t + -)' dt
T-'>ooT -- 2 2 

' 

(7.7) 

Where u(t) = x(t)e-jZnat and v(t) = x(t)ejZnat are two time shifted versions of x(t). 

7.3.1.2 Speetral Correlation Density )<'unction {SCF} 

The Spectral Correlation Density Function (SCF) is defined as the Fourier transform of the 

cyclic autocorrelation function ofx(t). The SCF ofa signal is given by [166], 

Sf(!) = J:'
00

Rf(r)e-f2nf, dr (7.8) 

SCF having spectral components of x(t) at frequencies (f + �) and ( f - �) over an 
2 2 

observation interval of T given below in eq. (7 .9), 

Sf (f) = lim lim 2-2. J�'.1,1
2

2 
Xr (tJ + "-) x;. (t, f - "-) dt Llt-'>coT-1co Lit T u 2 2 

Above, the spectral component of x(t) at frequency f with period T is: 

X ( f) _ f.t+T/2 ( ) -j2nf d T t, - t-T/Z X t e t

(7.9) 

(7.10) 

The cyclic spectrum at a given cycle frequency represents the density of correlation between 

two spectral components of the process which are separated by an amount equal to the cycle 

frequency. The SCF is typically plotted on a bi-frequency plane as a function of spectral 

frequency f and cyclic frequency a. The range of values off (normally,_ fs to fs, where f s 
2 2 

is the sampling frequency) and a (normally, -fs to f s) for which Sf(/) exists is referred to as 

the region of support on the bi-frequency plane. For a purely stationary random process, CAF 

reduces to the autocorrelation function R
y

(t) and SCF reduces to the PSD function R
y

(f) 

[167]. This corresponds to a= 0. Starting from eq. (7.8), and choosing a= 0, we get 
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S"(f) _ 1 Joo JTa/2 R ( ) -j2nf'd d 00 

Y - Ta -oo -Ta/2 Y T e t T = 
L00 

Ry(T) e-JZnf'dr = Sy(f) (7.11) 

SCF of different modulated signals creates unique patterns which are modulation dependent 

(examples are given later in section 7.3.2). Thus, SCF can be used as a signal classifier based 

on signals' modulation scheme [172]. 

1.3.1.3 Spectral Coherence Function (SOF) 

To derive a normalised version of the SCF, the spectral coherence function (SOF) is given by 

[172]: 

(7.12) 

The spectral coherence function (SOF) has been demonstrated to be insensitive to noise, and 

to produce highly distinct features for signals with different modulation schemes without 

requiring any a priori knowledge of the signal's carrier frequency, phase, or timing offset 

[168, 169].The resulting SOF is a three dimensional image. The amount of data is too large for 

any classifier to utilise in a reasonable amount ohime, and must be reduced in some manner. 

In [168], the authors suggested using only the cycle frequency profile of the SOF, which was 

shown to achieve excellent classification results in A WGN channels at SNR levels down to 

-5dB. However, with only a modest gain in computational complexity, we could use the

Spectral Frequency Profile (CFP). CFP defines the cycle frequency profile (a)and spectral 

frequency profile (f) [179) as 

a= max1 1Cf(fli 

r = max,ICf(fli

(7.13) 

(7.14) 

In [169], it was shown that with only a marginal increase of computational complexity incurred 

by using both the spectral and cycle frequency profiles, the system can be significantly 

improved. Reference[l69] extends this work to evaluate the ability of the SOF's perfonnance 

as a reliable feature detector in multipath fading charmels, and to compare its performance to 

that of the benchmark system given in [168]. By exploiting the SOF's insensitivity to additive 

noise as well as channel corruption, the resulting classifier is shown to be robust both to low 

SNR as well as multipath fading channels. The main three important functions derived in 

cyclostationary feature detection are presented in table 7.1 [164,165,166,189,172]. 
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Table 7.1: Three Important Functions Derived in Cyclostationary Feature Detection. 

Function Name 

Cyclic Autocorrelation 

Function (CAF) 

Spectral Correlation 

Density Function (SCF) 

Spectral Coherence 

Function (SOF) 

Equation 

1 f 
T/2 

R�(r) = lim - R
y

(t, r) e-JZrratdt 
T-'>00 T -T/2 

00 

s:cn = f R�(r)e-jZrrf-r dr 
-oo 

ea(!) = s;(f) 
y 

[SJ (!+I)• SJ (f -;)p12 

7.3.!I Benefits oftlte SCF/SOF 

Characteristic 

Fourier series of 

autocorrelation 

Fourier transfonn 

of the CAF 

Normalised 

version of the SCF 

Spectral correlation/coherence functions (SCF/SOF) have benefits which can be used in the 

practical situation over traditional PSD. One benefit is that stationary noise such as A WGN 

does not exhibit spectral correlation, because the spectral correlation comes from 

cyclostationarity which is special case of non-stationary process. Therefore, in the limit, the 

SCF/SOF of white noise is identically zero. Another benefit is that the SCF/SOF is robust to 

low SNR and multipath fading channels. A further benefit is that the SCF/SOF of same 

modulation type with different number of possible symbols, such as Binary Phase Shift Keying 

(BPSK) and Quaternary PSK (QPSK), have different unique features. This is in contrast to the 

PSD which has identical features for the same modulation type. This prope 

rty helps to detect expected signals and classify signals according to modulation type. 

Graphically, in Figure 7.3 four peaks are shown, two of them are on the a = 0 axis and the 

other two of them are f = 0 axis. Among the peaks, two peaks on a = 0 and f = ±! o are 

considered as common peak which come up in other schemes where same modulation type 

(PSK in this example) is used with different number of symbols, such as QPSK and Staggered 

QPSK (SQPSK). 

- U)
-+ 

- U)
-+ 

(al BPSX {b) OPSX (c) SOPSX 

Figure 7-3: Theoretical SCF Magnitude for BPSK, QPSK and SQPSK with Carrier Frequency 

[170]. 
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This points out that the two peaks are no longer distinct features of the BPSK signal. However, 

the other two peaks on a = ±2fo and f = a are distinct compared to other modulation 

schemes. Figure 7.3 below shows SCFs of BPSK, QPSK and SQPSK. All plots show similar 

peaks where, f = 0 and f = ±fa. However, the other two peaks at a = ±2! and f = 0 in 

BPSK signal does not show up in QPSK and SQPSK signal or the height of the peaks are 

comparatively different from the peaks in SQPSK. 

7,3.3 Evaluation of Cyclic Spectral Analysis Algoritlnns 

Cyclic spectral analysis is used to detect the presence of a signal by use of the Spectral 

Correlation Density Function (SCD). The detection algorithm based on cyclostationary 

detection has a high computational complexity in comparison to a detection algorithm based 

on Power Spectral Density (PSD). There is therefore a need to identify more efficient 

algorithms, which are still based on the cyclic spectral features, but which require less 

computational effort. As reported by Roberts [171], cyclic spectral analysis algorithms fall into 

two classes: those that average in frequency (frequency smoothing) and those that average in 

time (time smoothing). Although both classes of algorithms produce similar approximations to 

cyclic spectrnm, time smoothing with an FFT Accumulation Method (FAM) and Strip Spectral 

Correlation Algorithm (SSCA) are considered to be more computationally efficient. These two 

computationally efficient algorithms for digital cyclic spectral analysis, the FAM and SSCA, 

are developed from a series of modifications on a simple time smoothing algorithm 

[172,173,174]. With computational efficiency for general cyclic spectral analysis as our 

primary motivation, we focus in this Chapter on the time smoothing algorithm. One algorithm 

based on this time smoothed method is called the time smoothed FFT method described in 

section 7.3.3.1. Further developments based on the time smoothed FFT method are the FFT 

Accumulation Method (FAM) and Strip Spectral Correlation Algoritlun (SSCA) method and 

they will be described in section 7.3.3.2 and section 7.3.3.3 respectively. 

7.3.3.l Tune Smoothed FFT Method 
In the time smoothing FFT method, spectral components of signal x(t) are determined over a 

data tapering windows of length TW, overlapping (L), sliding (short time) Fast Fourier 

Transform (FFT) over the entire observation time window Lit of the received signal. The 

practical approach for sliding the time window for determining frequency components of x(t) 

is shown in Figure 7.4 . The data-tapering window is used to reduce the cyclic leakage. A data 

tapering window with an observation length, T, slides over the data for Lit time span with a size 

of N' sliding point FFT and it produce two spectral components in each FFT window. It is 
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known that the frequency separation of certain spectral components which are correlated is 

called cyclic frequency. The cyclic frequency a is expressed as a = f2 - f 1, where fl and 

f2 are the spectral frequencies of spectral components of x(t). The spectral components are 

then down-converted to frequency shifted versions ( one shifted with + a /2 and the other one 

with-a/2). 

x(t) 

; l 
: l , 

L ,

L_; 

t 

6.t 

Sliding windows for N' for short FFT 

Xr(t,f) 

Figure 7-4: Practical Implementation of Time Smoothed FFT Method (176). 

The time smoothed FFT method implementation is illustrated in the block diagram of 

Figure 7.5. According to the figure 7.5, after two frequency-shifted versions are produced, the 

conjugate of one frequency shifted version is multiplied with the other over the observation 

time 8.t. They are both Fourier transformed (FFT) and after that, the multiplication product is 

passed through an LPF (average over time: time smoothing) to form SCF. 

J e -jrrat/Ts 

windows FFT 

x(t) 
---- Sff(f) 

LPF 

windows FFT 

x;.(t,f-�) 

Figure 7-5: Time Smoothed FFT Method (143), (7). 

7.3.3.2 FFT Acctunulation Method (FAM) 
The time smoothing FFT accumulation method was developed to reduce the number of 

computations required to estimate the cyclic spectrum [177]. This technique divides the bi­

frequency plane into small regions called channel pair regions, and computes the estimates one 
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block at time using the fast Fourier transform. A block diagram of the FFT accumulation 

method is shown in Figure 7.6. 

e-JZn.ft/N 

l Xr (t.f + �) 

N' 1 Sff(f) 

points 

0Input w p�lnts Output first second 
x(t) FFT 

0 1
FFT 

windows 

l x;. (t.f -%)

e-/Zn.ft/N' 

Figure 7-6: Description of the FFT Accumulation Method Algorithm [173]. 

The algorithms consist of three basic stages: computation of complex demodulation (divided 

into data time window, sliding N' point Fourier transform and baseband frequency translation 

sections), computionation product sequences, and smoothing of product sequences. In FAM 

algorithms, spectral components of a sequence, x( t) are computed using ( eq. 7 .17). Two 

components are multiplied to provide a sample of a cyclic spectrum estimate representing the 

finite channel pair regions in the bi frequency plane. A sequence of samples for any particular 

area may be obtained by multiplying the same two components of a series of consecutive short­

time sliding FFTs along the entire length of the input sequence. After the channelisation 

performed by N' -point FFT sliding over the data with an overlap of L samples, the output of 

the FFTs are shifted in frequency in order to obtain the complex demodulated sequences. 

Instead of computing an average of product of sequences between the complex demodulated 

signals, they are Fourier transformed with a P-point (second) FFT to get the final version of 

SCF estimate. 

7.3.3.3 Strip Spectral Correlation Algoritlun (SSCA) 

In SSCA, the complex demodulated signals are multiplied directly with the conjugate of the 

signal itself. Each multiplication is then smoothed with an N point FFT and then summed up. 

The SSCA method block diagram is presented in Figure 7.7. The design parameters for the 

cyclic spectral estimation are presented in Table 7.2 from time smoothing method point of view, 

which is used later in this Chapter for simulation modelling. 
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Figure 7-7: Description of the SSCA Method Algorithm (166], (167). 

Table 7.2: Time Smoothed Method Design Parameters (167]. 

Name Notation 

Time span or observation time �t 

Tapering window length T 

Size of the sliding point FFT N' 
Sample duration Tc 
Sampling frequency fs 
Spectral frequency f 
Cyclic frequency a 
Frequency resolution of SCF L1f 
Cyclic frequency resolution L1a 
Length of the sequence or N 

size of the data vector 

Decimation overlap parameter L 

Size of second FFT point p 

7 .4 Channel Noise Analysis 

Important criteria: at a glance 

T = N' T
5

Ts = l/fs 

f = {1 -
!2

)
2 

a= !1 - fz
1 1 1 

!Jf = T = N' T5 
= L1t 

L1t. L1f = 
N' » 1

1 1 
- = L1t » T = -Lla L1f 

L>�
-4

N=PL 

In a typical wireless communication channel, noise sources can be divided into two groups: 

multiplicative and additive [ 178]. Additive noise comes from different sources such as thermal 

agitation within the receiver, cosmic radiation and interference from other transmitters and 

other electrical appliances. Multiplicative noise comes from various processes encountered by 

the transmitted signal before reaching the receiver antenna. Fading is a physical phenomenon 

where the multiple signals that are reflected, refracted or diffracted from different sources sum 

up together causing time-varying attenuation/amplification of the signal power. In urban areas, 

signals are also blocked by buildings and trees which further deteriorate the received signal 

power. Fading can be broadly classified into three different subgroups [178,179] as follows. 

Path loss (also known as very slow variations) is mainly due to the change in the distance 

between the transmitter and receiver. Slow fading (also known as shadowing, long term 

variations or large-scale fading) is mainly due to the momentary blockage of the LOS signal 

by trees, mountains, building, etc. Fast fading (also known as multipath fading, short term 

120 



Chapter 7: Cyclostationary Feature Detection 

variations or small scale fading) is mainly due to the constructive and destructive nature of the 

multiple signals arriving at the antenna due to reflection, diffraction, refraction and scattering. 

Fig. 7.8 shows a graphical representation of different types of fading that occur in reality. 
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Figure 7-8: Different Kinds of Fading Processes Such as Path Loss, Shadowing and Multipath 

that can occur in a Real Scenario. 

The different nature of those phenomena requires the use of various mathematical tools 

including, stationary and cyclostationary analysis. There has been very limited research on a 

SCF-based path model in the context of cyclostationary sensing to identify the effects of noise 

like the PSD based log-normal shadowing model above. Therefore, the features of SCF under 

path loss, shadowing and multipath need to be investigate by varying distance and locations. 

7 .4.1 Path Loss Model and Ranging 

Path loss models are generally used to relate expected signal strength to path length in wireless 

applications. Such models have been widely implemented in ranging, localisation, and location 

tracking systems. A range of extension models have been proposed to enhance the performance 

for various environments and applications. Nevertheless, path loss exponent retains its 

significance at the main factor in the model regardless of how the model is varied. Based on 

the nature of the exponent of the model, an inaccurate path loss exponent amplifies the error if 

it is used to estimate distance from received signal strength. Therefore, measurement of an 

accurate value for path loss exponent becomes very important as it directly influences the 

output of distance estimation. The path loss can be determined in dB as (182]: 
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PL = PL(d0) + 10n log1o (:J + X(J (7.18)

where P L is the average path loss in decibels, n is the path loss exponent which is the rate at 

which the path loss increases with distance increases, d0is the close-in reference distance and 

d is the transmitter-receiver separation distance. X(J 
is a zero-mean Gaussian distributed 

random variable (in dB) with standard deviation a which also varies depending on 

environments (180]. This statistical distribution random variable is used to show unpredictable 

shadowing and multipath effects. 

T .4.2 Path Loss Exponent Estbnation

The estimation of path loss exponent relies on the measurements of the received signal strength 

together with the corresponding locations. There are two types of method used to investigate 

the path loss exponent. One method is to calculate the path loss exponent using a number of 

received powers and the corresponding distances. This method is called one-line measurement 

as the collection of RSSI values was done by locating the transmitter and receiver along a 

straight line, and varying the distance between them. Another method is to directly update the 

environmental parameters using a gradient descent technique which is named online-update 

measurement [181). For one-line measurement, received powers must be collected along the 

line with distance marked on the line. The collected signal strength values represent the 

received power at each marked distance along the line. Theoretically, every room/area has only 

one set of environmental parameters. Note that a small change in path loss exponent n may 

leads to drastic change in distance estimation. Table 7.3 shows path loss exponent values for 

different environments [180). From table 7.3 and equation (7.18), the fact that location 

( environment) and distance affect the path loss is easily noticed. Overall, the path loss exponent 

n and X
(J

indicate the level of multipath and shadowing. The main determinate of path loss is 

distance. 

Table 7.3: Path Loss Exponents for Different Environments [180]. 

Environment Path Loss Exponent (n) 

Free Space 

Urban area cellular radio 

Shadowed urban cellular radio 

Inside a building - Line of Sight 

Obstructed in building 

Obstructed in Factory 

2 

2.7 to 3.5 

3to 5 

1.6to 1.8 

4to 6 

2 to 3 

122 



Chapter 7: Cyclostationary Feature Detection 

7.r, Methodology

This section describes the methodology of the Chapter. A detailed methodology is discussed 

defining cyclostationary feature analysing system and their components, parameters and 

factors. Next, the test bed is described and the experimental design and evaluation techniques 

are covered. 

7 Ji.I Cyclostationary Feature Analysing Syste1n 

The System Under Test (SUT) is a "Cyclostationary Feature Analysing System" and it consists 

of a receiver and a channel which is the propagation path of the signal. The receiver of the 

system receives a signal transmitted through the channel and analyses it using the SCF. The 

receiver includes a software defined radio (USRP2) which receives the signal and a laptop 

which runs SCF codes to analyse the received signal using Matlab programs. Figure 7 .9 shows 

the framework structure which involves: system services and metrics, workload parameter and 

system parameters. System services and metrics are provided to analyse the cyclostationary 

features of the received signal using the SCF. Outcomes of system are PSD and SCF values of 

received signal at certain frequency f and cycle frequency a coordinates in area a* 0 

anda = 0. 
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Figure 7-9: Framework Structure of Cyclostationary Feature Analysing System. 

The outcome value would be used to determine the presence of expected signal in the channel. 

A workload parameter is a request for system services, which means that the workload in this 

system is a particular configuration of transmitted signals in a channel. In the research, the 

signal configuration is the set of parameters that define the signal, which includes modulation 

123 



Chapter 7: Cyclostationary Feature Detection 

type, carrier frequency, symbol rate and transmitted power. These parameters affect the SCP 

feature values of the received signal. All other things that affect the feature value but are not 

part of the workloads (such as observation time) belong to system parameters. System 

parameters are parameters within the system boundary that affect the SCF feature values of the 

received signals. System parameters include channel noise components (such as path loss, 

shadowing, multipath, interference) and processing components at receiver (such as 

observation time, FFT resolution, sampling rate etc.). Factors are a subset of the system 

parameters and workloads that are varied during the experiments. In order to identify the 

difference between real world and theoretical SCF features, that is, in order to identify effects 

of a real world transmission channel, we vary the levels of the transmitter/receiver separation 

distance as well as their locations. This is because separation distance and location affects the 

path loss, shadowing, and multipath resulting in separating out channel noise. The SNR is 

varied at the fixed distance and location to distinguish the performance of SCF and PSD under 

low SNR enviromnents from theoretical and simulation based researches. Lastly, the 

observation time is changed to verify how it affects the statistic components of SCF feature 

values [182] and to verify that the noise floor of SCF is lowered as the observation time 

increases improving the performance ofSCF under low SNR environments [183]. Observation 

time is related to the number of samples that are used to get one SCF value in the signal analysis, 

thus the observation time is controlled by the number of samples. As each type of environment 

has different path loss exponent n, the location factor here is varied corresponding to the 

environments in the Table 7.4. 

Table 7.4: Location Factor. 

Environment Location 
PhDRoom 

In- In building line-of-sight LOS School of 
door 

Obstructed in building non-
LOS 

Free space LOS 
Out-
door Shadowed Non- University Campus 

Urban area LOS 
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1.3.2 Experimental Setup 

The measurement setup employed in this study, shown in Figure 7.10, is modular and capable 

of performing cyclostationary detection based on CFD of sensed signals. It consists of two 

main parts, IQ data acquisition (measurements part) and post-processing (implementation of 

the algorithms needed for cyclostationarity based detection). The goal of the IQ data acquisition 

phase is twofold; gather sufficient measurement data at the chosen spectrum band and prepare 

it for processing. The post processing stage is accomplished using Matlab programs containing 

functions for importing data from measurements acquired in the field and processing them. The 

Matlab system block diagram illustrated in Figure 7.11 describes how the data flows are 

analysed inside the Matlab program. The test bed setup uses the strip spectral correlation 

algorithm (SSCA) for CFD estimation. The SSCA algorithm is a computationally efficient 

algorithm suitable for practical implementations using measurements of the received signal at 

different positions and different environment from transmitter. The measurement was 

conducted using two elements: Receiver platform and Transmitter platform. The receiver 

platform used two types of commercially available spectrum sensing equipment: Agilent 

N9030A PXA signal analyser [184] and a USRP2 [185]. The transmitter platform was 

representing by using Agilent E4438C vector signal generator [184]. It generates 2-FSK signal 

with controllable symbol rate and transmit power. A symbol rate of 20 kS/s at a 2.415 GHz 

carrier frequency varying with transmit power was used. 

Figure 7-10: Test Bed for Experiments. 
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Figure 7-11: Matlab System Block Diagram. 
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The USRP2 is a software defined radio with capability to perform a limited number of high 

speed, high precision general purpose signal processing tasks such as decimation, interpolation, 

digital up conversion and down conversion. A daughterboard, the RFX 2400, which covers 

from 2.3 to 2.9 GHz frequency range, is used. In the experiments, USRP2 continuously receives 

a 2.415GHz signal at 1 OOMS/s sampling rate and decimate the sampled signal with the 

decimation factor 125, resulting in 800 kS/s sampling rate. The host computer connected to the 

USRP2 is a laptop rum1ing the Matlab program, which receives transferred signal data in frame 

format, processes the data, and shows/records the SCF values in real time. During the research, 

the USRP2 block set receives data continuously from USRP2 and sends the data to signal 

blocks and embedded blocks which analyses the received data by calculating and recording the 

SCF values particular (f,a) position in real-time. The Simulink blocks in Appendix Figure A.3 

describe how the data flows are analysed. The Simulink blocks in Appendix Figure A.3 

describe how the data flows are analysed. Through the USRP2 receiver block, centre frequency, 

gain, decimation factor and output data type are controlled. The received samples go through 

the hamming window, and then its instantaneous SCF is calculated using equation 6.17. The 

instantaneous SCF is analysed both at particular frequency value, set to centre frequency of 

signal, which is for SCF and at particular alpha value set to 0, which is for PSD. The Simulink 

blocks in Appendix Figure A.3 describe how the data flows are analysed. Two things were 

investigated to validate the USRP2. Firstly, a frequency offset was found in the USRP2, which 

occurs from USRP2 hardware itself estimated to be related to a thennal issue and is different 

for each USRP2 and its decimation factor. This frequency offset was manually determined and 

manually compensated by specifying the centre frequency as (desired centre frequency -

frequency offset). Secondly, the validation of correct working of USRP2 was done by 

comparing the PSD of transmitted signal from USRP2 with that from signal analyser. 

7.6 Analysis and Results 

The experiment are divided into the 4 separate parts, including performance measurement 

overview (section 7.6.1), path loss analysis (section 7.6.2), SNR analysis and observation time 

analysis (both in section 7.6.3). 

7,6.l Pcrfor1nance Measuren1cnt Overview 

Figure 7.12, presents the results of the experimental detection using cyclostationary sensing for 

2.415 MHz signals as well as energy sensing. The signal transmitted from Vector Signal 

Generator with (carrier frequency 2.415 GHz, frequency deviation 20 kHz and modulation 

2-FSK), and received by USRP2 under two conditions: line of sight (LOS) and non-line of
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sight (NLOS) conditions. It shows the received signal FSK plot for the signal transmitted by 

the vector signal generator. Figure (7.12-A) and (7.12-B) depicts the CPS (cycle power 

spectrum) estimates for the cyclostationary sensing of ISM signal in LOS conditions with two 

different signal to noise ratios (SNR=12dB and SNR=4dB) at lm distance and 6m distance 

from transmitter respectively. CPS is presented at frequency of 2.415 GHz for a bandwidth of 

BW= 36 kHz. From both Figmes, we clearly identify the different frequency and cyclic 

frequency components of the CPS. The cyclostationary feature is observed at the cyclic 

frequencies of a = ±20kHz, where a = 0 represents the standard power spectrum (energy 

sensing) of the received signal with respect to frequency f. Figure (7 .12-C) depicts the CPS 

estimates for the cyclostationary sensing of ISM band signal in NLOS conditions with 

SNR= -3dB at 6m distance from transmitter. In comparison to Figure (7.12-A, Band C) we 

observe a similar cyclic feature of the spectrum but with a rough density surface due to signal 

fading and shadowing. Note that, although the signal peaks become indistinct between signal 

and noise as the SNR decreases, special at a = 0, it can still detect the cyclic frequencies of 

a = ± 0.2(± 20 kHz). Overall, in modulations with a purely real time-domain baseband signal, 

such as FSK, there will be a strong feature at f = 0 and a = ±0.2. In the absence of noise, this 

feature is comparable to the PSD feature. In the presence of noise, the PSD is washed out, but 

this feature (and all other SCP points for lal > 0) is still defined. 
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Figure 7-12: Received Power vs Frequency and Cyclic Frequency 

7.6.2 Path Loss Exponent Analysis 

In this section, the behaviour of path loss, path loss exponents and variances of the SCF/PSD 

obtained under different scenarios at the University of Hull, such as open sky scenario/outdoor 

and indoor scenario. Indoor measurement was undertaken on the second floor of the School of 

Engineering building. Outdoor measurements was undertaken at main entrance and on the 

football field of the University. The measurement locations and the building layout are shown 

in Figure 7.13. The SCF and PSD are investigated at the same time to compare their path loss 
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under the same conditions. To see the effects of noise, the path loss exponent and variance of 

the features are analysed. Firstly, path loss trends are analysed to see path loss exponent. 
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Figure 7-13: Experiment Setup for Path-Loss Measurement Locations at Hull University. 

The two states are the "path loss state" (decreasing value) and the "noise floor state" (steady 

value), both are investigated by looking at the SCF/PSD feature value trends. Generally, 

transitions from the path loss state to noise floor happen smoothly as distances get longer. 

However, to analyse each state, the smooth trends are analysed into one path loss trend and one 

constant noise floor trend. That is, each of the states is expected to have one exponential line 

with distance which reflects trend of each state. Secondly, variances of the SCF/PSD 

measurements are obtained by averaging variances of measurements and comparing them. The 

reason why variance of the SCF /PSD is investigated is that it reflects small fluctuations which 

are mainly due to multipath. Additionally, during the experiments, observation times are varied 

in three different levels ( 512, 8192, 131072 samples) to see the effects of observation time on 

path loss by looking at path loss exponents at each observation time. Path loss exponents at 

each observation time are presented as Root Mean Squared Error (RMSE) of the LS fit to 

capture whether the LS fit of the path loss is comparatively accurate or not. For path loss plots, 

results at 8192 sample observation time are used. 

7.6.2.l Open Sky Scenario (LOS Football Field) 

The first location investigated is football field, University of Hull, where reflection is 

minimised as well as external interference and noise. The place is close to 'free space' with 

nothing around apart from ground reflection and LOS guaranteed as seen in Figure 7.14-B. In 

other words, this football field is expected to have little multipath and shadowing effects 

compared to other environments with the exception of the anechoic chamber room. That is, 

results from other sites will be compared to the results from this location not for comparing 
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overall performance in certain area, but for comparing effects of multipath and shadowing. 

Figure 7.14-A shows that the SCF path loss exponent was smaller than the PSD path loss 

exponent by 0.1. By comparing Figure 7.1 it can be clearly observed that, path loss is the major 

contribution. This could mean that in the environment like the open sky scenario with almost 

no multipath and no shadowing, the SCF has more distinct features than the PSD. Figure 7 .14-

C shows Fit curve slopes. It is showed that for every length of observation time, the SCF had 

a lower path loss exponent than the PSD. Under open sky conditions, amplitude variance of 

the SCF is smaller than that of the PSD at every observation times. SCF variance from (-95dB 

to -1 lOdB) and PSD variance from (-91dB to -I02dB) with observation time (512 sample to 

131072). It can be said that without any multipath and shadowing the SCF showed less variance 

than the PSD. 
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Figure 7-14: A) SCF/PSD Path Loss at Football Field with LOS B) Photographs B) Fit Curve Slopes 

7.6.2.2 Open Sky Scenario (Reflector an,I Shadowing) 

Figure 7.15 shows a data collection setup that was performed in front (main entrance) of the 

Middleton Hall at the University of Hull. Two different data collections were performed; single 

LOS outside building position was chosen to model "urban area" with buildings around, and 

NLOS outside building position was chosen to model "shadowed urban area" with buildings 

around and LOS not guaranteed. Multiple datasets were collected on each location. In this 

location the Middleton Hall acts as reflector for those signals arriving from the right side of the 

building, as well from ground. The SCF path loss exponent was smaller than the PSD path loss 

exponent by 0.1 as in Figure 7 .15. That is, overall, the SCF of path loss exponent demonstrated 
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better performance the PSD. When compared to the results of open sky scenario, the path loss 

exponent of the SCF increased by 0.1 and the PSD decreased by 0.1. Although SCF shows 

slightly greater path loss exponents than the PSD for every observation times, overall change 

of the observation time does not appear to affect either PSD or SCF path loss exponent. The 

slow variations cannot be attributed to the shadowing as there were no signal blocking elements 

during the entire data collection interval. In the shadowing scenario, shadowing is expected to 

affect the path loss more than LOS guaranteed cases. The SCF path loss exponent was smaller 

than the PSD path loss exponent by 0.1 as in Figure 7.16. Both the SCF and the PSD showed 

similar performance, in terms of overall noise effects such as distance dependent path loss, 

multipath, shadowing, because the 0.1 difference in the path loss exponents is small. However, 

when compared to the results of open sky scenario, the path loss exponent of the SCF increased 

by 1.7 and the PSD increased by 1.5. The SCF seems to have more noise effect than the PSD 

in this location. And, for every observation time the SCF keeps steeper than the PSD. 
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7.6.2.3Indoor Scenario (LOS/NLOS) 
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Figure 8-16: SCF/PSD Path Loss outside 

Building with NLOS. 

Figures 7.17, 7.18 and 7.19 show the data collection performed in an indoor scenario inside the 

School of Engineering at the University of Hull. Data collections were performed in two 
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different ways (LOS and NLOS). The first dataset was collected inside PhD Researcher Room. 

The second data collection, under LOS and NLOS conditions at The Hallway gate of School 

of Engineering. In an indoor scenario, the signal is strongly attenuated by the structures of the 

building. Therefore, long coherent integrations have to be perfonned for detecting the signals 

indoors. PhD Researcher Room was chosen to model "obstructed in factories" environment. 

This model includes the statistics of multipath propagation characteristics for cases of light and 

heavy clutter in a factory such as thin walls and desks. Obstruction between transmitter and 

receiver is same up to a certain point of distance, but with distance increased, obstructions 

between them increased. SCF path loss exponent at PhD Room measurement was smaller than 

the PSD path loss exponent by 0.1 as in Figure 7.17. By comparing PhD Researcher Room 

result with open sky scenario, both the SCF and the PSD had smaller path loss exponent than 

those in open sky scenario. Respectively, SCF and PSD decreased by 0.5 and nearly 0.6. 

Therefore, this might mean that such PhD Room environment the SCP is more robust to 

multipath and shadowing effects since the PSD path loss exponent decreased slightly further. 

The Hallway gate of School of Engineering (Eng.Dept with LOS) can be considered as indoor 

LOS environment with well-built multipath components. In this case, the SCF path loss 

exponent was smaller than the PSD path loss exponent. The path loss exponent of SCP 

decreased by 0.2 compared to open sky scenario result, whereas the path loss exponent of the 

PSD decreased by 0.3. With this result we could conclude that in an environment like the 

hallway with multipath, the SCP is slightly robust to multipath. Moreover, there are slight 

changes in path loss exponent for both SCP and PSD as the observation time changes. Also, 

the variance of the SCF was smaller than the PSD for every observation time. Hallway gate of 

Eng.Dept without LOS is considered to model "obstructed in building" environments. 

Obstructions at this point are thicker/denser obstructions than previous experiment at the PhD 

Room. Since the LOS is not guaranteed, shadowing is expected to affect the path loss more 

than in LOS-guaranteed cases. But, there are still multipath effects as well. In this case, the 

obstruction was a concrete wall which is dense, whereas in PhD Research Room, the 

obstruction was a cubicle wall which is sparse. In a Hallway gate without LOS, the SCF path 

loss exponent was less than the PSD path loss exponent by nearly 0.2 as in Figure 7.19. That 

is, overall, the SCF showed a small performance advantage over the PSD. When compared to 

the results of open sky scenario, the SCP increased by 0.4 and the PSD increased by nearly 

0.5. This indicates that the SCP was slightly less affected by multipath and shadowing than the 

PSD in this location. 
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Figure 7-17: SCF/PSD Path Loss at PhD Researcher Room. 
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Figure 7-18: SCF/PSD Path Loss at Hallway Gate with LOS. 
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Figure 7-19: SCF/PSD Path Loss at Hallway Gate with NLOS. 
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7.6.2.4 RF Shielded Romn 
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In the shielded room reflections were suppressed using Radio Observing Material (ROM) so it 

can be considered as nearly a quiet open space. Moreover, the USRP2 receiver surrounded by 

RAM to have the least amount of noise and reflections. This place is close to "free space" with 

nothing around and LOS guaranteed as seen in Figure 7.20. In other words, this place is 

expected to have very little multipath effects. In the RF Shielded Room, the SCF path loss 

exponent was similar to the PSD path loss exponent. That is, overall, the SCF showed better 

performance than the PSD. When compared to the results of football field, the path loss 

exponent of the SCF decreased by 0.1 and the PSD decreased by 0.2. And for every observation 

times, the SCF keeps less steep path loss exponents than the PSD. 
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Figure 7-20: SCF/PSD Path Loss at Anechoic Chamber. 

7.6.2.5Brief smmnary 

At seven respectively different radio propagation environment locations, measurements were 

taken varying distances. Table 7.5 shows path loss exponents of the SCF / PSD at each locations 

and path loss exponent differences between Open Sky Scenario (Football field with LOS) and 

each location, which may reflect performances of SCF/PSD. Because the performance can be 

different from robustness to noise effects, therefore, path loss exponent differences are 

investigated, which possibly reflect the robustness to noise effects. Positive values in the 

difference mean increase of path loss exponent and negative values mean decrease of path loss 

exponent related to the reference value. But, since we only look at magnitude of the differences 

as a result of noise effect, whether it is a positive value or a negative value doesn't matter. 

Green-colored cells in the table indicate smaller value when comparing between the values at 
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the SCF and the PSD. At four out of six locations, the SCF showed smaller path loss exponents 

which could indicate that, in these four places, the SCF showed better performance. Moreover, 

in terms of robustness to noise effects, three places out of six (Grey-colored cells in the table), 

the SCF showed smaller differences, which could indicate more robustness to noise effects. 

Since the path loss exponent differences of the SCF are consistently smaller than that of the 

PSD, we could say that SCF is more robust than PSD in general. However, in terms of variance 

at each location, the SCF exhibited smaller values than the PSD consistently, which could 

indicate robustness of SCF to noise effects, especially multi-path. 

Table 7.5: Path Loss Exponents in Each Locations, Path Loss Exponent Difference &Variance. 

Football Outside PhD Hallway RF Outside Hallway 
Field Main research gat Shielded Main gat 
LOS Entrance Room LOS Room Entrance NLOS 

LOS NLOS 

Path loss SCF 2.3 3.9 

exponent 

PSD 2.3 2.2 3.8 

Path loss SCF 0.1 1.7 

exponent 
different PSD -0.1 -0.6 - 0.3 -0.2 1.5 0.5 

Smaller SCF SCF SCF SCF SCF SCF SCF SCF 

Variance 

7.8.3 SNR and Observation Thne 

The performance of SCF over PSD is verified against real world signals and background noise 

by varying the SNR for each observation time to compare against previous simulation. SNR 

was varied by controlling the transmit power of signal. The receiver analysed the collected 

signal in terms of the SCF and PSD, the observation time was varied at four different levels. 

Figure 7 .21-A shows SCF feature values of the experiments. The feature value decreases in dB 

scale as SNR decreases. From a certain point of SNR, the feature values are almost the same 

values, which is the noise floor. In terms of observation time, it is shown that the observation 

time affects the position of starting point of SCF floor (blue box in the Figure). That is, the 

noise floors of SCF features from every observation time start at slightly different SNR level. 

The observation time also decreases the SCF value both in high and low SNR environments. 

This result is also somewhat different from Figure 7 .1 in section 7 .1, which showed the same 

SCF features for different observation time under high SNR environment. Comparing to the 

PSD feature in Figure 7.21-B shows the almost same starting point position of PSD floor. It is 
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shown that the observation time does not affect the position of starting point of PSD floor (blue 

box in the Figure). That is, the noise floors of PSD features from every observation time start 

at nearly at same SNR level. These results provide evidence that show that the SCF outperforms 

the PSD. In conclusion, with real world signal and background noise, it appears that the SCF 

has better performance than the PSD and shows a distinct feature in low SNR envirorunent. 

SCF Different SNR and Observation nme 

I • SCF ot>sermon I-C,-SCF Ls It 

.2(1 0 

SNR(dB) 

Fig 7.21(A) 
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Fig 7.21 (B) 
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40 

Figure 7-21: SCF Vs PSD with Varying SNR and Observation Time. 

7.7 Chapter S1unmary 

In this Chapter we have investigated the feasibility and performance of the cyclostationary 

feature detection for spectrum sensing, which included a theoretical background and 

experimental results for cyclostationary detection using SCF. Firstly, introduction and 

background of cyclostationary process was discussed. Then, we go into technique details of 

computationally efficient algorithms ofSCD and channel noise analysis. The main goal of this 

Chapter was to identify cyclostationary features of digitally modulated signals through 

empirical measurements using features of the spectral correlation density function (SCF), 

compared with energy detection using features of the power spectral density (PSD). Overall, 

according to path loss measurement resulting process, the magnitude of the SCF features were 

obtained from many locations and compared to those from the PSD. The path loss exponent 

and variances of the SCF features were investigated. It was found that, from the path loss 

exponents, that it is conclusive that the SCF features are more robust to noise effects than the 

PSD features. Moreover, from the feature variances, it was found that the SCF does tend to be 
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more robust to noise effects, especially multipath, because it has smaller variance than the PSD 

features. According to SNR and observation time result, the SCF/PSD features were measured 

under varying SNR levels with different observation times. It was found that, under real world 

noise, SCF shows better performance under a low SNR environment compared with PSD. 
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Chapter 

8 

------------------------

Cooperative Wideband 

Spectrmn Sensing 

S.l lntl'Oduction

Several signal processing techniques are being used for spectrum sensing mentioned in the 

previous Chapter. In a cognitive radio network (CRN), the sensing performance of a single CR 

is often reduced by the presence of multipath fading, shadowing, and receiver uncertainty in 

the channel. To mitigate these effects, cooperative or multiuser sensing techniques are being 

used [186,187,188]. CR can detect the signals in a single/narrow frequency band or 

multiple/wide frequency bands. In the recent past, most studies have focused on 

cooperative/distributive detection approaches. However, they are confined to the detection of 

signals in a narrow band [189]. In order to improve the oppmtunistic throughput of the 

cognitive user network, a CR user must detect the signals in multiple frequency bands to reduce 

the sensing delay. This also provides better opportunities for CR users to transmit their signals 

without considerable delay in case the licensed user starts transmission in the channel suddenly. 

The study in [190] reports the sensing time required to achieve maximum throughput in 

multiband or wideband situations. 

In this Chapter, we propose cooperative wideband spectrum sensing schemes with multi-bit 

hard decision in cognitive radio, which lead to energy-efficiency and time-saving using two 

stages in the spectrum sensing process. To check if the primary user exists or not in the 

wideband spectrum, only one stage of coarse spectrum sensing is needed, by which the sensing 

time and energy are saved. Then, the second stage of fine spectrum sensing will be performed 
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to increase the spectrum sensing accuracy. Furthermore, only multi-bit decisions are sent by 

each secondary user to minimise the communication overhead. The proposed algorithm fully 

utilises the local decisions of the coarse detection, and its energy consumption is further 

reduced with its sensing perfonnance. Simulation results are presented to show that the sensing 

time and energy consumption are both reduced significantly in the proposed schemes. The 

distinct features and contributions of this Chapter are as follows: 

•!• We propose a system model for wideband cooperative spectrum sensing with 

multi-bit hard decision in cognitive radio using a multi resolution spectrum 

sensing (MRSS) technique, where the power consumption and the time of 

sensing are considerably reduced. 

•!• Based on the first proposal of wideband cooperative spectrwn sensing with a 

multi-bit hard decision algorithm, another algorithm is proposed using a two­

stage adaptive sensing technique. This algorithm uses an adaptive technique at 

the first stage coarse detection, which presents more sensing accuracy compared 

to the first algorithm, with reliable detection performance. 

•:• The time-saving and energy-efficiency performance of the proposed two 

schemes are analysed and the sensing time and energy consumption of the 

proposed schemes are shows to be reduced significantly compared to the 

conventional cooperative sensing scheme. 

•!• Extensive simulation results are presented to illustrate the effectiveness of the 

algorithms in reducing sensing time, energy consumption and the rules of 

parameters setting in the proposed algorithms. 

The remainder of this Chapter is organised as follows. In section 8.2, the challenges in 

non-cooperative detection are described and cooperative spectrum sensing schemes are 

introduced on section 8.3. In sections 8.4 and 8.5 the wideband spectrum sensing and traditional 

cooperative spectrum sensing schemes respectively are presented. In Section 8.6, a proposed 

system model for wideband cooperative spectrum with multi-bit hard decision in cognitive 

radio using multi resolution spectrum sensing (MRSS) technique is introduced. In section 8. 7, 

a proposed system model for two-stage adaptive spectrum sensing presented. In section 8.8, 

the proposed system model for wideband cooperative spectrum sensing with multi-bit hard 

decision using two-stage adaptive sensing are explained. Finally, we conclude this Chapter and 

present the main points in Section 8.9. 
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S.2Challcnges in Non-Cooperative Sensing

The key challenges associated with single-user-centric transmitter detection schemes that 

prevent them achieving the promised sensing performance under practical conditions are: 

Firstly, restricted sensing ability, CRs need to sense their multidimensional radio environment 

with limited sensing resources. In general, CRs have no information regarding the possible 

primary communication over a licensed band. This makes spectrum sensing for cognitive radio 

a very challenging task. Secondly, high detection sensitivity requirements, where detection of 

low-power primary signals in itself is a difficult task, which becomes even more challenging 

under uncertain, channel conditions. In a typical wireless environment, severe multipath fading 

and shadowing cause high attenuation of the primary transmitted signal. For example, wireless 

microphones operating in the TV bands transmit signals with a power of only about 50 mW 

and a bandwidth of200 kHz. If Secondary Users (SUs) are several hundred meters away from 

a microphone device, the received SNR may be well below -21 dB [191]. Poor CR sensitivity 

in this case results in missed detection of PU (transmitter), resulting up in secondary 

transmissions offering unacceptable interference to the PU receiver. Thirdly, vulnerability of 

primary receivers to secondary transmissions where the locations of PUs are unknown; the SU 

may lie outside the PU coverage area or it may be located within the PU's transmission range 

but primary signal is obscured due to deep fading or shadowing. These practical scenarios are 

referred to as the primary receiver uncertainty problem and the hidden primary transmitter 

problem. In both cases, the primary receiver may become vulnerable to harmful interference 

by secondary communications as such situations make CR incapable of picking up ongoing 

primary transmissions. Fourthly, spectrum sensing in multiuser environment, where CRs 

reside in a multiuser environment consisting of users with and without exclusive rights for 

frequency spectrum usage [192). 

The above-discussed limitations of conventional spectrum sensing can be overcome by sharing 

the sensing information among spatially distributed CRs in a CR network, which leads to the 

concept of cooperative detection. In the following section, we explore various aspects of 

cooperative spectrum sensing and analyse how it can guarantee improved sensing performance 

with minimum incurred cost. 
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A very promising solution for improving the sensing performance of the SU networks is to 

exploit cooperation among secondary nodes. Cooperative spectrum sensing can not only 

decrease the probabilities of false alarm and missed detection, but can also mitigate multipath 

and shadowing, that cause the hidden node problem [192, 195]. Thus, multiple cognitive radios 

are often required to collaborate for spectrum sensing. Cooperative spectrum sensing has 

received increasing attention in the last few years, and many different schemes have been 

proposed. We refer to [193] and the references therein for an extended overview on cooperative 

techniques and their principal issues. Cooperative algorithms can be classified on the basis of 

how SUs share their sensing data and in which point of the network the final decision is taken. 

The following subsections highlight the distinguishing features of cooperation strategies. 

8.3.1 Cent1'11lised and Distributed Sensing 

In centralised cooperative strategies the sensing information from all the SUs is reported to a 

central identity, called the fusion centre that takes the global decision. This information is then 

provided to the cognitive manager of the network which will use it for supporting resource 

allocation strategies. In some cases the global decision must be sent back to the SUs by means, 

for example, of broadcasting [194, 195]. Distributed schemes differ from centralised ones in 

the absence of a specific fusion centre. In this case, the SUs communicate among themselves 

and converge to a unified decision taken by each SU on the basis of a common policy [196]. 

In addition, some mixed strategies can be adopted. For example, a relay assisted cooperative 

scheme can be used in situations in which some SUs experience a weak report channel and the 

remainder can be used for forwarding their sensing results to the fusion centre [196]. Another 

solution is the clustered sensing scheme, in which cluster-heads act as second level fusion 

centres, collecting the sensing results from the SUs within their cluster. Then this data can be 

shared among other cluster-heads or can be forwarded to a global fusion centre. An example 

of cluster based cooperative sensing can be found in [197]. 

8.3.2 Data and Decision Fusion 

A control channel is required for sharing sensing information within a CRN to reach a 

cooperative decision on spectrum whole availability. The bandwidth of the control channel 

limits the amount of sensing information that can be reported to the fusion centre (FC) or shared 

among cooperating CRs. With respect to the information that is shared among the SUs, 
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cooperative strategies can be classified as hard fusion, quantised soft combining fusion and 

soft fusion as shown in Figure 8.1. If the entire local sensing data or the complete local test 

statistics are shared, joint processing of the raw sensing data offers the best detection 

performance at the cost of control channel communication overhead. This fundamental 

component of cooperative sensing is termed data fusion. A variety of signal combining 

techniques are reported in the literature to implement data fusion based on optimally combining 

the weighted local observations. In [192], the authors have proposed a generalised soft 

combining scheme that reduces to equal gain combining (EGC) at high SNR and boils down 

to maximal ratio combining (MRC) at low SNR. Furthermore, a two-bit quantised soft 

combining scheme is also presented in the same work to overcome the computational 

complexity of the data fusion scheme and relax the control channel bandwidth requirement. In 

comparison to quantised soft combining, hard combining is another alternative to perform 

cooperation under a control channel bandwidth constraint. In this approach, sensing data is 

processed locally before being transmitted over the control channel and the one-bit local 

decision from each of the cooperating secondary users is combined using linear fusion rules. 

This leads to decision fusion based cooperative detection which requires much less control 

channel bandwidth at the cost of depreciated sensing performance when compared with data 

fusion based cooperative spectrum sensing. Typically, OR, AND, and MAJORJTY rules are 

used for decision fusion which can be considered as special instances of the generalised k out 

ofN rule. Figure 8.1 comparison of the performance of proposed data fusion rules. 

Soft Combining: 

CR users can transmit the 

complete local test statistics 

for soft decision 

Achieve Best detection 

performance an among all three at 

cost of Control channel overhead 

-Maximum ratio combining (MRC)

-Equal gain combining (EGC)

-Square-law combining (SLC)

Quantized Soft Combining: 

CR users can quantise the local sensing 

results and send only the multi-bite 

data for soft combining 

• 

Comporable performance with 

EGC (soft combining) with less 

complexity and less overhead 

-Two-bit hard decision

-Three bits hard decision

[Our proposed solution]

Hard Combining: 

a 

CR users make local decision 

nd transmit the one -bit 

decision for hard combining 

Require less co trol channel BW 

with degraded performance due 

to loss information 

-OR Rule

-AND Rule

-MAJORITY Rule

Figure 8-1: Comparison of the Performance of proposed Data Fusion Rules. 
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S.4 Wicleba1ul Specti·tun Sensing

The successful deployment of CR relies on its ability to accurately sense the spectrum usage 

status over a wide frequency range serving various wireless communication standards. From 

the discussion in section 4.1, the average spectrum occupancy is less than 25%. Under such a 

circumstance, the cognitive radio can easily find spectrum holes by using a tunable narrowband 

band pass filter (TNBF) [198] to search one narrowband portion of the spectrum at a given 

time. Traditional spectrum sensing algorithms can then be used for searching spectrum holes. 

Due to ongoing the explosive development of wireless products, the average spectrum 

occupancy is increasing. A wideband spectrum sensing strncture should be adopted to search 

multiple bands simultaneously [199]. Moreover, cognitive radio networks will eventually be 

required to exploit spectral opportunities over a wide frequency range from hundreds of 

Megahertz (MHz) to several Gigahertz (GHz) for achieving higher opp01tunistic throughput. 

For example, to exploit spectral opportunities in the whole ultra-high-frequency TV band, 

wideband spectrum sensing techniques should be employed. 

In practice, wideband spectrum sensing systems are difficult to design due to either high 

implementation complexity or high financial/energy costs [200]. The literature of wideband 

spectrum sensing is still in its early stages; five types of models are commonly discussed. They 

are: wavelet detection {201], filter bank detection {202], multicoset sampling based detection 

[205,206], compressed sampling based methods [203, 204,207], and multirate sampling based 

detection [208,209]. Furthermore, traditional cooperative sensing exploits the spatial diversity 

of cooperating CR users and focuses on the sensing of one frequency band during each round 

of cooperation. Therefore, to determine the availability of the spectrum in multiple channels or 

bands, CR users need to be synchronised to switch to another band and perform cooperative 

sensing separately in each band. This process can incur significant switching delay and 

synchronisation overhead. Alternatively, CR users can cooperatively sense multiple charmels 

or frequency bands to reduce the total sensing time for all users. 

To further improve the reliability of the detection, a novel two-stage spectrum sensing scheme 

is designed, which has better performance than one-stage schemes with relatively low 

computational complexity. In following subsection, we will give briefly discuss dual-stage 

spectrum sensing schemes [210,211] and wideband cooperative sensing [212]. 
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S.4.1 Dual-stage S1,eetrtun Sensing 

The most crucial requirements are the sensing sensitivity and sensing time to protect incumbent 

users and to improve the data throughput. When SNR becomes lower, the gap between the 

information calculated in the hypothesis H0 and hypothesis H1 are getting smaller, hence the 

detection results become unreliable. To improve the perfonnance of the detection based on 

spectrum sensmg at low SNR, a dual stage detection scheme is proposed. A dual�stage 

spectrum sensmg scheme [213 J was suggested to meet the requirements for the sensing 

sensitivity and sensing time. Initially, an energy detector takes a snapshot of the current 

spectrum usage pattern over a wide bandwidth. In this stage, spectrum segments occupied by 

strong signals are identified and marked as occupied. Subsequently, energy detection or feature 

detection scrutinises the unidentified candidate spectrum segments where signals from primary 

users are weak or absent. By applying second method only to the selected segments, total 

detection time can be significantly reduced while preserving the sensitivity requirement for 

spectrum sensing. 

A great deal of work on dual-stage spectrum sensing has been done recently. In [214], a coarse 

spectrum sensing technique adopts wavelet transforms to provide MRSS feature. Using the 

beneficial properties of auto con-elation in the time domain, temporal signature detection is 

proposed as a fine spectrum sensing technique. However, the transition between the two 

sensing methods is not mentioned. Reference [217,218] propose two-stage spectrum sensing 

schemes based on different detection techniques. Unfortunately, the threshold of sensing is not 

discussed. In [219], the threshold of ED and CFD is deduced respectively according to sensing 

perfonnance in single sensing stage. However, the thresholds are not optimal because the whole 

sensing perfonnance is not considered. Reference {220] aims to design the thresholds based on 

the whole two-stage sensing accuracy. Although sensing speed is also considered, it is 

separated from sensing accuracy. Moreover, one threshold energy detection is used in the 

coarse sensing stage. Thus, the probability of implementing fine sensing is larger and sensing 

speed reduces correspondingly. The above existing dual-stage spectrum sensing schemes focus 

little on optimal thresholds which consider both the performance of spectrum sensing speed 

and accuracy jointly. 

In this Chapter, two stage adaptive detection are chosen as the coarse sensing technique follow 

by fine sensing technique. Two thresholds are considered in first stage to improve the sensing 

speed and five thresholds to improve accuracy. 
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8.4.2Wideband Coope1•ative Sensing 

Wideband spectrum sensing is becoming increasingly important to cognitive radio systems as 

a means of identifying spectrum holes or characterising interference. Meanwhile, due to the 

effects of multipath fading and shadowing, the primary signal as received at cognitive radios 

may be severely degraded, leading to unreliable wideband sensing results in each cognitive 

radio. In this situation, future cognitive radio networks should employ cooperative strategies 

for improving the reliability of wideband sensing by exploiting spatial diversity. Actually, in 

cooperative cognitive radio network, the wideband spectra as observed by different cognitive 

radios could share some common spectral components, while each cognitive radio may observe 

some unique spectral components [221 ]. Thus, it is possible to fuse measurements from 

different nodes and exploit the spectra among cognitive radios in order to save the total number 

of measurements and thus the energy consumption in cellular networks. Such a data fusion­

based cooperative technique, however, will lead to a heavy data transmission burden in the 

conunon control channels. It is therefore challenging to develop data fusion-based cooperative 

wideband sensing techniques subject to a relaxed data transmission burden. Moreover, the high 

sampling rates are problematic when the distributed cognitive radios are battery powered. An 

alternative is to develop decision fusion-based wideband sensing techniques, if each cognitive 

radio is able to detect the wideband spectrum independently. Furthermore, one of the problems 

in cooperation is in combining the results of various users which may have different 

sensitivities and sensing times. Some form of weighted combining needs to be performed in 

order to take this into account. In the following section, we will proposal wideband cooperative 

spectrum sensing with multi-bit hard decision in cognitive radio using a multi resolution 

spectrum sensing (MRSS) technique and adaptive sensing techniques where the power 

consumption and the time of sensing are considerably reduced. 

8.5 Proposed System Model for Wideband Cooperative 

Spectrum with Multi-Bit Ilard Decision in 

Cognitive Rrulio using MRSS Technique. 

This section presents the proposed cognitive radio networks based collaborative wideband 

spectrum sensing method to detect primary signals and determine their frequency bands in 

order to reuse unoccupied bands. Multi resolution spectrum sensing (MRSS), collaborative 

spectrum sensing and modified multi-bit hard combination schemes are considered. In the first 

stage, all nodes in the cognitive radio network apply coarse resolution sensing to achieve a fast 
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examination of the spectrum that is needed in the second stage; modified multi-bit hard 

combination combines the results of the coarse resolution sensing to detect the signal and to 

determine frequency bands that require further detailed examination. Then, fine resolution 

sensing is applied to these frequency bands to narrow down the spectral bands of the signals in 

the third stage. In the final decision stage, the channels are processed from every node through 

modified multi-bit combination stage to determine the primary signal channel and weak 

channel that are combined to provide occupied channels for the final list. To avoid interference 

to the primary and cognitive radio users (using vacant spectrum or frequency holes in the 

primacy spectrum), information is reported to the decision node. Thus, the list of vacant 

channels will be used to allocate spectrum and distribute it to cognitive radio users in the 

unoccupied spectrum of primary users. With the integration technique mentioned above, the 

entire system bandwidth is not tested comprehensively, therefore the power consumption and 

the time of sensing are considerably reduced. In the following subsection, MRSS Method, 

performance analyse of multi threshold using the multi-bit hard combination technique and the 

proposed algorithm will described. 

8.�.l Multi-Resolution Spectr,un Sensing Metbml

Given the wide variation in signal bandwidth and formats that must be reliably sensed, it is 

preferable to have flexibility in selecting detection bandwidth, just like spectrum analyser that 

can adjust its resolution bandwidth depending on the frequency span and sweep time. For these 

reasons, the multi-resolution spectrum sensing (MRSS) technique has been proposed as a type 

of energy detection method, which works like a simple spectrum analyser embedded into a 

receiver. This technique senses the spectrum at two different frequency resolutions. In such a 

way, the total sensing time of cognitive radio can be reduced, wherein the total system 

bandwidth is first sensed using a coarse resolution. A fine resolution sensing is then performed 

over a small range of frequencies. This technique not only reduces the total number of 

frequency blocks that must be sensed, it also allows the cognitive radio to avoid sensing the 

entire system bandwidth at the maximum resolution. One approach using the MRSS techniques 

is described in [222] using an FFT-based energy detector. Another MRSS approach with less 

hardware efforts to implement (antennas and ADC blocks) relies on analog wideband spectnun 

sensing and reconfigurable RF front end [223,224]. In order to provide the multi-resolution 

sensing feature the wavelet transform was adopted. This is method will discuss in the 

following section. 
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8.:-.I.I Wavelet-based MRSS 

Wavelets are mathematical functions that cut up data into different frequency components, and 

then study each component with a resolution matched to its scale. Wavelet transform used for 

evaluating singularities and irregular structures and can able to describe the local regularity of 

signals. So the wavelet transform approach for spectrum sensing in Cognitive radio is well 

motivated to investigate the primary users. Using this wavelet transform technique the sensing 

time that taken to detect whether primary user using the spectrum or not is very less when 

compare to other type of spectrum sensing technique. A block diagram of this wideband analog 

wavelet-based MRSS technique is presented in Figure 8.2. In this wavelet-based MRSS 

technique, the pulse duration of the wavelet generator and frequencies of the sinusoidal 

functions are changed to sense the spectrum with different resolutions [4]. The building 

components are an analog wavelet waveform generator where the wavelet pulse is generated 

and modulated with I and Q sinusoidal carrier with the given frequency and a window with 

specific bandwidth is selected as the wavelet. The received signal and the wavelet are 

multiplied using an analog multiplier. The analog integrator computes the correlation of the 

wavelet waveform with the given spectral width, i.e. the spectral sensing resolution and the 

resulting correlation with I and Q components of the wavelet waveforms are inputted to the 

ADC where the values are digitised and recorded. If the correlation values are greater than a 

certain threshold level, the sensing scheme determines the reception of an interferer. 
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Figure 8-2: Block Diagrams for MRSS Wideband Sensing Algorithms. 

MAC 

Since the analysis is performed in the analog domain, high speed operation and low power 

consumption can be achieved. Furthermore, by applying the narrow wavelet pulse and a large 

tuning step size of the frequency of the local oscillator, the MRSS is able to examine a very 

wide spectrum span in the fast and sparse manner. On the contrary, very precise spectrum 

searching is realised with the wide wavelet pulse and the delicate adjusting of the local 

148 



Chapter 8: Cooperative Wideband Spectrum Sensing 

oscillator frequency. In this manner, by virtue of the scalable feature of the wavelet transform, 

multi-resolution is achieved without any additional digital hardware burdens. The 

disadvantages of this sensing method consist in the difficulty of knowing the frequency 

information of received signals which imply relatively complicated hardware compared to the 

FFT method. Another disadvantage, still concerning the hardware implementation, is the need 

to generate a wavelet waveform which needs much more complex circuitry than a simple 

oscillator. 

8.5.2 Perfor1nat1<.,� Analysis of Multi Threshold using Mtdti-bit 

Hard Combination Technique 

Figure 8.3 shows an energy distribution graph of a primary user signal and noise where the 

intersection area of upper bound threshold (.;t1) and lower bound threshold (il.2 ) is known as the 

confused region. In the HO area a primary signal is absent whereas in the H 1 area noise is absent. 

In the confused region detection, between noise and PU signal, is difficult using a single 

threshold. 
Confused region 

Noise 

Power 

Figure 8-3: Energy Distribution of Primary User Signal and Noise. 

To overcome the above challenge, the concept of soft and hard decision combination is 

introduced to solve problem, as follows .. Soft combination mean CR users can transmit the 

complete local test statistics and hard combination mean CR users make local decisions and 

transmit the one -bit decision for hard combining. Soft combination has excellent performance. 

However, it requires a significant communications overhead to feed back the observation. In 

contrast, the conventional hard combination scheme requires only one bit of overhead, but has 

worse performance because of the information loss caused by local hard decisions. Quantised 

Soft combination (Two bit hard combination) was proposed in [224]. Quantised soft 

combination mean CR users can quantise the local sensing results and send only the multi-bit 

data for soft combining. A proposed Softened 3-bit hard combination technique shown in 
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Figure 8.4 gives better performance than the one bit hard combination technique and needs less 

overhead than the soft combination technique. 
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Figure 8-4: Energy Regions of Softened Three Bits Hard Combination. 

In this section, we designed multi threshold using multi-bit hard combination scheme to 

determine local decision at CR user. In Figure 8.5, three-bit quantisation method divides 

confused region into eight equal quantisation intervals, L1 is the equal gap between each 

quantisation levels. ;i.7 ,;t6 ,As ,A.4, ;t3, ;t2 and ,11 are subthreshold (ST), and their values are 

chosen as 

ST= 

region?, and Di = 111 

region6, and Di = 110 
regions, and Di = 101 

region4, and Dt = 100 

region3, and Di = 011 

region2, and Di = 010 

region1, and Dt = 001 

regionO, and Di = OOO 

(8.2) 

In this section three-bit hard combination scheme for wideband cooperative spectrum sensing 

is proposed. Seven thresholds are used to divide the whole range of observed energy into eight 

areas. The decision node collects three-bit information from each cognitive radio after taking 

measurements in the energy regions of interest. Compared to conventional hard combination 

with only one-bit exchange, less information is lost at each CR user in the proposed scheme 

and hence performance improvement is expectable. Thresholds of the three-bit hard 

combination scheme are determined by using the Neyman-Pearson criterion and optimising the 

detection performance [225]. In this criterion, while determining the threshold probability of 

false alarm PFA is fixed to some value, the probability of detection Pv is maximised. 

The three-bit hard combination scheme, and the weighted summation is given by 

M = L�=l whNh ,where Nhis the number of observed energies falling in region h and whis the 
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weight value of region h. Then, M is compared with the threshold, if M 2: Threshold, primary 

signal is declared present; otherwise, it is declared absent. For the three-bit hard combination 

scheme, we need to decide threshold values so that the given overall false alann probability of 

the CR network is met. In our proposal, the PFA chosen to determining the threshold values in 

three bit hard combination scheme is A
n 

= flnPFA where n = 2, .. 7, and for first threshold,,l.1 = 

PFA, and the coefficients flnin Figure 8.5 are found by fl
n 

= (n - l)x10-(n�i). 

S.ll.3 Proposed Algoritlun using MRSS teclmi,1ue

The proposed two-stage procedure with three-bit cooperative wideband spectrum sensing using 

the wavelet-based MRSS scheme is shown in Figure 8.5. The implementation of determination 

of seven thresholds, coarse resolution sensing and fine resolution sensing are carried out using 

Matlab programming represented by the following steps [ Appendix J 

•!• Firstly, a node designated as the decision maker applies coarse resolution 

spectrum sensing to the entire bandwidth of interest and determines seven 

thresholds, which are used to divide the observation range into eight regions, as 

explained in section 8.5.1. 

•:• Next, all other nodes are informed of these threshold values so that every node 

is able to apply the same thresholds. Then, all nodes, except for the decision 

maker node, apply coarse resolution spectrum sensing to the entire bandwidth 

of interest. 

•:• After applying the thresholds, the nodes evaluate those frequency bands in 

which sensed energy exceeds the first threshold and determine the region of the 

sensed energy. Then, nodes send information about the observed energy regions 

as three-bit values to the decision maker. 

•!• Next, the decision maker determines the spectrum bands on which fine 

resolution spectrum sensing will be applied by using the proposed three-bit hard 

combination scheme. The decision maker also decides which nodes will apply 

fine resolution spectrum sensing on the determined spectrum bands. 

•!• In particular, nodes that sense the highest energies on the determined spectrum 

bands apply fine resolution sensing. After fine resolution sensing is applied at 

each selected node, each of the nodes applies the maximum of the seven 

threshold values that is below the maximum observed energy sensed by coarse 
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resolution sensing in the determined spectrum band. In this way, selected nodes 

determine the frequency bands of the signals. 
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Figure 8-5: Block Diagram of the Cooperative Wideband Sensing of the Proposed Scheme. 

S.�.4 Sbnulation Results and Discussion

To evaluate the performance of the proposed detection scheme, simulations have been carried 

out. In the following subsections, detection percentage is used as a detection performance 

measure. Steps used to evaluate the performance of the proposed sensor network based 

cooperative wideband spectrum sensing is presented in Appendix A.3. 

8.5.4.l Coarse and Fine Resolution Sensing Res1dts for a Node 

Figure 8.6 shows and example of seven thresholds that divide the whole range of observed 

coarse resolution sensing band between (430 MHz -530 MHz). Two peak values at 441 MHz 

and 461 MHz correspond to the two transmitters whose specifications are given during 

simulation with different power values. The observed energies at 441 MHz, 461 MHz are in 

regions 7 and 1 respectively. With this information, it can be deduced that radio will send a 

three-bit local observation value of "111" for 441 MHz and "001" for 461MHz. Since the 

observed energies at other frequencies are in region 0, no information will be sent to the 

decision maker for these frequencies. 

-40 . 
430 440 450 460 470 480 490 

FreauencvfMHz) 

500 510 520 530 

Figure 8-6: Result of Coarse Sensing Of 430-530 MHz Band. 
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8.5.4.2 Effect ofNmnber of.Nodes and N mnber of'rransmitters 

Figure 8. 7 (A) depicts the effect of the number of nodes cooperating on detection percentage 

at various SNR values. Figure 8.7 (B) depicts the effect of the number of different received 

signals on detection percentage at various SNR values. As seen in Figure 8.7 (A), a maximum 

detection percentage is obtained when there are more nodes participating in the cooperative 

wideband spectrum sensing. Figure 8.7 (B), shows the performance of the proposed scheme on 

the detection of the signal emitted by transmitter 3(assumed transmitter) for the following 

scenarios: Only transmitter 3 is present, transmitter 1 and transmitter 3 are present and 

transmitter 1, transmitter 2 and Transmitter 3 are present. As shown in Figure 8.7 (B), when 

other transmitters are present in the medium, the detection percentage of detecting the signal 

emitted by Transmitter 3 decreases. This is an expected result since the signals of transmitter 

1 and Transmitter 2 contribute to the channel noise while the signal of Transmitter 3 is being 

detected. 
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Figure 8-7: (A) Detection versus SNR for Four Different Numbers of Nodes, (B) Detection of 

Transmitter 3 versus SNR for Three Different Scenarios. 

The MATLAB code used to evaluate the performance of the proposed sensor network based 

cooperative wideband spectrum sensing is presented in Appendix A.5. This code used to study 

the effect of number of nodes on detection percentage of the cooperative wideband spectrum 

sensing part of the proposed scheme. The code corresponds to the discussion of the 

experimental results in Figure 8.7-A. 
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S.5.4.3Comparing Three-Bit Hard Cmnbination with traditional Har,I

Combination. 

The traditional combination schemes and proposed three-bit hard combination scheme were 

explained in Section 8.5.2. As mentioned in Section, two of the decision rules used by the 

traditional hard combination scheme are logical-OR rule and majority rule. This section 

compares the detection and false alarm performances of the proposed three-bit hard 

combination scheme and the traditional hard combination schemes using logical-OR rule and 

majority rule. 

Figure 8.8 (A) shows the detection percentage versus SNR, for three combination schemes. 

The simulation results indicate that OR and Majority Rule algorithms' results are very close to 

each other and unmatched well with three-bit hard combination at a low SNR. Implemented 

with the proposed three-bit hard combination setting algorithm, the detection probability Pd 

comparison between the OR and Majority Rule algorithms is shown in Figure 8.8 (A). With 

the proposed threshold setting algorithm, OR and Majority Rule methods can achieve higher 

detection probabilities than the three-bit hard combination at lower SNR levels. However, 

three-bit hard combination algorithms could achieve about 30% improvement at SNR = -18dB 

in tenns of detection probability Pd. Overall, it shows that when the SNR is between -25 dB 

and -15 dB, the traditional hard combination schemes have a better detection percentage than 

the proposed three-bit hard combination scheme. In particular, the traditional hard combination 

scheme here using logical-OR rule is fairly superior to the other two schemes for SNR < -18 

dB. This is due to the fact that for declaring the presence of the signal of interest, only one node 

sensing energy above the threshold is enough. The disadvantage of this approach can be seen 

when false alarm performances are compared. 

Figure 8.8 (B) shows the false alarm performances of the three combination schemes. In 

particular, the y-axis denotes the percentage of the scanned frequencies in coarse resolution 

sensing that contributes to false alarm for more than 50% of the simulation. It can be seen from 

Figure 8.8 (B) that the proposed three-bit hard combination scheme presents robust false alarm 

performance compared to the two traditional hard combination schemes. For example, with the 

traditional hard combination scheme using logical-OR rule, at SNR = l O dB, 60% of the 

scanned frequencies in coarse resolution sensing will be sent to the fine resolution sensing 

block redundantly. When the results of Figure 8.8 (B) are analysed, the following conclusions 

can be made. The higher percentage of the scanned frequencies in coarse resolution sensing 
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that contribute to false alarms means that some of the nodes will apply fine resolution sensing 

unnecessarily. This is a waste of scarce battery energy for redundant computations and 

communications between the node and the decision maker. The detection performance of the 

three-bit hard combination scheme can be improved by using two stage adaptive sensing, where 

energy detection used when SNR high, and cyclostationary detection used when SNR low. This 

will explained in more detail in the following section. 
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8.6 Proposed System Moclel for Two-stage Adaptive 

Speet1•1un Sensing 

Two sensing techniques that have been considered in previous chapters (6 & 7) are energy 

detection and cyclostationary detection. From simulation results in section 6.4 it is observed 

that the detection performance of the cyclostationary detection method is a compromise 

technique, having better low SNR detection performance than energy detectors and less strict 

requirements than matched filters. In section 7 .6, Chapter 7 the performance of SCF has been 

investigated under real-word noise conditions. It was found that, from the path loss exponents, 

that it is conclusive that the cyclostationary features are more robust to noise effects than the 

energy features. However, it is more complex than energy detection and needs a much higher 

sensing time. Thus, dual-stage adaptive spectrum sensing is proposed to obtain the trade-off 

between speed and accuracy combining the advantages of different detection techniques. 

Figure 8.9 shows the system model of the proposed two-stage spectrum sensing detectors 

having one energy detector and one cyclostationary detector. As show in Figure 8.9, two­

threshold ED is adopted with detector with fixed dual thresholds il1 and il.7 the first spectrum 

sensing stage, and CFD is used within threshold .il1 and A7in to judge the confused area in the 

second spectrum sensing stage. In the adaptive dual-stage sensing model, two-threshold energy 

detection is adopted as the first stage sensing. If X?: il..7 , the SU regards the sensing result as 

H1 . IfX<A.1 , the SU regards the sensing result as H0 . If A1 $ X $ A7 , the SU cannotjudge 

whether PU is using the spectrum or not. Where three-bit quantisation method divides region 

into eight equal quantisation intervals as shown in Figure 8.10, L11 , .... nis the gap between each 

quantisation levels. il..7 , A.6, il..5 , A4, il..3, A.2 and 11 are subthreshold (ST). Consequently, the 

second stage sensing is activated to sense the confused area. So CFD is not necessarily to 

implement unless X locates in the confused area. In this way, the spectrum sensing speed is 

guaranteed by ED and sensing accuracy is ensured by CFD. 

Based on the detection and false alarm probabilities derived in the Chapter 6 on the subject of 

energy detection and cyclostationary detection, we seek to minimise the average detection time 

of an available channel for secondary users. A higher average detection time leads to longer 

delay to allocate a feasible channel for an incoming secondary user, hence decreasing their 

throughput. Therefore, in this section, we will investigates the sensing performance of our 

proposed scheme with respect to detection performance. 
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Figure 8-9:Two-Stage Adaptive Spectrum Sensing Detectors. 

The overall probability of false alarm and probability of detection of two-stage spectrum 

sensing scheme are given in (8.3) and (8.4). 

where 

Pr= PrPj + (1- Pr) Pf=Pr(Pf - Pf) + Pf 

Pd = PrPJ + (1- Pr) PJ=Pr(Pj - PJ) + PJ 

Pd Probability of detection of two-stage adaptive sensing 

Pr 
Probability of false alarm of two-stage adaptive sensing 

Pj Probability of detection for bi-threshold energy detector 

Pf Probability of false alarm for bi-threshold energy detector 

Pj Probability of detection for cyclostationary detector 

Pf Probability of false alarm for cyclostationary detector 

Pr Probability that channel would sense by ED 
1 -Pr Probability that channel would sense by CFD 

(8.3) 

(8.4) 

In order to evaluate agility of the proposed adaptive two-stage spectrum sensing scheme, its 

mean detection time is compared with the energy detection and the cyclostationary detection, 

respectively. The mean detection time of proposed two-stage sensing is: 

(8.5) 

where TE and fc are the sensing times of energy detection and cyclostationary detection, 

respectively. TE and fc can be derived as follows: 

(8.6) 
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where E[K1] and E[K2] represents the mean number of channels reported to energy detector 

and cyclostationary detector and T1 = ME and T2 = Mc is the mean sensing time for each 
2w 2W 

channel, in which Me and Mc are the number of samples during the observation interval for 

energy detection and cyclostationary detection, respectively. w is the channel bandwidth. 

K1 , K2 are a random variable which follows a binomial distribution, with parameters N and Pr, 

where N is the number of channels to be sensed and Pr is the probability that a channel would 

be repmted to the energy detector and 1-Pr is the probability that a channel would be reported 

to the cyclostationary detector. Hence, the mean detection time of the energy detection and 

cyclostationary detection are 

f, = NPrT1 & Tc= N(l - Pr)T2 

The total mean detection time is found by substituting (8.7) for f, and Tc in (8.5): 

f = N(PrT, + (1- Pr)T,) 

(8.7) 

(8.8) 

We can investigate the following two limiting cases on the basis of P,. For the proposed 

algorithm P, ranges from O to 1; it indicates the probability that a channel would be sensed 

using an adaptive strategy. There are two distinct scenarios to be evaluated: 

Case 1: When O ;s;; P7 $ 0.5, most of the channels are very noisy. SU will perform 

cyclostationary detection for sensing the majority of the channels. The detection time will 

increase when more channels are being sensed by the cyclostationary because it consumes a 

longer detection time than the energy detector. In the worst case when P,= 0, the probability of 

false alarm, the probability of detection and the total mean detection time can be evaluated by 

putting Pr � 0 in equation (8.3), (8.4) and (8.8): 

(8.9) 

f � NT2

Case 2: When 0.5 $ Pr $ 1, the majority of the channels have a very good SNR. Therefore, 

SU will perform energy detection for sensing most of the channels because the performance of 

the energy detector is excellent under good SNR. The mean detection time of energy detection 

is the least, and therefore it will be the best case for the detection time when majority of the 
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channels are sensed by the energy detector. The best scenario is when Pr � 1 and the probability 

of false alann, the probability of detection and the total mean detection time can be found by 

putting P, �1 in equation (8.3), (8.4) and (8.8): 

T� NT1 

8.6.l Performance Assess,nent and Con1parison of Two-stage 

Detector with One Stage Detector. 

(8.10) 

The performance of our proposed two stage detector using energy and cyclostationary detection 

has been evaluated by simulation (perfonned within Matlab). For each simulation we computed 

the detection probability as a function of the signal-to-noise ratio, by fixing the false alarm 

probability P1. In the following simulations, the false alann constraint is assumed to be 

P
t 

:S 0.1. A comparison between the proposed two-stage and other detection simulations are 

can-ied out as shown in Figure 8.10. In Figure 8.10, the detection probability of these detectors 

is compared as function ofSNR with background noise fixed. The thresholds of the two-stage 

combined spectrwn sensing is A1, A2 , A3, il.4, A5 , A6 and il.7 with .1n set to small (0.1 ), Medium 

(0.6) and larger (0.8) values respectively. From Figure 8.10, we can see that, the detection 

perfonnance of the cyclostationary detection is better than that of the energy detection. The 

two-stage detection has the best performance, and the performance becomes better when Llnis 

larger. The detection perfonnance of cyclostationary detection is nearly better than two-stage 

detection when SNR is lower than -l 9dB and Pd smaller than 0.54. However, we do not care 

much about the detection performance when Pd is smaller than 0.54, for in this case, the 

detection probability is relatively not so high, and missed detection is very likely. From the 

simulations above, we can see that the detection performance of the cyclostationary detector is 

better than energy detectors, at the price of complexity and increasing the detection time. As 

well, the cyclostationary detectors are robust to the noise uncertainty while the energy detection 

is very sensitive to the variation of the background noise. 
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Figure 8-10:Detection Performance against SNR Comparison of the Two Stage Detector with 

One Stage Detector. 

Overall, by considering the time taken by the two-stage detection process, it becomes evident 

that the cost of improving the detection performance is high. A close look at Figure 8.10 reveals 

a hidden redundancy in the two-stage sensing scheme. We can see that at high SNRs, the 

improvement in the detection performance of the two-stage detector is negligible as compared 

to an ED stage. Hence at high SNRs, where the ED is not constrained by the SNR wall, sensing 

the spectrum a second time whenever the ED calculates the energy to be less than the threshold 

seems to be overkill. In other words, activating the channel the CR is in will lead to an 

unnecessary evaluation by the time-consuming second stage. Thus, with these insights obtained, 

in the next section we propose a modification to the conventional two-stage spectrum sensing 

algorithms to optimise the usage of the second stage. 

S.6.2 Performance of Adaptive Two-Stage Co1nbiued Sensing

The advantage of the adaptive two-stage method is that the second stage of the detector will 

not be activated always and hence the detection time will be reduced substantially. The second 

stage will be activated only at low SNR where the noise in the device environment is very high. 

The ED will work with very high accuracy at high SNR values and with low complexity and 

very less detection time. If the SNR is very low, then ED will fail to operate correctly and the 

second stage will be activated. Even though the complexity of cyclostationary detection is high, 

accuracy of this detector is very high at low SNR values. Furthermore, the sensing time is 

crucial in spectrum sensing techniques, which is defined as the sensing time taken by CR user 
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to detect a licensed PU signal. The sensing time is proportional to the number of samples taken 

by the signal detector. The more time is devoted to sensing, the less time is available for 

transmissions and thus reducing the CR user throughput. This is known as the sensing 

efficiency problem [227] or the sensing-throughput trade-off [228] in spectrum sensing. 

Figure 8.11 shows detection performance of energy detection, cyclostationary and adaptive 

two stage detection versus SNR. As we can see, for SNR that is less than -12 dB, the two-stage 

sensing scheme performs better than energy detection, at the price of increasing the detection 

time. In addition, from Figure 8.11 we can sec that the second stage can be totally switched off 

at high SNRregimes without having any impact on the detection performance of the CR system. 

Figure 8.11 shows the comparison between the percentages of the times the second stage is 

activated in the two-stage detector. It can be clearly seen that by incorporating an estimate of 

the SNR of the channel, the activation of the second stage can be avoided at high-SNR regimes. 

For the set of parameters used in this simulation, the critical SNR is -12 dB and hence we can 

see that once the SNR of the channel is more than -12 dB, the algorithm switches to the ED 

stage alone. 

Furthermore, mean detection time versus SNR of energy detector, cyciostationary detector and 

two stage adaptive detector are demonstrated in Figure 8.12, where all the channels are sensed 

at the same probability of false alarm. It is illustrated that if all the channels are in good SNR 

conditions, then the mean sensing time is equal to the time taken by the energy detector and 

vice versa. The sensing time of TI =1.8ms for energy detection, T2 =24ms for cyclostationary 

detection and T3 range is between T3> l .8ms and T3<24ms for proposed adaptive two stage 

sensing. The mean time detection of adaptive sensing depend on SNR condition. The key 

advantage of the proposed adaptive spectrum sensing is that its reliable results equal those of 

the cyclostationary detection and can be achieved in less mean sensing time. It is apparent that 

the second stage consumes most time for detection and analysis and hence any reduction in the 

usage of the second stage would lead to savings in the mean detection time of the CR. 
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In this section, throughput performance of the proposed two stage-adaptive sensing has been 

analysed. Overall, the proposed scheme above chooses either the energy detection or the 

cyclostationary detection based on SNR. We observed that at low SNRs where energy detector 

is not reliable, the proposed scheme provides improved detection at the cost of mean detection 

time. At high SNRs, the proposed scheme provides fast detection using the energy detector. 

This section showed from simulation results that the mean detection time of the two-stage 

adaptive scheme is lower than that of the cyclostationary detection. Even in the worst case, it 

may be equal to the cyclostationary detection. In the best case, the total mean detection time is 

reduced dramatically to achieve the same accuracy. The results showed that the reliability of 

detection is also as high as that of the cyclostationary detection with reduced total mean 

detection time. 

8.8.3 Opti1nisatiou of Mean Detection Time using Two-Stage 

Adaptive Sensing 

The sensing time may be optimised by utilising the derived Pd and P
r 

of the signal detector. 

Based on the detection and false alarm probabilities derived in section (8.6), we jointly optimise 

two fundamental parameters of the detector, i.e., the sensing threshold and the integration time, 

to minimise the mean time to detect an available channel. Although the total detection time 
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involves channel switching time and integration time in the two-stage adaptive detector as f' 

and f's respectively, the f
5 

not consider in this research, since f's is detennined by the phase 

locked loop (PLL) design in the receiver circuitry and is also known as the PLL settling time. 

Therefore, in order to clarify how the detection time looks like for the two-stage adaptive 

sensing compared to energy and cyclostationary detectors , we present the mean detection time 

of the two-stage adaptive sensing , energy detection and cyclostationary which is derived in 

section (8.6),with varying PK and L1 as shown in Figure 8.13. PK is the Probability that the 

channel would be sensed by combined energy and cyclostationary detector and L1 representes 

change of range of thresholds values between il.1 and il.7 ,increasing il.7 and decreasing il1 

will increase the overall probability Pd detection at the cost of increase detection time. 

The mean detection time of all the detection systems remains constant regardless of Pg , except 

for the adaptive two stage. If PK is low, most of the channels are sensed by the energy detection, 

and the mean detection time is almost equal to the time taken by energy detection. When PK is 

high, the adaptive two stages do not always have a smaller mean detection time in comparison 

with the energy detection because the majority of channels are sensed by cyclostationary 

detection. Figure 8.13, shows the graph of mean detection time with varying PK from O to 1, 

and L1 is taken as 0.2, 0.5 and 0.8, respectively. When LI is 0.2, most of channels sensed by 

energy detection. When L1 is 0.5, it means detection processing of some of the channels is 

concluded at the energy detection stage, and others need to pass through cyclostationary 

detection. When L1 is 0.8, most of the channels are sensed by cyclostationary detection. Overall, 

the mean detection time of two stage adaptive is much less in comparison with cyclostationary 

detection, and has nearly the same accuracy of detection. This improves the utilisation 

efficiency of the radio spectrum by increasing detection reliability and decreasing sensing time. 

A change in the probability that channels are sensed by a combined energy and cyclostationary 

detector means that the thresholds of the detector also change. 
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8.7Proposed System Model for Wideband 

Cooperative Spectr1un Sensing with Multi-Bit 

Bard Decision using Two-stage adaptive sensing. 

In the previous proposed scheme in section 8.5, wideband cooperative spectrum sensing using 

MRSS technique has been used as a type of energy detection method, which works like a simple 

spectrum analyser embedded into a receiver. Although, this method provides faster sensing 

time and simpler implementation than those of feature detection; it is well known that such 

method lacks the capability to differentiate different signal types. Also, the sensing the 

performance for energy detector will be more likely to be degraded due to the noise uncertainty. 

To meet the time and sensitivity requirement and to improve the performance of the detection 

at low SNR a two-stage adaptive method, collaboration spectrum sensing and modified multi­

bit hard combination schemes are considered. Multi-bit hard decision using two-stage adaptive 

with adaptive mode sensing algorithms are presented with more sensing accuracy, and their 

sensing time and energy consumption are reduced greatly especially when the SNR is high or 

no PU exists. In the proposed algorithms, we try to increase sensing accuracy, reduce the energy 

consumption of wideband cooperative spectrum sensing with Ns samples by designing two 

stage adaptive sensing schemes with aNs-sample first stage detection and (1 - a)Ns-sample 

second stage detection. We assume that, in the Ns-sample detection of these algorithms, the 

presence/absence status of the PU does not change. In other words, the received signal is 

stationary within the observation time T (i.e., Ns samples); this assumption is commonly used 

in the literature [214-217]. 
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In this section we propose two-stage adaptive spectrum sensing scheme to further improve the 

wideband cooperative spectrum sensing performance as shown in Figure 8.14. Each secondary 

user reports three-bits, which can be calculated from the adaptive two-stage detection results. 

Although the same technique used in previous proposed algorithm of MRSS in section 8.6.3 

will be used here again, the difference is that the two stage adaptive technique which switches 

between energy detection and cyclostationary detection depend on energy value of PU signal 

will using as coarse sensing. Furthermore, in this proposal the cyclostationary detection will 

used instead of energy detection as fine detection. 

Two-stage Adaptive detector 

t Htt.lt 11.H, 

lfUSXSJ.7 

. 
. 
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Figure 8-14:Architecture of Wideband Cooperative Sensing Using Two Stage Adaptive 

Detection. 

The proposed wideband cooperative spectrum sensing scheme using two-stage adaptive 

technique can be represented by the following steps: 

Step 1: at the ith secondary user, perform the first stage coarse energy detection with aNs 

samples at each SU, and we can get the value ENr · Figure 8.14 shows the architecture of 

wideband cooperative sensing with first double thresholds ;t1 and A.7 • If the detection result 

ofSUi (i = 1, 2, ... , K) , X > J7,the decide D1 i is set to 111, and go to 2, indicating PUs exist; 

if X < A1, the decide D1 i is set to OOO, and go to 2, indicating no PUs exist; if J1 ::; X $ A7 ,

nothing sent, go to step 3 to perform second stage detection. When the received signal energy 

between ;t7(upper threshold) and J1 (lower threshold), it is consider in the region uncertainty 

(UN), and the energy detector is not reliable for PU detection. Local decision D1 i (i = 1, 2, .. K) 

is obtained through the first stage coarse energy detection as 
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X <Al, go to Z
X > A7, go to Z

r nothing sent, go to step 3 
(8.11) 

Step 2: The first stage local decisions Dl i are fused at the fusion centre, and the final decision 

DF can be obtained as 

DF="K Dl·(� k,H,
L..1:::1 i 

< k H ' 0 

(8.12) 

where H 0and H 1 denote the decision made by the decision node that the PU is present or absent, 

respectively. The threshold k is an integer, representing the "n-out-of-K" rule [212]. If the final 

decision DF can be obtained, DP is sent to each SU to request fine sensing (cyclostationary 

detection). If the final decision DF cannot be obtained, nothing will be done. 

Step 3: If the final decision DF is received by the SUs, it goes to step 6. If the final decision 

DF is not received by the SUs after 't period, it perfonns the second stage cyclostationary 

detection with (1 - a)Ns samples, and the sensing result of the SUi ,and we can get the value Y. 

Step 4: Local decision DZi (i = 1, 2, ... , K) is obtained through the second stage 

cyclostationary detection as 

DZ· = f Y < ic7, final decision DZ;
1 l Y > Al, final decision D2i 

(8.13) 

where Y is the second stage local sensing result of SUi using cyclostationary detection. To 

transmit it easily and save the spectrum resource, the D2i is three-bit binary, which can be 110, 

101,100,011,01 Oand 001. At the common receiver, to fuse the decisions of all the secondary 

users together, D2i should be changed into signed integer Fi according to 

Fi= 

region6, when DZ, = 110 
regions, whenD2 i = 101 
region4, when D2 i :;:;:: 100 
region3, when D2 i ::: 011 
region2, when D2i ::;:: 010 
regionl, when D2i = 001 

(8.14) 

Step 5: The second stage local decisions D2 i are fused at the fusion centre, and the final 

decision DF can be obtained according to of all the secondary users in (8.14) as follows. 
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- "' {> M
OF- L,.,h=iFi < M 

If the final decision DF can be obtained, goes to step 6. 

H, 

Ho 
(8.15) 

Step 6: After the final decision DF is received by the SUs, apply fine cyclostationary spectrum 

sensing on these spectrum bands. The CR radios that apply fine cyclostationary spectrum 

sensing, determine the primary transmitted frequency bands. Finally, the report is sent to the 

decision maker again to determine the occupied, vacant and weak channels. 

Overall, in the two-stage adaptive scheme described above, if the energy value in the first stage 

X is outside A7 (upper threshold) and Al (lower threshold, the solution is located in the 

undoubted region. The final decision is made immediately based uponDli, and the decision is 

quite accurate. This situation is equal to the one-stage detection with N samples. If X is in Al ::; 

X ::; A?, the solution is located in the doubted region, and a second stage cyclostationary 

feature detection will be perfonned. The final decision is based upon bothD1i and D2i. 

Therefore, the two-stage detection scheme can greatly improve the detection performance and 

make the decision more reliable. 

8.7.2 Sinndation Results and Discussion 

To evaluate the detection performance of the proposed detection scheme, numerous of 

simulations are carried out as depicted in Figure 8.15 and Figure 8.16. We present the 

performance of the hard combining schemes compare to non-cooperative users. Furthermore, 

the two bit and the three-bit quantised schemes are compared in terms of detection performance. 

Next, detection performance against SNR comparison of two-stage adaptive detection non­

cooperative detector with cooperative detector are demonstrated. 

Figure 8.15 present ROC curves (probability of detection Pd vs probability of false alarm Pf), 

to compare the hard decision and quantised decision. ROC involve 'AND' rule, quantised data 

fusion with 2-bit and 3-bit quantised combination and compare it to the detection performance 

of a single CR user. Although the AND rule has better detection performance than the single 

CR user, the quantised data fusion still desirable. For quantised data fusion with 2-bit and 3-

bit quantised combination, the Figure 8.15 indicates that the proposed 3�bit combination 

scheme shows much better performance than the 2-bit combination scheme at the cost of one 

more bit of overhead for each CR user, this scheme can achieve a good trade-off between 

detection performance and overhead. 
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Figure 8.16, compared the probability of detection ( Pd ) performance of wideband cooperative 

spectrum sensing schemes, when Pf=O.l and SNR is varying from -20dB to -5dB. From the 

simulation results in Figure 8.16, we can see that the Pd performance of the proposed wideband 

cooperative two-stage adaptive detection scheme is much better than the traditional cooperative 

detection schemes. As the Figure 8.16 indicates, all fusion methods outperform the single node 

sensing using two stage adaptive, the quantised 3-bits scheme based on quantised combination 

rule outperforms the hard combination at the cost of control channel overhead, the 3-bit 

quantised combination scheme shows a comparable detection performance with the hard 

decision, with more overhead. 

0.1 ......... ,.. .. · .. :' ., .. · ... ;. 

0.2 0.4 0.6 0.8 

Probability of False Alarm Pf 
1 

Figure 8-15: ROC Curves Comparison of 

Non- Wideband Cooperative Detector With 

Wideband Cooperative Detector under 

Different Fusion Rule. 
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In this Chapter, we first addressed the challenges in non-cooperative sensing, followed by 

presentation of an overview of cooperative spectrum sensing, where we discussed a general 

background of cooperative spectrum sensing schemes. Moreover, motivated by the fact that 

wideband spectrum sensing is critical for reliably finding spectral opportunities and achieving 

opportunistic spectrum access, we presented a brief survey of the state-of-the-art wideband 

spectrum sensing. To further improve the reliability of the detection, a novel two-stage 

spectrum sensing scheme is designed, which has better performance than one-stage solutions 
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with relatively low computational complexity. To meet the objectives, three proposed systems 

have investigated. 

Firstly, a wideband cooperaii.ve spectrum sensing with multi-bit hard decision in cognitive 

radio using Multi Resolution Spectrum Sensing (MRSS) technique was proposed. The 

proposed scheme is appropriate for sensor networks for cognitive radio since it senses a wide 

spectrum band in an energy efficient maIU1er. Energy efficiency comes from the usage of 

MRSS and the proposed three-bit hard combination scheme. In particular, redundant 

exhaustive sensing on empty bands is avoided with MRSS, and less overhead in collaboration 

with respect to the soft combination is provided by three-bit hard combination. The proposed 

system showed that a three-bit hard combination scheme is superior to the traditional hard 

combination schemes in false alarm reduction. Although the traditional hard combination 

schemes are shown to have a better detection percentage than the proposed three-bit hard 

combination scheme, the detection performance of the three-bit hard combination scheme can 

be improved by using two stage adaptive sensing. 

Secondly, a system model for two-stage detectors with an adaptive technique using ED in the 

first stage and a CFD in the second stage and using seven thresholds scheme was proposed. 

The use of cyclostationary detection aims to mitigate the problems caused by noise uncertainty 

faced by ED at low SNRs. We pre-compute the lower bound of the SNR using first double 

thresholds (A1 and A7) at which the ED still works satisfactorily and show that by estimating 

the SNR of the channel the CR is in, we can switch off the second stage of a two-stage detector 

when the channel SNR is higher than the lower bound of the SNR level of the ED. This scheme 

improves performance, reduces computational complexity and overcomes the sensing failure 

problem. Numerical results show that the proposed two-stage adaptive spectrum sensing 

scheme outperforms the one stage detector schemes. Perfonnance was also measured in terms 

of sensing time. It is shown that the proposed scheme yields smaller sensing time than 

cyclostationary detection and also increases throughput Our results indicate that the proposed 

scheme performs better than previous schemes in terms of spectrum detection and spectrum 

sensing time. 

Thirdly, wideband cooperative spectnun sensing with multi-bit hard decision using two-stage 

adaptive sensing was proposed to improve the reliability of wideband cooperative sensing. It 

has been shown that the proposed detection algorithm using adaptive detection can detect the 

wideband cooperative spectrum efficiently. In addition, it has also been shown that the 
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detection algorithm using seven thresholds with an adaptive technique can sense the spectrum 

efficiently and that it outperfonns the traditional cooperative detection method. Simulation 

results reveal that the wideband cooperative sensing algorithm based on the adaptive technique 

can detect the low SNR signals up to -17 dB with 90% detection probability, I 0% false alarm 

probability. In contrast, the traditional method can detect only -14.5 dB signals under same 

environment. In conclusion, the proposed sensing method achieves 2.5 dB better performance 

compared to the traditional technique. 
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9 
Conclusion a11d Future Work 

Spectrum is an incredibly precious finite and, in the short term, non-renewable resource. Its 

efficient use has been the focus of research and development efforts over many decades. 

Dynamic spectrum access (DSA) and cognitive radio (CR) are promising new techniques that 

aim to increase spectrum efficiency by allowing unlicensed (secondary) users to access 

licensed bands temporarily unoccupied by the licensed (primary) users, in an opportunistic and 

non-interfering manner. This conceptually simple but innovative and challenging spectrum 

access paradigm is expected to enable more efficient use and exploitation of the spectrum bands 

with commercially attractive radio characteristics. However, the resource available to the 

secondary user depends upon the spectrum occupancy patterns of the primary systems. 

Realistic modelling of the spectral activity of primary user systems is vital when designing and 

evaluating the perfom1ance of DSA/CR systems. Potential spectrum usage assessment tools 

range from measurement and analytical studies to the design and dimensioning of secondary 

networks as well as the development of innovative simulations and more efficient DSA/CR 

techniques. However, the utility of such tools depends on their realism and accuracy. 

This chapter summarizes the main conclusions derived from the investigations carried out in 

this thesis and discusses possible directions for future work. Part I presented an overview of 

the radio spectrum today in terms of regulation and spectrum usage. It also studied the value 

of system evolution around future radio platforms given the introduction of software defined 

radio (SDR), dynamic spectrum access (DSA) and cognitive radio (CR) technologies. Part II 

reviewed the past spectrum measurement campaigns carried out by SSC groups and presented 
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recent spectrum measurements that were performed in the framework of a broadband spectrum 

measurement campaign, in the Humber Region, UK. Part III presented the characterisation of 

cyclostationary feature detectors through theoretical analysis, implementation and experiments 

under real noise and interference conditions, and compared them with energy detection 

methods. Part IV presented a wideband cooperative sensing method using adaptive sensing 

techniques and multi-bit soft decisions. 

Part I of this thesis has presented an overview of radio spectrum today including regulation 

methods and spectrum usage. We conclude that the cunent spectrum management models 

operating today on both national and international level leave much to be desired in term of 

efficiency of use of the radio spectrum in reality. The command and control approach used in 

traditional spectrum licensing tends to predicate the idea of unlicensed access to licensed bands 

(called dynamic spectrum access (DSA) being introduced. The objective ofDSA is to achieve 

a more efficient utilisation of radio spectrum without interfering with primary users. This 

flexibility could be achieved through the use of cognitive radio implemented within software 

defined radio systems. Various microelectronic technologies that are currently available would 

allow DSA to be implemented as part of a SDR hardware prototype. Furthermore, different a 

dynamic spectrum access strategies have been presented and categorised. Finally, an 

architecture for a cognitive radio network (CRN) and cognition capability was discussed. 

Part II of this thesis has reviewed historical spectrum occupancy measurements, particularly 

the Shared Spectrum Company measurement campaigns, and compared global spectrum 

occupancy measurement. Additionally, this part addressed the development of a unified 

methodological framework for spectrum measurements in the context ofDSA/CR. In this sense, 

this part has presented a comprehensive and in-depth discussion of several important 

methodological aspects that need to be carefully taken into account when evaluating spectrum 

occupancy. Next, we presented an investigation of spectrum white space availability for 

opportunistic cognitive radio access in the frequency range 180-2700 MHz over a wide variety 

of scenarios in urban, suburban and rural areas of the Humber region, UK. The spectrum 

occupancy analysis is based on a measurement campaign within results in several bands, 

specifically, cellular and TV broadcasting bands. To the best of the author's knowledge with 

the exception of that undertaken by Ofcorn, this is the first study of these characteristics 

performed under the scope of the UK spectrum regulation at Humber region. The analysis 

indicates a significant amount of unused spectrum in these bands. Some spectrum bands are 
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subject to intensive usage while others show moderate utilisation levels, some are sparsely used 

and other are not used at all. Overalzl, the level of utilisation has been verified to be 

significantly low. This can provide useful information for the regulator in consideration of 

opportunistic spectrum access, which can bring both economic and social benefits to the 

country, as most of the allocated TV bands are below 13.4% utilisation. 

Part III of this thesis has dealt 'Nith the study of various specific aspects related to spectrum 

sensing techniques. Several spectrum sensing techniques have been discussed. The 

performance of ED, CFD and MF (the most widely employed spectrnm sensing techniques in 

DSA/CR) has been presented and assessed experimentally. The first spectrnm sensing 

technique is based on an energy detector (ED), which has low computation complexity but 

minimum probability of detection in the case of low SNR. The matched filter (MF) technique 

is more complex but has a better probability of detection for low SNR. CPD is the most efficient 

algorithm, but it requires a priori information for detection. The results show that 

cyclostationary-feature-based detection can be robust compared to an energy-based technique 

for low signal-to-noise ratio levels 'Nith less complexity compared to matched filter technique. 

The outcome of this study has highlighted important practical aspects to more characterise in 

more detail and compare with CFD and ED under real world noise. Fwthermore, we 

investigated the feasibility and performance of cyclostionary feature detection for spectrum 

sensing, which included a theoretical background and experimental results for cyclostionary 

detection using SCF. Overall, and including the path loss measurement process, the magnitude 

of the SCF features were obtained from many locations and compared to those from the PSD. 

It was found that, from the path loss exponents, it is conclusive that the SCF features are more 

robust to noise effects than the PSD features. Additionally, it was found that, under real world 

noise, SCF feature detection shows outperf01med PSD feature detection under low SNR 

condition. 

The findings of the aforementioned studies have shown that detection perfonnance in practice 

is often compromised by multipath fading, shadowing and receiver uncertainty issues. To 

mitigate the impact of these issues, Part IV a proposed wideband cooperative spectrum sensing 

method with multi-bit hard decision using a two-stage adaptive technique to improve the 

detection performance by exploiting spatial diversity with minimum cooperation overhead. 

Part IV of this thesis has presented and addressed the challenges in non-cooperative sensing, 

following by an overview of cooperative spectrum sensing, where the general background of 
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the cooperative spectrum sensing scheme is discussed. Moreover, motivated by the fact that 

wideband spectrum sensing is critical for reliably finding spectral opportunities and achieving 

opportunistic spectrum access for next generation cellular networks, we present a brief survey 

of state-of-the-art wideband spectrum sensing. To further improve the reliability of the 

detection, a novel two-stage spectrum sensing scheme is designed, which has better 

performance than the one-stage with relatively low computational complexity. To meet the 

objectives of wideband cooperative sensing, three proposed systems are investigated. The three 

proposed cooperative wideband spectrum sensing schemes all sense a wide spectrum band in 

an energy efficient manner whilst providing resilience to fading, shadowing, and noise. Energy 

efficiency comes from the usage of MRSS or two-stage adaptive techniques and the proposed 

three-bit hard decision combination scheme. Resilience to fading, shadowing, and noise is due 

to the cooperation of the nodes. Furthermore, the proposed three-bit hard decision combination 

scheme is superior to the traditional hard combination schemes. 

9.1 Future Researeh Directions 

The work that is presented in this thesis can be extended in several directions, focusing on 

either spectrum measurement, spectrum sensing or wideband cooperative sensing applications. 

In the spectrum measurement direction, as part of our future work we plan to undertake 

measurements at further locations using cheaper receiver platforms such as software defined 

radio RTL-SOR and continue to investigate our results statistically in order to develop 

modelling strategies for spectrum occupancy. Our further work will differ from existing 

spectrum measurement platfo1ms that require specialized and costly spectrum analysers. The 

use of a low-cost mobile platfonn is a key factor in attracting a large volume of crowdsourcing 

users without significant infrastructure cost. Furthermore, our current two testbeds are not well 

suited to indoor measurements because of the generally bad reception of the GPS signals 

indoors. However, GPS receivers specially designed for such reception conditions can often 

still provide a pulse�per-second based on a single GPS satellite to bridge complete lack of GPS 

reception. Those could be integrated into our testbeds easily. 

In the spectrum sensing direction, we may consider compressive sensing methods to reduce the 

computational complexity of wideband CR applications. Although this problem usually 

assumes sparse RF signals in the frequency domain, it is nevertheless worth addressing in 

cyclostationary detection applications. Cyclostationary feature detection is one of the most 
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powerful spectrum sensing techniques used for cognitive radio (CR) systems. This is because 

of its robustness against noise uncertainties. However, this technique needs a high sampling 

rate, which is limited by the state-of the-art analog to digital converters (ADCs), especially in 

the wideband regime. However, the compressive sensing method solves the high sampling rate 

problem. In particular, compressive sensing can be applied to cyclostationary feature detection 

due to the sparsity of the SCP in two-dimensions. Therefore, compressive sensing can be a 

perfect candidate for cyclostationary detection of wideband signals and can help to reduce both 

the computational burden and the hardware cost of such techniques. 
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APPENDIX 

Spectr1un Measurement Platform, 

Sim1ilink Model and Matlab Code 

The utilization of appropriate equipment and software for the evaluation of spectrum 

occupancy are essential to ensure accurate and reliable results. This appendix presents a 

sophisticated radio spectrum measurement /sensing platform that has been explicitly designed 

for spectrum surveys and studies in the context ofDSA/CR. The developed platfonn constitutes 

a flexible measurement tool that combines a powerful RF measurement system with intelligent 

computer control and data processing (SectionA.1 ); as well, Matlab code and Simulink block 

diagrams (SectionA.2, SectionA.3). The description of this appendix corresponds to the 

measurement platform considered in Part II, III and IV. 

A.I Control Subsystem (Speet1•1unA11alyser)

The platform experiment used in Chapter 5 is to investigate spectrum occupancy measurements 

in the Hull Region. The control subsystem, shown in Figure A. I, is in charge of supervising 

the measurement process, retrieving the measurement data from the spectrum analyser and 

saving the results in an appropriate fonnat for off-line data post-processing. The control 

subsystem is mainly composed of a laptop, which is connected to the spectrum analyser via an 

Ethernet interface. The laptop runs a tailor-made script under Matlab's software enviromnent, 

which controls the measurement process. 

The control script communicates with the spectrum analyser by means of the Matlab's 

Instrument Control Toolbox and making use of commands in SCPI (Standard Conunands for 

Programmable Instruments) format with the VISA (Virtual Instrument Standard Architecture)­

TCP/IP inte1face. 
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Figure A.1: Control Subsystem 

The script receives the following data as input parameters from the user: 

• ip_address: The IP address configured in the spectrum analyser.

• f_start: The lowest frequency in MHz of the band/span to be measured.

• f_stop: The highest frequency in MHz of the band/span to be measured.

• t_ start: The time instant to begin measurements, specified in year-month-day hour­

minute- second (YYYY/MM/DD/HH/MM/SS) format.

• t_stop: The time instant to end measurements, specified in year-month-day­

hourminute- second (YYYY /MM/DD/HH/MM/SS) format.

• file_ name: The root/base name for the generated data files.

• nof_traces_per_file: Number of traces/sweeps saved in each generated file. To avoid

excessively large (computationally intractable) files when the measurement period is

long (e.g., hours or days), the data are split into several files.

Based on the received input information, the measurement process is controlled as follows 

(see Algorithm control script). 
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A.1.2 Algoritlun Control Script (Spectnun Analyser)

Input: ip_address, f_start, f_stop, t_start, t_stop, file_name, nof_traces_per_file 

Output: power_ file, time _file, frequency_ file 

1 : Establish communication with the spectrum analyser + ip _ address 

2: Send configuration to the spectrum analyser + ip_address 

{Including f_start, f_stop and others} 

3: file counter + 0 

4: trace counter � 

5: power_ matrix + [ ] {Empty} 

6: time_ matrix + [] {Empty} 

7: frequency_vector +Set of 551 frequency points between f_start and f_stop 

8: next_sweep_time + start_time 

9: while current time < t start do- -

10: while current_time < t_stop do 

11: Nothing {Wait for t_start} 

12: end while 

13: t+ current time 
14: next_ sweep_ time + t + T _ sweep 
15: Initiate new sweep + ip _ address 
16: while Performing sweep + ip_address do 
17: Nothing {Wait for the sweep to be completed} 
18: end while 
19: Retrieve sweep data + ip_address 
20: power_ values + Retrieved sweep data 
21: power_ matrix +(power_ matrix; power_ values] 
22: time_matrix + [time_matrix; t] 
23: trace counter +trace counter + 1 

- -

24: if trace_counter = nof_traces_per_file then 

25: file counter._ file counter+ 1 
- -

26: Save file power_file(file_counter) + power_matrix 
27: Save file time_file(file_counter) + time_matrix 
28: trace counter •o

29: power_matrix + [] {Empty} 
30 time matrix .- [ ] {Empty} 
31: end if 

32: end while 
33: if trace counter> 0 then 
34: file counter+file counter+ I 

- -

35: Save file power_file(file_counter) .- power_matrix 
36: Save file time_file(file_counter)+ time_matrix 
37: end if 
38: Save file frequency _file• frequency_ vector 

39: Close communication with the spectrum analyser+ ip_address 
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A.2 Cyclostationary Feature Detection) 

A.2.1 Design ofExperi1nents (USRP2)

The experiments described in Chapter 7 is to investigate SCF values at every configuration. 

Two kinds of experiment were performed. One is about changing the environment-distance, 

location- which is done by full-factorial design. Another is about varying SNR levels and 

observation time with fixed distance and location. Replication is done by one long 

measurement and dividing it to 40 sub- measurements based on a regenerative simulation 

technique assuming all sub-measurements are independent and identically distributed. 

The first experiment varying distance and location needs minimum measurements of: 

10 (distance) x 6 (location) x I (fixed transmit power) x I (fixed observation time) x I (40 
replications) = 60 

Next, Observation time is varied at each SNR levels. It requires, at a minimum, measurements 
of: 

I (fixed distance) x I (fixed location) x 17 (transmit power) x 4 (observation time) 

x I ( 40 replications) � 68 

Therefore, a total of 128 measurements are required for the research 

A.2.2 Simulink Model

The simulink blocks in Figure A.2 describe how the data from the experiment is analysed. 

Figure A.2(a) is an overall model of simulink. The block on the left is USRP2 receiver, which 

masks a real USRP2 device and transmits samples in a frame in complex value to SCF an 

analyser. Through the USRP2 receiver block, centre frequency, gain, decimation factor and 

output data type are controlled. Figure A.2 (b) is a detailed block diagram of the SCF analyser. 

Received samples go through the hamming window, and then its instantaneous SCF is 

calculated using Equation (7.9). The instant SCF is analysed both at particular frequency, set 

to the centre frequency of signal, which is for SCF and at particular alpha value set to 0, which 

is for PSD. The SCF values corning from the instant SCF are transferred to Time smoothing 

block, which takes n sets of instantaneous SCF values and computes the mean of the n sets to 

get time-smoothed SCF values, which is characterized as a time smoothing degree in Equation 

(7.13). The Time smoothing block outputs the time smoothed SCF values, plotting and 

recording them simultaneously. 
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A.3 Syste1n Model ( Cooperative Wideband Sensing using

Multi-Bit Hard Decision using MRSS Technique)

The experiment platform used in Chapter 8 is to investigate cooperative wideband spectrum 

sensing using Multi-Bit Hard Decision using two-stage adaptive sensing. Figure A.3 depict the 

block diagrams of the cooperative wideband spectrum sensing part of the proposed sensor 

network based cooperative wideband spectrum-sensing scheme . 

......... , ..... ., ..... ., . ... ... . .. . · · ··· .. . ... . 

; . . . . � . . . . . . . ·. 

Signal 

Frequency 

Bands 

Figure A.3: Block Diagram of the Cooperative Wideband Sensing of the Proposed Scheme 

The implementation of the "determination of seven thresholds," "coarse resolution sensing," 

and "fine. resolution sensing" blocks in Figure A.3 is carried out by using the wavelet-based 

MRSS scheme discussed in section 8.5.1. Threshold determination takes place at the decision 

maker. Coarse resolution sensing is applied by all nodes except the decision maker, whereas 

only selected nodes apply fine resolution sensing. The implementation of the "determination 

of the three-bit values" and "three-bit hard combination" blocks in Figure 8.4 is carried out by 

using the proposed three-bit hard combination scheme discussed in section 8.5.3. Three-bit 

values are determined by the nodes after the coarse resolution sensing. Three-bit hard 

combination takes place at the decision maker. The "fine resolution sensing" block is applied 

to determine the frequency band of the signal. The following subsection describe as wavelet­

based MRSS as well as each of the blocks shown in Figure A.3. 

A.3.1 Wavelet-based MRSS

In wavelet-based MRSS technique, the pulse duration of the wavelet generator and frequencies 

of the sinusoidal functions are changed to sense the spectrum with different resolutions [229]. 

196 



In particular, to obtain different sensing resolutions, wavelet pulse width Tg and frequency 

increment !sweep are adjusted, and to scan the frequency band of interest, inspected frequency 

value kf is changed. 

The use of a large Tg or a smaller !sweep provides fine resolution sensing, whereas the use of 

a smaller T
9 

or a large .fsweepprovides coarse resolution sensing. As shown in Figure A.4, first, 

a wavelet pulse with duration T
9 

is multiplied by a cosine and sine functions having the same 

frequency as the inspected frequency. Then, the results of these multiplications are multiplied 

by the received RF signal. After that, integration and digitization are applied in the analog 

correlators. The outputs of the analog correlators are first squared and then summed. Coarse 

resolution sensing and fine resolution sensing concepts can be better understood by an 

examination of the results of this technique presented in [229]. Figure A.5-.b shows the 

spectrum of an input RF signal to the system shown in Figure A.5-a. In Figure A.5-b , there are 

three signals in the medium having carrier frequencies: 597 MHz, 615 MHz and 633 MHz, 

with bandwidths: 200 kHz, 6 MHz and 7 MHz, respectively. 
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Figure A.S: Shows the result of coarse resolution spectrum sensing with a window pulse width 

T
9 

of 0.1 µs and a frequency increment.fsweepof 5 MHz. Figure A.5-c shows the result of fine 

resolution spectrum sensing with a window pulse width Tg of 1 µs and a frequency increment 

!sweep of 2 MHz. Window pulse width Tg and frequency increment !sweep determine the 

resolution of this scheme. Note that the lower the !sweep value and the higher the T
9 

value, the 

higher the sensing resolution. By comparing Figure A.5-b and Figure A.5-c, sharp peaks for 

each input signal in Figure 9 show that fine resolution sensing gives better detection 

performance in terms of sensing resolution [229]. 
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A.3.2 Deter1nination of Seven Thresholds

Figure A.4 shows the multi-resolution spectrum-sensing diagram for the implementation of the 

"determination of seven thresholds" block of Figure A.3. This block diagram consists of a low 

noise amplifier (LNA), a window (wavelet) generator, a cosine function generator, multipliers, 

integrators and an envelope detector. 
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Figure A.4:Multi-Resolution Spectrum Sensing Diagram for the Implementation of 

Determination of Seven Thresholds Block. [229] 

A.3.3 Coarse Resolution Sensing

After the thresholds are determined and the Radio nodes are informed about these threshold 

values, the coarse resolution-sensing block is implemented by using the diagram shown in 

Figure A.5 to quickly examine the spectrum. Parameters wavelet pulse width and frequency 

increment are chosen as 2MHz and 2µs, respectively. Power spectral density (PSD) is obtained 

from the output of Figure A.5. 
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Figure A.5: Multi-Resolution Spectrum Sensing Diagram for the Implementation of "Coarse 

Resolution Sensing" Block[229]. 

A.3.4 Deter1nination of Three-bit Values

After the coarse resolution sensing, the "determination of three-bit values" block follows. The 

result of the coarse resolution sensing is compared with the seven thresholds and three-bit 

values are determined for each frequency value at every node. Figure 8.4 shows the energy 

regions with the corresponding three-bit local observation values that will be sent to the 

decision maker when there is an observed energy in that region. 

A.3.5 Tltree-bit Hard Combination

The function of the "three-bit hard combination" block in Figure A.3 is to combine the sensing 

results of the radio nodes and to detect the signals in the air by using the proposed three-bit 

hard combination scheme at the decision maker. The decision criterion given by Equation 8.2 

and the weights given are used to determine the presence of the signal 

A.3.6 Fine Resolution Sensing

As a last stage, the "fine resolution sensing" block is implemented with the same diagram used 

for the "coarse resolution sensing" block shown in Figure A.5. The objective of fine resolution 

sensing is to determine the frequency band of the signal. The differences from coarse resolution 

sensing are the values of wavelet pulse width and frequency increment, which are chosen as 

500 kHz and 4µs, respectively. The result of the three-bit hard combination scheme determines 

the spectrum bands on which fine resolution sensing will be applied, and the nodes that will 

apply fine resolution sensing. Then, fine resolution sensing is applied on these spectrum bands 

by the Radio nodes that sense the highest energies in these bands. 
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