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ABSTRACT 
Throughout its history, Operational Research has evolved to include methods, models and 
algorithms that have been applied to a wide range of contexts. This encyclopedic article 
consists of two main sections: methods and applications. The first summarises the up-to- 
date knowledge and provides an overview of the state-of-the-art methods and key develop-
ments in the various subdomains of the field. The second offers a wide-ranging list of areas 
where Operational Research has been applied. The article is meant to be read in a nonlinear 
fashion and used as a point of reference by a diverse pool of readers: academics, research-
ers, students, and practitioners. The entries within the methods and applications sections are 
presented in alphabetical order. 
The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely 
hope that advances in OR will play a role towards minimising the pain and suffering caused 
by this and future catastrophes.
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Operations research is neither a method nor a 
technique; it is or is becoming a science and as 
such is defined by a combination of the phenomena 
it studies.  

Ackoff (1956)

1. Introduction1

The year 2024 marks the 75th anniversary of the 
Journal of the Operational Research Society, formerly 
known as Operational Research Quarterly. It is the 
oldest Operational Research (OR) journal worldwide. 
On this occasion, my colleague Fotios Petropoulos 
from University of Bath proposed to the editors of 
the journal to edit an encyclopedic article on the state 
of the art in OR. Together, we identified the main 
methodological and application areas to be covered, 
based on topics included in the major OR journals 
and conferences. We also identified potential authors 
who responded enthusiastically and whom we thank 
wholeheartedly for their contributions.

Modern OR originated in the United Kingdom 
during World War II as a need to support the oper-
ations of early radar-detecting systems and was later 
applied to other operations (McCloskey, 1987). 
However, one could argue that it precedes this 
period in history since it is partly rooted in several 
mathematical fields such as probability theory and 
statistics, calculus, and linear algebra, developed 
much earlier. For example, the Fourier-Motzkin elim-
ination method (Fourier, 1826a, 1826b) constitutes 
the main basis of linear programming. Queueing 

theory, which plays a central role in telecommunica-
tions and computing, already existed as a distinct 
field of study since the early 20th century (Erlang, 
1909), and other concepts, such as the economic 
order quantity (Harris, 1913) were developed more 
than one century ago. Interestingly, while many 
recent advances in OR are rooted in theoretical or 
algorithmic concepts, we are now witnessing a return 
to the practical roots of OR through the development 
of new disciplines such as business analytics.

After the war ended, several industrial applications 
of OR arose, particularly in the manufacturing and 
mining sectors which were then going through a 
renaissance. The transportation sector is without doubt 
the field that has most benefited from OR, mostly since 
the 1960s. The aviation, rail, and e-commerce industries 
could simply not operate at their current scale without 
the support of massive data analysis and sophisticated 
optimisation techniques. The application of OR to 
maritime transportation is more recent, but it is fast 
gaining in importance. Other areas that are less visible, 
such as telecommunications, also deeply depend on 
OR. The success of OR in these fields is partly 
explained by their network structures which make 
them amenable to systematic analysis and treatment 
through mathematical optimisation techniques. In the 
same vein, OR also plays a major role in various 
branches of logistics and project management, such as 
facility location, forecasting, inventory planning, sched-
uling, and supply chain management.

The public sector and service industries also bene-
fit greatly from OR. Healthcare is the first area that 
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comes to mind because of its very large scale and 
complexity. Decision making in healthcare is more 
decentralised than in transportation and manufactur-
ing, for example, and the human issues involved in 
this sector add a layer of complexity. OR methodolo-
gies have also been applied to diverse areas such as 
education, sports management, natural resources, 
environment and sustainability, political districting, 
safety and security, energy, finance and insurance, 
revenue management, auctions and bidding, and dis-
aster relief, most of which are covered in this article.

Among OR methodologies, mathematical pro-
gramming occupies a central place. The simplex 
method for linear programming, conceived by 
Dantzig in 1947 but apparently first published later 
(Dantzig, 1951), is arguably the single most signifi-
cant development in this area. Over time, linear pro-
gramming has branched out into several fields such 
as nonlinear programming, mixed integer program-
ming, network optimisation, combinatorial optimisa-
tion, and stochastic programming. The techniques 
most frequently employed for the exact solution of 
mathematical programs are based on branch-and- 
bound, branch-and-cut, branch-and-price (column 
generation), and dynamic programming. Game the-
ory and data envelopment analysis are firmly rooted 
in mathematical programming. Control theory is also 
part of continuous mathematical optimisation and 
relies heavily on differential equations.

Complexity theory is fundamental in optimisa-
tion. Most problems arising in combinatorial opti-
misation are NP-hard and typically require the 
application of heuristics for their solution. Much 
progress has been made in the past 40 years or so 
in the development of metaheuristics based on local 
search, genetic search, and various hybridisation 
schemes. Many problems in fields such as vehicle 
routing, location analysis, cutting and packing, set 
covering, and set partitioning can now be solved to 
near optimality for realistic sizes by means of mod-
ern heuristics. A recent trend is the use of open- 
source software which not only helps disseminate 
research results, but also contributes to ensuring 
their accuracy, reproducibility and adoption.

Several modelling paradigms such as systems 
thinking and systems dynamics approach problems 
from a high-level perspective, examining the inter- 
relationships between multiple elements. Complex 
systems can often be analysed through simulation, 
which is also commonly used to assess the perform-
ance of heuristics. Decision analysis provides a use-
ful framework for structuring and solving complex 
problems involving soft and hard criteria, behav-
ioural OR, stochasticity, and dynamism. Recently, 
issues related to ethics and fairness have come to 
play an increasing role in decision making.

Because the various topics of this review paper 
are listed in alphabetical order, the subsection on 
“Artificial intelligence, machine learning and data sci-
ence” comes first, but this topic constitutes one of 
the latest developments in the field. It holds great 
potential for the future and is likely to reshape parts 
of the OR discipline. Already, machine learning-based 
heuristics are competitive for the solution of some 
hard problems.

This paper begins with a quote from Russell L. 
Ackoff who has been a pioneer of OR. In 1979, he 
published in this journal two articles (Ackoff, 1979a, 
1979b) that presented a rather pessimistic view of 
our discipline. The author complained about the 
lack of communications between academics and 
practitioners, and about the fact that some OR cur-
ricula in universities did not sufficiently prepare stu-
dents for practice, which is still true to some extent. 
One of his two articles is entitled “The Future of 
Operational Research is Past”, which may be per-
ceived as an overreaction to this diagnosis. In my 
view, the present article provides clear evidence to 
the contrary. Soon after the publication of the two 
Ackoff papers, we witnessed the development of 
micro-computing, the Internet and the World Wide 
Web. It has become much easier for researchers in 
our community to access information, software and 
computing facilities, and for practitioners to access 
and use our research results. We are now fortunate 
to have access to sophisticated open-source software, 
data bases, bibliographic sources, editing and visual-
isation tools, and communication facilities. Our field 
is richer than it has ever been, both in terms of the-
ory and applications. It is constantly evolving in 
interaction with other disciplines, and it is clearly 
alive and well and has a promising future.

2. Methods

2.1. Artificial intelligence, machine learning, and 
data science2

Machine learning (ML) comprises techniques for 
modelling predictive tasks, i.e., tasks that involve the 
prediction of an unknown quantity from other 
observed quantities. Ideas of learning in an artificial 
system and the term machine learning were first 
discussed in the 1950s (Samuel, 1959) and their 
development and popularity have seen enormous 
growth over the last two decades in part due to the 
availability of large-scale datasets and increased 
computational resources to model them.

Mitchell (1997) provides this concrete definition of 
machine learning “A computer program is said to learn 
from experience E with respect to some class of tasks 
T, and performance measure P, if its performance at 
tasks in T, as measured by P, improves with experience 
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E”. The program is a model or a function and its 
experience E is the type of data it has access to. There 
are three types of experiences supervised, unsupervised, 
and reinforcement learning. The performance measure 
(P) allows for model evaluation and comparison includ-
ing model selection.

Supervised learning is an experience where a 
model aims at predicting one or more unobserved 
target (dependent) variables given observed ibackpr-
out (independent) variables. In other words, a super-
vised model is a function that map inputs to outputs. 
The process of solving a supervised problem involves 
first learning a model, that is adjusting its parameters 
using a training dataset with both input and target 
variables. The training set is drawn IID (independ-
ently and identically distributed) from an underlying 
distribution over inputs and targets. Once trained, 
the model can provide target predictions for new 
unseen samples from the same distribution. The 
most common tasks in supervised learning are 
regression (real dependent variable) and classification 
(categorical dependent variable). Evaluating a super-
vised system is usually performed using held-out data 
referred to as the test data while held-out validation 
data is used for model development and selection 
using procedures such as k-fold cross-validation.

Supervised models can be dichotomised into linear 
and nonlinear models. Linear models perform a linear 
mapping from inputs to outputs (e.g., linear regression). 
Machine learning mostly investigates nonlinear super-
vised models including deep neural network (DNN) 
models (Goodfellow et al., 2016). DNNs are composed 
of a succession of parametrised nonlinear transforma-
tions called layers and each layer contains a set of 
transformations called neurons. Layers successively 
transform an input datum into a target. The parameters 
of the layers are adjusted to iteratively obtain better 
predictions using a procedure called backpropagation, a 
form of gradient descent (Goodfellow et al., 2016, §6.5). 
DNNs are state-of-the-art methods for many large-scale 
non-structured datasets across domains (see also §3.19). 
DNNs can be adapted to different sizes of inputs and 
targets as well as variable types. They can also be speci-
alised for specific types of data. Recurrent neural net-
works (RNNs) are auto-regressive models for sequential 
data (Rumelhart et al., 1986). The sequential data are 
tokenised and an RNN transforms each token sequen-
tially along with a transformation of the previous 
tokens. Convolutional neural networks (CNNs) are spe-
cialised networks for modelling data that is arranged 
on a grid (e.g., an image Lecun, 1989). Their layers 
contain a convolution operation between an input and 
a parameterised filter followed by a nonlinear trans-
formation, and a pooling operation. Each layer proc-
esses data locally and so requires fewer parameters 
compared to vanilla DNNs. As a result, CNNs can 

model higher-dimensional data. Graphical neural net-
works (GNNs) are specialised architectures for model-
ling graph data (e.g., a social network; Scarselli et al., 
2009). In GNNs, the data are transformed by following 
the topology of the graph. Last, attention layers dynam-
ically combine their inputs (tokens) based on their val-
ues. Transformer models use successions of attention 
and feed-forward layers to model sequential input and 
output data (Vaswani et al., 2017). Transformers are 
more efficient to train than RNNs and can be trained 
on internet-scale data given enormous computational 
power. The availability of such broad datasets especially 
in the text and image domains has given rise to a class 
of very-large-scale models (also referred to as founda-
tion models) that display an ability to adapt to and 
obtain high performance across a diversity of down-
stream supervised tasks (Bommasani et al., 2021)

Last, attention is a mechanism that considers data 
to be unordered and uses transformations dynamic-
ally. Transformers are models based on attention. 
They provide more efficient training than RNNs for 
very large-scale datasets (Vaswani et al., 2017).

Neural networks currently outperform other meth-
ods when learning from unstructured data (e.g., 
images and text). For tabular data, data that is natur-
ally encoded in a table and that has heterogeneous 
features (Grinsztajn et al., 2022), best-performing 
methods use ideas first proposed in tree-based classi-
fiers, bagging, and boosting. They include random 
forests (Breiman, 2001), XGBoost (Chen & Guestrin, 
2016) which both scale to large-scale datasets as well 
as kernel methods including support vector machines 
(SVMs see, e.g., Schlkopf et al., 2018) and probabilis-
tic Gaussian Processes (GPs see, e.g., Rasmussen & 
Williams, 2005). These methods are used across 
regression and classification tasks.

In unsupervised learning, the second type of 
experience, the data consist of independent variables 
(features or covariates) alone. The aim of unsuper-
vised learning is to model the structure of the data 
to better understand their properties. As a result, 
evaluating an unsupervised model is often task and 
application-dependant (Murphy, 2022, §1.3.4). The 
prototypical unsupervised-learning task is clustering. 
It involves learning a function that groups similar 
data together according to a similarity measure and 
desiderata often expressed as an objective function. 
Several standard algorithms divided into hierarchical 
and non-hierarchical methods exist. The former 
uses the similarity between all pairs of data and 
finds a hierarchy of clustering solutions with a dif-
ferent number of clusters using either a bottom-up 
or top-down approach. Agglomerative clustering is a 
standard hierarchical approach. Non-hierarchical 
methods tend to be more computationally efficient 
in terms of dataset size. For example, K-means 
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clustering is a well-known non-hierarchical method 
that finds a single solution using K clusters 
(MacQueen, 1967). Other unsupervised learning 
tasks include dimensionality reduction for example 
for visualisation or to prepare data for further ana-
lysis. Density modelling is another unsupervised task 
where a probabilistic model learns to assign a prob-
ability to each datum (Murphy, 2022, §1.3). 
Probabilistic models can be used to learn the hidden 
structure in large quantities of data (e.g., Hoffman 
et al., 2013). Further, probabilistic models are also 
used to generate high-dimensional data (e.g., images 
of human faces or English text) with high fidelity 
(Karras et al., 2021) and often referred in this context 
as generative models. Large Language Models are 
examples of such generative models (Bommasani 
et al., 2021).

Reinforcement learning (RL) is the third type of 
experience. RL models collect their own data by exe-
cuting actions in their environment to maximise 
their reward. RL is a sequential decision-making 
task and is formalised using Markov decision proc-
esses (MDPs) (Sutton & Barto, 2018, §3.8). An 
MDP encodes a set of states, available actions, dis-
tribution over next states given current states and 
action, a reward function, and a discount factor. 
Partially observable MDPs (or POMDPs) extend the 
formalism to environments where the exact current 
state is unknown (Kaelbling et al., 1998). In RL, an 
agent’s objective is to learn a policy, a distribution 
over actions for each state in an environment. Tasks 
are defined by rewards attached to different states. 
Exact and approximate methods exist for solving RL 
problems. Whereas exact solutions are appropriate 
for smaller tabular problems only, deep neural net-
works are widely used for solving larger-scale prob-
lems that require approximate solutions yielding a 
set of techniques known as deep reinforcement 
learning (Mnih et al., 2015). An RL agent can also 
learn to imitate an expert either by learning a map-
ping from states/observations to actions as in super-
vised learning (a technique known as imitation 
learning; for a survey, see Hussein et al., 2017) or 
by trying to learn the expert’s reward function 
(inverse reinforcement learning Russell, 1998).

In addition to learning models for solving predic-
tion tasks using one of the three experiences above, 
machine learning also studies methods for enabling 
the reuse of information learned from one or mul-
tiple datasets and environments to other similar 
ones. Representation learning studies how to learn 
such reusable information and it can use both 
supervised and unsupervised experiences (Murphy, 
2023, §32). When using a deep learning model, a 
representation is obtained after one or more layer 
transformations of the data. Representation learning 

is used in a variety of situations including for trans-
fer learning tasks, where a trained model is reused 
to solve a different supervised task (for a survey, see 
Zhuang et al., 2021).

In the last decade, machine learning models have 
achieved high performance on a variety of tasks 
including perceptual ones (e.g., recognising objects 
in images and words from speech) as well as natural 
language processing ones thereby becoming a core 
component of artificial intelligence (AI) methods. 
The goal of AI methods is to develop intelligent sys-
tems. Some of these advances shine a bright light on 
the ethical aspects of machine learning techniques 
and are active areas of study (see, e.g., Dignum, 2019; 
Barocas et al., 2019). Another area of active study is 
explainability (Phillips et al., 2021). Some of the most 
effective ML tools make predictions and recommen-
dations that are hard to explain to users (for example 
when neural networks are employed). Clearly, lack of 
explainability slows down ML use in those contexts 
where decisions made due to those predictions and 
recommendations are life changing and involve a 
human in the loop, healthcare (applying a treatment), 
finance (refusing a mortgage), or justice (granting 
parole) to mention a few. So, explainability is cur-
rently one of the most crucial challenges for ML and 
AI and, at the same time, a tremendous opportunity 
for their wider applicability.

Further, advances in machine learning alongside 
statistics, data management, and data processing, as 
well as the wider availability of datasets from a var-
iety of domains have led to the popularisation and 
development of data science (DS), a discipline 
whose goal is to extract insights and knowledge 
from these data. DS uses statistics and machine- 
learning techniques for inference and prediction, 
but it also aims at enabling and systematising the 
analysis of large quantities of data. As such, it 
includes components of data management, visualisa-
tion, as well as the design of (efficient) data process-
ing algorithms (Grus, 2019).

2.1.1. Resources
Murphy (2022) provides a thorough introduction to 
the field following a probabilistic approach and its 
sequel (Murphy, 2023) introduces advanced topics. 
Goodfellow et al. (2016) provide a self-contained 
introduction to the field of deep learning (the field 
evolves rapidly and more advanced topics are cov-
ered through recent papers and in Murphy, 2023). 
Open-source software packages in Python and other 
languages are essential. They include data-wrangling 
libraries such as pandas (McKinney, 2010) and plot-
ting ones such as matplotlib (Hunter, 2007). The 
library scikit-learn (Pedregosa et al., 2011) in 
Python offers an extensive API that includes data 
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processing, a toolbox of standard supervised and 
unsupervised models, and evaluation routines. For 
deep learning, PyToch (Paszke et al., 2019) and 
TensorFlow (Abadi et al., 2015) are the standard.

2.1.2. Learning for combinatorial optimisation
The impressive success of machine learning in the 
last decade made it natural to explore its use in 
many scientific disciplines, such as drug discovery 
and material sciences. Combinatorial optimisation 
(CO; §2.4) is no exception to this trend and we 
have witnessed an intense exploration (or, better, 
revival) of the use of machine learning for CO. Two 
lines of work have strongly emerged. On the one 
side, ML has been used to learn crucial decisions 
within CO algorithms and solvers. This includes 
imitating an algorithmic expert that is computation-
ally expensive like in the case of strong branching 
for branch and bound, the single application that 
has attracted the largest amount of interest (Lodi & 
Zarpellon, 2017; Gasse et al., 2019). The interested 
reader is referred to two recent surveys (Bengio 
et al., 2021; Cappart et al., 2021), the latter high-
lighting the relevance of GNNs for effective CO rep-
resentation. On the other side, ML has been used 
end to end, i.e., for solving CO problems directly or 
leveraging ML to devise hybrid methods for CO. 
The area is surveyed in Kotary et al. (2021).

2.2. Behavioural OR3

Behavioural OR (BOR) is concerned with the study 
of human behaviour in OR-supported settings. 
Specifically, BOR examines how the behaviour of 
individuals affects, or is affected by, an OR-sup-
ported intervention4. The individuals of interest are 
those who, acting in isolation or as part of a team, 
design, implement and engage with OR in practice. 
These individuals include OR practitioners playing 
specific intervention roles (e.g., modellers, facilita-
tors, consultants), and other individuals with vary-
ing interests and stakes in the intervention (e.g., 
users, clients, domain experts, sponsors).

A concern with the behavioural aspects of the 
OR profession can be traced back to past debates in 
the 1960s, 1970s and 1980s (Churchman, 1970; 
Dutton & Walton, 1964; Jackson et al., 1989). 
Although these debates dwindled down in subse-
quent years, the emergence of BOR as a field of 
study represents a return to these earlier concerns 
(Franco & H€am€al€ainen, 2016; H€am€al€ainen et al., 
2013). What motivates this resurgence is the recog-
nition that the successful deployment of OR in prac-
tice relies heavily on our understanding of human 
behaviour. For example, overconfidence, competing 
interests, and the willingness to expend effort in 

searching, sharing, and processing information are 
three behavioural issues that can negatively affect 
the success of OR activities. Attention to behav-
ioural issues has been central in disciplines such as 
economics, psychology and sociology for decades, 
and BOR studies draw heavily from these reference 
disciplines (Franco et al., 2021).

It is important to distinguish between the specific 
focus of BOR and the broader focus of behavioural 
modelling. The creation of models that capture 
human behaviour has a long tradition within OR, 
but it is not necessarily concerned with the study of 
human behaviour in OR-supported settings. For 
example, in the last 20 years operational researchers 
have produced an increasing number of robust ana-
lytical models that describe behaviour in, and pre-
dict its impact on, operations management settings 
(Cui & Wu, 2018; Donohue et al., 2020; Loch & 
Wu, 2007). Operational researchers also have pro-
duced simulation models that capture human behav-
iour within a system with different levels of 
complexity. For example, systems dynamics models 
incorporate high-level variables representing average 
behaviour (Morecroft, 2015; Sterman, 2000, §2.22), 
and discrete event simulation models capture 
human processes controlled by simple behavioural 
rules (Brailsford & Schmidt, 2003; Robinson, 2014, 
§2.19). More complex agent-based simulation mod-
els represent behaviour as emergent from the inter-
actions of agents with particular behavioural 
attributes (Sonnessa et al., 2017; Utomo et al., 2018, 
§2.19). Overall, behavioural modelling within the 
OR field is concerned with examining human 
behaviour in a system of interest in order to 
improve that system5. In contrast, BOR takes an 
OR-supported intervention as the core system of 
interest where human behaviour is examined. The 
ultimate goal of BOR is to generate an improved 
understanding of the behavioural dimension of OR 
practice, and use this understanding to design and 
implement better OR-supported interventions.

Another important distinction worth stating is 
that between BOR and Soft OR. At first glance, this 
distinction may seem unnecessary as BOR is a field 
of study within OR, while Soft OR refers to a spe-
cific family of problem structuring approaches 
(§2.20). Soft OR approaches have been developed to 
help groups reach agreements on problem structure 
and, often, appropriate responses to a problem of 
concern (Franco & Rouwette, 2022; Rosenhead & 
Mingers, 2001). However, while Soft OR interven-
tion design and implementation typically require the 
consideration of behavioural issues, this is not the 
same as choosing human behaviour in a Soft OR 
intervention context as the unit of analysis. Of 
course, a study with such a focus would certainly 
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fall within the BOR remit (e.g., Tavella et al., 2021). 
But note that BOR is also concerned with the study 
of human behaviour in other OR-supported settings, 
such as those involving the use of ‘hard’ and 
‘mixed-method’ OR approaches.

Studies of behaviour in OR-supported settings 
assume implicitly or explicitly that human behaviour 
is either influenced by cognitive and external fac-
tors, or is in itself an influencing factor (Franco 
et al., 2021). In the first case, observed individual 
and collective action is taken to be guided by cogni-
tive structures (e.g., personality traits, cognitive 
styles) manifested during OR-related activity – 
behaviour is influenced. In contrast, the second case 
assumes that individuals and collectives are respon-
sible for determining how OR-related activity will 
unfold – behaviour is influencing. This raises the 
practical possibility that the same OR methodology, 
technique, or model could be used in distinctive 
ways by various individuals or groups according to 
their cognitive orientations, goals and interests 
(Franco, 2013). Whilst behaviour in practice is likely 
to lie somewhere between the influenced and influ-
encing assumptions, BOR studies tend to fore-
ground one of the extremes as the focus, while 
backgrounding the other.

BOR studies can adopt three different research 
methodologies to examine behaviour: variance, pro-
cess, and modelling. A variance methodology uses 
variables that represent the important aspects or 
attributes of the OR-supported activity being exam-
ined. Variance explanations of behavioural-related 
phenomena take the form of causal statements cap-
tured in a theoretically-informed research model 
that incorporates these variables (e.g., A causes B, 
which causes C). The research model is then tested 
with data generated by the activity, and the research 
findings are assessed in terms of their generality 
(Poole, 2004). Adopting a variance research method-
ology typically requires the implementation of 
experimental, quasi-experimental, or survey research 
designs6. This involves careful selection of inde-
pendent variables, which might be either manipu-
lated or left untreated, and of dependent variables 
that act as surrogates for specific behaviours. Once 
information about all variables is collected, data is 
quantitatively analysed using a wide range of vari-
ance-based methods (e.g., analysis of variance, 
regression, structural equation modelling).

Behavioural studies that use a variance research 
methodology can produce a good picture of the gen-
erative mechanisms underpinning behavioural proc-
esses if they test hypotheses about those 
mechanisms. For example, variance studies in BOR 
have examined the impact of individual differences 
in cognitive motivation and cognitive style on the 

conduct of OR-supported activity (Fasolo & Bana e 
Costa, 2014; Franco et al., 2016b; Lu et al., 2001). 
There is also a long tradition of testing the behav-
ioural effects of reconfiguring different aspects of 
OR-supported activity such as varying model or 
information displays (Bell & O’Keefe, 1995; 
Gettinger et al., 2013), and preference elicitation 
procedures (Cavallo et al., 2019; H€am€al€ainen & 
Lahtinen, 2016; P€oyh€onen et al., 2001; von Nitzsch 
& Weber, 1993).

A process methodology is used to examine OR- 
supported activity as a series of events that bring 
about or lead to some behaviour-related outcome. 
Specifically, it considers as the unit of analysis an 
evolving individual or group whose behaviour is led 
by, or leading, the occurrence of events (Poole, 
2004). Process explanations take the form of theor-
etical narratives that account for how event dynam-
ics lead to a final outcome (Poole, 2007). These 
narratives are often derived from observation, but it 
is also possible to use an established narrative (e.g., 
a theory) to guide observation that further specifies 
the narrative.

Diverse and eclectic research designs are used to 
implement a process research methodology. Central 
to these designs is the task of identifying or recon-
structing the process through the analysis of events 
taking place over time. For example, there is an 
important stream of BOR studies that examines the 
process of building models by experts and novices 
(Tako, 2015; Tako & Robinson, 2010; Waisel et al., 
2008; Willemain, 1995; Willemain & Powell, 2007). 
There is also an increasing interest to use process 
methodologies to take a closer look at actual behav-
iour in OR-supported settings both, before, during 
and after OR-related activity is undertaken (Franco 
& Greiffenhagen, 2018; K€aki et al., 2019; Velez- 
Castiblanco et al., 2016; White et al., 2016).

The variance and process approaches may seem 
opposite to each other, but instead they should be 
seen as complementary (Franco et al., 2021; Van de 
Ven & Poole, 2005). BOR studies using a variance 
research methodology can explore and test the mech-
anisms that drive process explanations of behaviour, 
while BOR studies adopting a process research meth-
odology can explore and test the narratives that 
ground variance explanations of behaviour. One way 
of combining a variance and process approach within 
a single BOR study is by adopting modelling as a 
research methodology. A modelling approach would 
create models that capture the mechanisms that gen-
erate a process of interest such as, for example, trust 
on an OR-derived solution, and the model can be 
run to generate the characteristics of that process. 
Model parameters and structure can then be varied 
systematically to enable variance-based comparisons 
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of trust levels. Furthermore, the trajectory of trust 
levels over time can be used to gain insights into the 
nature of the trust development process. As already 
mentioned, there is a long behavioural modelling 
tradition within OR but, as far as we know, its poten-
tial as a research methodology tool to specifically 
examine behaviour in OR-supported settings is yet to 
be realised.

In sum, the variance, process and modelling meth-
odologies offer rich possibilities for the study of 
human behaviour in OR-supported settings. Which is 
best for a particular study will depend on the types 
of question being addressed by BOR researchers, 
their assumptions about human behaviour, and the 
data they have access to. Ultimately, a thorough 
understanding of behaviour in OR-supported settings 
is likely to require all three research methodologies.

For a detailed review of BOR studies the reader is 
referred to Franco et al. (2021). A review of behav-
ioural studies in the context of OR in health has been 
written by Kunc et al. (2020). There are also two col-
lections edited by Kunc et al. (2016) and White et al. 
(2020). The European Journal of Operational Research 
published a feature cluster on BOR edited by Franco 
and H€am€al€ainen (2016a). Finally, BOR-related news 
and events can be found on the sites of the European 
Working Group on Behavioural OR7, and the UK 
BOR Special Interest Group8.

2.3. Business analytics9

Business Analytics has its origins in practice, rather 
than theory, as illustrated by some of the earliest 
publications on the subject (e.g., Kohavi et al., 
2002). Senior executives began to realise the impor-
tance of analytics in the first decade of the new mil-
lennium because of the ready availability of large 
amounts of data, the maturity of business perform-
ance management, the emergence of self-service 
analytics and business intelligence, and the declining 
cost of computing power, data storage and band-
width (Acito & Khatri, 2014).

Davenport and Harris (2007) gave examples of 
companies becoming ‘analytical competitors’ by 
using analytics to support distinctive organisational 
capabilities. To achieve this level of maturity, it was 
argued that analytics needs to become a strategic 
competency. In the 1990s, Fildes and Ranyard 
(1997) reported on the closure or dispersal of 
Operational Research groups. Davenport et al. 
(2010) reflected a reversal of that trend, by focusing 
on how analytical talent can be organised as an 
internal resource. They suggested that there are four 
categories of people to be considered when finding, 
developing and managing analysts: champions, pro-
fessionals, semi-professionals and amateurs. In 

2012/13, the Institute for Management Science and 
Operations Research (INFORMS) introduced the 
Certified Analytics Professional program and exam-
ination. This covers the broad spectrum of skills 
required of analytics professionals, including busi-
ness problem framing, analytics problem framing, 
data (handling), methodology selection, model 
building, deployment and lifecycle management 
(INFORMS, 2022).

The development of talent is just one of the pre-
requisites for Business Analytics to create value. 
Vidgen et al. (2017) recommended ‘coevolutionary 
change’, aligning their analytics strategy with their 
strategies for Information and Communications 
Technology, human resources and the whole busi-
ness. This helps to ensure that the necessary data 
assets are available, the right culture is developed to 
build data and analytics skills, and that there is align-
ment with the business strategy for value creation. 
Hindle and Vidgen (2018) proposed a Business 
Analytics Methodology based on four activities, 
namely problem situation structuring, business model 
mapping, business analytics leverage and analytics 
implementation. They advocated a soft OR approach, 
Soft Systems Methodology (Checkland & Poulter, 
2006), to support structuring and mapping activities.

Many definitions of Business Analytics have been 
proposed; for a review of early definitions, see 
Holsapple et al. (2014). According to Davenport 
(2013), “By analytics we mean the extensive use of 
data, statistical and quantitative analysis, explana-
tory and predictive models, and fact-based manage-
ment to drive decisions and actions” (p. 7). 
Mortenson et al. (2015) suggested that analytics is at 
the intersection of quantitative methods, technolo-
gies and decision making. Rose (2016) considered 
analytics as the union of Data Science (which is 
data centric) and Operational Research (which is 
problem centric). Power et al. (2018) proposed the 
following definition: “Business Analytics is a system-
atic thinking process that applies qualitative, quanti-
tative and statistical computational tools and 
methods to analyse data, gain insights, inform and 
support decision-making”. Delen and Ram (2018) 
pointed out that, although analytics includes ana-
lysis, it also involves synthesis and subsequent 
implementation. These broad perspectives, empha-
sising synthesis as well as analysis, and qualitative as 
well as quantitative approaches, are consistent with 
earlier writings on the use of a broad range of 
methods in Management Science (e.g., Mingers & 
Brocklesby, 1997; Pidd, 2009).

Business Analytics can be viewed from different 
orientations. From a methodological viewpoint, the 
subject covers descriptive, predictive and prescrip-
tive methods (Lustig et al., 2010). These three 
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categories are sometimes extended to four, with a 
distinction being drawn between ‘descriptive’ and 
’diagnostic’ analytics, following the Gartner analytics 
ascendancy model (Maoz, 2013). Lepenioti et al. 
(2020) argue that it is preferable to maintain the 
threefold categorisation to ensure consistency, with 
each category addressing both ‘What?’ and ‘Why’ 
questions. (Descriptive: ‘What happened?’, ‘Why did 
it happen?’; Predictive: ‘What will happen?’, ‘Why 
will it happen?’; Prescriptive: ‘What should I do to 
make it happen?’, ‘Why should I make it happen?’). 
For detailed literature reviews on descriptive, pre-
dictive and prescriptive analytics, the reader is 
directed to Duan and Xiong (2015), Lu et al. (2017), 
and Lepenioti et al. (2020), respectively.

From a technological viewpoint, Business 
Analytics is facilitated by the integration of transac-
tional data with big data streaming from social 
media platforms and the Internet of Things into a 
unified analytics system (Shi & Wang, 2018). These 
authors suggest that this integration can be achieved 
in two stages, starting with integration of traditional 
Enterprise Resource Planning (ERP) and big data, 
and proceeding to integration of big-data ERP with 
Business Analytics. Ruivo et al. (2020) reported that 
analytics ranked second in extended ERP capabilities 
(behind collaboration) according to the views of 20 
experts engaged in a Delphi study. Romero and 
Abad (2022) suggested that cloud-based big data 
analytics software will not provide competitive 
advantage to firms that have not installed a large 
ERP system, although it will ensure that they do not 
lag further behind their sector-leading competitors.

From an ethical viewpoint, Business Analytics 
faces a number of challenges. Davenport et al. (2010) 
recognised that issues of data privacy can be difficult 
to address, especially if an organisation operates in a 
wide range of territories or industries. Ram Mohan 
Rao et al. (2018) summarised major privacy threats 
in data analytics, namely surveillance, disclosure, dis-
crimination, and personal embarrassment and abuse, 
and reviewed privacy preservation methods, including 
randomisation and cryptographic techniques. A fur-
ther ethical issue is that AI algorithms are likely to 
replicate and reinforce existing social biases (O’Neil, 
2016). Such algorithmic bias is said to occur when 
the outputs of an algorithm benefit or disadvantage 
certain individuals or groups more than others with-
out a justified reason. Kordzadeh and Ghasemaghaei 
(2022) reviewed the literature on algorithmic bias 
and showed that most studies had examined the issue 
from a conceptual standpoint, with only a limited 
number of empirical studies. Similarly, Vidgen et al. 
(2020) reviewed papers on ethics in Business 
Analytics and found that most were at the level of 
guiding principles and frameworks, with little of 

direct applicability for the practitioner. Their case 
study demonstrated how ethical principles (utility, 
rights, justice, common good and virtue) can be 
embedded in analytics development. For further dis-
cussions on ethics and OR, the reader is referred to 
Ormerod and Ulrich (2013), Le Menestrel and Van 
Wassenhove (2004), and Mingers (2011a) but 
also §3.8.

Analytics maturity models have been developed to 
describe, explain and evaluate the development of ana-
lytics in an organisation. Kr�ol and Zdonek (2020) 
reviewed 11 maturity models and assessed them in 
terms of the number of assessment dimensions, scoring 
mechanism, number of maturity levels, and the public 
availability of the methodology. They found that the 
most common assessment dimensions were technical 
infrastructure, analytics culture and human resources, 
including staff’s analytics competencies. Lismont et al. 
(2017) undertook a survey of companies, based on the 
DELTA maturity model (Davenport et al., 2010) of 
data, enterprise, leadership, targets and analysts. They 
identified four analytics maturity levels from their sur-
vey. The most advanced companies tended to use a 
wider variety of analytics techniques and applications, 
to organise analytics more holistically, and to have a 
more mature data governance policy.

A crucial empirical question is whether Business 
Analytics adds value to an organisation. An early 
study on the effect of Business Analytics on supply 
chain performance was conducted by Trkman et al. 
(2010). They examined over 300 companies, show-
ing a statistically significant relationship between 
self-assessed analytical capabilities and performance. 
Oesterreich et al. (2022) conducted a meta-analysis 
of 125 firm-level studies, spanning ten years of 
research in 26 countries. They found evidence of 
Business Analytics having a positive impact on oper-
ational, financial and market performance. They 
also found that human resources, management 
capabilities and organisational culture were major 
determinants of value creation, whereas techno-
logical factors were less important.

2.4. Combinatorial optimisation10

A Combinatorial Optimisation (CO) problem con-
sists of searching for the optimal element in a finite 
collection of elements. More formally, given a set of 
elements and a family of its subsets, each defining a 
feasible solution and having an associated value, a 
CO problem is to find a subset having the min-
imum (or, alternatively, the maximum) value. The 
subsets may be proper, like, e.g., in the knapsack 
problem, or represented by permutations, like, e.g., 
in the assignment problem (see below). Typically, 
the feasible solutions are not explicitly listed, but are 
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described in a concise manner (like a set of equal-
ities and inequalities, or a graph structure) and their 
number is huge, so scanning all feasible solutions to 
select the optimal one is intractable. A CO problem 
can usually be modelled as an Integer Program (IP, 
see also §2.15) with linear or nonlinear objective 
function and constraints, in which the variables can 
take a finite number of integer values.

Consider for example the problem of assigning n 
tasks to n agents, by knowing the time that each 
agent needs to complete each task, with the objective 
of finding a solution that minimises the overall time 
needed to complete all tasks (Assignment Problem, 
AP). The solution could obviously be found by enu-
merating all permutations of the integers 1, 2:::, n 
and selecting the best one. However, this number is 
so huge that such approach is ruled out even for 
small-size problem instances: for n¼ 30, we have 
n! ffi 2:6 � 1030, and the fastest supercomputer on 
hearth would need millions of years to scan all solu-
tions. The challenge is thus to find more efficient 
methods. For example, one of the most famous CO 
algorithms (the Hungarian algorithm) can solve 
assignment problem instances with millions of varia-
bles in few seconds on a standard PC.

The algorithm mentioned above can be imple-
mented so as to solve any AP instance in a time of 
order n3, i.e., in a time bounded by a polynomial 
function of the input size. Unfortunately, only for 
relatively few CO problems we know algorithms with 
such property, while for most of them (NP-hard 
problems) the best known algorithms can take, in the 
worst case, a time that grows exponentially in the 
size of the instance. In addition, Complexity theory 
(see also §2.5) suggests that the existence of polyno-
mial-time algorithms for such problems is unlikely. 
On the other hand, CO problems arise in many 
industrial sectors (manufacturing, crew scheduling, 
telecommunication, distribution, to mention a few) 
and hence there is the prominent and practical need 
to obtain good quality solutions, especially to large- 
size instances, in reasonable times.

2.4.1. Origins
Many problems arising on graphs and networks (see 
§2.12) belong to CO (the AP discussed above can be 
described as that of finding a minimum weight per-
fect matching in a bipartite graph), and hence the 
origins of CO date back to the eighteen century. In 
the following, we narrow our focus to modern CO 
(see Schrijver, 2005). Its roots can be found in the 
first decades of the past century, when Central 
European mathematicians developed seminal studies 
on matching problems (K€onig, 1916), paths Menger 
(1927), and Shortest Spanning Trees (SST) (Jarn�ık, 
1930; Borůvka, 1926, results independently 

rediscovered by Prim, 1957 and Kruskal, 1957). The 
Fifties produced major results on the AP (Kuhn, 
1955; 1956, on the basis of the results by K€onig, 
1916 and Egerv�ary, 1931, also see Martello, 2010), 
the Travelling Salesman Problem (Dantzig et al., 
1954), and Network Flows (Ford & Fulkerson, 1962), 
as well as fundamental studies on basic methodolo-
gies: dynamic programming (DP; Bellman, 1957, see 
§2.9), cutting planes (Gomory, 1958, see §2.15), and 
branch-and-bound (Land & Doig, 1960).

2.4.2. Problems and complexity
The most important CO problems, for which we 
know there are polynomial algorithms, are the basic 
graph-theory problems mentioned in the previous 
section. Other important problems, which are rele-
vant both from the theoretical point of view and 
from that of real-world applications, are instead 
NP-hard. The main NP-hard CO problems arise 
in the following areas.

Scheduling. Given a set of tasks which must be 
processed on a set of processors, a scheduling prob-
lem asks to find a processing schedule that satisfies 
prescribed conditions and minimises (or maximises) 
an objective function, frequently related to the time 
needed to complete all tasks. This huge area, that 
includes literally hundreds of problems and variants 
(mostly NP-hard), is also discussed in §3.27.

Travelling Salesman Problem (TSP). Given a 
weighted (directed or undirected) graph, the prob-
lem is to find a circuit that visits each vertex exactly 
once (Hamiltonian tour) and has minimum total 
weight. This is one of the most intensively studied 
problems of CO, and is treated in detail in §2.12.

Vehicle Routing Problems (VRP). A VRP is a gen-
eralisation of the TSP which consists of finding a set 
of routes for a fleet of vehicles, based at one or 
more depots, to deliver goods to a given set of cus-
tomers by satisfying a set of conditions and mini-
mising the overall transportation cost.

Facility Location. These problems require to find the 
best placement of facilities on the basis of geographical 
demands, installation costs, and transportation costs, so 
as to satisfy a set of conditions and to minimise the 
total cost (see §3.13 for a detailed treatment).

Steiner Trees. Given a weighted graph and a subset 
S of vertices, it is requested to find an SST connect-
ing all vertices in S (possibly containing additional 
vertices). These problems, which generalise both the 
shortest path problem and the SST, are treated in 
detail in §2.12.

Set Covering. Given a set of elements and a col-
lection of its subsets, each having a cost, we want to 
find the least cost sub-collection whose union 
includes (covers) all the elements.
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Maximum Clique (MC). A clique is a complete 
subgraph of a graph (i.e., it is defined by a subset of 
vertices all adjacent to each other). Given a graph, 
the MC problem is to find a clique of maximum 
cardinality (or, if the graph is weighted, a clique of 
maximum weight). We refer the reader to §2.12 for 
a detailed analysis.

Cutting and Packing (C&P). Given a set of 
“small” items, and a set of “large” containers, a 
problem in this area asks for an optimal arrange-
ment of the items into the containers. Items and 
containers can be in one dimension (Knapsack 
Problems (KP), Bin Packing problems) or in more - 
usually two or three – dimensions (C&P). See §3.3 
for more details.

Quadratic Variants of CO problems. A currently 
hot research area concerns CO problems whose 
“normal” linear objective function is replaced by a 
quadratic one. This greatly increases difficulty: in 
most cases problems which, in their linear formula-
tion, can be solved in polynomial time (e.g., the AP) 
or in pseudo-polynomial time (e.g., the KP) become 
strongly NP-hard.

2.4.3. Exact methods for NP-hard problems
For heuristic and approximation algorithms, we 
refer the reader to §2.13 and §2.5. With the excep-
tion of DP methods (§2.9), most exact algorithms 
for NP-hard CO problems, as well as most com-
monly used ILP solvers, are based on implicit enu-
meration. In the worst case, they can require the 
evaluation of all feasible solutions, and hence com-
puting times growing exponentially with the prob-
lem size. The most common methods can be 
classified as

� Branch-and-Bound (B&B);
� Branch-and-Cut (B&C);
� Branch-and-Price (B&P).

We will describe B&B, the other methods (and 
their combinations, as B&C-and-Price) being its 
extensions described in §2.15.

We consider a maximisation CO problem having 
an IP model with inequality constraints of ‘�’ type. 
For a problem P, having feasible solution set F(P), 
z(P) denotes its optimal solution value, and ub(P) 
an upper bound on z(P). The main ingredients of 
B&B are branching scheme and upper bound 
computation.

Branching scheme. The solution is obtained as 
follows:

i. subdivide P into m subproblems, each having 
the same objective function as P and a feasible 
solution set contained in F(P), such that the 

union of their feasible solution sets is F(P). The 
optimal solution of P is thus given by the opti-
mal solution of the subproblem having the 
maximum objective function value;

ii. iteratively, if a subproblem cannot be immedi-
ately solved, subdivide it into additional 
subproblems.

The resulting method can be represented through a 
branch-decision tree, where the root node corresponds 
to P and each node corresponds to a subproblem.

A node of the tree can be eliminated if the feas-
ible solution set of the corresponding subproblem is 
empty, or its upper bound is not greater than the 
value of the best feasible solution to P found so far.

Upper bound computation. A valid upper bound 
ub(P) can be computed as the optimal solution value 
of a Relaxation of the IP model of P, defined by:

i. a feasible solutions set containing F(P);
ii. an objective function whose value is not smaller 

than that of P for any solution in F(P).

A relaxation is “good” if the resulting upper 
bound ub(P) is “close” to z(P) (i.e., if the gap 
between the two values, zðPÞ � ubðPÞ, is “small”), 
and the relaxed problem is “easy” to solve, i.e., its 
optimal solution can be obtained with a computa-
tional effort much smaller than that required to 
solve P.

2.4.4. Relaxations
The most common relaxation methods are:

� Constraint elimination: a subset of constraints is 
removed from the IP model of P, so that the 
resulting problem is easy to to solve. The most 
widely used case is the linear relaxation;

� Linear relaxation: when the model is an Integer 
Linear Problem (ILP), removing the constraints 
that impose integrality of the variables leads to a 
Linear Program (LP), which is polynomially solv-
able, commonly used in ILP solvers (see §2.15);

� Surrogate relaxation: a subset R of inequality 
constraints is replaced by a single surrogate 
inequality, so that the corresponding relaxed 
problem is easy to solve. The surrogate inequality 
is obtained by multiplying both sides of each 
inequality of R by a non-negative constant, and 
summing, respectively, the left-hand and right- 
hand sides of the resulting inequalities;

� Lagrangian relaxation: a subset K of inequality 
constraints is removed from the model and 
“embedded”, in a Lagrangian fashion, into the 
objective function. For each inequality of K, the 
difference between left-hand and right-hand sides 
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(slack) multiplied by a non-negative constant is 
added to the objective function.

The relaxations can be strengthened by adding 
one or more valid inequalities (cuts) to the IP model 
of P, such that they are redundant for the IP model, 
but can become active when the IP model is relaxed 
(see §2.15).

2.4.5. Further readings
We refer the reader to the following selection of 
references for more details on the topics covered in 
this section. Well known, pre-1990 books are those 
by Garfinkel and Nemhauser (1972, IP), Christofides 
(1975, algorithmic graph theory), Garey and Johnson 
(1979, complexity), Burkard and Derigs (1980, AP), 
Lawler et al. (1985, TSP), and the CO specific vol-
umes by Lawler (1976), Christofides et al. (1979), 
Papadimitriou and Steiglitz (1982), Martello et al. 
(1987), and Nemhauser and Wolsey (1988). We list 
more recent contributions in the order in which the 
topics were introduced:

� CO: Cook et al. (1998), Schrijver (2003);
� AP: Burkard et al. (2012) for linear and quadratic 

AP, Cela (2013) for quadratic AP;
� Network Flows: Ahuja et al. (1993);
� Scheduling: Bła_zewicz et al. (2001, 2007), Pinedo 

(2012);
� TSP: Gutin and Punnen (2006), Applegate, et al. 

(2007), Cook (2011);
� VRP: Golden et al. (2008), Toth and Vigo (2014);
� Facility Location: Mirchandani and Francis 

(1990), Laporte et al. (2015);
� Steiner trees: Hwang et al. (1992), Pr€omel and 

Steger (2012). Also see the recent survey by 
Ljubi�c (2021);

� Cutting and packing: Martello and Toth (1990), 
Kellerer et al. (2004). Also see the recent survey 
by Cacchiani et al. (2022a, 2022b).

2.5. Computational complexity11

Operational Research develops models and solution 
methods for problems arising from practical deci-
sion making scenarios. Often, these solution meth-
ods are algorithms. The difficulty of a problem can 
be assessed empirically by evaluating the running 
times of corresponding algorithms, which requires 
careful implementations and meaningful test data. 
Moreover, this can be time-consuming and yields 
insights that depend on the skills of the programmer 
and are limited to the available test instances. 
Computational complexity represents an alternative 
approach that allows for a more general assessment 

of a problem’s difficulty that is independent of spe-
cific problem instances or solution algorithms.

2.5.1. Problem encoding and running times of 
algorithms
In complexity theory, the running time of an algo-
rithm is expressed in terms of the size of the input, 
i.e., the amount of data necessary to encode an 
instance of the problem. Since computers store data 
in the form of binary digits (bits), the standard bin-
ary encoding represents all data of a problem 
instance in the form of binary numbers. The num-
ber of required bits (the encoding length) of an inte-
ger is roughly given by the binary logarithm of its 
absolute value. As an example, consider the binary 
encoding of instances of the well-known 0-1 knap-
sack problem (KP). An instance of KP consists of n 
items – each with a non-negative, integer weight 
and profit – and a positive, integer knapsack cap-
acity c. We can assume that all n item weights are 
bounded by the capacity c and denote the value of the 
largest item profit by pmax: Then, the encoding length 
of a KP instance is bounded by ðnþ 1Þ � log 2ðcÞ þ
n � log 2ðpmaxÞ � ð2nþ 1Þ� log 2ðmaxfc, pmaxgÞ:

Rational numbers can be straightforwardly repre-
sented by their (integer) numerator and denomin-
ator, but their presence in the input might already 
influence a problem’s computational complexity 
(Wojtczak, 2018). Irrational numbers cannot be 
encoded in binary without rounding them appropri-
ately, which means that a different kind of complex-
ity theory is required when general real numbers are 
part of the input (see Blum et al., 1998, for details). 
Hence, the following exposition is restricted to the 
case of integer inputs, where the encoding length of 
an instance can be bounded by the number of inte-
gers needed to represent it multiplied with the bin-
ary logarithm of the largest among their absolute 
values (see the bound for KP instances provided 
above as an example).

To allow universal running time analyses of algo-
rithms that are independent of specific computer 
architectures, asymptotic running time bounds 
described using the so-called O-notation (Cormen 
et al., 2009) are used. Informally, every polynomial 
in n with largest exponent k is in OðnkÞ: All terms 
with exponents smaller than k and the constant 
coefficient of nk are ignored. One is then often 
interested in polynomial-time algorithms whose run-
ning time is in OðjIjkÞ for some constant k, where 
jIj denotes the encoding length of instance I. A less 
preferred outcome would be a pseudopolynomial- 
time algorithm, where the running time is only 
required to be polynomial in the number of integers 
in the input and the largest among their absolute 
values (or, equivalently, in the exponentially larger 
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encoding length of the input when using unary 
encoding, where the encoding length of an integer is 
roughly its absolute value).

2.5.2. The complexity classes P and NP
Most application scenarios encountered in 
Operational Research finally lead to an optimisation 
problem (often a combinatorial problem – see §2.4), 
where a feasible solution is sought that minimises or 
maximises a given objective function. Every opti-
misation problem immediately yields an associated 
decision problem, asking a yes-no question. For 
example, a minimisation problem consisting of a set 
X of feasible solutions and an objective function f 
can be written as minff ðxÞ : x 2 Xg: For a given 
target value v, the associated decision problem then 
asks: Does there exist a feasible solution x 2 X such 
that f ðxÞ � v? Solving an optimisation problem to 
optimality trivially answers the associated decision 
problem for any given v. On the other hand, every 
algorithm for the decision problem can be used to 
solve the underlying optimisation problem. Given 
upper and lower bounds, the optimal solution value 
can be identified in polynomial time by performing 
binary search between these bounds using the deci-
sion problem to answer the query in every iteration 
of the binary search (assuming that the range of 
objective function values and the encoding lengths 
of the bounds are polynomially bounded).

Motivated by the above, the computational com-
plexity of an optimisation problem follows from the 
complexity of its associated decision problem. Here, 
the most relevant complexity classes in Operational 
Research are probably P and NP, which are often 
used to draw the line between “easy” and “hard” 
problems in this context. Formally, the class P
(“polynomial”) consists of all decision problems for 
which a polynomial-time solution algorithm exists 
on a deterministic Turing machine (or, equivalently, 
in any other “reasonable” deterministic model of 
computation), while the class NP (“nondeterministic 
polynomial”) consists of all decision problems for 
which the same holds on a nondeterministic Turing 
machine. Equivalently, NP is the class of all decision 
problems such that, for any yes instance I, there 
exists a certificate with encoding length polynomial 
in jIj and a deterministic algorithm that, given the 
certificate, can verify in polynomial time that the 
instance is indeed a yes instance. Since the most nat-
ural certificate is often a (sufficiently good) solution 
of the problem, NP can informally be defined as the 
class of decision problems for which solutions can be 
verified in polynomial time. For example, when con-
sidering the travelling salesman problem (TSP) on a 
given edge-weighted graph, the associated decision 
problem asks whether or not there exists a tour 

(Hamiltonian cycle) of at most a given length v. 
While no polynomial-time algorithm for this decision 
problem is known to date, the problem can easily be 
seen to be in NP since the natural certificate to pro-
vide for a yes instance is simply a tour with length at 
most v, whose feasibility and length can be easily 
verified in polynomial time.

Observe that these definitions directly imply that 
P � NP: Most researchers believe that P(NP or, 
equivalently, that there are problems in NP that do 
not admit polynomial-time solution algorithms. 
However, formally proving that P 6¼ NP (or that 
P ¼ NP) is still one of the most famous open 
problems in theoretical computer science to date.

This so-called P versus NP problem can be 
equivalently expressed using the well-known notion 
of NP-completeness (see, e.g., Garey & Johnson, 
1979). Intuitively, NP-complete problems are the 
hardest problems in NP in the sense that, if one of 
these problems admits a polynomial-time solution 
algorithm, then so does every problem in NP (and, 
thus, we would obtain P ¼ NP). A decision prob-
lem (not necessarily in NP) with this property is 
also called NP-hard. This means that a problem is 
NP-complete if and only if it is both NP-hard and 
contained in NP: The first problem shown to be 
NP-complete in Cook’s famous theorem (Cook, 
1971) is the (Boolean) satisfiability problem (SAT). 
Shortly after, Karp (1972a) gave a list of 21 funda-
mental problems that are NP-complete. While 
Cook’s proof that SAT is NP-complete required 
considerable effort, proving that further problems 
are NP-complete became significantly easier with 
this knowledge and hundreds – if not thousands – 
of problems were shown to be NP-complete.

A decision problem is NP-complete if and only if 
(1) it is contained in NP and (2) some NP-complete 
problem (and, therefore, all problems in NP) can be 
reduced to it via a polynomial-time reduction. Such a 
polynomial-time reduction works as follows: For any 
instance of the known NP-complete problem (e.g., 
SAT or TSP), one has to construct an instance of the 
investigated problem in polynomial time such that the 
two instances are equivalent, i.e., the constructed 
instance is a yes instance if and only if the given 
instance is a yes instance. Note that the requirement 
that the instance must be constructed in polynomial 
time (and, therefore, have encoding length polynomial 
in the encoding length of the original instance) is cru-
cial. A common error in reductions is that the encod-
ing length of the constructed instance depends 
polynomially on the size of numerical values in the 
given instance (instead of their encoding length).

The importance of the encoding can be illustrated 
by the 0-1 knapsack problem (KP), which is 
NP-hard if binary encoding is used, but can be 
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solved in polynomial time (via dynamic program-
ming) if unary encoding is used (so NP-hardness 
of the unary-encoded version would imply that 
P ¼ NP). Problems like this, i.e., problems whose 
binary-encoded version is NP-hard, but whose 
unary-encoded version can be solved in polynomial 
time, are called weakly NP-hard, while problems 
(such as SAT) that remain NP-hard also under 
unary encoding are called strongly NP-hard. The 
existence of a pseudopolynomial-time algorithm is 
possible for weakly NP-hard problems, but not for 
strongly NP-hard problems (unless P ¼ NP).

2.5.3. Approximation algorithms
While some realistic-size instances of NP-hard 
problems might still be solvable in reasonable time, 
this is not the case for all instances. In general, one 
can deal with NP-hardness by relaxing the require-
ment of finding an optimal solution and instead set-
tling for a “good-enough” solution. This leads 
to heuristics, whose aim is producing good-enough 
solutions in reasonable time (see §2.13 for details) 
and approximation algorithms (Vazirani, 2001; 
Williamson & Shmoys, 2011; Ausiello et al., 1999). 
Given a � 1, an a-approximation algorithm for an 
optimisation problem is a polynomial-time algo-
rithm that, for each instance of the problem, produ-
ces a solution whose objective value is at most a 
factor a worse than the optimal objective value. The 
factor a, which can be a constant or a function of 
the instance size, is then called the approximation 
ratio or performance guarantee of the approximation 
algorithm. While it is standard to use a � 1 for 
minimisation problems, there is no clear consensus 
in the literature as to whether a � 1 or a � 1 should 
be used for maximisation problems. For example, 
the simple extended greedy algorithm for the knap-
sack problem produces a solution with at least half 
of the optimal objective value on each instance, i.e., 
it is a 1/2- or a 2-approximation algorithm.

While inapproximability results can be shown for 
some NP-hard problems (see Hochbaum, 1997, ch. 
10), others allow for approximation algorithms with 
approximation ratios arbitrarily close to one, i.e., they 
admit a polynomial-time approximation scheme 
(PTAS). A PTAS is a family of algorithms that con-
tains a ð1þ eÞ-approximation algorithm for every e >
0: If the running time is additionally polynomial in 
1=e, the PTAS is called a fully polynomial-time 
approximation scheme (FPTAS). If all objective func-
tion values are integers, every FPTAS can be turned 
into a pseudopolynomial-time exact algorithm, so 
strongly NP-hard problems do not admit an FPTAS 
(unless P ¼ NP). Conversely, pseudopolynomial-time 
algorithms, in particular dynamic programming 

algorithms, often serve as a starting point for design-
ing an FPTAS (Woeginger, 2000; Pruhs & Woeginger, 
2007).

2.5.4. Further complexity classes
Theoretical computer science developed a wide 
range of complexity classes far beyond the P vs. 
NP dichotomy. Considering algorithms requiring 
polynomial space, i.e., for which the encoding length 
of the data stored at any time during the algorithm’s 
execution is polynomial in the encoding length of 
the input (but no bound on the running time is 
required), gives rise to the class PSPACE. It is 
widely believed that NP(PSPACE, but even 
whether P 6¼ PSPACE holds is not known.

In the theoretical analysis of bilevel optimisation 
problems (see, e.g., Labb�e & Violin, 2016) the com-
plexity class R

p
2 plays an important role (see 

Woeginger, 2021). Here, a yes instance I is character-
ised by the existence of a certificate of encoding 
length polynomial in jIj, such that a certain polyno-
mial-time-verifiable property holds true for all ele-
ments of a given set Y: As an example, consider the 
2-quantified (Boolean) satisfiability problem. Here, an 
instance consists of two sets X and Y of Boolean vari-
ables and a Boolean formula over X [ Y: The ques-
tion then is whether there exists a truth assignment 
of the variables in X such that the formula evaluates 
to true for all possible truth assignments of the varia-
bles in Y. This definition immediately sets the stage 
for a bilevel problem, where the decision x of the 
upper level (the leader) should guarantee a certain 
outcome for every possible decision y at the lower level 
(the follower). It is widely believed that NP(R

p
2 

although Rp
2-hardness does not rule out the existence 

of a PTAS (Caprara et al., 2014). Under this assump-
tion, Rp

2-hardness does, however, rule out the exist-
ence of a compact ILP-formulation, which can be a 
valuable finding for bilevel optimisation problems.

For some NP-hard problems, one can construct 
algorithms with running time Oðf ðkÞ � polyðjIjÞÞ for 
an arbitrary computable function f, where the par-
ameter k describes a property of the instance I. Such 
problems are called fixed-parameter tractable. For 
example, the satisfiability problem SAT is fixed-par-
ameter tractable with respect to the parameter k 
that represents the tree-width of the primal graph of 
the SAT instance. In this graph, the vertices are the 
variables and two vertices are joined by an edge if 
the associated variables occur together in at least 
one clause, see Szeider (2003). This parametric point 
of view is captured in the W-hierarchy of complex-
ity classes – see Niedermeier (2006) and the seminal 
book by Downey and Fellows (1999).
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2.6. Control theory12

Control theory deals with designing a control signal 
so that the state or output variables of the system 
meet certain criteria. It is a broad umbrella term 
that covers a variety of theories and techniques. 
Control theory has been widely applied in the stud-
ies of economics (Tustin, 1953; Grubbstr€om, 1967), 
operations management (Simon, 1952; Vassian, 
1955, also see (Sarimveis et al., 2008) for a recent 
review), and finance (Sethi & Thompson, 1970). 
Here, we do not intend to provide an exhaustive or 
comprehensive review. Instead, we try to structurally 
organise the concepts and techniques commonly 
applied in operations research, which means that 
technical details will be omitted. We direct inter-
ested readers to a number of textbooks in the refer-
ence list, and an excellent review by Åstr€om and 
Kumar (2014) for those interested in the develop-
ment of control theory.

The major distinction between control theory and 
other optimisation theories is that the control vari-
able to be designed is normally a time-varying, 
dynamic function. The control signal can either be 
dependent on the state variables (which is referred to 
as feedback control or closed-loop control) or inde-
pendent (feedforward control or open-loop control). 
The design of control signals and control policies 
(defined as the function between the state of the sys-
tem and the control, also known as “control laws” or 
“decision rules”) is based on the structure of the sys-
tem to be controlled (sometimes called the “plant” in 
the control engineering literature). Thus, the type of 
the dynamical system often define the type of control 
problem. In continuous systems, the time variable is 
defined on the real axis, suitable to describe continu-
ous processes such as fluid processing and finance. In 
discrete systems, time is defined as integers, suitable 
in cases such as production and inventory control, 
where the production quantity is released every day. 
Linear systems are comprised of linear (or affine) 
state equations, while nonlinear systems contain non-
linear elements. Nonlinear systems are more difficult 
to analyse and control, and may lead to complex sys-
tem behaviours such as bifurcation, chaos and fractals 
(Strogatz, 2018). But there are linearisation strategies 
which approximate the nonlinear system locally as 
linear systems (Slotine et al., 1991). Based on whether 
random input is present, the dynamical system can 
be categorised into deterministic and stochastic.

There are two fundamental methods in the ana-
lysis of the system and control. The first relies on 
time-frequency transformations (Laplace transform 
for continuous systems and z-transform for discrete 
systems). A transfer function in the frequency 
domain can be used to represent and analyse the 
system (Towill, 1970). This method saves 

computational effort; however, it can only deal with 
linear system models and each transfer function 
only describes the relation between a single input 
and a single output (SISO). The second method dir-
ectly tackles the state equations in the time domain 
and describes the movement of system state in the 
state space. It is suitable for nonlinear systems and 
multi-input-multi-output (MIMO) systems. With 
the advancement of computing technology, the com-
putational burden faced by the time-based method 
becomes less significant. The literature refers to the 
frequency-based method as classic control theory 
(Ogata et al., 2010) and the time-based method as 
modern control theory.

The system under the effect of the control policy 
must be examined with respect to its properties and 
dynamic performance. Stability is a property of the 
dynamical system, that the system can return to its 
steady state after receiving a finite external disturb-
ance. Stability is a fundamental precondition that 
almost all control designs must meet, with few excep-
tions such as clocks and metronomes, where a peri-
odic or cyclic response is desired. The stability 
criterion is straightforward to derive for linear sys-
tems, where both frequency-based (e.g., Routh- 
Hurwitz stabibility criteria and Jury’s inners approach, 
Jury & Paynter, 1975) and time-based (e.g., the eigen-
value approach) methods exist. However, stability 
analysis for nonlinear systems is more challenging 
(Bacciotti & Rosier, 2005). Other important properties 
of the control system include controllability, defined 
as the ability to move the system to preferred state 
using only the control signal; and observability, 
defined as the ability to infer the system state using 
the observable output signals (Gilbert, 1963).

In addition to these intrinsic properties, the system 
can also be evaluated by the system’s response to 
some characteristic input functions. The step function 
(sometimes referred to as the Heaviside function) 
takes the value of zero before the reference time 
point, and one thereafter. The impulse function (the 
Dirac d function) takes the value of infinity at the 
reference time point and zero otherwise. These two 
input functions usually represent an abrupt change in 
the external environment. The sinusoidal function can 
be used to describe the periodic and seasonal exter-
nalities. The Bode plot describes the amplitude and 
phase shift between the sinusoidal input and output. 
For stochastic environments, the white noise is used 
to mimic random disturbances. It is a random signal 
that follows an identical and independent Gaussian 
distribution and has a constant power spectrum. The 
noise bandwidth of the system determines the ratio 
between output and input variances when the input 
is iid. The value of the noice bandwidth can be 
derived from either the transfer function or the state 
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space representation. This concept is used in analy-
sing the amplification phenomena in supply chains 
(see §3.24).

In practise, the system state and even the system 
structure may be unknown. Therefore, statistical 
techniques, known as state estimation and system 
identification, have been developed. State estimation 
uses observable output data to estimate the unob-
servable system states. A popular technique for this 
purpose is the Kalman filter (Kalman, 1960), essen-
tially an adaptive estimator that can be applied not 
only in linear, time-invariant cases (LTI, where the 
system is linear and does not change over time), but 
also non-linear and time-variant cases. For example, 
it has been applied to estimate the demand process 
from the observed sales data (Aviv, 2003). System 
identification attempts to “guess” the structure of 
the system from the input and output.

Along with the development of control theory, 
various control strategies have been proposed. They 
are designed to fit the structure of the system, the 
objective of the control, and most importantly, to 
offer a paradigm to design the control policy. In what 
follows, we provide a brief summary of control strat-
egies. Linear control strategies can be represented lin-
early (in the form of transfer function). They offer 
great analytical tractability and satisfactory perform-
ance, especially when the open-loop system is also lin-
ear. Two widely adopted policies in this family are 
proportional-integral-derivative (PID) control and 
full-state feedback (FSF) control. In PID control, an 
error signal between the output and the reference 
input (e.g., a Heaviside function) is computed. The 
control signal is a linear combination of the error, the 
integral, and the derivative of the error. These three 
components can appear separately. The proportional 
control has been applied in mechanical and manager-
ial mechanisms such as the centrifugal governor and 
production planning (Chen & Disney, 2007). The 
full-state feedback control defines the control signal as 
a linear combination of the full system state vector, 
where the coefficient vector (the “gain”) shares the 
same dimensionality as the state vector. By tuning the 
gain, the poles of the closed-loop system (the eigen-
value of the transition matrix or the roots of the char-
acteristic equation) will change their position in the 
complex plane, adjusting the system performance. 
The full-state feedback policy can also be applied in 
production and inventory control (Gaalman, 2006).

In contrast to the linear strategies, the nonlinear 
control strategies are defined as policies where the 
control signal cannot be represented by a linear 
function of the system state (Slotine et al., 1991). 
These policies are primarily used when the open 
loop system is also nonlinear. One such policy is 
sliding mode control, where the control signal is a 

switching function of the state, dependent on some 
switching rules. The system is then maintained near 
a hypersurface of the state space (sliding), where the 
dynamic behaviour of the system is desired. It 
should be ensured that the hypersurface is reachable 
from any initial state and that the system state can 
be maintained on the hypersurface by the policy. In 
practise, bang-bang control is adopted frequently as 
a special case of sliding mode control, where the 
control signal can take only two possible values. The 
rocket engines and domestic thermostats are exam-
ples of such (with on and off states).

Optimal control aims at finding the control signal 
or control policy that allows an objective function to 
reach its extreme point (Sethi & Thompson, 2009; 
Bertsekas, 2012a). The objective function could be 
dependent on the state, output and/or control. Many 
control policies mentioned above, e.g., full-state feed-
back control and sliding mode control, have been 
proved to be the optimal control of some control 
problems. Optimal control in the special sense is 
based on Pontryagin’s Maximum (or equivalently 
Minimum) Principle and mainly deals with the 
design of the open-loop control signal. When 
equipped with the Hamilton-Jacobi-Bellman (HJB) 
theory, it can be used to design optimal feedback 
control policies. Optimal control is closely connected 
with dynamic programming, which will be reviewed 
in §[dynamic programming]. The optimal control 
technique has been widely applied in operations 
management (e.g., Kumar & Swaminathan, 2003).

When random external disturbances are present, 
the stochastic control techniques are necessary 
(Åstr€om, 2012). In these situations, objective func-
tions are usually statistical functions of the state or 
the output, such as the absolute mean or variance. 
The most well-studied stochastic control problem is 
the Linear Quadratic Gaussian (LQG) problem, 
where the system is linear, the objective function is 
of quadratic form, and the noise signal follows a 
Gaussian distribution. The optimal control policy in 
this case is a linear one. Many supply chain manage-
ment problems can be modelled in LQG form (Lee 
et al., 1997). For more complex problems involving 
nonlinearity or an unspecified system structure, the 
model predictive control (MPC) approach can be used 
(Camacho & Bordons, 2013). This approach trans-
forms the infinite-horizon problem into a finite-hori-
zon problem by focusing only on T periods in the 
future, deriving the control signal for these T periods, 
and adopting the most recent control. In the next 
period, the prediction is updated, and this process is 
repeated. MPC is not an optimal control method due 
to the finite-horizon approximation, yet it works very 
well in practise (Doganis et al., 2008). To deal with 
parametrical uncertainties in the disturbance, robust 
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control provides guaranteed performance (Zhou & 
Doyle, 1998). The well-known H1 control (H infin-
ity) is one of such examples. It minimises the largest 
singular value of the transition matrix function, 
which in SISO systems equates to the peak value of 
the frequency response curve. This minimax strategy 
ensures that any frequency component in the input 
will not be amplified too much. Finally, if the system 
parameters vary over time, adaptive control allows 
the control policy to update according to the esti-
mated parameters (Åstr€om & Wittenmark, 2013). 
The difference between adaptive and robust control 
is that the policy is dynamic in the former and static 
in the latter.

Recent development of control theory can be 
seen in the controlling of complex, large scale and 
network system; the use of artificial intelligence in 
control engineering; and the application of control 
theory in areas of physics, biology and economics.

2.7. Data envelopment analysis13

Data Envelopment Analysis (DEA) is a non-para-
metric frontier analysis methodology mainly used to 
assess the relative efficiency of a set of homogeneous 
operating units (termed Decision Making Units, 
DMUs). DMUs are assumed to consume inputs (i.e., 
resources) to produce outputs (e.g., goods and serv-
ices). The production function that indicates the 
amount of outputs that can be produced from a 
given input vector is unknown. DEA does not make 
any assumption about the functional form of that 
dependency. Instead, DEA uses the observed data to 
infer the Production Possibility Set (PPS), also called 
the DEA technology, which contains all the operat-
ing points that are deemed feasible. This is achieved 
on the basis of a few assumptions (like envelopment 
of the observations, free disposability of inputs and 
outputs, convexity and returns to scale) and invok-
ing the Minimum Extrapolation Principle. The 
resulting PPS contains all linear combinations of the 
observations along with all the operating points that 
they dominate. This leads to Linear Programming 
models whose main decision variables are the inten-
sity variables used to compute the target operating 
point (projection). This target operating point must 
dominate the DMU being projected and represents 
maximal improvements (i.e., input reduction and 
output increase) with respect to the latter. Hence, 
the computed target belongs to the efficient frontier 
(which is the non-dominated subset of the PPS) and 
the efficiency score is a decreasing function of the 
distance from the DMU to the computed efficient 
target. There are different ways of measuring this 
distance, which, ultimately, depends on the potential 
input and output improvements (i.e., slacks) 

computed by DEA. Before diving into the DEA 
methodology note that, as Cook et al. (2014) point 
out, although DEA has a strong link with produc-
tion theory in economics, it is often used to bench-
mark the performance of manufacturing and service 
operations. In such benchmarking exercises, the effi-
cient DMUs, as defined by DEA, may not necessar-
ily form a “production frontier”, but rather a “best- 
practice frontier”. Thus, the purpose of the perform-
ance measurement exercise affects the classification 
of the different variables considered into inputs or 
outputs.

2.7.1. Efficiency assessment and target setting 
DEA models
The seminal DEA models by Charnes et al. (1978) 
and Banker et al. (1984) were oriented (i.e., gave 
priority to reducing the inputs or to increasing the 
outputs) and looked for a uniform (i.e., radial) 
improvement in all the input or output dimensions. 
The projection can also be estimated using a given 
direction, giving rise to Directional Distance 
Function (DDF) DEA models (Wang et al., 2019a). 
However, most DEA approaches are non-radial and 
non-oriented (e.g., Fukuyama & Weber, 2009). 
Actually, because DEA aims at simultaneously 
improving inputs and outputs, it is inherently a 
multiobjective optimisation approach. Hence, taking 
into account the preferences of a decision maker, 
any Pareto optimal point can be selected as efficient 
target (Soltani & Lozano, 2020).

Most DEA models compute targets that can be 
sometimes far away from the observed DMU. This 
increases the difficult and effort required to achieve 
the target. Hence, DEA models that compute closest 
efficient targets have been developed (Aparicio 
et al., 2007). An alternative is to compute stepwise 
efficiency improvement approaches that may even-
tually achieve ambitious efficient targets but after 
several gradual improvement steps (Lozano & Villa, 
2005).

DEA models for handling non-discretionary vari-
ables (Banker & Morey, 1986), undesirable outputs 
(Kuosmanen, 2005), integer variables (Kazemi Matin 
& Kuosmanen, 2009), ratio variables (Olesen et al., 
2022), negative data (Sharp et al., 2007), and fuzzy 
data (Arana-Jim�enez et al., 2022) have also been 
proposed. Each of the above “complications” 
requires specific adaptations of the methodology 
and being capable of taking them into account is a 
proof of the power and flexibility of DEA.

The DEA models based on the PPS concept are 
labelled as envelopment formulations. There are also 
dual multiplier formulations in which the decision 
variables are not the intensity variables used to com-
pute the target inputs and outputs but the 
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corresponding input and output shadow prices. 
Multiplier formulations let each DMU choose these 
input and output weights so that its efficiency is 
maximised. This freedom often leads to DMUs 
choosing idiosyncratic or unreasonable weights. 
Imposing Assurance Regions (AR) and other types 
of weight restrictions has been proposed (Allen 
et al., 1997) as well as measuring the efficiency of 
the DMUs as the average of the cross-efficiency 
scores computed with the input and output weights 
chosen by the different DMUs (Doyle & Green, 
1994; Chen & Wang, 2022). Another alternative that 
has been proposed is using a Common Set of 
Weights (CSW) instead of letting each DMU choose 
its own (Salahi et al., 2021).

In addition to computing efficiency scores, DEA 
can be used to rank the DMU. The problem here is 
that in conventional DEA all the DMUs labelled as 
efficient are tied and cannot be ranked. In addition 
to the CSW or cross-efficiency approaches men-
tioned above, there are other DEA-based full rank-
ing methods, like the super-efficiency approach 
(Tone, 2002). Alternatively, instead of fully ranking 
the DMUs, ranking intervals and dominance rela-
tions can be established (Salo & Punkka, 2011).

2.7.2. Dynamic and network DEA models
DEA views DMUs as input-output black boxes. 
However, it is often the case that DMUs have an 
internal structure with different stages or processes 
(sometimes labelled subDMUs). Many different 
Network DEA (NDEA) models have been developed 
to address these scenarios (Tone & Tsutsui,, 2009). 
The key features of NDEA models are that each pro-
cess has its own technology and that, except in the 
case of parallel processes, there exist intermediate prod-
uct flows between the processes. Some NDEA models 
can compute an efficiency score for each process and 
relate the overall efficiency score to the scores of the 
individual processes (Kao, 2016). It must be noted that 
the NDEA configuration most studied and most com-
monly used in practice involves two stages in series 
(see, e.g., Cook, et al., 2010; Halkos et al., 2014).

Multi-period and dynamic scenarios can be mod-
elled in a manner similar to NDEA simply by con-
sidering each time period as a subDMU. The 
difference between multi-period approaches (Kao & 
Liu, 2014) and Dynamic DEA (Tone & Tsutsui, 
2010) is that in the latter there are flows between 
consecutive periods (i.e., carryovers). Dynamic 
NDEA (DNDEA) models, in which there are carry-
overs between periods as well as intermediate prod-
uct flows between the processes, have also been 
developed (Tone & Tsutsui, 2014).

2.7.3. Centralised DEA models
DEA generally projects each DMU separately onto 
the efficient frontier. There are situations in which 
the DMUs belong to the same organisation and 
there is a Central Decision Maker (CDM) that is 
interested in the overall system performance and 
therefore in projecting all the DMUs simultaneously. 
This type of Centralised DEA (CDEA) models are 
commonly used for resource allocation (Lozano & 
Villa, 2004) and for centralised production planning 
(Lozano, 2014). Also, an approach to measure the 
centralised efficiency of the individual DMUs in 
CDEA scenarios has been proposed (Davtalab- 
Olyaie et al., 2023).

DEA models for allocating a fixed input or com-
mon revenue (Li et al., 2021) or for fixed-sum-out-
puts (FSO; Zhu et al., 2017) also share with CDEA 
the need to project all the DMUs simultaneously to 
take into account their interrelationships. These 
models, same as CDEA, can use an envelopment or 
a multiplier formulation. While the key feature of 
the former is that all DMUs are projected simultan-
eously, that of the latter is that, same as in CSW, a 
single set of input and output weights is considered.

2.7.4. DEA and total factor productivity (TFP) 
growth
DEA can be used to compute the Malmquist 
Productivity Index (MPI) by projecting the DMU in 
two consecutive periods onto the efficient frontier of 
each period and computing the geometric mean of the 
change in the corresponding radial efficiency scores 
between the two periods (F€are et al., 1992). The 
Malmquist-Luenberger Productivity Indicator (MLPI) 
is analogous but it employs the arithmetic average and 
an additive decomposition of DDF efficiency scores 
(Chambers et al., 1996). In both cases, the TFP growth 
of each DMU can be decomposed into an efficiency 
change and a technological change component. Other 
alternative decompositions of the MPI and MLPI have 
been developed (Epure et al., 2011).

Other approaches compute a global MPI (Pastor 
& Lovell, 2005; Kao & Liu, 2014). These have the 
circularity property, missing in the adjacent-periods 
MPI. Changes in prices can be also incorporated to 
compute and decompose a global cost MPI (Tohidi 
et al., 2012). MPI variants that take into account the 
projections of all the observations or of different 
groups of observations as well as approaches to 
compute and decompose the aggregate productivity 
growth index of a whole industry and input-specific 
productivity growth indexes have also been pro-
posed (Aparicio et al., 2017; Kapelko et al., 2015).
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2.7.5. Metafrontier analysis
In scenarios where the DMUs are heterogeneous and 
belong to different groups, not necessarily disjoint, 
the DMUs can be projected onto its group frontier as 
well as onto the metafrontier that results from envel-
oping all the group frontiers. Measuring the differ-
ence between the corresponding efficiency scores can 
be used to estimate the distance between both fron-
tiers and hence the corresponding technology gap of 
each group. Although the group technologies are 
generally convex, the metatechnology is generally 
non-convex (Afsharian & Podinovski, 2018).

The metafrontier approach can be used in 
DNDEA (See et al., 2021) and CDEA (Gan & Lee, 
2022) contexts. Also, using metafrontier concepts 
with each group of observations corresponding to a 
different time period, meta-MPI and meta-MLPI 
can be computed and appropriately decomposed 
(Portela & Thanassoulis, 2010).

2.7.6. Other DEA approaches
There are other interesting DEA approaches that 
have not been covered above, like congestion (Ren 
et al., 2021), window analysis (Peykani et al., 2021), 
etc. Moreover, the field, although mature, is still 
expanding, with promising new developments, like 
Efficiency Analysis Trees (EAT) (Esteve et al., 2020), 
Support Vector Frontiers (SVF) (Valero-Carreras 
et al., 2022), or big data DEA (Dellnitz, 2022). This is 
not to mention the large and increasing number of 
DEA applications (see §3.6, §3.7, and §3.19). For fur-
ther learning on DEA the interested reader is referred 
to existing textbooks (Cooper et al., 2007), handbooks 
(Cooper, et al., 2011; Cook & Zhu, 2014; Zhu, 2015) 
and review papers (Kao, 2014; Contreras, 2020; 
Peykani, et al., 2020).

2.8. Decision analysis14

The term decision analysis was introduced by 
Howard (1966) as “a logical procedure for the bal-
ancing of the factors that influence a decision”, 
pointing out that “the procedure incorporates 
uncertainties, values and preferences in a basic 
structure that models the decision”. According to 
Keeney (1982) decision analysis is a “formalisation 
of common sense for decision problems which are 
too complex for informal use of common sense” 
and, in more technical form “a philosophy, articu-
lated by a set of logical axioms, and a methodology 
and collection of procedures, based upon those axi-
oms, for responsibly analysing the complexities 
inherent in decision problems”. In a slighty differ-
ent perspective, Roy (1993) proposed the concept 
of decision aiding as “the activity of one who, in 
ways we call scientific, helps to obtain elements of 

answers to questions asked by actors involved in a 
decision-making process, elements helping to clarify 
this decision in order to provide actors with the 
most favourable conditions possible for that type of 
behaviour which will increase coherence between 
the evolution of the process, on the one hand, and 
the goals and/or systems of values within which 
these actors operate on the other”.

For Howard (1966) “the essence of the procedure 
is the construction of a structural model of the deci-
sion in a form suitable for computation and manip-
ulation”. For Keeney (1982) “the foundations of 
decision analysis are provided by a set of axioms 
… which provide principles for analysing decision 
problems”. Moreover, “the philosophical implica-
tions of the axioms are that all decisions require 
subjective judgements and that the likelihoods of 
various consequences and their desirability should 
be separately estimated using probabilities and util-
ities, respectively”. In this perspective, the key com-
ponents of a decision problem are the set of 
alternatives to be taken into consideration; the set of 
consequences describing outcomes of alternatives, 
possibly in terms of a plurality of attributes or crite-
ria; if the consequences are uncertain, the beliefs 
about their possible realisations expressed in terms 
of a probability distribution; the preferences of the 
decision maker. The objective of the decision ana-
lysis is to construct a value function representing 
the preferences of the decision maker by assigning 
each alternative an evaluation of its desirability. In 
case of uncertainty of the consequences, the value 
function is expressed in terms of expected value 
with respect to the probability of the consequences. 
The basic methodology to induce the value function 
is based on the pioneering work of von Neumann 
and Morgenstern (1944) that showed that a small 
set of axioms imply that the “utility” of an outcome 
x is defined as the probability of getting the most- 
preferred outcome and otherwise the least-preferred 
outcome that would be indifferent to receiving out-
come x with certainty. For Roy (1993), the decision 
aiding procedure should be developed in a construct-
ive approach in which “concepts, models, procedures 
and results are here seen as suitable tools for devel-
oping convictions and allowing them to evolve, as 
well as for communicating with reference to the bases 
of these convictions”. In this perspective the “object 
is not to know or to approximate the best possible 
decision but to develop a corpus of conditions and 
means on which we can base our decisions in favour 
of what we believe to be most suitable”.

Decision Analysis is mainly based on concepts 
and tools related to the subjective probability of 
Ramsey (1931) and de Finetti (1937), the theory of 
expected utility of von Neumann and Morgenstern 
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(1944) and subjective expected utility of Savage 
(1954), the Multiple Attribute Utility Theory 
(MAUT) of Keeney and Raiffa (1976) and the 
psychology of judgement and decision-making of 
Tversky and Kahneman (1974). The general idea is 
to try to evaluate each alternative by assigning a 
value based on the utilities of the outcomes obtained 
in each state of the nature multiplied by their proba-
bilities. Delayed consequences may be discounted 
according to the time at which they are obtained. 
Each outcome may be evaluated by considering value 
trade-offs among multiple attributes. Decision ana-
lysis techniques include Utility Function Elicitation 
techniques, Probability Elicitation protocols, Net 
Present Value, Decision Trees, Influence Diagrams, 
and Monte Carlo simulation-based decision analysis 
(Clemen, 1996); Value-Focused Thinking (Keeney, 
1996a); Portfolio Decision Analysis (Salo et al., 2011), 
Bayesian Networks (Pearl, 1988), and multi-stage 
decision optimization techniques such as dynamic 
rogramming and reinforcement learning.

Considering the distinction between normative, 
descriptive and prescriptive approaches (Bell et al., 
1988), the general perspective of the decision ana-
lysis is prescriptive rather than normative or 
descriptive (Edwards et al., 2007). Descriptive ana-
lysis concerns the representation and prediction of 
observed decisions and normative analysis concerns 
the decisions that ideally coherent and rational 
individuals should take. Instead, prescriptive ana-
lysis tries to propose methods and techniques that 
will help real people make better decisions with 
lower regret and greater coherence of values and 
behaviors. In this context, decision analysis takes a 
prescriptive approach that, focusing on the few 
basic axioms underlying subjective expected utility, 
adopts “pragmatically” the aspiration to the ration-
ality of the normative approach, trying to correct 
all the heuristics and biases discovered and investi-
gated by descriptive analysis (Tversky & Kahneman, 
1974). The decision aiding approach (Roy, 1993) 
takes a different perspective that, criticising the 
idea that there is an objectively optimal decision 
to be discovered or at least approximated, aims to 
provide a recommendation consisting in a set of 
convictions constructed in the course of a decision 
process based on multiple interactions between 
the analyst and the decision maker. The decision 
aiding approach leads directly to a multi-criteria 
perspective (Belton & Stewart, 2002; Greco et al., 
2016) taking explicitly into consideration the mul-
tiple attributes or criteria (e.g., related to finance, 
resources, time, and environmental impacts) to be 
considered in the decision problem at hand. This 
avoids the risk of a fictitious, not reasoned and 
arbitrary conversion of evaluations on different 

criteria to a common unit, facilitating the discus-
sion on the respective role of each criterion (Roy, 
2005, 1996). To compare alternatives in a multi-
criteria decision procedure four main approaches 
can be adopted:

� aggregating criteria assigning a single value to 
each alternative: this is the case of above men-
tioned MAUT, as well as of some of the most 
well known multicriteria methods such as 
SMART (Edwards & Barron, 1994), and UTA 
(Jacquet-Lagreze & Siskos, 1982); a specific men-
tion deserves in this context the AHP approach 
(Saaty, 1977), that is probably the most adopted 
(although controversial; see, e.g., Dyer, 1990) mul-
ticriteria method. It is based on the comparison 
of “importance” of criteria and of evaluation of 
alternatives with respect to considered criteria by 
means of a nine point qualitative scale; another 
specific class in this family are the distance-based 
methods which, following the main principle of 
TOPSIS (Hwang & Yoon, 1981), the first and 
most famous of these methods, evaluate each 
alternative on the basis of their distance from the 
positive ideal solution and the negative ideal solu-
tion (the fictitious alternatives that have the best 
and the worst evaluation on each criterion, 
respectively); two other well-known methods in 
this class are VIKOR (Opricovic & Tzeng, 2004) 
and TODIM (Gomes & Lima, 1991).

� aggregating criteria by means of one or more 
synthesising preference relations: the most well 
known methods based on this approach are the 
ELECTRE methods (Figueira et al., 2013, 2016), 
that build a crisp or valued preference relation 
called outranking for which an alternative a is at 
least as good as another alternative b if a a is not 
worse than b for a majority of important criteria 
(concordance) and there is no criterion for which 
the advantage of b over a is so large that it pre-
vents the possibility to declare a at least as good 
as b (non-discordance);

� aggregating criteria through “if . . . , then . . .” deci-
sion rules (Greco et al., 2001): the alternatives 
obtain an overall evaluation by matching decision 
rules with a syntax “if the alternative is at least at 
level lj1 on criterion gj1 and . . . at least at level ljr 

on criterion gjr , then the alternative is globally at 
least at level ltot ”, such as “if the student has an 
evaluation at least good on mathematics and at 
least medium on literature, then the student is glo-
bally at least medium”; these rules are induced 
from a set of examples of decisions supplied by the 
decision maker. The advantage of this approach is 
its explainability due to the fact that the decision 
rules are expressed in natural language;
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� aggregating criteria through an interactive multi-
objective optimisation (Branke et al., 2008): with 
this approach one can handle decision problems 
in which a set of objectives have to be optimised 
under given constraints (see Sawaragi et al., 1985; 
Steuer, 1985; Miettinen, 1999; Ehrgott, 2005). In 
this context, the concept of Pareto efficient solu-
tion is fundamental: it is a solution for which one 
cannot improve one objective without deteriorat-
ing some others. Several algorithms have been 
proposed for Pareto set generation and among 
them let us remember the weighted sum method, 
the lexicographic method, the achievement secu-
larising function, the epsilon constraint method 
(for surveys see Marler & Arora, 2004, or 
Chapters 18 and 19 in Greco et al., 2016). Dealing 
with a multiobjective optimisation problem, it is 
important to discover the set of Pareto efficient sol-
utions most preferred by the decision maker. 
Recently, beyond many exact methods, some heur-
istic methods have been proposed for these prob-
lems, such as some hybridisation between 
evolutionary multiobjective optimisation algorithms 
aiming to approximate the whole set of Pareto effi-
cient solutions (Deb, 2001) and some multicriteria 
preference elicitation methods to guide the opti-
misation algorithm toward the most interesting set 
of Pareto efficient solutions (see, e.g., Phelps & 
K€oksalan, 2003; Branke et al., 2016).

2.9. Dynamic programming15

Dynamic programming (DP) was the brainchild of 
Richard Bellman (Bellman, 1953), who wrote “DP is a 
mathematical theory devoted to the study of multistage 
processes”. Indeed, in the seven decades since his sem-
inal work, the uses of DP have grown substantially 
thanks to its algorithmic nature in solving sequential 
decision-making problems, where the preceding actions 
and their realisation (in terms of consequences) will 
impact on the course of futures. Examples of such 
problems include multiperiod inventory management, 
or asset allocation (portfolio management) over a given 
time horizon. The central idea of DP is to break down 
the original multistage problem into a number of tail 
sub-problems by stages. For each stage, the tail sub- 
problem is a truncated version of the original problem 
starting from this stage. These tail sub-problems are 
then recursively solved one by one from the last stage 
backwards to the first one, at which point the original 
problem is solved. The solution of such a procedure is 
guaranteed to be optimal when the problem concerned 
satisfies a sufficient condition, i.e., the Principle of 
Optimality (Bellman, 1953; Puterman, 2014), which 
states “an optimal policy has the property that whatever 
the initial state and initial decision are, the remaining 

decisions must constitute an optimal policy with regard 
to the state resulting from the first decision” (Bellman, 
1953). Throughout this section, we focus our attention 
on discrete time systems. For continuous time dynamic 
systems, the readers are referred to the Hamilton- 
Jacobi-Bellman equations in optimal control (see, for 
example, Bertsekas, 2012a).

In particular, for a finite time horizon problem, the 
decisions are made over a number of stages or decision 
epochs, denoted by t ¼ 0, :::, T � 1: At each decision 
epoch, after observing the current system state xt (com-
prised of one or more information variables that char-
acterise how the system progresses), an action at is 
taken that leads to an immediate reward (cost) of 
rtðxt , at , wtÞ, where wt is the random disturbance at 
time t with a known probability distribution. The sys-
tem then evolves to state xtþ1 at the next decision 
epoch, following the transition function xtþ1 ¼

ftðxt , at , wtÞ with the transition probability 
ptðxtþ1jxt , at , wtÞ: After the last decision is made at 
epoch T – 1, the system evolves to xT in the terminal 
stage with the salvage value rTðxTÞ: The objective of 
the problem is to find a policy p, or a sequence of 
actions ða0, a1, :::, aT� 1Þ prescribed by at ¼ pðxtÞ, that 
maximises (minimises) the total expected reward (cost) 
across the entire time horizon. Note that for the 
expected total reward optimisation criterion (or additive 
reward functions) the Principle of Optimality is always 
satisfied (Puterman, 2014). To avoid the technical 
subtleties, in what follows we focus on discrete state 
space S and action space A, and assume the random 
disturbance at an epoch is independent of those in the 
previous epochs. Define the dimension of the state 
space S as the number of the information variables in 
the state. The mathematically inclined readers are 
referred to Puterman (2014) for discussions on more 
general situations. Before proceeding, it is worth men-
tioning that when the random disturbance wt takes 
only a single value, the problem reduces to a determin-
istic problem. Perhaps the two most well known deter-
ministic sequential decision-making problems solvable 
by DP are the Shortest Path problem (Dreyfus, 1969) 
and the Knapsack problem (Kellerer et al., 2004).

Under the Principle of Optimality, the above- 
mentioned problem can be solved by backward 
induction. Denote by VtðxtÞ the value function, or 
the optimal expected value-to-go from state xt at 
epoch t until the end of the time horizon. The value 
function (for maximisation problems) satisfies the 
following optimality equations (or Bellman 
Equations, see e.g., Puterman, 2014),

VtðxtÞ ¼ max
at2A
E rtðxt , at , wtÞ þ Vtþ1ðftðxt , at , wtÞÞ
� �

, 8xt

2 S, t ¼ 0, :::, T � 1,
(1) 

with the boundary condition VTðxTÞ ¼ rTðxTÞ: By 
recursively solving the optimality equations from the 
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last stage backwards to time zero, we obtain the opti-
mal value functions and, at the same time, an optimal 
policy. For this method to work, however, at each 
stage one has to solve the value function for all states 
before proceeding to the previous stage. For problems 
with high dimensional state variables, the solution via 
this method is simply not practical due to the prohibi-
tive amount of computational time and memory 
required. The recent development on DP research has 
been essentially trying to overcome this so called curse 
of dimensionality (Powell, 2011), which is discussed in 
the last paragraph of this section.

Many sequential decision-making problems in 
practice do not have a natural termination stage, 
leading to a rich body of literature studying infinite 
horizon problems, for which the total expected 
reward becomes unbounded as the time horizon 
tends to infinity. To this end, two alternative criteria 
have been widely used in the literature (Puterman, 
2014; Bertsekas, 2012a). The first one applies a dis-
count factor between 0 and 1, say b, to the future 
reward, which can be understood as the depreci-
ation of monetary values over time. The total dis-
counted reward is well defined as it is bounded by 
the sum of a decreasing infinite geometric sequence. 
In situations where discounting is not appropriate, a 
meaningful criterion is to consider the long run 
average reward, or the reward rate per stage. 
Assuming a stationary system (in which the transi-
tion function/probability, the reward function, and 
random disturbance do not change over time), the 
Bellman Equations for the total discounted reward 
criterion take the following form:

VðxÞ ¼ max
a2A
E rðx, a, wÞ þ bVðf ðx, a, wÞÞ
� �

, 8x 2 S,

(2) 

where the value function V(x) is the optimal dis-
counted value-to-go from state x over an infinite 
time horizon. Note that there are no more boundary 
conditions. There is no more dependency on time 
either under the assumption of stationary systems, 
which is often satisfied in practice (Bertsekas, 2012a). 
When such an assumption is not satisfied, a periodic 
or cyclic DP can be developed (Li et al., 2022a). For 
brevity we do not include the Bellman equations for 
the long run average reward criterion but direct the 
readers to Bertsekas (2012a) and Puterman (2014).

There are mainly three solution algorithms 
(Tijms, 1994; Puterman, 2014) for infinite horizon 
problems. The most widely used and understood 
algorithm is value iteration, or successive approxi-
mations as it was called in the early days. Starting 
from an arbitrary bounded value function vector 
(e.g., V0ðxÞ ¼ 0, 8x 2 S), this method iteratively 
updates value functions via the recursive equation 
below until the successive gaps between iterations 

kþ 1 and k are within a predefined threshold.

Vkþ1ðxÞ ¼ max
a2A
E rðx, a, wÞ þ bVkðf ðx, a, wÞÞ
� �

,

8x 2 S:
(3) 

An alternative algorithm is policy iteration, which 
starts with an arbitrary policy and then iteratively 
improves it until no further improvements are pos-
sible. Each iteration includes two steps: firstly the 
expected value-to-go under the current policy is 
evaluated via a system of equations similar to (2)
but for the actions prescribed by the policy; after 
that a policy improvement step is undertaken to 
find an improved action for each state that leads to 
a better value-to-go (Puterman, 2014). In the last 
algorithm, the system of Bellman Equation (2) are 
reformulated into a vary large scale linear program, 
which has one decision variable for each state and 
one constraint for each state-action pair. Regardless 
of the solution algorithms, just as in finite horizon 
problems, the curse of dimensionality remains the 
biggest hurdle for the implementation of DP.

Various approximation methods have been pro-
posed to improve the scalability of DP, leading to an 
important and thriving research field called 
Approximate Dynamic Programming (ADP). 
According to Bertsekas (2012a), most of the ADP 
approaches fall into either the value space or policy 
space. We concentrate on the approaches in the value 
space (see also §2.21) while we direct readers to 
Bertsekas (2012a) for the policy space counterparts. 
The basic idea of the value space approaches is to 
develop efficient methods to approximate the value 
functions or the expected value-to-go for a given pol-
icy. The most studied methods approximate the value 
functions via a linear or nonlinear combination of a 
set of handcrafted feature vectors (functions of the 
state) weighted by a set of parameters, which are cali-
brated by a suitable method (Bertsekas, 2012b; Ding 
et al., 2008). Feature vectors are not always available, 
in which case Neural Networks have been used to 
construct feature vectors automatically (Powell, 2011; 
Bertsekas, 2012a; He et al., 2018). Decomposition is 
also a popular method, which decomposes the ori-
ginal problem into a number of sub-problems each 
of which has a much smaller state space and can be 
solved efficiently by the exact algorithms mentioned 
above. The assembly of the value functions of these 
sub-problems provides an approximation to the ori-
ginal value functions (Kunnumkal & Topaloglu, 
2010; Li & Pang, 2017). A distinct decomposition 
approach is Whittle’s Restless Bandit framework 
(Whittle, 1988; Glazebrook et al., 2014; Li et al., 
2020), which decomposes the original problem via 
Lagrangian relaxation, calculates a state dependent 
index value for each sub-problem and uses these 
index values directly to derive policies for the original 
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problem. Another method in the value space approxi-
mates the value functions of a specific policy via 
Monte Carlo simulation (Chang et al., 2007; 
Bertsekas, 2012b), which are then used to find an 
improved policy. An alternative method is called Q- 
Learning (Sutton & Barto, 2018), which approximates 
the Q-factor for each state-action pair. The Q-factor 
for (x, a) is the expected value-to-go by taking action 
a at state x and then following either a given policy 
or the optimal policy thereafter. Due to the large 
number of combinations of state-action pairs, Q- 
Learning is more suitable for problems with a small 
state space (Bertsekas, 2012b). For an in-depth 
account on ADP we refer to two seminal books of 
Powell (2011) and Bertsekas (2012b).

2.10. Forecasting16

Forecasting is concerned with the prediction of 
unknown/future values of one or multiple variables 
of interest. If the values of these variables are col-
lected over time, especially/in particular at regular 
intervals, the corresponding problem is referred to as 
time-series forecasting. The outputs of forecasting 
models include point estimates as well as expressions 
of uncertainty of such estimates in terms of probabil-
istic forecasts, prediction intervals, or path forecasts. 
Forecasting is applied in a wide range of applications. 
In this subsection, we offer an overview of established 
forecasting approaches that are useful in social set-
tings (Makridakis et al., 2020a), such as forecasts pro-
duced to support decision making in operations and 
supply chain management (§3.12; §3.24, finance 
(§3.9), energy (§3.19), and other domains.

Exponential smoothing is one of the most popular 
families of models for univariate time-series forecast-
ing. The underlying principle of exponential smooth-
ing models is that, at every step, the forecast is 
updated such that the most recent information is 
taken into account by exponentially discounting 
information from previous periods. The estimates for 
the exponential smoothing parameters are based on 
in-sample fits. The first and simplest exponential 
smoothing method, simple (or single) exponential 
smoothing, was developed by Brown (1956). This 
method was able to handle level-only data (no trend 
nor seasonal patterns). Soon after, it was extended to 
handle trended and seasonal data (Holt, 2004; 
Winters, 1960). Forty years later, Hyndman et al. 
(2002) introduced a fully fledged family of exponen-
tial smoothing models that are represented in a state- 
space framework. Usually, three states are considered: 
level, trend, and seasonality. The way that these three 
states interact to produce the final forecast deter-
mines the types of trend and seasonality (such as 
additive or multiplicative). Exponential smoothing 

models are fast to compute and perform well in a 
wide range of data (Makridakis et al., 2020b), render-
ing them ideal benchmarks for forecasting applica-
tions. Detailed reviews of exponential smoothing 
models are offered by Gardner (2006) and Hyndman 
et al. (2008).

Autoregressive integrated moving average (ARIMA) 
is another very popular family of univariate forecast-
ing models (for a seminal work on ARIMA, see Box 
& Jenkins, 1976). In ARIMA, the data are first ren-
dered stationary through transformations and differ-
encing. The stationary data are then fitted in linear 
regression models (see also the next paragraph on 
regression models) in which the predictors are either 
past values of the data (autoregressive terms) or past 
errors (moving average terms). ARIMA models are 
theoretically appealing as they can depict a wide 
range of data generation processes. While manually 
identifying an optimal ARIMA model can be some-
times challenging, nowadays automated approaches 
exist (see, for example, Hyndman & Khandakar, 
2008; Franses et al., 2014)

When the variable of interest is known to be 
affected by other factors (also called “exogenous vari-
ables”), then causal modelling can be applied. In its 
simplest form, causal models can be linear or nonlin-
ear regression models that regress the values of the 
dependent variable on the values of the independent 
variable(s). Apart from the ordinary least squares 
regression models, other types of regression models 
exist, such as the ordinal, logistic, Poisson, negative 
binomial regression models as well as the Generalised 
Linear Models (GLMs). The dependent variable (vari-
able of interest) is usually continuous, however spe-
cific regression models exist for ordinal or binary 
dependent variables, such as the ordinal logistic 
regression model.” But of course there are also 
regression approaches for count data, like Poisson 
regression or negative binomial regression (Hilbe’s 
textbook of the same name is my go-to reference on 
this), or more generally Generalized Linear Models 
(GLMs). I would assume these to be more relevant to 
OR than binary or ordinal logistic regressions.

A common rule for using regression models for 
forecasting purposes is that the values of the inde-
pendent variables are either known or can be pre-
dicted, as is very common in energy forecasting; see 
Weron (2014) and §3.19. Transformations of the 
dependent or independent variables are sometimes 
necessary so that assumptions regarding normality 
of errors and constancy of the error variance are 
satisfied (Lago et al., 2021). Another common issue 
in regression models is that of multicollinearity 
between independent variables. Linear regression 
models can also be used to produce time-series fore-
casts when no exogenous variables are available. In 
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these cases, we can construct predictors for trend 
and seasonality and use these predictors as inde-
pendent variables to model the time-series patterns. 
Finally, it is also worth mentioning that ARIMA 
models can be extended to ARIMAX models that 
can include the effects of exogenous variables, just 
like autoregressive (AR) models can be extended 
to ARX.

Instead of forecasting each time series separately, 
several approaches exist in order to forecast time 
series data as a collection. Multivariate models (also 
known as structural models) are designed to model 
cross-sectional data, producing forecasts for many 
variables of interest at the same time. Such forecasts 
take into account interactions between all series. A 
common example is the vector autoregressive 
(VAR) models (Sims, 1980; Hasbrouck, 1995). 
Another very popular cross-sectional approach is 
hierarchical forecasting (Athanasopoulos et al., 
2020). Hierarchical forecasting deals with time-series 
data that are naturally arranged in hierarchical 
structures (for example, product or geographical 
hierarchies). Forecasts for each node of the hier-
archy are first produced independently using stand-
ard univariate forecasting approaches (such as 
exponential smoothing or ARIMA); then, forecasts 
across the hierarchy are reconciled to achieve coher-
ency (Wickramasuriya et al., 2019; Hollyman et al., 
2021). Hierarchical forecasts offer better accuracy 
and are directly relevant for decision makers at mul-
tiple levels of an organisation. A different form of 
forecasting using multiple series, which is widely 
applied in machine-learning methods, is called 
cross-learning. This approach implies learning (usu-
ally through features; Montero-Manso et al., 2020; 
Wang et al., 2022c) from other series to be able to 
predict the variable of interest. Compared to other 
cross-sectional approaches, cross-learning requires 
access to a set of “reference” data which, though, do 
not have to be concurrent to the target data.

Given the plethora of available modelling options, 
we need ways to help us decide on the best approach 
for the target data. Two popular approaches for model 
selection are information criteria and cross-validation. 
Information criteria select the best model amongst a 
pool of candidate models based on how well the in- 
sample forecasts fit the actual data (model fit), penal-
ising at the same time for model complexity (Occam’s 
razor). Information criteria are fast to compute and 
widely applied, mostly due to their implementations 
in open-source forecasting packages (Hyndman & 
Khandakar, 2008). Cross-validation is based on the 
comparison of the out-of-sample performance 
between different models. To achieve this, the avail-
able data are split into “training” and “validation” 
data. The validation follows a rolling-origin process, 

where the forecasts of the candidate models are com-
pared for multiple forecast origins (Tashman, 2000; 
Bergmeir & Ben�ıtez, 2012). A more recent approach 
to forecast selection is based on the concept of repre-
sentativeness (Petropoulos & Siemsen, 2022). Out-of- 
sample forecasts with higher representativeness to the 
past data patterns are preferred to ones with lower 
representativeness. Regardless of how one selects 
between forecasts and models, the values of the selec-
tion criteria can also be used to combine forecasts 
(Kolassa, 2011). In fact, multiple studies have shown 
that combining forecasts, using equal or unequal 
weights, can significantly boost the forecasting per-
formance of individual models (Bates & Granger, 
1969; Nowotarski et al., 2016; Wang et al., 2022d). 
Claeskens et al. (2016) offer a possible explanation on 
why the performance of forecast combinations is bet-
ter than that of the individual forecasts.

Apart from statistical, algorithmic and computa-
tional approaches, the forecasting process can also be 
infused by judgement (see, also, §2.2 and §2.20). It is 
not unusual for forecasts to be directly produced in a 
judgemental way, without the support of any system-
atic approaches. Research suggests that such forecasts 
suffer from several biases (Lawrence et al., 2006). 
However, managers may sometimes have a unique 
appreciation of the situation, one that the hard data 
cannot communicate through models. In such cases, 
systematic approaches to elicit expert knowledge 
include the Delphi method (Rowe & Wright, 1999), 
structured analogies (Green & Armstrong, 2007), pre-
diction markets (Wolfers & Zitzewitz, 2004), and 
interaction groups (Van de Ven & Delbeco, 1971); see 
also Graefe and Armstrong (2011) and Nikolopoulos 
et al. (2015) for a comparison between these 
approaches. Apart from producing forecasts directly, 
judgement may also be used to adjust the formal/stat-
istical forecasts. Judgemental interventions and their 
efficacy have been well-studied in the literature (see, 
for example: Fildes et al., 2009; Petropoulos et al., 
2016; Fildes et al., 2019). The main takeaways are: (i) 
negative adjustments are generally more beneficial 
than positive ones; (ii) larger adjustments should be 
preferred to smaller ones; and (iii) the use of feedback 
and support will limit and improve the role of such 
judgemental adjustments. Finally, managerial judge-
ment may be applied in other stages of the forecasting 
process, such as judgementally selecting between statis-
tical models (Petropoulos et al., 2018; De Baets & 
Harvey, 2020) or setting their (hyper)parameters.

Forecasts produced in previous periods need to 
be evaluated once the corresponding actual values 
become available. Through feedback, forecast evalu-
ation allows analysts to improve the forecasting pro-
cess and, thus, forecasting performance. The main 
rule of forecast evaluation is that performance 
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should be measured on data that were not used to 
fit the models or produce the forecasts. Solely meas-
uring the in-sample performance will inevitably lead 
to over-fitting and the use of complex forecasting 
models. There exist a wide array of evaluation met-
rics. Some of them are suitable for measuring the 
accuracy or bias of the point forecasts, while others 
focus on how well the uncertainty around the fore-
casts is estimated. In the former category, popular 
metrics are the mean absolute error (MAE), the root 
mean squared error (RMSE), the mean absolute per-
centage error (MAPE, which is very popular in 
practice) and the mean absolute scaled error 
(MASE, which is theoretically more elegant and 
popular in academia). It should be noted that 
Kolassa (2020) showed that different error metrics 
are minimised by different (point) forecasts and that 
it makes little sense to evaluate one point forecast 
using multiple KPIs. For detailed overviews of fore-
casting metrics for point forecasts and their proper 
use, the reader is referred to Hyndman and Koehler 
(2006), Davydenko and Fildes (2013), and 
Koutsandreas et al. (2022). In the latter category, a 
popular metric is the interval score (IS), which is a 
proper scoring rule and considers both the calibra-
tion and the sharpness of the prediction intervals, as 
well as the pinball score, the continuous ranked 
probability score (CRPS), and the energy score. 
Gneiting and Raftery (2007) offer a review of 
(strictly) proper scoring rules. Finally, we should 
mention that nowadays it is common to go beyond 
strict forecasting performance and measure the per-
formance of the forecasts on the utility (Hong et al., 
2020; Yardley & Petropoulos, 2021).

For a detailed encyclopedic overview of the fore-
casting field, both in terms of theory and practice, we 
refer the reader to the work of Petropoulos et al. 
(2022); a live version of this encyclopedia is available 
at https://forecasting-encyclopedia.com. Hyndman 
and Athanasopoulos (2021) and Ord et al. (2017) 
have written comprehensive textbooks on forecasting 
and its applications. Notable open-source packages 
with implementations of the most popular forecasting 
models include the forecast (Hyndman et al., 
2022) and smooth (Svetunkov, 2022) packages for R 
statistical software.

2.11. Game theory17

Game theory is a branch of mathematics that studies 
strategic interactions between decision makers, called 
players. Strategic interactions means that a player’s 
payoff depends not only on her own decision (action 
or choice), but also on the decisions made by the 
other players. The book by von Neumann and 
Morgenstern (1944) is often considered the starting 

date of game theory, though some of its roots can be 
traced back to much earlier. Games can be classified 
along a series of features. In a static game, each 
player acts only once, whereas in a dynamic game, 
interactions are repeated over time. In a one-person 
game, the decision maker plays against a nonstrategic 
(or dummy) player, often referred to as “nature”, 
whose action is the outcome of a probabilistic event 
with a fixed (known) distribution. Two-player games 
focus on one-on-one interactions. Duopolistic com-
petition and management-union negotiations are sit-
uations that can be modelled as two-person games. 
Extending the model to n > 2 players is conceptu-
ally easy but may be computationally challenging 
because each player needs to determine all the pos-
sible sequences of actions and reactions for all play-
ers. When the number of interacting players is very 
large, e.g., an economy with many small agents, the 
analysis shifts from individual-level decisions to 
understanding the group’s behavioural dynamics. An 
illustration of this is traffic congestion: when an agent 
attempts to minimise her travel time on a route from 
A to B, her travel speed depends on the traffic dens-
ity on that route. What matters is the number of 
drivers, not their identity. Population and evolution-
ary games (Hofbauer & Sigmund, 1998; Cressman, 
2003; Sandholm, 2010) and mean-field games, 
(Huang et al., 2003, 2006, 2007; Lasry & Lions, 
2006a, 2006b, 2007; Gomes & Sa�ude, 2014) are 
branches of game theory that study situations with 
large numbers of players.

A game can be defined in three forms, namely, in 
strategic, extensive, or in coalitional form. To for-
mulate a one-shot game in strategic form, we have 
to specify (i) the set of players and, for each player, 
(ii) the set of actions, and (iii) a payoff function 
measuring the desirability of the game’s possible 
outcomes, which depends on the actions chosen by 
all players. The set of actions can be finite, e.g., to 
bid on a contract or not, or continuous, e.g., the 
amount bid. If the players intervene more than once 
in the game, then we should additionally define (iv) 
the order of play, (v) the information acquired by 
the players over time (stages), and (vi) whether or 
not nature is involved in the game.

In a one-shot game, an action (move) and a strategy 
mean the same thing. In games where players inter-
vene more than once, the two concepts no longer coin-
cide. A strategy is then a decision rule that associates a 
player’s action with the information available to her at 
the time she selects her move. So an action, e.g., 
spending advertising dollars, is a result of the strategy. 
The word strategy comes from Greek (strategia) and 
has a military sense. An army general’s main task is to 
design a plan that takes into account (adapts to) all 
possible contingencies. This is precisely the meaning of 
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strategy in game theory. Whether in war, business or 
politics, it is never wise to allow yourself to be sur-
prised by the enemy. This does not imply that a win-
ning strategy always exists. Sometimes we must be 
content with a draw or even a reasonable loss.

One-shot games are a useful representation of 
strategic interactions when the past and the future 
are irrelevant to the analysis. However, if today’s 
decisions also affect future outcomes and are 
dependent on past moves, then a dynamic game is 
needed. In a repeated game, the agents play the 
same game in each round, that is, the set of actions 
and the payoff structures are the same in all stages 
(Mertens et al., 2015). The number of stages can be 
finite or infinite, and this distinction matters in 
terms of achievable outcomes. In a stochastic game, 
the transition between states depends on the players’ 
actions (Shapley, 1953; Mertens & Neyman, 1981; 
Ja�skiewicz & Nowak, 2018a, 2018b). In a multistage 
game, the players share the control of a discrete- 
time dynamic system (state equations) observed 
over stages (Başar & Olsder, 1999; Engwerda, 2005; 
Krawczyk & Petkov, 2018). Their choice of control 
levels, e.g., investments in production capacity or 
advertising, affects the evolution of the state varia-
bles (e.g., production capacity, reputation of the 
firm), as well as current payoffs. Differential games 
are continuous-time counterparts of multistage 
games (Isaacs, 1975; Başar et al., 2018).

Information plays an important role in any deci-
sion process. In a game, the information structure 
refers to what the players know about the game and 
its history when they choose an action. A player has 
complete information if she knows who the players 
are, which set of actions is available to each one, 
what each player’s information structure is, and 
what the players’ possible outcomes can be. 
Otherwise, the player has incomplete information. If, 
for instance, competing firms do not know their 
rivals’ production costs, then the game is an incom-
plete-information game. The game can also have 
perfect or imperfect information. Roughly speaking, 
in a game of perfect information, each player knows 
the other players’ moves when she chooses her own 
action, as in, e.g., chess or a manufacturer-retailer 
game where the upstream player first announces a 
product’s wholesale price, and then the downstream 
player reacts by selecting the retail price. The arche-
type of an imperfect-information game is the pris-
oner’s dilemma, where (in the original story) the 
players have to simultaneously choose between con-
fessing or denying a crime. A Cournot oligopoly, 
where each firm chooses its own production level 
without knowing its competitors’ choices, is another 
instance of an imperfect-information game.

The outcome of a game depends on the players’ 
behaviour. In a noncooperative game, e.g., R&D 
competition to develop a vaccine, each player opti-
mises her own payoff, whereas in a cooperative 
game, the players seek a collectively optimal solu-
tion. For instance, the members of a supply chain 
could agree to coordinate their strategies to maxi-
mise the chain’s total profit. The fundamental solu-
tion concept in a noncooperative game is the Nash 
equilibrium (Nash, 1950b, 1951). Let I ¼ 1, :::, nf g

be the set of players, Si the set of strategies of player 
i 2 I, and let her payoff function be given by 
giðs1, :::, snÞ :

Q
i2I Si ! R, where s ¼ ðs1, :::, snÞ:

Assuming the players are maximisers, the strategy pro-
file sN ¼ ðsN

1 , :::, sN
n Þ is a Nash equilibrium if 

giðsN
1 , :::, sN

n Þ � giðsN
1 , :::sN

i� 1, si, sN
iþ1:::, sN

n Þ for all si 2 Si 
and all i 2 I: At an equilibrium, no player has an 
interest in deviating unilaterally to any other admissible 
strategy. Put differently, if all other players stick to 
their equilibrium values, then player i does not regret 
implementing her equilibrium value too, which is 
obtained by best-replying to the choice of the others. 
That is, sN

i ¼ argmaxsi2Si giðsN
1 , :::sN

i� 1, si, sN
iþ1:::, sN

n Þ: A 
Nash equilibrium does not always exist, and there may 
be multiple equilibria, raising the question of which 
one to select (Selten, 1975). Existence and uniqueness 
conditions for Nash equilibrium typically rely on fixed- 
point theorems. If the game is one of incomplete infor-
mation, then the solution concept is a Bayesian Nash 
equilibrium (Harsanyi, 1967, 1968a, 1968b). Another 
noncooperative equilibrium solution concept, which 
predates the Nash equilibrium, is the Stackelberg equi-
librium, introduced in a two-player framework by von 
Stackelberg (1934). There is a hierarchy in decision- 
making between the two players: the leader first 
announces her action, and next the follower makes a 
decision that takes the leader’s action as given. Before 
announcing her action, the leader would of course 
anticipate the follower’s response and selects the action 
that gives her the most favourable outcome. The 
framework has been extended to several followers and 
leaders (Sherali, 1984).

In a cooperative game, the players coordinate their 
strategies in view of optimising a collective outcome, 
e.g., a weighted sum of their payoffs, and must agree 
on how to share the dividend of their cooperation 
(Moulin, 1988; Owen, 1995). Different solution con-
cepts have been proposed, each based on some desir-
able properties, typically stated as axioms, such as 
fairness, uniqueness of allocation, and stability of 
cooperation. The most-used solutions in applications 
are the core (Gillies, 1953), and the Shapley value 
(Shapley, 1953). In any solution, the set of acceptable 
allocations only includes those that are individually 
rational. Individual rationality means that a player 
will agree to cooperate only if she can get a better 
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outcome in the cooperative agreement than she 
would by acting alone. In a dynamic cooperative 
game, the agreement must specify, at the outset, the 
decisions that must be implemented by each player 
throughout the planning horizon. One concern in 
such games is the durability of the agreement over 
time. Clearly, it is rational for a player to leave the 
agreement at an intermediate time if she can achieve 
a better outcome. The literature on dynamic games 
has followed two streams in its quest to sustain 
cooperation over time, namely, building cooperative 
equilibria or defining time-consistent solutions. 
Through the implementation of some (punishing) 
strategies, the first stream seeks to make the coopera-
tive solution an equilibrium of an associated nonco-
operative game. If this is achieved, then the result 
will be at once collectively optimal and stable, as no 
player will find it optimal to deviate unilaterally from 
the equilibrium. See Osborne and Rubinstein (1994) 
for repeated games, Dutta (1995) and Parilina and 
Zaccour (2015) for different types of stochastic 
games; and Haurie and Tolwinski (1985), Tolwinski 
and Leitmann (1986), and Haurie and Pohjola (1987) 
for multistage and differential games. The second 
stream looks for time-consistent solutions, which are 
achieved by allocating the cooperative payoffs over 
time in such a way that, along the cooperative state 
trajectory, no player will find it optimal to switch to 
her noncooperative strategies. The idea was initiated 
in Petrosjan (1977) and has since been further devel-
oped (see Yeung & Petrosyan, 2018; Petrosyan & 
Zaccour, 2018).

Game theory has found applications in biology, 
economics, engineering, management, Operational 
Research, and political and social sciences.

2.12. Graphs and networks18

Graphs and networks are used to represent interac-
tions, connections or relationships between objects. 
In network optimisation problems, numerical attrib-
utes representing features such as costs, weights or 
capacities are assigned to objects (also called verti-
ces) or to connections between them. If connections 
are directed, we refer to them as arcs, otherwise we 
call them edges. Given an input graph with n verti-
ces and m arcs (or edges), the goal is to find a sub-
graph that exhibits desired properties (described by 
a given set of constraints) and that optimises the 
given objective function (usually measured as the 
sum of edge or vertex “weights” of the solution’s 
subgraph). In the following, we focus on some of 
the most fundamental and most studied problems in 
network optimisation.

The shortest path problem in arc-weighted graphs, 
for example, seeks to find a least costly path from 

the given source vertex s to the given target t. When 
the arc costs are non-negative, one can use the algo-
rithm of Dijkstra (1959), the efficient implementa-
tion of which uses Fibonacci heaps and runs in 
Oðmþ n log nÞ time. For graphs with possible nega-
tive arc costs, in OðmnÞ time the Bellman-Ford 
algorithm either finds the shortest path from s to all 
other vertices, or it proves that such a path does not 
exist due to the presence of a negative cost cycle 
reachable from s. The shortest path algorithms are 
explained in many textbooks, see e.g., Cormen, et al. 
(2022); Kleinberg and Tardos (2006); Schrijver 
(2003); Williamson (2019).

In the maximum flow problem (MF), in a given 
network with arc capacities, we want to send as 
much flow as possible from the given source s to the 
given sink t without violating the arc capacities. The 
problem was motivated by the conflict between East 
and West during the Cold War (Schrijver, 2002). 
Ford and Fulkerson (1957) develop the first exact 
algorithm that searches for augmenting paths in the 
residual network. Their fundamental result, known as 
the max-flow/min-cut theorem states that the max-
imum flow passing from the source to the sink is 
equal to the total capacity of the arcs in a minimum 
cut, i.e., the network that indicates how much more 
flow is allowed in each arc., which is a subset of arcs 
of the smallest total capacity, the removal of which 
disconnects the source from the sink. The same result 
using the duality theory of LPs is given in Dantzig 
and Fulkerson (1955). The famous results from graph 
theory such as Menger’s theorem, K€onig-Egev�ary the-
orem, or Hall’s theorem, follow from the max-flow/-
min-cut theorem (Ford & Fulkerson, 1962). The 
method of Ford and Fulkerson (1957) is pseudo- 
polynomial when arc capacities are integral, however 
it may fail to find the optimal solution and need not 
terminate if some of the arc capacities are irrational 
(Ford & Fulkerson, 1962). An algorithm that over-
comes this issue was independently discovered in the 
1970s by Edmonds and Karp (1972) and Dinic 
(1970), see also Dinitz (2006). Augmenting the flow 
along shortest paths (that is, along the paths with 
fewest edges) guarantees a polynomial-time complex-
ity. Instead of augmenting the flow along a single 
augmenting path as in Edmonds and Karp (1972), 
the algorithm of Dinic (1970) finds all shortest aug-
menting paths in a single phase. Another stream of 
MF algorithms exploits the preflow idea of Karzanov 
(1974) in which the vertices are overloaded with the 
excess flow (i.e., more incoming flow than the out-
going flow is allowed). Subsequent improvements are 
obtained in the following years. An important break-
through is achieved by Goldberg & Tarjan with the 
introduction of push-relabel algorithms (Goldberg & 
Tarjan, 1988). A pseudoflow algorithm for the 
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maximum flow is introduced by Hochbaum (2008) 
and it is later improved in Hochbaum and Orlin 
(2013). The recent implementation by Goldberg et al. 
(2015) is competitive with the Boykov and 
Kolmogorov (2004) method and the pseudoflow 
approach. Further historical details and a more com-
plete list of references can be found in Ahuja, et al. 
(1993); Dinitz (2006); Goldberg and Tarjan (2014); 
Williamson (2019). Currently, the best strongly poly-
nomial bounds are obtained by Orlin (2013) and 
King et al. (1994). However, new and improved MF 
algorithms continue to be discovered. The most 
recent trends use the idea of electrical flows for 
obtaining faster (exact or approximate) algorithms, 
see, e.g., Chapter 8 of Williamson (2019).

In the minimum cost flow problem (MCF), for 
each arc of the graph, a cost is incurred per unit of 
flow that traverses it. The goal is to send units of a 
good that reside at one or more supply vertices to 
some other demand vertices, without violating the 
given arc capacities at minimum possible cost. 
Edmonds and Karp (1972) introduce the scaling 
technique for the MCF. The technique is later 
improved by Orlin (1993). The algorithms of Vygen 
(2002) and Orlin (1993) have the best-known 
strongly polynomial complexity bounds for the 
MCF. Kov�acs (2015) provides a comprehensive lit-
erature overview and gives an experimental evalu-
ation of MCF algorithms based on network-simplex, 
scaling or cycle-cancelling techniques. The MCF is 
treated in detail in many textbooks, Ahuja et al 
(1993); Korte and Vygen (2008); Williamson (2019). 
One of the important results is the integrality of 
flow property: if all demands/supplies and arc 
capacities are integers, then there exists an optimal 
MCF solution with integer flow on each arc. The 
result follows from the totally unimodular property 
of the constraint matrix when the MCF is modelled 
as a linear program.

In the minimum cut problem (MC), one searches 
for a proper subset of vertices S of a given arc- 
capacitated graph, such that the total capacity of 
arcs leaving S is minimised. For directed graphs, the 
algorithm of Hao and Orlin (1994) is based on MF 
calculations between chosen pairs/subsets of vertices 
and exploits the push-relabel ideas. For undirected 
graphs, the Gomory–Hu tree, which is a weighted 
tree that represents the minimum s-t cuts for every 
s-t pair in the graph, is introduced in Gomory and 
Hu (1961). This tree is constructed after n – 1 MF 
computations, and a simpler procedure has been 
later given by Gusfield (1990). The algorithm of 
Padberg and Rinaldi (1990a) improves the ideas of 
Gomory and Hu (1961) and is widely used within 
branch-and-cut schemes for solving the travelling 
salesperson problem (TSP) and related problems. 

The maximum adjacency ordering together with 
Fibonacci heaps is used in Nagamochi et al. (1994). 
Randomised approaches can be found in Karger and 
Stein (1996); Karger (2000). The method of Karger 
(2000) is de-randomised by Li (2021). Practical per-
formance of some of these algorithms is evaluated 
in Chekuri et al. (1997); J€unger et al. (2000). For 
additional and more recent references, see the book 
by Williamson (2019).

The problems mentioned so far all belong to the 
class P, however most of the network optimisation 
problems that are relevant for practical applications 
are NP-hard. We highlight two of them that serve 
as drivers for discovering new algorithms and meth-
odologies that can be easily adapted to other diffi-
cult optimisation problems.

Given an undirected graph with non-negative 
edge costs, the Steiner tree problem in graphs (STP) 
asks for finding a subtree that interconnects a given 
set of vertices (referred to as terminals) at minimum 
cost. Two special cases can be solved in polynomial 
time: when all vertices are terminals (the minimum 
spanning tree problem), or when there are only two 
terminals (the shortest path problem). In general, 
however, the decision version of the STP is 
NP-complete (Karp, 1972b). Older surveys covering 
developments of first MIP formulations, Lagrangian 
relaxations, branch-and-bound methods and heuris-
tics can be found in Maculan (1987); Winter (1987). 
The research on the STP was marked by polyhedral 
studies in the 1990s (Goemans, 1994; Chopra & Rao, 
1994). Exact solution methods for the STP are based 
on a sophisticated combination of: reduction techni-
ques (Gamrath et al., 2017; Rehfeldt & Koch, 2021), 
dual and primal heuristics (Pajor et al., 2018) 
embedded within branch-and-cut or branch-and- 
bound frameworks, see (Polzin, 2003; Vahdati 
Daneshmand, 2003; Polzin & Vahdati Daneshmand, 
2009; Gamrath et al., 2017; Fischetti et al., 2017a). 
Currently best approximation ratio for the STP is 
1.39 (Goemans et al., 2012). A comprehensive survey 
of the results obtained in the last three decades is 
given by Ljubi�c (2021). State-of-the-art computational 
techniques for the STP are due to Rehfeldt (2021).

The Travelling salesperson problem (TSP) aims at 
finding the answer to the following question: If a 
travelling salesperson wishes to visit all n cities from 
a given list exactly once, and then return to the 
home city, what is the cheapest route they need to 
take? For the history of the problem, see Applegate 
et al. (2011) and the book by Cook (2011). Since 
1954, when Dantzig et al. (1954) found a provably 
optimal solution for a 49-city problem instance, 
many important improvements in the development 
of exact methods have been achieved19. Facet-defin-
ing inequalities are investigated in Padberg and 
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Rinaldi (1990b); J€unger et al. (1995). MIP formula-
tions, including the famous subtour-elimination con-
straints model by Dantzig et al. (1954), are 
compared in Padberg and Sung (1991). Branch-and- 
cut methods are developed in Applegate et al. 
(2011); J€unger et al. (1995); Padberg and Rinaldi 
(1991). For the most recent overview on approxima-
tion algorithms for the TSP see Traub (2020). 
Helsgaun (2000)20 provides an efficient implementa-
tion of the k-opt heuristic of Lin and Kernighan 
(1973). Cook et al. (2021) extend the algorithm of 
Helsgaun (2000) to deal with additional constraints 
in routing applications and win the Amazon Last 
Mile Routing Challenge in 2021. The TSP solver 
Concorde21 (Applegate et al., 2011) incorporates 
best algorithmic ideas from the past 60 years of 
research on the topic. By combining techniques of 
Helsgaun (2000) and Applegate et al. (2011), instan-
ces with millions of vertices can be solved to within 
1% of optimality, see e.g., TSP solutions on graphs 
with up to 1.33 billion of vertices22.

2.13. Heuristics23

Etymologically meaning to find/discover, heuristics 
make use of previous experience and intuition to 
solve a problem. A heuristic algorithm is designed to 
solve a problem in a shorter time than exact meth-
ods, by using different techniques ranging from sim-
ple greedy rules to complex structures, which could 
be dependent on the problem characteristics; however 
it does not guarantee to find the optimal solution 
(§2.4; §2.9). Heuristics have been used in the oper-
ational research area extensively with respect to the 
applications (see, for example, §3.12, §3.14, §3.15, 
and §3.32). In this subsection, we review the methods 
employed in the development of heuristics.

Classifications and strategies provided in the lit-
erature guide us for the methods employed in heu-
ristics. Below we provide a thorough classification 
and explain briefly the basic methods used under 
each class.

Induction, being the simplest method to be 
applied with an analogy to the mathematical induc-
tion, is to solve the original complex problem by 
extending the results and insights obtained from 
small and simpler versions of the problem (Silver 
et al., 1980; Silver, 2004; Laguna & Mart�ı 2013).

Restriction methods primarily focus on explicitly 
eliminating some parts of the solution space so that 
the problem will be solved given a restricted set of 
solutions (Silver et al., 1980; Zanakis et al., 1989; 
Silver, 2004; Laguna & Mart�ı 2013). One way of 
doing this is to identify common attributes of the 
optimal solution and search among the solutions hav-
ing these attributes only (Glover, 1977). Another 

restriction can be applied by eliminating infeasible 
solutions considering a combination of decision vari-
ables which dictates incompatible values. Beam 
Search (Morton & Pentico, 1993) is a good example 
of this class of heuristics which works with a trun-
cated tree structure using strategies similar to a 
branch-and-bound algorithm (§2.4). The trimming of 
the tree is utilised by a parameter called beam width 
to indicate how many nodes to have at every level of 
the tree.

Heuristics using decomposition/partitioning 
method employ different approaches to divide the 
problem into smaller and tractable parts, solve these 
parts separately and combine their solutions to give 
the solution to the original problem (Foulds, 1983; 
Zanakis et al., 1989; Silver, 2004; Laguna & Mart�ı 
2013). The methods used to divide and then combine 
the solutions are usually dictated by the nature of the 
problem. For example, Hierarchical Planning pro-
posed by Hax and Meal (1973) considers the organ-
isational level breakdown and the output of one 
decomposed problem becomes the input for the 
other. Rolling horizon also falls under this category 
(Stadtler, 2003). A problem with a sequence of deci-
sions that span a long planning horizon is solved by 
dividing the planning horizon into smaller planning 
intervals. The problem with these small planning 
intervals is solved continually by fixing the decisions 
for the first time period and moving into the next 
time period to solve the next problem. Another 
approach takes the characteristics of the input data 
into account and divides the problem such that each 
part includes only tractable amount of data. For 
example, data showing clusters of geographically close 
customers is suitable for this type of partitioning. 
The decomposed problems are solved independently, 
and their solutions are combined with a certain rule. 
Divide and Conquer algorithm heuristically clusters 
vertices on a given graph, generates a smaller graph 
for each cluster and solves the original problem for 
each cluster independently (Akhmedov et al., 2016). 
Decomposition can be made based on an element of 
the problem, for example solving a logistics problem 
after dividing it into parts per vehicle. Other decom-
position approaches benefit from the structure of the 
mathematical model developed for the problem. 
Examples of this sort are Lagrangian Relaxation 
(Fisher, 1981), in which complicating constraints are 
lifted to the objective function with a penalty, and 
Benders Decomposition (Benders, 1962; Rahmaniani 
et al., 2017), in which once complicating variables are 
fixed, the remaining problem can be divided into 
problems to be solved independently.

Approximation methods focus on the mathemat-
ical models and utilise different strategies to make 
the problem tractable which results in a reduced 
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size of the problem (Silver et al., 1980; Silver, 2004). 
One strategy widely used is the aggregation over 
variables or stages. Another common strategy is to 
modify the variables, the objective function or the 
constraints of the mathematical model in different 
ways, such as converting discrete variables into con-
tinuous variables, using a linear objective function 
instead of the non-linear objective function,, linear-
ising nonlinear constraints, and either eliminating 
or weakening some of the constraints (Glover, 
1977). Kernel Search (Angelelli et al., 2010), which 
combines relaxation with decomposition over the 
decision variables, demonstrates that a heuristic may 
use more than one class of methods in its design.

Constructive heuristics start from an empty solu-
tion and build a complete solution by adding an 
element of the problem following a rule at every 
step, such as the nearest neighbour algorithm 
(Bellmore & Nemhauser, 1968) for the travelling 
salesman problem. Usually constructive heuristics 
are of greedy nature by making the decision for 
local optimum in every step. These algorithms can 
be enhanced by adding a look-ahead mechanism 
that is by estimating the future effects of a decision 
rather than just the current effect to avoid pitfalls of 
being greedy.

Improvement heuristics start with a complete solu-
tion and improve it by modifying one or more ele-
ments of the solution in every iteration until a 
predetermined stopping condition is achieved. 
Improvement heuristics in their simplest form utilise 
a local search which is defined over a neighbourhood 
structure to express how the moves are performed 
from one iteration to the next. k-opt is an example 
of this sort which replaces k elements of a solution 
with another set of k elements in every step if it is 
beneficial (Lin & Kernighan, 1973). The parameter k 
determines the size of the local search and implicitly 
applies the restriction method discussed above. A 
neighbourhood is defined by a set of solutions which 
are reachable form the current solution. A local 
search is performed by moving from the current 
solution to another solution in the neighbourhood of 
it (next solution). Selection of the next solution is 
done by accepting either the one among random 
choices that improves the objective function value 
first (random descent if it is a minimisation problem) 
or the one resulting in the best objective function, 
i.e., the local optimum, with respect to that neigh-
bourhood (steepest descent for a minimisation prob-
lem). This simple structure focuses on the local 
information (exploitation of the accumulated search 
experience) and is known as intensification (Glover, 
1990). While it will be useful if the structure of the 
problem is appropriate, it may result in not good 
enough solutions otherwise. Hence, the improvement 

heuristic will benefit if it can explore other parts of 
the solution space, which is known as diversification 
(Glover, 1990). Two immediate strategies to be 
employed are either to start the search from different 
initial solutions and choose among the final solutions 
obtained (multi-start algorithms) or to allow moving 
to worse solutions if this direction will provide a bet-
ter path for the future selections (hill-climbing strat-
egy for a minimisation problem).

Even though metaheuristics (Glover, 1986) are 
improvement methods, since they advance notably, 
considering them as a separate class is worthwhile. 
Metaheuristics utilise a local search together with 
intensification and diversification mechanisms and aim 
at eliminating the problem-dependent and domain-spe-
cific nature of other heuristics. Simulated Annealing 
(Kirkpatrick et al., 1983) is one of the most popular 
metaheuristics which uses a single solution in its local 
search with a random descent and utilises hill-climbing 
strategy for diversification. Tabu Search (Glover, 1986) 
is an example of deterministic metaheuristic working 
with a single solution throughout the search. It expli-
citly uses history of search in both intensification and 
diversification mechanisms. Genetic Algorithm 
(Holland, 1975) is another popular metaheuristic com-
prising of random components for intensification and 
diversification but working with a set of solutions dur-
ing the search. Variable Neighbourhood Search 
(Hansen & Mladenovi�c 1999) is an excellent example 
of a design in which diversification is provided by sys-
tematically changing neighbourhood structures.

Matheuristics are heuristic approaches that exploit 
exact approaches (and their complementary strengths) 
without guaranteeing to find the optimal solutions. 
While matheuristics are designed with different strat-
egies, we summarise the most widely used three 
strategies.

Those matheuristics which are originally exact 
approaches yet are implemented heuristically are 
overlapping with what is described under restriction 
and decomposition/partitioning methods in this sub-
section. Apart from those overlapping works, in the 
context of dynamic programming, the corridor 
method constructs neighbourhoods as corridors 
around the state trajectory of the incumbent solu-
tion (Sniedovich & Viß 2006). Defined (preferably 
large) neighbourhoods can be searched with exact 
approaches. Dynasearch algorithm uses dynamic 
programming to search an exponential size neigh-
bourhood stemming from compound moves in 
polynomial time (Congram et al., 2002).

Another group of matheuristics benefits from mul-
tiple exact models collectively within a heuristic 
mechanism. Tarhan and O�guz (2022) decompose the 
scheduling planning horizon into a set of buckets, 
solve a time-indexed model to generate a restricted 
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model for each bucket and solve the restricted models 
sequentially to construct a complete feasible solution. 
Della Croce et al. (2014) solve a restricted time- 
indexed model and a model with positional variables 
iteratively to search the neighbourhood of the incum-
bent solution. Solyalı and S€ural (2022) propose a 
matheuristic algorithm by sequentially solving differ-
ent mixed integer linear programs.

Third strategy is to incorporate exact models into 
different components of the heuristics. This 
approach may have several variations. First version 
includes those matheuristics having a constant inter-
action between heuristics and mathematical pro-
gramming models. Manerba and Mansini (2014) use 
the Variable Neighbourhood Search to decide which 
variables to fix in their fix-and-optimise algorithm. 
Archetti et al. (2015) use different integer program-
ming models in both the intensification and the 
diversification phases of their Tabu Search algorithm 
to improve the objective function value and/or 
restore feasibility. Adouani et al. (2022) apply exact 
and heuristic approaches respectively to change the 
value of so-called upper and lower level variables in 
the neighbourhood search. Other variations include 
matheuristics that sequentially call heuristics and the 
models; e.g., exact approaches following heuristics 
for post-optimisation (Pillac et al., 2013), exact 
approaches generating the initial solutions from 
heuristics (Macrina et al., 2019), exact approaches 
supporting heuristics at their both beginning and 
end to provide an initial solution and to improve 
the final solution, respectively (Archetti et al., 2017).

We refer the reader for a detailed overview of 
heuristics to the works of M€uller-Merbach (1981) 
and Silver (2004), of metaheuristics to the work of 
Blum and Roli (2003), and of matheuristics to the 
work of Boschetti and Maniezzo (2022). The most 
recent book by Mart�ı et al. (2018) on heuristics is 
another invaluable resource. Finally, the progress of 
metaheuristics is discussed by Swan et al. (2022). 
This work provides a critical analysis of the current 
state of metaheuristics by focusing on cultural and 
technical barriers.

For the future studies in the area of heuristics, 
new techniques and powerful mechanisms could be 
derived from practical problems to address complex 
systems of today’s world. Another contribution can 
be to explore and integrate applications of artificial 
intelligence to deal with large scale data. 
Matheuristics are especially often applied for 
single-objective problems and accordingly, their 
implementation for multi-objective optimisation is a 
promising future research direction. For practical 
purposes, such as to be used within commercial 
solvers, it is also worthwhile to develop generic 
matheuristic frameworks that can address specific 

classes of optimisation problems. Parallel computing 
(i.e., parallel solution of mathematical models) and 
integration with machine learning (to, for example, 
manage the interaction with mathematical models 
and heuristics) are some other invaluable research 
directions for matheuristics.

2.14. Linear programming24

Linear programming (LP) offers a framework for 
modelling the problem of extremising a linear eco-
nomic function under a set of linear inequality con-
straints. Solving such models can be approached 
algebraically as well as geometrically: finding an 
extreme point of a polyhedron at which a given eco-
nomic function is maximised or minimised. Since 
its inception in 1947 by Dantzig, the simplex 
method has been the standard algorithm for solving 
linear programs. A precursor, unbeknownst then to 
Dantzig, was a set of ideas exposed by Fourier in 
1826 and 1827, and partly rediscovered by Motzkin 
in 1936, hence the now famous Fourier-Motzkin 
elimination method (Dantzig, 1963, p. 84–85; 
Schrijver, 1998, p. 155–157) that solves a set of lin-
ear inequalities by sequentially eliminating variables, 
at the cost though of exponentially increasing the 
number of constraints.

But since the 1930s, several researchers had been 
making a headway. Working independently from 
one another, they had grappled with specific prob-
lems: balancing the distribution of revenue (output) 
with the distribution of outlays (input) in the eco-
nomic activity of a whole country (Leontief, 1936); 
general economic equilibrium (von Neumann, 
1945); production planning (Kantorovich, 1960); 
transportation planning (Hitchcock, 1941; 
Kantorovitch, 1958; Koopmans, 1949); deployment 
planning and logistics (Dantzig, 1991). Dantzig 
(1982) said he had been “fascinated” by Leontief’s 
interindustry input-output model and wanted to 
generalise it by considering many alternative activ-
ities. He also credits von Neumann with the duality 
theory of linear programming, which parallels the 
work the latter did with Morgenstern on the theory 
of games.

A linear program can always be expressed (in 
standard form) as fminimise cx, subject to 
Ax ¼ b, x � 0g, where x is an n-vector of decision 
variables, A is an m by n constraint matrix that 
somehow weighs the variables, b is an m-vector that 
puts limits on the possible values of x, and cx is an 
economic function, called the objective function, 
that measures the quality of a given solution x. It is 
customary to assume, without loss of generality, that 
matrix A is of rank m and that m is smaller than n 
(see, e.g., Papadimitriou & Steiglitz, 1982). Since 
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minðcxÞ ¼ � maxð� cxÞ, one can minimise a “cost” 
as well maximise a “profit”. Linear programs come 
in pairs: fminimise cx, subject to Ax ¼ b, x � 0g
and fmaximise yb, subject to yA � cg. The former 
is called the primal, the latter is the dual. The dual-
ity theorem of linear programming has been proved 
to be equivalent to Farkas’s lemma that was pub-
lished in 1902 (see, e.g., Dantzig, 1963). This implies 
that finding an optimal solution to a linear program 
is equivalent to finding a feasible solution to a sys-
tem made of the primal and dual constraints with 
the additional inequality cx � yb:

With the introduction of duality, we now have 
three algorithms for solving LPs: the (primal) sim-
plex method that maintains (primal) feasibility 
throughout and tries to achieve optimality; the dual 
simplex method that maintains dual feasibility and 
moves toward primal feasibility; and the primal-dual 
algorithm that starts with a feasible solution to the 
dual and keeps improving it by solving an associated 
restricted primal. The primal-dual algorithm is the 
favoured simplex tool for solving most network flow 
problems, for instance, the famous algorithm of 
Ford and Fulkerson (1962) for maximum flow. The 
dual simplex method together with column gener-
ation may come in handy when the number of con-
straints is huge in comparison with the number of 
variables (Desaulniers et al., 2006).

A set of linear inequalities defines a convex poly-
hedron P. Therefore, since the objective function is 
linear, there are only three possibilities: no feasible 
solution (if and only if P is empty); exactly one opti-
mal solution, located at some extreme point of P; 
infinitely many optimal solutions, located at the 
points of a face of P of dimension 1 or more, 
including its extreme points. The simplex method 
moves sequentially along the edges of P from one 
extreme point to another. Algebraically, it moves 
from one set of m linearly independent columns, 
called a basis, to another. Each basis induces a basic 
solution defined by setting to zero all the n – m var-
iables that do not correspond to its columns. A 
basic solution is feasible if all its components are 
non-negative. The move from one basis to another 
goes as follows: one column is dropped and replaced 
by a new one. This exchange, called a pivot, follows 
a set of rules for choosing the column that enters 
the basis and the one that exits. It is such that, bar-
ring degeneracy, the objective function decreases 
strictly in value at each pivot.

Degeneracy is rooted in the fact that an extreme 
point of P may correspond to several bases. The 
algebraic expression of this defectiveness is a basic 
feasible solution with more than n – m zero compo-
nents. This occurs when the number of hyperplanes 
intersecting at an extreme point is greater than the 

minimum necessary to define it. (Think of the tip of 
a pyramid that has a square base.) Pivoting in the 
presence of degeneracy may cause the simplex 
method to cycle. Several schemes have been devised 
to avoid cycling by carefully choosing the entering 
and leaving columns. Bland’s rule, considered as 
both simple and elegant, has been widely adopted 
(Bland, 1977). As for finding an initial solution, if 
the problem is feasible, this can be done by intro-
ducing artificial non-negative variables that one 
then tries to drive down to zero.

Evidence shows that the simplex method is very 
fast in practice (see Shamir, 1987), but Klee and 
Minty (1972) designed an LP for which it must visit 
each one of the 2n or so extreme points, which 
proved that it is not “good” in the sense of 
Edmonds (1965b). A “good algorithm” having been 
defined as one for which the worst-case complexity 
is polynomial with respect to the dimension of any 
instance, an important open question became “Is LP 
in P?”. Khachiyan answered by the affirmative in 
1979 when he adapted to the specific case of linear 
programming a known approach in convex opti-
misation that had been contributed to by several 
Soviet mathematicians (see G�acs & Lov�asz, 1981; 
Bland et al., 1981; Chv�atal, 1983). The argument 
goes as follows: given an LP, start with an ellipsoid 
that is big enough to contain the set S of feasible 
solutions if it is not empty. At each iteration, check 
whether the centre of the ellipsoid is a solution. If it 
is not, there is a hyperplane H separating it from S. 
Cut the ellipsoid in half by the hyperplane parallel 
to H that goes through the centre. Then determine 
the smallest ellipsoid that contains the half-ellipsoid 
where one is trying to locate S, and repeat. Stop 
either with a solution (located at a centre) or with 
an ellipsoid that is too small to contain S. This is an 
important theoretical result (see Gr€otschel et al., 
1981), but with very little practical use as far as 
solving actual LPs goes.

The same cannot be said, however, of the interior 
point algorithm introduced by Karmarkar (1984), in 
which the moves happen strictly inside the set of 
feasible solutions instead of taking place on the 
envelope. Indeed, Karmarkar’s algorithm is polyno-
mial and often competitive with the simplex 
method. It assumes a canonical form for linear pro-
gramming in which the variables are constrained to 
Ax ¼ 0, x � 0 and x 2 S ¼ x : x1 þ x2 þ :::þ xn ¼ 1;

it further assumes, without loss of generality, that 
the point e=n ¼ ð1=n, 1=n, :::, 1=nÞ is feasible and 
that the minimum value of the objective function cx 
is zero. As it seeks to stay away from the envelope 
of the solution polyhedron, the algorithm builds a 
sequence of strictly feasible solutions, i.e., that have 
strictly positive components, and makes a repetitive 
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use of e / n. The gist of the algorithm is the follow-
ing: given a strictly feasible solution xk , one can
define a simple bijective scaling function f that maps
S onto itself so that xk is mapped onto e / n, away
from the envelope, and so that f has the following
property: if, for any variable x, f(x) is strictly feasible
in the “new” space, then so too is x in the initial
space. In the “new” space, the gradient of the trans-
formed objective function is projected on the null
space of the transformed matrix A augmented of a
row of 1s, to account for S. If p denotes that projec-
tion, one then moves in the direction of – p, i.e., in
the direction of the steepest descent, while feasibility
is maintained. The algorithm stops at a point ykþ1

before reaching the envelope of the feasible region.
That point is transformed to xkþ1 by f�1, and this is
repeated with a new scaling bijection (see Strang,
1987; Goldfarb & Todd, 1989; Fang & Puthenpura,
1993; Winston & Venkataramanan, 2003). Important
links between Karmarkar’s algorithm and the ellipsoid
method have been pointed out (Todd, 1988; Ye,
1987).

Integer Linear Programming (ILP), i.e., linear
programs in which the variables are restricted to
being integer-valued, is arguably the most challeng-
ing and beautiful expression of LP. Unfortunately,
whereas LP is in P, ILP is not, unless P ¼ NP
(Karp, 1972a). However, there are classes of LPs for
which, if there exists a solution at all, an integer
solution is guaranteed without having to make it a
requirement. This is the case, e.g., of most network
flow models. And there are classes of ILPs for which
any extreme point of the polyhedron of integer solu-
tions can be obtained by “shaving off” non-integer
extreme points of the outer polyhedron of real-val-
ued solutions with hyperplanes the number of which
is bounded by a polynomial in the dimension of the
instance (Edmonds, 1965a, 1965b; Gr€otschel et al.,
1981, 1988; Cook et al., 1998). Furthermore, tackling
NP-complete problems has benefited greatly from
this approach (see, e.g., Dantzig et al., 1954;
Applegate et al., 2007).

2.15. Mixed-integer programming25

Mixed-integer programming (MIP) is an NP-hard
generalisation of linear programming (LP; §2.14), in
which some or all of the variables are required to
take whole-number values. Way back in the late
1950s, it was already realised that a wide variety of
important practical problems could be modelled as
MIPs (Dantzig, 1960; Markowitz & Manne, 1957).
Of course, at the time, there were no good algo-
rithms, or indeed computers, to enable one to solve
MIPs from real-life applications. Since then, how-
ever, dramatic progress has been made in theory,

algorithms and software. Indeed, it is now possible
to solve many real-life MIPs to proven optimality
(or at least near-optimality) on a laptop. In this sub-
section, we review the main developments in this
area. For more details, we refer the reader to the
textbooks by Chen et al. (2011) and Conforti et al.
(2014).

In 1958, Gomory (1958) developed the first
finitely-convergent exact algorithm for pure IPs
(i.e., MIPs in which all variables are restricted to
whole-number values). His method was based on
cutting planes, i.e., additional linear constraints
which cut off fractional LP solutions. Shortly after,
Land and Doig (1960) invented the branch-and-
bound method, in which a sequence of LP relaxa-
tions is embedded within a tree structure. A few
years later, Balas (1965) devised a simpler branch-
and-bound algorithm, for pure 0-1 LPs, which did
not rely on LPs at all.

In the 1960s and 1970s, researchers invested con-
siderable effort into deriving “deep” cutting planes.
This led to the discovery of Gomory mixed-integer
cuts (Gomory, 1960), corner polyhedra (Gomory,
1969), intersection cuts (Balas, 1971), Chv�atal-
Gomory cuts (Chv�atal, 1973), disjunctive cuts (Balas,
1979; Owen, 1973), and cuts derived from a study of
the so-called knapsack polytope (Balas, 1975; Wolsey,
1975). These topics are still being studied to this day
(see, e.g., Conforti et al., 2014; Cornu�ejols, 2008).

In 1980, Balas and Martin (1980) developed a
general-purpose heuristic for 0-1 LPs, called “pivot-
and-complement”. This initiated a line of work on
so-called “primal heuristics”, which also continues
to this day. We will mention this again below.

A major step forward occurred in 1983, with the
publication of an award-winning paper by Crowder
et al. (1983). Basically, they did the following before
running branch-and-bound: (i) “pre-process” the
formulation in order to make the LP relaxation
stronger, (ii) automatically generate knapsack cuts
to further improve the relaxation, (iii) run a simple
primal heuristic in order to obtain a feasible integer
solution early on, and (iv) permanently fix some
variables to 0 or 1 based on reduced-cost arguments.
In this way, they were able to solve ten real-life 0-1
LPs that had previously been regarded as unsolvable.
The largest of these instances had 2756 variables
and 756 constraints, a phenomenal achievement at
the time. The approach of Crowder et al. (1983) is
now called “cut-and-branch”.

Around the same time, there were several major
theoretical advances, such as the proof of the
“polynomial equivalence of separation and opti-
misation” (Gr€otschel et al., 1981) and the develop-
ment of a polynomial-time algorithm for pure IPs

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 455



with a fixed number of variables (Lenstra, 1983). 
For details, we recommend Schrijver (1986).

Coming back to a more practical perspective, sev-
eral improvements were made to the basic cut-and- 
branch scheme in the 1980s and 1990s. For brevity, 
we just mention some highlights. Several authors 
proposed more powerful pre-processing procedures 
(e.g., Dietrich et al., 1993; Hoffman & Padberg, 
1991; Savelsbergh, 1994). Gu et al. (1998) developed 
more effective algorithms for generating knapsack 
cuts. Researchers also began to study cutting planes 
for mixed 0-1 LPs (e.g., Padberg et al., 1984; Van 
Roy & Wolsey, 1986), which eventually led to effect-
ive cut-and-branch algorithms for such problems 
(e.g., Van Roy & Wolsey, 1987).

The next milestone was the invention of branch- 
and-cut by Padberg and Rinaldi (1987). In branch- 
and-cut, one has the option of generating cutting 
planes at any node of the branch-and-bound tree, 
rather than only at the root node (as in cut-and- 
branch). Although this is a fairly simple idea, 
Padberg and Rinaldi added several ingredients to 
turn it into a highly effective tool. For example, (i) 
care is taken to ensure that cutting planes generated 
at one node of the tree remain valid at all other 
nodes, (ii) whenever a cutting plane is generated, it 
is stored in a so-called “cut pool”, (iii) when visiting 
a new node of the tree, one can check the cut pool 
to see if it contains any useful cuts, (iv) one uses a 
heuristic rule to decide when to stop cutting and 
start branching at any given node.

Several developments in the 1990s are also worth 
mentioning. First, there were some interesting works 
on methods to construct “hierarchies” of relaxations 
for 0-1 and mixed 0-1 LPs (e.g., Balas et al., 1993; 
Lov�asz & Schrijver, 1991; Sherali & Adams, 1990). 
The method in Balas et al. (1993), called lift-and- 
project, turned out to be useful when embedded 
within a branch-and-cut algorithm for mixed 0-1 
LPs (Balas et al., 1996a). Shortly after that, Balas 
et al. (1996b) obtained good results using Gomory 
mixed-integer cuts instead. This last result was a big 
surprise: up to then, researchers had thought that 
Gomory cuts were of theoretical interest only.

By the end of the 1990s, researchers were rou-
tinely solving real-life MIPs with thousands of varia-
bles and hundreds of constraints to proven 
optimality. Of course, MIP in general is NP-hard, 
so one could not expect to solve all instances so 
quickly. Indeed, Cornu�ejols and Dawande (1999) 
found a family of 0-1 LPs, called “market split” 
problems, which proved to be especially challenging 
for branch-and-cut. This led to the development of 
a new class of specific algorithms called basis reduc-
tion methods, see, e.g., Aardal et al. (2000).

In the period 2000-2010, there was a flurry of 
impressive works concerned with primal heuristics 
for MIP. For brevity, we mention just a few exam-
ples. Fischetti and Lodi (2003) devised a method 
called local branching, which is essentially a form of 
neighbourhood search in which the neighbourhoods 
– being of exponential size – are searched by solving 
auxiliary MIPs. Shortly after, Danna et al. (2005) 
presented relaxation-induced neighbourhood search 
or RINS, which solves a series of small MIPs to 
search for integer solutions that are “close” to the 
solution of the LP relaxation. Both local branching 
and RINS are improving heuristics, i.e., the neigh-
bourhoods are defined with respect to a reference 
feasible solution to be improved. Remarkably, they 
solve auxiliary MIPs by simply calling a MIP solver 
in a black-box fashion (with work limits), thus wit-
nessing the maturity of the field. In the same year 
of RINS, Fischetti et al. (2005) introduced the feasi-
bility pump, which is highly effective for MIPs 
where even finding a feasible solution is challenging.

The development of the branch-and-cut technol-
ogy has been so impressive that many of the above- 
mentioned developments have been incorporated in 
software packages. This includes major commercial 
packages, such as CPLEX, Gurobi and FICO 
Xpress, and non-commercial ones that are free to 
academics, such as SCIP. We remark that this con-
tinual development in algorithms and software has 
been greatly enhanced by the creation and constant 
maintenance of MIPLIB, a library of MIP instances 
on which all new methods are now routinely tested 
(see Bixby et al., 1992; Gleixner et al., 2021).

We end this section by briefly mentioning three 
other areas of constant development. First, there has 
been great progress on decomposition approaches to 
MIPs that have special structure, with branch-and- 
price being a particularly effective method (e.g., 
Desaulniers et al., 2006). Second, there is also by 
now a substantial literature on stochastic MIPs (e.g., 
K€uç€ukyavuz & Sen, 2017). Third, considerable effort 
has been made to extend the MIP algorithmic tech-
nology to cope with nonlinearities, leading to the 
blossoming field of mixed-integer nonlinear pro-
gramming or MINLP (e.g., Lee & Leyffer, 2012). 
Particularly effective algorithms and software pack-
ages are now available for convex MINLP (e.g., 
Kronqvist et al., 2019), and one of its important spe-
cial cases, mixed-integer second order cone pro-
gramming (e.g., Benson & Sa�glam, 2013).

2.16. Nonlinear programming26

Nonlinear programming is a generalisation of linear 
programming (§2.14), in which the objective func-
tion or the constraints can be given by general 

456 F. PETROPOULOS ET AL.



nonlinear functions. Mathematically, a nonlinear 
programming problem is represented as

ðPÞ minff ðxÞ : x 2 Sg:

Here, S ¼ fx 2 Rn : giðxÞ � 0, i ¼ 1, :::, mg
denotes the feasible region, where, gi : Rn ! R, i ¼
1, :::, m, and f : Rn ! R denotes the objective 
function.

In comparison with linear programming, nonlin-
ear programming problems have much more expres-
sive power. As such, nonlinear programming 
problems naturally arise in almost every setting, 
ranging from investment planning to machine learn-
ing; from engineering to medicine; and from energy 
to sustainability (§3.14; §3.5; §3.19; §3.9; 
§3.11; §3.13).

In this subsection, we will give a brief overview 
of theory and algorithms. While we will not cover 
the modelling aspect, we will mention some classes 
of optimisation problems with desirable properties, 
which should imply that using an optimisation 
model from such classes would significantly increase 
the likelihood of solving it.

The difficulty of the generic optimization prob-
lem (P) is largely determined by the properties of 
the objective function f : Rn ! R and of the func-
tions gi, i ¼ 1, :::, m that define the feasible region 
S � Rn: Generally speaking, increasingly more 
restrictive assumptions on f and on gi, i ¼ 1, :::, m 
give rise to increasingly more structured optimisa-
tion problems with stronger and more desirable 
properties. For instance, the special case in which 
each of f and gi, i ¼ 1, :::, m is a linear function, 
referred to as linear programming (§2.14), is argu-
ably the most structured class of optimization prob-
lems with very appealing theoretical properties, 
which lay the groundwork for several effective solu-
tion methods such as the simplex method (see, e.g., 
Dantzig, 1990) and interior-point methods 
(Karmarkar, 1984; Wright, 1997; Ye, 1997). In con-
trast, general nonlinear programming problems usu-
ally enjoy fewer desirable properties.

The class of convex optimisation problems is com-
prised of optimisation problems in which each of f :

Rn ! R and gi, i ¼ 1, :::, m is a convex function, 
which implies that S � Rn is a convex set, and 
includes linear programming as a special case. Any 
optimisation problem that does not belong to this 
class is a nonconvex optimisation problem. On the 
other hand, (P) is called an unconstrained optimisa-
tion problem if S ¼ Rn, and a constrained optimisa-
tion problem otherwise.

A useful notion in nonlinear programming is 
that of local optimality. A point x̂ 2 Rn is said to be 
a local minimiser of (P) if there exists an open ball 
B � Rn of positive radius centred at x̂ such that x̂ 

is a minimiser of f over the potentially smaller feas-
ible region B \ S: In contrast, x̂ is a global minim-
iser of (P) if x̂ is a minimiser of f over the entire 
feasible region S: Note that a global minimiser is 
also a local minimiser.

We next briefly give an overview of optimality 
conditions for each aforementioned class of opti-
misation problems. We start with unconstrained 
optimisation problems in the one-dimensional set-
ting (i.e., n¼ 1). If x̂ 2 R is a local minimiser of 
(P), then f should be neither decreasing nor increas-
ing at x̂: Assuming that f is a continuously differen-
tiable function, we therefore obtain f 0ðx̂Þ ¼ 0: This 
geometric interpretation carries over to the higher- 
dimensional setting (i.e., n � 2) by simply viewing a 
mutivariate function as a collection of one-dimen-
sional functions along feasible directions at each x̂ 2
Rn, i.e., directions along which one can move start-
ing from x̂ 2 Rn and still remain in the feasible 
region. In the unconstrained case, every direction 
d 2 Rn is a feasible direction at every x 2 Rn: Using 
the result from the one-dimensional case, if x̂ 2 Rn 

is a local minimiser of (P), then the partial deriva-
tives of f with respect to each variable should be 
zero, or equivalently, that rf ðx̂Þ ¼ 0 2 Rn, where 
rf : Rn ! Rn is the gradient of f. Such a point is 
called a stationary point.

For the special case of convex unconstrained 
optimisation problems, the convexity of the object-
ive function f : Rn ! R implies that the aforemen-
tioned necessary conditions are also sufficient, i.e., a 
point is a local minimiser if and only if it is a sta-
tionary point. Furthermore, for convex functions, 
every local minimiser is, in fact, a global minimiser. 
Therefore, we obtain the equivalence between global 
minimisers and stationary points. On the other 
hand, for a nonconvex optimisation problem, there 
may be stationary points that may not correspond 
to a local minimiser of (P) (e.g., if f ðxÞ ¼ x3, then 
x̂ ¼ 0 is a stationary point but not a local minim-
iser). As illustrated by this example, the complete 
characterisation of global optimality does not carry 
over from convex optimisation to nonconvex opti-
misation, even in the unconstrained setting.

For constrained optimisation problems, we first 
consider the convex optimisation case. By the con-
vexity of the feasible region S � Rn, for any x̂ 2 S, 
the set of all feasible directions is given by ~x � x̂ 2
Rn, where ~x 2 S: Arguing similarly to the uncon-
strained case and using the convexity of f, a point 
x̂ 2 S is a global minimiser of (P) if and only if f 
does not decrease along any feasible direction, i.e., if 
and only if rf ðx̂ÞTð~x � x̂Þ � 0 for all ~x 2 S:
Therefore, as in the unconstrained case, we once 
again have the equivalence between local and global 
minimisers.
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Next, consider a nonconvex constrained opti-
misation problem. If the feasible region S � Rn is a 
convex set but f is a nonconvex function, a similar 
argument as in the convex case gives rise to the fol-
lowing necessary condition: If x̂ 2 S is a local min-
imiser of (P), then rf ðx̂ÞTð~x � x̂Þ � 0 for all ~x 2 S:
As in the unconstrained case, simple examples show 
that this condition is no longer sufficient for local 
optimality. If, on the other hand, S � Rn is a non-
convex set, then we instead rely on a more general 
notion of tangent directions to the feasible region S
at x̂: Therefore, if x̂ 2 S is a local minimiser, then 
rf ðx̂ÞTd � 0 for every tangent direction d 2 Rn to 
the feasible region S at x̂: In general, the set of such 
tangent directions may not be easy to characterise. 
Under certain additional assumptions about the 
geometry of the feasible region S � Rn, referred to 
as constraint qualifications (Bazaraa et al., 2005, 
Chapter 5), explicit necessary optimality conditions 
can be derived.

Having reviewed optimality conditions, we finally 
give a brief overview of methods for solving opti-
misation problems. Nonlinear optimisation algo-
rithms are generally iterative in nature, i.e., they 
generate a sequence of points xk 2 Rn, k ¼ 1, 2, :::
that satisfies certain properties. For instance, the 
sequence may either converge to a local or global 
minimiser of an optimisation problem, or may sim-
ply have a limit point that satisfies the necessary 
conditions for local optimality. As illustrated by the 
discussion on optimality conditions, one can estab-
lish considerably weaker properties for nonconvex 
optimisation problems in comparison with convex 
optimisation problems. In fact, most classes of non-
convex optimisation problems are provably difficult 
in a formal complexity sense, even when restricted 
to minimising a quadratic function over a polyhe-
dron (Murty & Kabadi, 1987; Pardalos & Vavasis, 
1991). As such, it would not be reasonable to expect 
an algorithm to solve every optimisation problem to 
global optimality in a reasonable amount of time.

Therefore, different performance metrics are 
employed for assessing algorithms for different 
classes of optimisation problems. While, for convex 
optimisation problems, one usually expects a “good” 
algorithm to compute a global optimal solution, an 
algorithm for a nonconvex optimisation problem 
could be deemed “effective” if it always converges to 
a local (rather than a global) optimal solution.

In the unconstrained case, given an iterate xk 2

Rn, the main idea is to identify a feasible direction 
d 2 Rn along which the objective function will 
decrease. Such a direction d 2 Rn, called a descent 
direction, would necessarily satisfy rf ðxkÞ

Td < 0:
Then, a step size in this direction is determined 
according to certain criteria that would guarantee a 

decrease in the objective function. Therefore, this 
family if algorithms is referred to as gradient descent 
methods and includes steepest descent as a special 
case (i.e., the case where d ¼ � rf ðxkÞ). Under mild 
assumptions, this class of algorithms converges to a 
stationary point of f. Recall that such a point is a glo-
bal minimiser if f is a convex function. Other meth-
ods in this class are Newton methods, conjugate 
gradient methods, and quasi-Newton methods, each 
of which generates iterates that converge to a station-
ary point under appropriate assumptions.

Considering the constrained case, while general 
convex optimisation problems do not retain all desir-
able properties of the simpler class of linear program-
ming problems, they still have a sufficiently rich 
structure that pave the way for provably efficient 
solution algorithms. In fact, every convex optimisa-
tion problem, in theory, can be solved to global opti-
mality by the ellipsoid method (Yudin & 
Nemirovskii, 1976; Shor, 1977) or by interior-point 
methods in polynomial time (Nesterov & 
Nemirovskii, 1994). Furthermore, a variety of highly 
effective commercial and non-commercial solvers are 
available for solving several classes of convex opti-
misation problems such as linear programming, 
second-order cone programming, and semidefinite 
programming that frequently arises in applications 
(see, e.g., https://neos-server.org/neos/solvers/index. 
html).

For the nonconvex constrained case, one 
approach is based on approximating a constrained 
optimisation problem by a sequence of uncon-
strained optimisation problems by either using a 
penalty function, based on penalising violation of 
constraints (penalty methods), or using a barrier 
function, based on preventing the violation of con-
straints by keeping the iterates strictly in the relative 
interior of the feasible region S � Rn (barrier meth-
ods). Other methods include Augmented Lagrangian 
methods, based on combining Lagrangian relaxation 
with penalty methods, and Sequential Quadratic 
Programming methods, based on approximating the 
optimisation problem by a quadratic programming 
problem.

Finally, various real-life applications in machine 
learning and data science give rise to very large- 
scale problems that are beyond the capability of cur-
rent solvers and computing platforms. For such 
problems, there exist a variety of heuristic optimisa-
tion methods that can be employed to find a good 
solution in a reasonable amount of time (§2.13). 
However, in contrast with exact methods, such 
methods usually do not provide any guarantees on 
the quality of the solution.

Nonlinear optimisation is a very active area of 
research. The reader is referred to excellent 
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textbooks for further information (e.g., Fiacco & 
McCormick, 1968; Mangasarian, 1994; Bazaraa 
et al., 2005; Nocedal & Wright, 2006; Bertsekas, 
2016; Luenberger & Ye, 2016).

2.17. Queueing27

Queueing systems arise in many real life applica-
tions including production, service systems, finance, 
logistics and transportation. As mentioned in 
Stidham (2002), many queueing models have been 
studied even before the introduction of Operational 
Research in the 1950s. We provide a brief overview 
of methodologies used in queueing systems analysis. 
We start with exact methods and then continue 
with approximations and asymptotic analysis.

The classical analysis of queueing systems 
involved modelling the single stage Markovian 
queues as birth-death processes and computing their 
steady state performances using Markov chain the-
ory. These earlier theoretical contributions were ini-
tially summarised in Feller’s two volume books 
Feller (1957a, 1957b), then in classical textbooks 
such as Cooper (1972), Gross and Harris (1974) and 
Kleinrock’s two volumes Kleinrock (1975a, 1975b), 
and more recently in Gautam (2012), Harchol-Balter 
(2013), and many other books. Tak�acs (1962) 
focused on using transforms and generating func-
tions for steady state and transient behaviour of 
queueing systems. In the early days, transforms and 
generating functions were considered to be exact 
expressions but one had to invert these generating 
functions in order to obtain the actual performance 
measures which is in general difficult. Marcel Neuts 
was the first one who approached this inversion 
problem algorithmically. In his 1981 book, Neuts 
(1981) focused on queues that generalise the G/M/1 
structure, whereas in his second book, Neuts (1989) 
generalised the structure of the M/G/1 queue. The 
main idea in these books is to approximate the non- 
exponential distributions with a phase type distribu-
tion (convolution and mixture of exponentials) 
which yields a continuous time Markov chain model 
for the original system that could be analysed, at 
least numerically. This line of research resulted in 
many contributions on the so-called matrix-geomet-
ric methods (see also Latouche & Ramaswami, 
1999). Arguably the most well known result in 
queueing theory is Little’s law (L ¼ kW or its gener-
alisation H ¼ kG) which provides a relationship 
between the mean steady state number of customers 
and the mean sojourn time in a system. For a thor-
ough survey of the Little’s result and its extensions, 
the reader is referred to Whitt (1991). There are 
numerous proofs of Little’s law but El-Taha and 
Stidham (1999) provide an elegant sample path 

proof. On the other hand, Bertsimas and Nakazato 
(1995) relate the steady-state distribution of the 
number in the system (or in the queue) to the 
steady state distribution of the time spent in the sys-
tem (or in the queue) in a queueing system under 
FIFO (First In First Out).

While there has been a lot of interest in station-
ary queues, Massey’s, 1981 dissertation Massey 
(1981) drew attention to the analysis of non-station-
ary queues (i.e., queues with time dependent arrival 
and service processes). Massey’s dissertation started 
with the analysis of M(t)/M(t)/1 queue and then 
extended to other non-stationary Markovian sys-
tems. Many subsequent papers, such as Massey and 
Whitt (1998), focused on queueing models with 
time-dependent arrival rates, especially infinite-ser-
ver “offered-load” models which describe the load 
that would be on the system if there were no limit 
to the available resources. The main idea of these 
papers is to provide algorithms (approximations) to 
solve the Poisson equation. On the other hand, 
Bertsimas and Mourtzinou (1997) derived a set of 
transient distributional laws that relate the number 
of customers in the system (queue) at time t to the 
system (waiting) time of a customer that arrived to 
the system (queue) at time t.

Networks of queues have been of interest to 
researchers since 1950s. Jackson (1957) was the first 
one to observe that joint steady state distribution of 
the number of customers at the nodes of a network 
of Markovian queues with single server (at each 
node) is the product of individual distribution of 
M/M/1 queues. Jackson (1963) generalised this 
result to networks of queues with multiple servers at 
the nodes. Gordon and Newell (1967) discovered 
that the stationary distribution again has a product 
form in closed Markovian networks but in this case 
a normalisation constant is required. Baskett et al. 
(1975) proved that the product form is insensitive 
to the service time distribution if the service discip-
line satisfies certain assumptions. This and other 
insensitivity results in networks were also consid-
ered by Kelly (1979) and Serfozo (1999) which also 
has results on other networks such as those with 
blocking and rerouting. Daduna (2001) focused on 
obtaining explicit expressions for the steady behav-
iour of discrete time queueing networks and gave a 
moderately positive answer to the question of 
whether there can be a product form calculus in dis-
crete time. In recent years, a number of models 
involving different compatibilities between jobs and 
servers in queueing systems, or between agents and 
resources in matching systems, have been studied, 
and, under Markovian assumptions and appropriate 
stability conditions, the stationary distributions were 
again shown to have product forms (see Gardner & 
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Righter, 2020, and the references therein). Baccelli 
et al. (1992) modelled a class of networks using the 
so-called (max,þ) linear systems. In their pioneering 
work, using (max,þ) algebra techniques, Baccelli 
and Schmidt (1996) derived Taylor series expansions 
for the mean waiting times in Poisson driven queue-
ing networks that belong to the class of (max,þ) lin-
ear systems. Even though these expansions are 
sometimes referred to as light traffic approxima-
tions, in some cases all coefficients of the series 
expansion can be computed yielding an exact expres-
sion. These results were generalised to transient per-
formance measures by Baccelli et al. (1997) and joint 
characteristics by Ayhan and Baccelli (2001).

Exact analysis of general queueing systems is 
often challenging, making the characterisation of 
performance measures difficult. Thus, asymptotic 
analyses are commonly carried out via various 
approximation methods. We next provide an over-
view of such methods.

Many of the earlier works on the asymptotic ana-
lysis of queueing systems focused on heavy traffic 
and many server approximations for single stage 
queues. In his pioneering work, Kingman (1961, 
1962, 1965) have asymptotically characterised the 
waiting time distribution for the single server queue 
with general interarrival and service time distribu-
tions under heavy traffic conditions (i.e., when the 
traffic intensity q! 1). Several others have devel-
oped heavy traffic approximations for the G/G/s 
queue, where a sequence of systems with fixed num-
ber of servers and traffic intensities fqng approach-
ing one are considered (see, for example, 
K€ollerstr€om, 1974). In these approximations, the 
sequence of normalised (i.e., scaled) queue length 
processes converge to a reflected Brownian motion 
with negative drift (see Whitt, 2002), and the associ-
ated sequence of scaled stationary queue-length dis-
tributions (i.e., the stationary distribution of the 
limiting diffusion process) converges to an exponen-
tial distribution. We refer the reader to Harrison 
(1985) for a detailed technical treatment of heavy 
traffic limits and diffusion approximations. 
Asymptotic analysis was also considered for multi- 
class and multi-stage queueing networks. Defining 
the stability region of these networks using fluid 
limit analysis was considered in Chen (1995); Dai 
(1995); Dai and Meyn (1995). Many of the works 
that considered heavy traffic analysis of multi-class 
queueing networks focus on achieving the so-called 
state space collapse. Bramson (1998) demonstrated 
the state space collapse for first-in first-out queueing 
networks of Kelly type and head-of-the-line propor-
tional processor sharing queueing networks. His 
framework has been used to prove state space 

collapse results in several other works including 
Stolyar (2004) and Mandelbaum and Stolyar (2004). 
For a more comprehensive review of heavy traffic 
analysis of multi-class queueing networks, we refer 
the reader to Chen and Yao (2001).

Many-server approximations were also considered 
for asymptotic analyses of queueing systems. In 
these approximations, the traffic intensity can be 
kept constant while letting the arrival rate and the 
number of servers go to infinity. Iglehart (1965) 
showed that the resulting sequence of normalised 
queue length processes converges to an Ornstein- 
Uhlenbeck process in the many server setting when 
the service time distributions are exponential. Later 
on, Whitt (1982) generalised this result for systems 
with non-exponential service times. For a more 
comprehensive overview of results in this area, see 
Whitt (2002). In their seminal work, Halfin and 
Whitt (1981) defined the so called Halfin-Whitt 
regime for the GI/M/s queue where the traffic inten-
sities converge to one from below, the number of 
servers and arrival rates tend to infinity, but steady- 
state probability that all servers are busy remains 
fixed. They showed that under the appropriate scal-
ing, the queue length processes converge to a diffu-
sion process. In the past decades, many other 
asymptotic results have been obtained for many ser-
ver queues in the Halfin-Whitt regime. Reed (2009) 
studied the G/GI/s queue and obtained fluid and 
diffusion limit results for the queue length process. 
We refer the reader to van Leeuwaarden et al. 
(2019) for a further review of the various asymptotic 
results obtained in the Halfin-Whitt regime.

Although heavy traffic approximations for queues 
have been popular in recent decades, light traffic (as 
the traffic intensity q! 0) and interpolation approx-
imations have also been developed. Bloomfield and 
Cox (1972) developed light traffic approximations for 
a single server queue. Burman and Smith (1983) 
developed approximations for the expected delay in 
M/G/s queue both for heavy and light traffic, and 
showed that as traffic intensity goes to zero, probabil-
ity of delay depends only on mean service time dis-
tributions. Daley and Rolski (1992) used light traffic 
approximations to study the limiting properties of 
the waiting time in many-server queues. Light traffic 
approximations have also been used to study the lim-
iting processes in queueing networks (see, for 
example, Simon, 1992).

As mentioned earlier, approximation methods were 
commonly used in the asymptotic analysis of time- 
varying (i.e., non-stationary) queues. Mandelbaum 
et al. (1999) developed a fluid approximation for the 
queue length process in time-varying multiserver queue 
with abandonments and retrials. Pang and Whitt 
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(2010) have developed heavy traffic approximations for 
infinite server queues with time-varying arrivals. The 
reader is referred to Whitt (2018) for a recent review 
of the literature on non-stationary queues.

Due to the interest in communication/telecommu-
nication systems, in late 1990s and early 2000s, there 
was a lot of research on queues with heavy tailed 
interarrival and/or service times. Intuitively, heavy 
tailed distributions decay slower than an exponential 
distribution (see Resnick, 2007, for a thorough discus-
sion). Boxma and Cohen (2000) provided an overview 
of results for single service queues with heavy tailed 
interarrival and/or service time distributions. Baccelli 
et al. (1999) and Ayhan et al. (2004) showed that the 
asymptotics of response time was dominated by the 
station with the heavy tailed service time in a class of 
open and closed networks, respectively. Foss and 
Korshunov (2012) developed upper and lower bounds 
on the tail distribution of the stationary waiting time 
in the GI/GI/s queue with heavy tailed service times.

2.18. Risk analysis28

Risk analysis is a discipline that seeks to inform 
people about what might happen and how to reduce 
the probability and severity of undesired outcomes. 
It draws on decision analysis, game theory, and 
other areas of Operational Research but is distin-
guished from them by the questions it asks, the 
frameworks it provides for answering them, and the 
uses to which its answers are put (Aven, 2020; 
Greenberg et al., 2020). Where decision analysis 
focuses on principles for identifying logically coher-
ent choices that make preferred outcomes more 
likely based on a decision maker’s beliefs and value 
trade-offs, risk analysis seeks to inform analytic- 
deliberative decision-making by multiple stakehold-
ers—possibly with conflicting worldviews, values, 
and beliefs—for managing critically important mat-
ters ranging from the safe operation of nuclear 
power plants to priority-setting for public and occu-
pational health and safety measures.

Risk analysis is often subdivided into risk percep-
tion, risk assessment, risk communication, risk man-
agement, and risk governance and policy-making 
(Greenberg & Cox, 2021). The following sections 
describe these components.

2.18.1. Risk perception
Public concerns and political appetite to address 
them are shaped by perceived risks, whether or not 
they are accurate. Several frameworks have been 
developed to help understand the technical, psycho-
logical, and social drivers of risk perceptions 
(Siegrist & �Arvai, 2020). The psychometric paradigm 
(Slovic, 2000) explains many aspects of risk 

perceptions in terms of a few underlying factors 
such as as dread risk (associated with a lack of con-
trol, dreaded consequences, catastrophic potential, 
inequity in the distribution of risks, risks increasing 
over time, and fatal consequences) and unknown 
risk (associated with unobservability, novelty, 
unknown exposure, being unknown to science, and 
delayed consequences). The cognitive heuristics and 
biases literature positions risk perceptions within a 
“dual process” framework in which rapid emotional 
evaluations (“System 1”) can be modified by slower, 
more effortful cognition (“System 2”) (Kahneman, 
2011; Skagerlund et al., 2020). The cultural theory of 
risk (Douglas & Wildavsky, 1983; McEvoy et al., 
2017; Bi et al., 2021) posits that individual percep-
tions of risk are shaped by social and ideological 
processes that emphasise or suppress perceptions of 
risks depending on the respondent’s values and pre-
ferred form of social order. The social amplification 
of risk framework (SARF) (Kasperson et al., 2022) 
describes the social amplification or attenuation of 
perceived risks as risk information is communicated 
among people with different worldviews.

Major lessons from the study of risk perception are 
that experts and members of the public often view 
risks quite differently; that experts often focus on the 
probability and consequence severity dimensions of 
risk while members of the public consider many other 
aspects; that most people tend to overestimate the fre-
quencies of rare but vivid events (e.g., terrorist attacks, 
murders) and underestimate the frequencies of com-
mon but familiar ones (e.g., car accidents, heart attack 
fatalities); and that risk perceptions of both experts 
and lay people are predictably shaped and distorted by 
cognitive heuristics and biases and are amplified or 
attenuated by media reports and other communica-
tions in ways that reflect the recipients’ worldviews. 
System 1 tends to be innumerate, responding emo-
tionally to possibilities and categories of harm while 
underweighting or ignoring relevant frequencies and 
magnitudes. System 2 often fails to sufficiently adjust 
or correct the promptings of System 1 leading to deci-
sions with predictable regrets. These findings help to 
explain why expert and actuarial assessments of risk 
often differ from lay perceptions of risk. In a demo-
cratic society, perceptions affect decisions. A major 
challenge for risk analysis is to assess and communi-
cate risks to help inform and improve collective deci-
sions in ways that understand and respect the realities 
of risk perception.

2.18.2. Risk assessment
Risk assessment addresses how large and uncertain 
risks are. It begins with qualitative questions about 
what might go wrong and proceeds to quantitative 
assessments of how likely adverse events are to 
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occur and what their possible consequences and 
their probabilities would be (Kaplan & Garrick, 
1981). Probabilistic risk assessment (PRA) and 
quantitative risk assessment (QRA) methods apply 
probability models and statistical methods to data 
and modelling assumptions to quantify or bound 
the predicted frequencies and severities of losses and 
to estimate how their joint probability distribution 
would be changed by different risk management 
policies or interventions. Quantitative measures of 
risk can be derived from the full probability distri-
bution or stochastic process descriptions of uncer-
tain outcomes (Smidts, 1997), including dynamic 
coherent risk measures used in financial risk ana-
lysis (Bielecki et al., 2017). Stochastic process models 
of the occurrence frequencies of adverse events 
(such as accidents at power plants or tornadoes in 
cities) and the probability distribution of losses for 
each event can also be used to estimate entire 
cumulative probability distributions for losses over a 
stated time interval for different scenarios or sets of 
assumptions (Kaplan & Garrick, 1981, see also §2.10 
and §3.19).

In the past decade, PRA techniques such as 
causal Bayesian networks (BNs), dynamic Bayesian 
networks (DBNs), and related probabilistic graphical 
models have increasingly been used to predict the 
probabilistic effects caused by interventions in 
engineering systems (Ruiz-Tagle et al., 2022) and 
public health applications (Butcher et al., 2021). 
They have largely supplanted older and less general 
PRA techniques such as fault tree analysis and 
Markov decision processes (Hanea et al., 2022; Cox 
et al., 2018). Together with discrete-event stochastic 
simulation models and continuous (systems dynam-
ics) simulation, they provide constructive methods 
to predict how risk management interventions 
would change the probabilities of outcomes over 
time. This information can be used for simulation- 
optimisation of risk management decisions (Better 
and Glover, 2011).

PRA techniques have been extended to address 
adversarial risks in which intelligent adaptive adver-
saries rather than chance events threaten the safety 
and values that a risk manager seeks to protect 
(Banks et al., 2022); and unknown risks (or risks 
under radical uncertainty, sometimes called 
Knightian uncertainty by economists), in which rele-
vant probabilities are unknown, e.g., by using uncer-
tainty sets that replace precise probability 
distributions by (usually convex) sets of possible 
probability distributions or by scenarios of possibil-
ities that are not necessarily exhaustive (Gilboa 
et al., 2017). Recent artificial intelligence and 
machine learning (AI/ML) methods are now being 
applied to natural hazards and disasters (Guikema, 

2020), cybersecurity (Nifakos et al., 2021), power 
markets (Marcjasz et al., 2022), and financial port-
folio risk management problems where new, chang-
ing, and unknown conditions make it necessary to 
learn effective risk prediction and management deci-
sion rules from data and experience without the 
guidance of well-validated PRA models (Cox, 2020).

2.18.3. Risk management, governance, communi-
cation, and risk-cost-benefit analysis
Given public perceptions and technical estimates of 
risks, what should be done about them? Who 
should decide, and how? Managing risks to human 
health, safety, or the environment often involves 
“wicked” decision problems and “deep” uncertain-
ties, meaning that there are no clear, widely agreed- 
to definitions of the decision problem and solutions 
to it (Lempert & Turner, 2021). Although multiob-
jective and risk-sensitive or risk-constrained opti-
misation problems can be formulated for some risk 
management problems, such as routing hazardous 
cargo, for many wicked risk management problems, 
relevant decision variables, constraints, possible out-
comes, and objective functions may be unknown or 
not widely agreed to. Risk management in such 
challenging cases usually involves issues of causation 
(what can be done and how much difference in out-
come probabilities would different feasible choices 
make?), collective choice (how should the disparate 
perceptions and preferences of individuals be 
resolved or aggregated for purposes of collective 
decision-making?) and risk governance (who should 
be responsible for making, implementing, obeying, 
enforcing, and revising risk management decisions; 
how should stakeholders participate in risk manage-
ment decisions; what institutions and processes 
should guide, restrain, and integrate collective risk 
management; and how should conflicts be resolved 
and collective decisions be made at individual, 
organisational, community, local, national, and 
international levels?) (Klinke & Renn, 2021).

The most immediate decisions for risk managers 
responding to potential or actual crises are often 
about risk communication. For example, if a pan-
demic or natural disaster such as a tsunami, vol-
canic eruption or hurricane, seems possible but not 
necessarily imminent or certain, then what should 
scientists and government officials tell policy-makers 
and the public about the uncertain risks? Who 
should say what to whom, and how soon? Different 
risk communication goals such as informing and 
empowering individual and community decisions, 
persuading individuals to change their behaviours, 
instructing citizens what to do, and informing or 
shaping policy deliberations and decisions, require 
different communication approaches. Risk 

462 F. PETROPOULOS ET AL.



communication frameworks for addressing these 
challenges overlap with risk perception frameworks 
but also emphasise the roles of trust in information 
sources and of outrage in mobilising public engage-
ment and changing behaviours (Malecki et al., 
2020).

Risk-cost-benefit analysis provides a simple-sound-
ing approach to collective risk management: take risk 
management actions to maximise expected social util-
ity or net societal benefits (expressed as expected net 
present value, possibly with a risk-adjusted discount 
rate; Eliashberg & Winkler, 1981; Hammond, 1992). 
However, mathematical impossibility theorems have 
shown that when different people have sufficiently 
different beliefs and preferences, there may be no 
coherent way to aggregate them to make collective 
decisions that respect normative principles such as 
Pareto efficiency (Nehring, 2007). Trade-offs between 
measures of accuracy and fairness have recently been 
identified for machine-learning algorithms used in 
risk assessment in areas such as mortgage lending 
and criminal justice (Corbett-Davies et al., 2017). 
Societal risk management is now often viewed less as 
a top-down or centralised decision and control pro-
cess in which experts provide estimated probabilities 
and social utilities or net benefits to use in risk-cost- 
benefit or social utility maximisation calculations 
than as a participatory democratic deliberative pro-
cess (Rad & Roy, 2021). Experts in risk analysis can 
provide useful technical information in this process 
but should not dominate it (Pellizzoni & Ungaro, 
2000; Greenberg & Cox, 2021; Klinke & Renn, 2021).

Risk analysis poses intellectual, technical, and 
practical implementation challenges that are likely 
to engage and challenge Operational Research and 
risk analysis professionals for the foreseeable future. 
A more detailed review of the accomplishments, 
current state, and remaining challenges for much of 
the field of risk analysis can be found in the 40th 

Anniversary Special Issue of Risk Analysis 
(Greenberg et al., 2020), in specialised books such as 
Aven (2015), and in online resources29.

2.19. Simulation30

A simulation aims to reproduce the important 
behaviour of a real system. Our focus here is on the 
use of computer simulation models within oper-
ational research (OR), whilst acknowledging that the 
field is much wider and ranges from computer 
models of sub-atomic particles to simulations 
involving real human actors, particularly prevalent 
in medicine and health sciences. Three main fla-
vours of simulation are used in this context: discrete 
event simulation, agent-based modelling and system 
dynamics. After discussing the uses of simulation, 

we continue this subsection by introducing these 
three main flavours before going on to discuss four 
important areas in simulation research: conceptual 
modelling, input modelling and parameterisation, 
simulation optimisation, and finally the newer area 
of data-driven simulation, linking to Industry 4.0 
and digital twins. A selection of open source tools 
for simulation are given in §3.18.

A simulation model, built on a computer, has a 
number of potential functions. Principally it is used 
for experimentation because testing out new settings 
or ways of working on a simulation results in fewer 
negative implications than experimenting with the 
real system. This can allow simulation to be used 
for optimisation of complex stochastic systems and 
there has been considerable research in this area in 
recent years, as we discuss below. Simulation can 
also be used for predicting future behaviour, and 
the COVID-19 pandemic showcased the predictive 
power of simulation modelling in a very high-profile 
situation (e.g., the agent-based model used to advise 
the UK government and described in Ferguson 
et al., 2020). The process of building a simulation 
model results in a better understanding of the real 
system because of the need to identify and model 
the important relationships between different enti-
ties. Running the model can also help with estimat-
ing the sensitivity of model outputs to system 
parameters. Another use of simulation models is for 
training. Within the OR context, this most often 
takes the form of strategic game-playing (e.g., the 
beer game developed by MIT and described in 
Sterman, 1989) to practice decision-making under 
different scenarios in a safe environment.

Discrete event simulation (DES) is typically used 
to model systems in which entities move through a 
set of activities. Where these activities require 
resources, entities will queue until the resource 
becomes available. Such simulations are described as 
discrete event because the system state only varies at 
discrete time points, known as events. For example, 
a DES model might be used to describe a manufac-
turing line and in this case the events could include 
an item starting or finishing processing by a 
machine on the line. Usually in DES, the simulation 
clock will jump from one event to the next rather 
than moving in equal time steps.

System dynamics (SD; §2.22) was first developed 
in the 1950s by Jay Forrester to help with the 
understanding of industrial problems. SD models 
deal with stocks and flows, where the dynamics are 
dictated by a set of connected differential equations. 
Describing a system using an SD model can help 
with detecting feedback loops and delay effects and 
SD modelling is useful for strategic decision- 
making.
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Agent based modelling (ABM) describes the 
behaviour of individual entities or agents within a 
population. As Macal (2016) states, one of the key 
differences between ABM and both DES and SD is 
that it takes an agent perspective of a system. Each 
agent in the simulation will follow its own set of 
rules dictating its behaviour and how it interacts 
with the environment and other agents. Agent 
behaviour is typically stochastic, allowing natural 
variability to be included in the model. An ABM 
can be used as a bottom up approach to determine 
emergent behaviour where individual actions lead to 
a system level response.

Regardless of the simulation modelling technique, 
the first part of any simulation project is to gain an 
understanding of the system being modelled, the 
objectives of the work, and the key components that 
should be included, referred to as conceptual model-
ling. There is some discussion of the exact definition 
of conceptual modelling in Robinson (2008) but 
some key points are made to support the process. 
First, the conceptual model can be thought of as 
separate from the final computer model that is built 
and serves as an abstraction of the real system that 
describes what is going to be modelled and gives an 
indication of how that might be done. Second, the 
development of the conceptual model requires input 
from the modeller and the system owners. Third, a 
conceptual model does not remain constant through 
a simulation project but is revisited and adapted as 
the project continues. Recent research in conceptual 
modelling is reviewed by Robinson (2020) and has 
focused on designing modelling frameworks. The 
work described tends to be related to DES models 
but the core principles can also apply to the build-
ing of both ABS and SD models.

Like any other model, the utility of a simulation 
is very much dependent on its inputs: the garbage- 
in-garbage-out principle holds true here. Setting up 
the probability distributions used for inputs of a sto-
chastic simulation model or parameterisation of a 
deterministic simulation model is referred to as 
input modelling and is typically achieved through fit-
ting statistical models to available data and eliciting 
expert opinion. When estimating the inputs for a 
simulation model from data there is some uncer-
tainty in their true values. With a different set of 
data, the estimates of the inputs would likely be dif-
ferent. Any uncertainties setting the model inputs 
will propagate through to the model outputs, result-
ing in input uncertainty. This is influenced both by 
the accuracy of the estimates of the inputs and the 
sensitivity of the model output to that particular dis-
tribution or parameter. Corlu et al. (2020) provide a 
review of the current state of the art in input uncer-
tainty research for simulation, while Song et al. 

(2014) provide practical suggestions on how to esti-
mate the impact of unput uncertainty on the output 
results.

Often simulation models are used to experiment 
with different system set-ups. Simulation optimisa-
tion, sometimes referred to as optimisation via simu-
lation describes the use of a simulation model to 
find the optimal value for one or more decision var-
iables. Typically it is used in the design of stochastic 
systems that are too complex to be effectively 
described by an analytical model. Practical examples 
of problems that can be solved using simulation 
optimisation include finding the optimal number 
and configuration of beds in a hospital ward; deter-
mining the appropriate number of repair staff on a 
production line; choosing between a selection of dif-
ferent configurations for a system.

The problem can be represented mathematically 
as

mingðxÞ, x 2 H, 

where the function we are optimising gðxÞ is gener-
ally the expected value of the output of a stochastic 
simulation model, gðxÞ ¼ E½Yðx, nÞ�; x is a vector of 
decision variables; H denotes the feasible region for 
x; and n indicates the randomness inherent in the 
model. The majority of research in simulation opti-
misation aims to improve the efficiency of the opti-
misation algorithms by reducing the number of 
simulation replications needed to estimate the opti-
mal values of x. Where a complex and slow-running 
simulation model is used to generate the Yðx, nÞ this 
efficiency is particularly important. Hong and 
Nelson (2009) classify simulation optimisation prob-
lems into three categories:

1. Small number of solutions: H contains only a 
small number of solutions and the decision 
variable x might define a particular system con-
figuration. In this case the problem is one of 
ranking and selection.

2. Decision variables are continuous: H is a con-
vex subset of the set of d-dimensional real num-
bers and the problem is continuous optimisation 
via simulation.

3. Decision variables x are discrete and ordered: 
H is a subset of the set of d-dimensional inte-
gers and the problem is discrete optimisation via 
simulation.

A set of algorithms exists for solving each cat-
egory of problem. There has also been significant 
work on multi-objective optimisation via simulation; 
for example, see Hunter et al. (2019) for a detailed 
description of the problem and different solution 
approaches.
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In recent years, sensing has become more wide-
spread and the transfer of data from physical sys-
tems to control systems is now happening in close 
to real time. This has allowed modellers to design 
simulation models that are automatically fed data 
from the real system allowing them to either predict 
the future (e.g., prediction of emergency depart-
ments crowding Hoot et al., 2008) or to use the 
simulation models to optimise system parameters as 
part of a dynamic control process. Such models are 
sometimes referred to as a digital twin or symbiotic 
simulation (see Onggo, 2019, for a definition). Xu 
et al. (2016) describe how simulation can be incor-
porated into the Industry 4.0 framework using the 
example of a semiconductor fab operation. The use 
of simulation in dynamic control is still in its 
infancy and requires fast and reliable simulation 
optimisation algorithms as well as mechanisms for 
enabling the simulation model to evolve based on 
new input data. Industry 5.0 is intended to comple-
ment Industry 4.0 by putting societal goals at the 
heart of industrial decision-making31. This is a 
potential growth area for simulation optimisation, 
particularly multi-objective simulation optimisation 
(e.g., see Hunter et al., 2019) which enables solu-
tions to be found that support several competing 
objectives.

Being a huge topic with many different facets, 
there is no single article that provides an overview 
of simulation but there are several excellent text-
books covering simulation techniques including Law 
(2015) and Banks et al. (2004). The archive of the 
Winter Simulation Conference32 is also an extensive 
resource in understanding the state-of-the-art in the 
field and its tutorial papers provide more basic 
tuition in the effective implementation of simula-
tion. Recently, the history track at the conference 
has also provided an overview of the evolution of 
the simulation field.

2.20. Soft OR33 and problem structuring 
methods34

Problem Structuring Methods (PSMs) are concerned 
with addressing problem formulation in OR. 
Following definitions of Mingers and Rosenhead 
(2004) and Rosenhead (1996) they consist of a set of 
rigorous but not mathematical methods based on 
qualitative, diagrammatic modelling. They allow for 
a range of distinctive stakeholder views of a problem 
to be expressed, explored and accommodated. They 
encourage active participation of stakeholders in the 
modelling process, through facilitated workshops 
and the cognitive accessibility of the modelling 
approach. PSMs afford negotiating a joint agenda 
and ownership of actions. The aim is for 

exploration, learning and commitment from stake-
holders, rather than optimisation or prediction. 
PSMs thus are vital and constitute a significant 
developmental direction for OR. See Smith and 
Shaw (2019) and Franco and Rouwette (2022) for 
recent reviews.

Understanding the contribution of PSMs to OR 
requires some knowledge of their evolution. We 
characterise the development of the field into three 
phases: (i) origins, (ii) growth (only noted here 
through the increased publication rate of PSM 
related articles), and (iii) maturity, covering the dif-
fusion of PSMs to fields outside of OR, and re-inte-
gration of problem structuring into mainstream OR. 
Looking at the last first, we see PSMs at an impor-
tant turning point, as recent work by Dyson et al. 
(2021) specifically identify the centrality of problem 
structuring in the origins of OR and lead us towards 
the important question of why PSMs are not seen as 
an essential element of every OR engagement.

The origins of PSMs as a set of formal methods 
in OR arose as a consequence of the broad critique 
of the process of OR in the 1970-80s; the label itself 
was pioneered by Woolley and Pidd (1981). Ackoff 
became a trenchant critic of the sole pursuit of 
objectivity and optimisation in OR describing it as 
an “opt-out” (Ackoff, 1977) and set out an agenda 
for reconceptualising OR practice (Ackoff, 1979a). 
Dando and Bennett (1981) described the situation 
as a “Kuhnian crisis in management science”. In 
Rosenhead’s “Rational Analysis for a Problematic 
World: Problem Structuring Methods for Complexity, 
Uncertainty and Conflict” their prescription in OR 
engagements was associated with dealing with prob-
lem contexts identified variously as wicked, messy, 
or swampy (Rosenhead, 1989, pp. 3-11). These can 
be summarised as problem situations that are not 
well-defined, involving many interested parties with 
different perspectives (worldviews), where there is 
difficulty agreeing objectives and the meaning of 
success, and that require creating agreement 
amongst the parties involved for actions to be taken. 
The implication of the dichotomous framing of 
problem contexts – i.e., wicked/tame, swamp/high 
ground, hard/soft, tactical/strategic – was to set out 
a clear critique for the whole field of OR and to 
suggest that to retain its relevance in dealing with 
the messiness of real-world problems PSMs were 
required to bring some rigour – and indeed a 
reminder of the importance – to the process of 
problem formulation. Importantly, the pioneers of 
PSMs were concerned that traditional (i.e., ‘Hard 
OR’) processes for problem formulation were practi-
tioner-free (Checkland, 1983; Rosenhead, 1986).

The main PSMs set out by Rosenhead (1989) 
were Strategic Options Development and Analysis 
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(SODA; Eden, 1989), arising from cognitive map-
ping; Soft Systems Methodology (SSM; Checkland, 
1989), emerging from the failure of Hard Systems 
Thinking approaches (e.g., Systems Engineering, 
RAND-style Systems Analysis) when applied to 
messy problems; and the Strategic Choice Approach 
(SCA; Friend, 1989), arising from planning. In add-
ition, Robustness Analysis, Metagame Analysis, and 
Hypergame Analysis were also included. However, 
setting the boundary of PSMs has always been an 
open question (Mingers, 2011b). In the main, the 
core methods (SODA, SSM, SCA) are seen as exem-
plary and provide sufficient coherence for OR schol-
ars and practitioners to be provided with a clear 
view of a common theme.

The methodology of PSMs has long been associ-
ated with contextual matters through Systems 
Thinking (§2.23 Checkland, 1983; Mingers & White, 
2010), Community OR (Johnson et al., 2018; Jones 
& Eden, 1981; Parry & Mingers, 1991), and large 
group processes (Shaw et al., 2004; White, 2002). 
Methodological individualism has been addressed 
through Behavioural OR (§2.2; Franco & 
H€am€al€ainen, 2016; White, 2016). There has also 
been long-standing relevance to Multi-Criteria 
Decision Analysis (MCDA; Marttunen et al., 2017), 
value-focused thinking (Keeney, 1996b), policy ana-
lysis (Eden & Ackermann, 2004), and strategy mak-
ing (Ackermann & Eden, 2011; Dyson, 2000). 
Bridging between PSMs and other techniques in OR 
has been developed as multimethodology (Mingers 
& Brocklesby, 1997); for example, integration with 
Simulation (§2.19; Kotiadis & Mingers, 2006; Tako 
& Kotiadis, 2015). Some approaches to using the 
Viable Systems Model (VSM), System Dynamics 
(§2.22), and Decision Analysis (§2.8) would also be 
considered as PSMs too (Rosenhead & Mingers, 
2001, pp. 267-288), e.g., VSM (Lowe et al., 2020) 
and System Dynamics (Lane & Oliva, 1998). We 
also see developments in Group Model Building 
(GMB) from the System Dynamics community mak-
ing a significant contribution to PSMs (Andersen 
et al., 2007). In their growth and mature phase, 
applications of SSM, SCA, and SODA have extended 
the reach of PSMs into, e.g., project management 
(Franco et al., 2004) and environment, sustainability, 
and energy policy, e.g., SCA (Fregonara et al., 2013), 
SODA (Hjortsø 2004), SSM (Pahl-Wostl, 2007), and 
the Drivers, Pressures, State, Impact and Response 
framework (DPSIR Bell, 2012).

The state of the art and research agenda for 
PSMs has been the subject of periodic reflection 
e.g., reviews by Rosenhead (1996) and Mingers and 
Rosenhead (2004). A Special Issue of JORS in 2006 
questioned where PSMs were heading (Rosenhead, 
2006) – variously argued as a “grassroots revolution” 

(Westcombe et al., 2006), an appeal to common 
principles (Eden & Ackermann, 2006), and observa-
tions that “form and content have evolved through 
interaction between the ideas and their practical 
use” (Checkland, 2006). A more recent viewpoint 
debate “whither PSMs” again questioned their direc-
tion of travel Harwood (2019); Lowe and Yearworth 
(2019).

The qualitative nature of PSM methods raises 
questions about evaluating both effectiveness and 
value. Midgley et al. (2013), White (2006), and 
Franco and Rouwette (2022) have addressed the 
question of effectiveness, and whilst White goes 
some way towards defining the value of PSMs it is 
important to note the reservations expressed by 
Checkland and Scholes (1990, p. 299) – that meas-
uring value in a unique problem context, the ‘messy’ 
realm of PSMs, is unlikely to be meaningful. Tully 
et al. (2019) examine this conundrum in depth from 
the perspective of a consulting business and make 
some practical suggestions for its resolution.

Theory provides an important basis for PSM 
development. The range of PSM practice reported 
has been explained by the constitutive rules that 
underpin specific methods. First articulated by 
Checkland (1981, pp. 252-254), constitutive rules are 
generative of method rather than prescriptive and 
account for the range of practices that emerge, even 
when adopting a specific methodology such as SSM 
i.e., adaptation is always necessary to address the 
specifics of the application context. The idea was 
developed further by Jackson (2003, pp. 307-311) 
and then by Yearworth and White (2014) into a 
generic constitutive definition for PSMs. Another 
significant development has been a focus on PSMs 
as practice and drawing on practice theories. These 
theories provide a means of understanding OR prac-
tices by “zooming-in” to the detailed, fine-grained, 
scale and by “zooming-out”, looking at how specific 
practices affect the broader context (Ormerod et al., 
2023). Together these theoretical strands provide 
sufficient basis on the one hand, to liberate PSMs 
from the pigeon-hole of the dichotomous framing 
of their origins, and on the other, to address OR 
practice as a whole and to see problem structuring 
as a normal, indeed necessary, part of every OR 
intervention. For instance, Actor Network Theory 
(ANT) provides a lens to look at the processes of 
problematisation (i.e., problem formulation) in OR 
practice (White, 2009). Callon (1981) draws specific 
attention to the “abundance of problematisations” 
facing expert practitioners – that there is no single 
specific way of problematising. Strands of ANT 
focus on the performative idiom; (Ormerod, 2014a) 
draws attention to the “mangle of practice” and the 
need for more informative case studies of OR 

466 F. PETROPOULOS ET AL.



practice. Other theoretical underpinnings are rele-
vant to PSM developments e.g., PSMs as technology 
(Keys, 1998), Critical Realism (Mingers, 2000), 
Activity Theory (White et al., 2016), and the specific 
role of models as boundary objects (Franco, 2013) 
in facilitated workshops (Franco & Montibeller, 
2010).

From a practitioner point of view, the recent 
report “Reinvigorating Soft OR for Practitioners” by 
Ranyard et al. (2021) to the Heads of OR and 
Analytics Forum (HORAF) and the inclusion of the 
knowledge requirement “How to select and apply, a 
range of problem structuring methods to understand 
complex problems” in the Operational Research 
Specialist Degree Apprenticeship specification by the 
Institute for Apprenticeships and Technical 
Education (2021) are a welcome development.

In conclusion, for PSMs we see a return to the 
roots of OR as a discipline – encompassing both 
practice and academic scholarship – through the 
centrality of problem formulation to the process of 
OR (Churchman et al., 1957, p. 13) and a reminder 
that the seeds of problem structuring can be seen in 
the work of the ‘founders’ of OR as uncovered by 
Dyson et al. (2021). We have identified a number of 
research gaps that indicate future research directions 
for the development of PSMs. In the area of the 
impact of new digital technologies, Yearworth and 
White (2019) propose greater use of online “same 
time/different places” problem structuring work-
shops in order to meet the requirements for fast 
meeting setup times, reducing carbon emissions, 
enabling the scale-up to large group participation, 
and supporting new post-pandemic working pat-
terns. The need to address complex policy issues in 
the context of wicked problems is highlighted by 
Howick et al. (2017) and Ferretti et al. (2019), who 
argue for a re-invigorated engagement for PSM 
practice in policy analysis. Finally, Ormerod 
(2014b), Ranyard et al. (2015) and Ormerod et al. 
(2023) remind us that we need to see a renewed 
practitioner-led orientation for OR scholarship that 
grounds future development in solid empirical 
work.

2.21. Stochastic models35

Many decision problems involve uncertainty, e.g., 
network design with disruption risk, portfolio selec-
tion with uncertain return, resource planning with 
unknown resource availability, crop planting with 
uncertain yield, inventory control with varying 
demand, and project scheduling with random task 
duration, etc. While the effect of uncertain parame-
ters on the optimal solution and objective value can 
be studied through the well-known sensitivity 

analysis, or what-if analysis, in a deterministic opti-
misation approach, such post-optimality analysis 
does not prescribe solutions under uncertainty a pri-
ori. This subsection provides an overview of a suite 
of optimisation models and methods that seek to 
obtain optimal or near-optimal solutions for the 
class of decision problems where some parameters 
are stochastic with known probability distribution36.

Originated in the seminal work of Dantzig 
(1955), stochastic programming is one of the earliest 
and most prominent approaches to deal with opti-
misation problems with stochastic parameters. The 
basic stochastic programming model has a two-stage 
framework, called two-stage stochastic programming 
with recourse (2S-SPR; Birge & Louveaux, 2011). In 
the first stage, the here-and-now decision is made. 
Then in the second stage, the recourse decision is 
prescribed for each scenario of stochastic parameters 
after their realisation. The objective function mini-
mises the total cost as the summation of the first- 
stage cost and the expected second-stage cost given 
the probability distribution of the stochastic parame-
ters. It is often insightful to compute the value of 
stochastic solution (VSS; Birge, 1982) as the differ-
ence between the optimal objective function value of 
the deterministic counterpart (by substituting the 
stochastic parameters with their point estimates) 
and that of the stochastic programming model. We 
refer to Birge and Louveaux (2011) and Shapiro 
et al. (2021) for a systematic and updated treatment 
on the modelling and theory of stochastic program-
ming, and to Wallace and Ziemba (2005) for a col-
lection of applications of stochastic programming. 
Recent applications include disaster relief manage-
ment (Grass & Fischer, 2016), transit network 
design (Zhao et al., 2017), portfolio selection 
(Masmoudi & Abdelaziz, 2018), treatment plant 
placement in drinking water systems 
(Schwetschenau et al., 2019), process systems (Li & 
Grossmann, 2021), multi-product aggregate plan-
ning (G�omez-Rocha & Hern�andez-Gress, 2022), and 
resource allocation for infrastructure planning 
(Zhang & Alipour, 2022), among others.

A stochastic programming model may also 
include a constraint that is satisfied with a probabil-
ity. This model is is known as the chance con-
strained programming model introduced by 
Charnes et al. (1958). The probabilistic constraint 
can often be transformed into a deterministic con-
straint given the known probability distribution of a 
stochastic parameter. Detailed coverage on the 
chance constrained programming models and meth-
ods is available in Pr�ekopa (2013). Notable applica-
tions include farm management (Moghaddam & 
DePuy, 2011), broadband wireless network design 
(Claßen et al., 2014), supply chain network design 
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(Shaw et al., 2016), equity trading server allocation 
(Sun & Hassanlou, 2019), and power system plan-
ning (Geng & Xie, 2019), among others.

A stochastic programming model can be formu-
lated as a deterministic mathematical programming 
model by associating its decision variables with the 
scenarios of stochastic parameters, an approach 
often referred to as deterministic equivalent formu-
lation (DEF). Solving a stochastic programming 
model via its DEF can be computationally challeng-
ing as the size of DEF grows rapidly with the num-
ber of scenarios of stochastic parameters. Thus 
custom designed algorithms are often needed to 
obtain quality solutions for medium- and large-size 
stochastic programming models. Assuming the set 
of random parameters has finite support, the DEF 
of a 2S-SPR has a block structure with L-shape, 
which motivates the well-known L-shape method 
(Van Slyke & Wets, 1969) based on Benders decom-
position (Benders, 1962). For problems with a large 
number of random scenarios, it can be computa-
tionally intractable for the exact decomposition 
method to obtain an optimal solution. One may 
resort to various sampling-based methods to obtain 
approximate solutions. The stochastic decomposition 
method proposed by Dantzig and Infanger (1991) 
and Higle and Sen (1991) employs Monte Carlo 
simulation and importance sampling to compute 
sampling cuts instead of generating the exact cuts in 
the L-shape method. The other successful approach 
is sample average approximation (SAA; Kleywegt 
et al., 2002; Shapiro, 2003), which approximates the 
second-stage objective function by an expected value 
function corresponding to a set of scenarios of the 
random parameters. Numerical experiments and 
results of the SAA method on various benchmark 
instances are available in Linderoth et al. (2006).

Another well-known stochastic modelling and 
solution approach is the integrated simulation-opti-
misation (Fu et al., 2005), especially used for solving 
problems involving discrete decision variables, 
widely encountered in applications in management 
science, operations and supply chain management. 
A typical integrated simulation-optimisation frame-
work consists of two inter-related components: 
search and sampling. The search component deals 
with the solution space, often combinatorial in 
nature with large size, for which various metaheuris-
tics (Glover & Kochenberger, 2003) can be applied. 
These include local search based metaheuristics such 
as simulated annealing (Kirkpatrick et al., 1983), 
tabu search (Glover & Laguna, 1997) and scatter 
search (Glover, 1998), as well as population-based 
metaheuristics, e.g., genetic algorithm (Holland, 
1975). The sampling component evaluates a candi-
date solution via simulation, e.g., Monte Carlo or 

discrete event simulation. Thus an integrated simu-
lation-optimisation approach can be viewed as an 
augmented deterministic metaheuristic that employs 
simulation to evaluate/estimate solutions in an 
uncertain environment. Recent applications include 
maritime logistics (Zhou et al., 2021), pooled ride- 
hailing operators (Bischoff et al., 2018), and staffing 
for service operations (Solomon et al., 2022).

Many real-world applications need decisions to 
be made sequentially under uncertainty, e.g., pro-
duction planning, inventory control, resource alloca-
tion, and project scheduling, etc. One approach to 
this type of applications is the multi-stage stochastic 
programming (Birge & Louveaux, 2011), which is a 
generalisation of the 2S-SPR. In a typical multi-stage 
stochastic programming framework, a decision is 
made in a stage, based on the observed realisation of 
random parameters and the decisions made in the 
previous stage, to minimise the total expected future 
cost. The random parameters are assumed to evolve 
according to some known stochastic process. We 
refer to Zhang (2023) for an updated and compre-
hensive treatment on various stochastic processes. A 
nested decomposition as a generalisation of the L- 
shape method can be applied to obtain exact solu-
tions to a multi-stage stochastic programming model 
(Birge, 1985). Conceptually, it applies Benders 
decomposition or the L-shape method recursively to 
a series of nested two-stage subproblems. Although 
theoretically sound, it can be computationally chal-
lenging to handle reasonably large instances as the 
number of scenarios grows exponentially with the 
number of stages and random parameters. Thus one 
often resorts to various approximation algorithms for 
obtaining quality solutions efficiently, including value 
function approximation, constraint relaxation, scen-
ario reduction, and Monte Carlo methods, among 
others (Birge & Louveaux, 2011).

An alternative approach to sequential decision 
making under uncertainty is stochastic dynamic pro-
gramming (Ross, 1983) or as a Markov decision 
processes (MDP; Puterman, 2014). See §2.9 for more 
details.

There are two general approaches for solving an 
MDP model: open-loop and closed-loop (Bertsekas, 
2012a). An open-loop approach obtains a solution to 
all the decision variables upfront, which is static in 
nature without updating during execution of the 
sequential decision-making process. The integrated 
simulation-optimisation approach introduced above is 
a successful way to obtain an open-loop policy, e.g., 
using genetic algorithms (Ballest�ın, 2007b), tabu 
search (Tsai & D. Gemmill, 1998), or the greedy 
randomised adaptive search procedure (GRASP; 
Ballest�ın & Leus, 2009) with simulation for the 
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Stochastic Resource-Constrained Project Scheduling 
Problem (SRCPSP).

Instead of optimising the entire problem upfront, 
a closed-loop approach seeks to obtain an optimal 
decision rule (policy) to map the state at a stage to a 
decision, given the information available to the deci-
sion-maker at the current stage. A closed-loop pol-
icy is dynamic and adaptive in nature, thus is more 
flexible than an open-loop policy (Dreyfus & Law, 
1977; Bertsekas, 2012a). Although theoretically 
attractive, to obtain an optimal closed-loop policy 
through the well-known Bellman equation in recur-
sive way (Bellman, 1957) is computationally intract-
able due to the curse-of-dimensionalities of MDP in 
state space, solution space of decision variables, and 
sample space of random parameters.

Recent advances advocate the design and imple-
mentation of approximate dynamic programming 
(ADP) for solving large-scale MDPs. ADP has its 
roots in neural dynamic programming (NDP; 
Bertsekas & Tsitsiklis, 1996) and reinforcement 
learning (RL; Sutton & Barto, 2018). Its key idea is 
to replace the exact cost-to-go function with some 
sort of approximation. We refer to Si et al. (2004) 
and Powell (2011) for comprehensive coverage on 
ADP and its applications. There are two approxima-
tion paradigms for the design of an ADP algorithm. 
The value function approximation approach works 
directly on the cost-to-go function to replace it with 
an alternative functional form that is computation-
ally tractable. Using sample path simulation, a for-
ward iteration procedure can be implemented to 
solve a deterministic sub-problem with the approxi-
mated objective function subject to the set of con-
straints corresponding to the state of the current 
stage (Powell, 2011). This approach has been suc-
cessfully applied to the multicommodity network 
flow problem (Topaloglu & Powell, 2006), dynamic 
fleet management (Sim~ao et al., 2009), and dynamic 
resource planning (Solomon et al., 2019).

While the value function approximation approach 
works well for problems with structures amenable to 
efficient mathematical programming methods such 
as linear programming or network optimisation, 
many combinatorial optimisation problems are 
NP-hard themselves, and can be computationally 
demanding for mathematical programming to han-
dle. We refer to §2.5 for a review on the topic of 
computational complexity and NP-hardness. This 
calls for an alternative approximation paradigm 
known as the rollout policy (Bertsekas et al., 1997). 
A rollout policy estimates the cost-to-go function 
using some heuristic via simulation, which can be 
either an efficient problem-specific heuristic or a 
custom-designed metaheuristic for the problem at 
hand. It can be viewed as a look-ahead policy that 

estimates the cost of a decision-state pair under 
uncertainty about the future, which can be in con-
trast to the lookup table approach in RL (Sutton & 
Barto, 2018) where the cost of a decision-state pair 
is learned through simulation in a look-back fash-
ion. A hybrid look-ahead and look-back ADP algo-
rithm has been developed by Li and Womer (2015) 
to take advantage of the complementary strengths of 
the pure rollout approach and the lookup table 
approach alone. Successful applications of rollout 
policy have been reported for stochastic vehicle 
routing (Secomandi, 2001; Goodson et al., 2013), 
SRCPSP with stochastic activity durations (Li & 
Womer, 2015), RCPSP with multiple-overlapping 
modes (Chu et al., 2019), ride-hailing system plan-
ning (Al-Kanj et al., 2020), and attended home 
delivery (Koch & Klein, 2020).

All the aforementioned models and methods 
assume that the probability distribution of random 
parameters is known or can be properly estimated. 
This assumption may not hold in some situations 
where there is lack of knowledge about the uncer-
tain parameters, or error in measurement or imple-
mentation. Optimisation with uncertain parameters 
without probability distribution calls for the robust 
optimisation (RO) approach. Although the origin of 
RO can be dated back to the 1970s (Soyster, 1973), 
RO has been growing as an active research field 
since the last two decades. In an RO model, one 
assumes that uncertain parameters are within a 
user-specified uncertainty set. A robust feasible solu-
tion satisfies the set of uncertain constraints for all 
realisations of the uncertain parameters in the 
uncertainty set. One main technique to solve an RO 
model is the robust reformulation approach to 
obtain a computationally tractable robust counter-
part (RC) with a finite number of deterministic con-
straints (Bertsimas et al., 2011a). When choosing the 
type of uncertainty set for the model, one often 
needs to trade-off between robustness against real-
isations of the uncertain parameters and computa-
tional tractability, i.e., size of the uncertainty set 
(Gorissen et al., 2015). We refer to Ben-Tal and 
Nemirovski (2002) and Ben-Tal et al. (2009) for sys-
tematic treatment on robust optimisation. RO has 
been applied in various fields including finance 
(Georgantas et al., 2021), energy and utility (Sun & 
Conejo, 2021), supply chain (Ben-Tal et al., 2005; 
Pishvaee et al., 2011), healthcare (Meng et al., 2015), 
and marketing (Wang & Curry, 2012).

2.22. System dynamics37

System Dynamics (SD), founded by Forrester (1961), 
is a “rigorous method for qualitative description, 
exploration and analysis of complex systems in terms 
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of their processes, information, organisational bounda-
ries and strategies; which facilitates quantitative simu-
lation modelling and analysis for the design of system 
structure and control” (Wolstenholme, 1990). SD 
modelling involves (as extracted from the System 
Dynamics Society website - www.systemdynamics.org):

� “Defining problems dynamically, in terms of 
graphs over time.

� Striving for an endogenous, behavioural view of 
the significant dynamics of a system, a focus 
inward on the characteristics of a system that 
themselves generate or exacerbate the perceived 
problem.

� Thinking of all concepts in the real system as 
continuous quantities interconnected in loops of 
information feedback and circular causality.

� Identifying independent stocks or accumulations 
(levels) in the system and their inflows and out-
flows (rates).

� Formulating a behavioural model capable of 
reproducing, by itself, the dynamic problem of 
concern. The model is usually a computer simu-
lation model expressed in nonlinear equations or 
can be left without quantities as a diagram cap-
turing the stock-and-flow/causal feedback struc-
ture of the system.

� Deriving understandings and applicable policy 
insights from the resulting model.

� Implementing changes resulting from model- 
based understandings and insights.”

SD can be employed for both qualitative and 
quantitative modelling. On the one hand, tools and 
methods employed for qualitative SD modelling are 
also considered Soft Operational Research or 
Problem Structuring methods. On the other hand, 
quantitative SD modelling shares many aspects of 
traditional simulation methods or Hard Operational 
Research. Using SD quantitatively implies the devel-
opment of a 5-steps process (Sterman, 2000) that 

starts with a dynamic hypothesis about a structure 
responsible for the performance over time observed 
in the system followed by the model formulation, 
testing and experimentation. The next section dis-
cusses both approaches in detail.

One interesting characteristic of SD models is the 
spectrum of model fidelity they cover (Morecroft, 
2012). Figure 1 illustrates a spectrum of model fidel-
ity and realism. Models range in size from large and 
detailed to small and metaphorical. On the left-hand 
side are analogue, high-fidelity models epitomised 
by aircraft flight simulators used to train pilots and 
to rehearse crisis scenarios. They are constructed 
with realistic detail and accurate scaling to provide a 
vivid and lifelike experience of flying the aircraft 
they represent. People typically expect business and 
social models to be similarly realistic; the more real-
istic the better. Realistic high-fidelity models are dis-
cussed later in this subsection. But very often 
smaller models are extremely useful, particularly 
when their purpose is to aid communication and to 
build shared understanding of contentious problem 
situations in business and society. As Figure 1 sug-
gests, the spectrum of useful models can include 
illustrative models (of limited detail yet plausible 
scaling) or even tiny metaphorical models (of min-
imal detail yet transferable insight).

At the other end of the spectrum, on the far right, 
is a low fidelity Romeo and Juliet simulator 
(Morecroft, 2010). This particular simulation model 
contains just four main concepts: Romeo’s love for 
Juliet, Juliet’s love for Romeo and the corresponding 
rates of change of their love. It is used as a meta-
phorical model or transitional object to help under-
graduates and high school students to better 
understand something complex and abstract – differ-
ential equations or even Shakespeare’s play. Clearly, a 
simulator cannot possibly replicate Shakespeare’s 
play, but it can encourage students to study the play 
more closely than they otherwise would. It is this 
metaphorical property of small models – to attract 

Figure 1. Modelling and realism: a spectrum of model fidelity. Adapted from Morecroft (2015), Chapter 10.

470 F. PETROPOULOS ET AL.

http://www.systemdynamics.org


people’s attention, to encourage them to reflect and 
debate – that often underpins their value to model 
users. Sometimes metaphorical models enable client 
engagement. One could say that ‘small is beautiful’ in 
the world of policy and strategy modelling. Over the 
years SD studies have included models and simula-
tors that cover the entire range. See Kunc (2017b) for 
a sample of papers published in the Journal of the 
Operational Research Society and Kunc et al. (2018) 
for a study on published SD models.

2.22.1. Qualitative system dynamics
The main objective of qualitative SD involves dis-
covering the structure, in terms of feedback loops, 
driving the dynamic behaviour of key variables, usu-
ally with clients through facilitated workshops. The 
main tool employed in qualitative SD modelling is 
causal loop diagram (CLD). The steps for develop-
ing a CLD are (based on Kunc, 2017a):

1. Understanding the direction of causality 
between two variables. Interestingly, it is a 
source of important discussion among partici-
pants in facilitated qualitative SD modelling.

2. Defining polarities involves identifying the rela-
tionships between two variables as either posi-
tive (same sense of direction of change) or 
negative (opposite sense of direction of change).

3. Identifying feedback processes responsible for 
the dynamic behaviour of variables. They ori-
ginate from connecting variables in a circular 
chain of cause-and-effect. There are two types 
of feedback process: reinforcing and balancing.

Finally, Table 1 shows description of the model-
ling process

2.22.2. Quantitative system dynamics
Quantitative System Dynamics characterises the sys-
tem behaviour using a set of accumulation processes 
linked through feedback processes. The structure of 
the model is represented through stocks and flows 
diagrams. The numerical results, which are deter-
ministic and continuous, aim to replicate past sys-
tem behaviour through calibration and testing 
processes before the model is used to test interven-
tions in the system. Table 2 presents a summary of 
the modelling process.

2.22.3. Application areas
a. Behavioural modelling: There are three main 

areas of application. Firstly, research in decision 
making under dynamic complexity focused 
on identifying and documenting systematic mis-
perceptions of feedback in decision making 
processes across multiple industries and envir-
onmental conditions using SD models (Gary 
et al., 2008; Atkinson & Gary, 2016). Secondly, 
experimental studies explore decision making 
and performance using management flight sim-
ulators or microworlds based on SD models 
(Gary et al., 2008; Sterman, 2014). Thirdly, indi-
vidual experimental work using SD models 
examines how differences in mental model 
accuracy and decision rules lead to differences 
in the performance (Torres et al., 2017). 
Recently, scholars have advocated for a practice 
of behavioural system dynamics (Lane & 
Rouwette, 2023).

b. Group model building: There is a wide body of 
research on model conceptualisation in groups; 
see Rouwette et al. (2010), where the outcome is 
either qualitative or quantitative SD models. 
Researchers have assessed the effects on commu-
nication, learning, consensus and commitment 

Table 1. Qualitative SD modelling process based on Kunc (2017a).
Modelling process Qualitative SD

Objective Understand the feedback structure of the system.
Inputs Text data obtained through facilitated face-to-face meetings, interview or the interpretation of causal mechanism in 

reports and from theories.
Process The modelling process implies the construction of CLD to represent individual and/or group-level interpretations of 

causal links. Facilitation processes are critical to uncover the causal links.
Outputs There are three main outputs: learning about the structure of the system, changes in participants perspectives, and 

agreement on future policies.

Table 2. Quantitative SD modelling process based on Kunc (2017a).
Modelling process Quantitative SD

Objective Test a hypothesis about the structure driving the reference mode of a variable.
Inputs Text data obtained through facilitated face-to-face meetings, interview or the interpretation of causal mechanism in 

reports and from theories to determine the structure. Numerical data for the model can come from three sources: 
judgement from experts or managers, numerical data sets and facilitation processes for nonlinear functions.

Process After defining the boundary of the model, a stock and flow diagram is developed to represent the structure of the 
system. Equations are formulated for each variable and parameters entered. Testing of the structure and outputs 
are performed to confirm the model structure replicates the behaviour observed in the key variables.

Outputs There are three outputs: time series showing performance over time; performance over time of policies or 
interventions in the system; and learning about the dynamic behaviour of the system.
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in the behaviour of groups, as well as measuring 
the changes in mental models and understanding 
the impact of group model building in terms of 
persuasion and attitudes (Rouwette, 2016).

c. Multi-scale high-fidelity systems modelling: SD 
modellers are embracing new approaches to 
improve the scale and fidelity of their models to 
move from aggregate conceptual models into 
realistic detailed models supported with specific 
data. There are multiple considerations to 
develop high-fidelity models (Sterman, 2018). 
Firstly, these models represent heterogeneous 
actors in the system, which involves disaggre-
gating single stocks into multiple stocks reflect-
ing their differences across dimensions (e.g., 
age). While this solution increases granularity 
in the model, it also implies increasing compu-
tational burden and long simulation times, which 
can limit the ability to perform sensitivity ana-
lysis, change structure and test interventions by 
stakeholders. Secondly, high-fidelity models 
reflect business and social processes in detail fit-
ting the data. Therefore, models may move from 
the traditional representation of time, continu-
ous, to discrete; from state continuous variables 
or discrete variables; and include uncertainty 
using stochastic variables. Consequently, SD 
models can employ ordinary differential equa-
tions, stochastic differential equations, discrete 
event simulations, agent-based models and 
dynamic network models. Thirdly, multiscale 
modelling involves integrating models working 
at different temporal scales (e.g., fast and slow 
dynamics). Fourthly, since SD models tend to 
employ qualitative data (e.g., decision making 
rules), modellers should identify and mitigate 
biases in sample selection and data elicitation to 
collect robust qualitative data. Fifthly, quantita-
tive data should have a clear purpose in terms of 
the model, so specific data related to the prob-
lem the model is solving has to be collected 
rather than accepting only available numerical 
data. Sixthly, high-fidelity models should con-
sider parameter estimation and model analysis 
extremely necessary to replicate historical data.

d. SD and Artificial Intelligence (AI): Since abun-
dant information is available in different forms 
(images, text, and numbers), there is a need for 
technologies that not only predict data but also 
learn from the environment such as AI 
(Baryannis et al., 2019). AI can be used for cog-
nitive thinking, learning from behaviour, recall-
ing, and drawing inferences (Min, 2010). SD 
models use inferences of the casual structure in 
system to predict future trends or test interven-
tions (e.g., new policies). SD can combine with 

AI to generate AI-driven simulations based on 
machine-learned and mathematical rules to make 
more accurate models (Li et al., 2022b). Another 
use is the employment of AI methods to interpret 
the results of simulations, especially feedback 
loop dominance in complex SD models.

2.22.4. Future of system dynamics research
The future of SD may be driven by developments in 
several on different areas. Firstly, SD can be used as 
a problem structuring or systems thinking method 
(in terms of qualitative SD) so improvements in 
terms of facilitation will be critical. Secondly, when 
SD is an aggregated simple model that helps model-
ler and client to learn about dynamic complexity, 
improvements in terms of impact on behaviour 
from using the model (Kunc et al., 2020) will be 
expected. Thirdly, SD can be high fidelity systems 
models using all the toolkit available in terms of 
simulation methods and AI. The next section on 
systems thinking (§2.23) looks at other systems 
methodologies for different purposes.

2.23. Systems thinking38

‘Systems thinking’ involves us viewing complex 
problem situations and possible human responses to 
them using systems theories, methodologies, meth-
ods and concepts. We will start this section by pre-
senting a contemporary understanding of what a 
‘system’ is. An explanation of how systems thinkers 
use this understanding to support action to address 
or prevent complex problems will then follow. 
Subsequently, we will review 70þ years of systems 
thinking to show how we got to this contemporary 
understanding via three ‘waves’ of methodological 
development.

2.23.1. What is a system?
A system is made up of a set of interrelated parts, 
with emergent properties (Emmeche et al., 1997). An 
emergent property is a feature that cannot be traced 
back to any single part of the system, so can only be 
understood as arising from the whole (all the parts 
and interrelations together). Systems have bounda-
ries: we can say what is inside and outside the sys-
tem (Ulrich, 1994), although some interactions may 
cross these boundaries (von Bertalanffy, 1968). 
However, systems are always seen from the perspec-
tive of an observer/participant (Churchman, 1979; 
Cabrera et al., 2015). Indeed, there can be multiple 
perspectives on the boundaries of the system, what 
interrelationships (within the system and with its 
environment) need to be considered, what emergent 
properties matter, and what other perspectives 
should be heard.
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2.23.2. What is systems thinking?
Based on the above understanding of systems, we 
can now explain systems thinking. It is taking a sys-
tems approach to rethinking the taken-for-granted 
assumptions of decision makers, OR practitioners 
and stakeholders on what perspectives, boundaries, 
interrelationships and/or emergent properties matter 
in a given situation, and what the implications are 
for action. Many systems thinkers use the adjective 
‘critical-systemic’: thinking is systemic because of the 
use of the above systems concepts, but it is also crit-
ical because it involves rethinking options for 
understanding and action in relation to the deploy-
ment of these concepts (Ulrich, 1994; Gregory et al., 
2020).

2.23.3. Three waves of systems methodology
Since the 1950s, there have been three ‘waves’ (or 
successive paradigms) of systems methodology, 
although the second and third waves didn’t fully 
replace their predecessors: some groups of practi-
tioners stuck with earlier ideas. The first wave 
was typified by early work in systems engineering 
(e.g., Hall, 1962; Jenkins, 1969), systems analysis 
(e.g., Miser & Quade, 1985, 1988), system dynamics 
(e.g., Forrester, 1961, see also §2.22), and organisa-
tional cybernetics (e.g., Beer, 1966, 1981). The first 
wave emphasised quantitative computer modelling 
by experts serving clients. These experts explained 
emergent properties of systems by understanding 
interrelatedness, and then deployed these explana-
tions to make recommendations to clients on the 
possible consequences of strategic and tactical 
decisions.

In terms of the definition of a system presented 
earlier, systems were seen as real-world entities; the 
emphases were on interrelationships and emergent 
properties; boundaries were relevant because model-
ling had to account for all the parts and interrela-
tionships in a system that are needed to understand 
given emergent properties; but multiple perspectives 
were often bypassed, rather than listened to, in the 
interests of objectivity or impartiality.

Almost all the first-wave methodologies regarded 
models as representations of reality, with people 
often being viewed as deterministic parts of systems 
being modelled rather than self-conscious actors 
who can change their purposes (Ackoff, 1979a). 
Indeed, stakeholder purposes can differ significantly 
from those of the systems modeller and his/her cli-
ent, and ignoring this can create conflict that under-
mines an OR project (Checkland, 1985). Some 
critics (e.g., Hoos, 1972; Lee, 1973) argued that mas-
sive investments in large-scale modelling were 
wasted because systems practitioners tried to be 
comprehensive (e.g., modelling all interacting 

problems at the city scale), yet they didn’t suffi-
ciently account for the actual questions that decision 
makers wanted to address—more modest modelling 
for specific purposes would have been better. 
Worse, the typical response to project failures was 
to say that the models were not comprehensive 
enough, so the ideal of comprehensiveness remained 
unquestioned (Lilienfeld, 1978).

These criticisms led to a second wave of systems 
methodologies focused on stakeholder participation, 
qualitative modelling and dialogue for collaborative 
learning. The idea of producing expert recommen-
dations was replaced by a facilitation role for the 
practitioner, so multiple stakeholders could develop 
and integrate their ideas into proposals for change. 
Modelling shifted from a focus on real-world sys-
tems to understanding stakeholder perspectives, 
which could help people develop better mutual 
understanding and agree broadly-acceptable ways 
forward. Second-wave methodologies included soft 
systems methodology (Checkland, 1981), strategic 
assumption surfacing and testing (Mason & Mitroff, 
1981), interactive planning (Ackoff, 1981) and inter-
active management (Warfield, 1994). Several earlier, 
first-wave methodologies were transformed in the 
second wave to become more participative, most 
notably system dynamics (e.g., Vennix & Vennix, 
1996) and organisational cybernetics (e.g., Espejo & 
Harnden, 1989).

It was during the second wave that the definition 
of a system was expanded to recognise that all sys-
tems are understood from a perspective. Boundaries 
were no longer considered the real-world edges of 
systems, but instead marked what people include in 
or exclude from their deliberations (Churchman, 
1970). There was a shift away from seeing systems 
as real-world entities to viewing them as useful ways 
of thinking to structure interpretations, either of the 
world or of prospective actions to change that world 
(Checkland, 1981).

However, this second wave came to be critiqued 
by a third wave of systems thinkers. Two issues came 
to the fore. First, a bitterly-entrenched paradigm war 
between first- and second-wave systems thinkers was 
sparked by the emergence of the second wave 
(Jackson & Keys, 1984). In response, there were 
many third-wave proposals for methodological plural-
ism: drawing creatively from both first- and second- 
wave methodologies, and reinterpreting methods 
through new frameworks or guidelines for choice. 
The idea was to refuse the forced choice between 
first- and second-wave thinking, and embrace the 
best of both. This gave us a more flexible and 
responsive practice than either of the previous two 
waves could deliver (e.g., Jackson, 1991; Mingers & 
Gill, 1997). Much of the work on methodological 
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pluralism was developed under the banner of ‘critical 
systems thinking’ (Flood & Jackson, 1991b; Flood & 
Romm, 1996; Jackson, 2019).

The second issue identified in the third wave was 
that earlier approaches were relatively naïve with 
respect to power relations. The first-wave assumption 
that the practitioner and/or client knows best could 
result in the coercive imposition of ‘solutions’ and/or 
a lack of stakeholder buy-in, which would frustrate 
implementation of recommendations for change (e.g., 
Jackson, 1991; Rosenhead & Mingers, 2001). Also, 
there was a second-wave, practice-limiting belief that 
stakeholder participation in dialogue, in and of itself, 
allows the better argument to prevail. This overly 
minimises problems of bias, coercion, groupthink, 
deceit, ideological framing and disempowerment 
(Mingers, 1980, 1984; Jackson, 1982).

A seminal, third-wave response to the power 
issue was Ulrich’s (1987; 1994) critical systems heu-
ristics. Ulrich’s central idea is being critical of the 
boundary judgements made by decision makers, 
including the OR practitioner him/herself. Nobody 
can have a comprehensive viewpoint, so boundaries 
are inevitably set with reference to the purposes and 
values of decision makers. However, too often, 
boundary judgements are taken for granted, so deci-
sion makers (often unknowingly) foist their norma-
tive assumptions on those affected by their 
decisions, and the latter’s voices are not heard. 
Ulrich encourages those involved in and affected by 
an OR project to reach agreement in dialogue on 
the key assumptions upon which that project should 
be based. However, when dialogue is avoided by 
decision makers, those affected by their ideas have 
the right to make a ‘polemical’ case to embarrass 
the decision makers into accepting discussion. The 
key principle is preventing powerful stakeholders 
(decision makers and ‘experts’, including the OR 
practitioner) from simply taking their boundaries 
and values for granted and imposing them on 
others.

Following Ulrich (1994), Midgley et al. (1998) 
then reviewed all the second- and third-wave work 
on boundaries, and proposed a broader theory and 
practice of boundary critique. This encourages the 
practitioner to explore different possible boundaries, 
purposes and values in an OR project, and also to 
uncover conflicts (Midgley & Pinz�on, 2011) and 
processes of marginalisation (Midgley, 1992). 
Midgley et al. (1998) argue that boundary critique is 
necessary in all projects dealing with complex issues, 
as there are likely to be initially-hidden elements of 
the situation that need to be accounted for. Indeed, 
even deciding whether a problem situation should 
be viewed as complex or not requires some up-front 
boundary critique.

In terms of the definition of a system given ear-
lier and its implications for systems thinking, this 
work deepened our understanding of boundaries: 
taken-for-granted boundaries can reflect the struc-
tural entrenchment of power relations in our organ-
isations, institutions and wider society (Jackson, 
1985), which can cause major socio-political and 
environmental issues (Midgley, 1994). Therefore, 
third-wave systems thinkers started talking about 
evolving stakeholder perspectives and structural 
relationships: doing either without the other can 
result in systemic resistance to change (Gregory, 
2000). However, the starting point for intervention 
(following an initial boundary critique) is usually 
stakeholder perspectives because it is the stakehold-
ers themselves who can then turn their attention to 
structural reform (Boyd et al., 2007). Here we see the 
co-existence of both the first-wave understanding of 
real-world systems and the second-wave emphasis on 
stakeholder perspectives. Methodological pluralism 
makes perfect sense in this context, as some 
approaches are particularly useful for evolving stake-
holder perspectives (e.g., Checkland, 1981), and 
others support intervention in organisational and 
institutional structures (e.g., Beer, 1981). Both can be 
integrated into an OR project design (e.g., Sydelko 
et al., 2021, 2023).

Eventually, research on methodological pluralism 
and boundary critique was integrated into a new 
‘systemic intervention’ approach by Midgley (2000). 
He recognised that boundary critique could support 
deep diagnoses of problem contexts, and these diag-
noses could then inform the design of OR projects, 
drawing creatively upon methods from both previ-
ous waves of systems thinking and from other tradi-
tions. This work unified the different strands of 
third-wave methodology.

Recently, however, there have been discussions 
about whether a fourth wave is forming. Current 
research foci include whether a universal theory of 
systems thinking is possible and necessary (Cabrera 
et al., 2023); how to construct a simple narrative of 
systems thinking to effectively communicate our 
work (Midgley & Rajagopalan, 2021); how arts- 
based methods can enhance practice (Rajagopalan, 
2020); and what we can learn from neuroscience to 
inform methodological development (Lilley et al., 
2022). It remains to be seen whether addressing 
these issues will extend the third wave or launch a 
fourth wave of systems thinking.

2.24. Visualisation39

Visualisation, the graphic (and often interactive) dis-
play of quantitative or qualitative information, has 
established itself not only as a powerful working 
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modality for many management and engineering 
contexts (Basole et al., 2022; Lindner et al., 2022), 
but also as a research field (and research method) in 
its own right (Eppler & Burkhard, 2008). In this 
subsection we briefly review the visualisation field, 
its relevance for Operational Research (including its 
benefits and caveats), its various types and applica-
tion contexts, its theoretical perspectives and 
approaches, as well as its likely future evolution.

Why care about the graphic representation of 
information, especially for Operational Research? 
The short answer that research has provided over 
the last decades to this question is that it provides 
numerous cognitive, emotional, and social benefits 
and thus improves our individual and collective 
ability to make use of information. These benefits 
include a quicker comprehension of information 
(Kress & Van Leeuwen, 2006), the detection of 
important patterns (Bendoly & Clark, 2016), the 
ability to better discuss information (Bendoly & 
Clark, 2016; Meyer et al., 2018), or the greater recall 
of information (Paivio, 1990; Childers & Houston, 
1984).

The visual representation of information is not, 
however, without risks or potential disadvantages 
(see Bresciani & Eppler, 2015; Basole et al., 2022). 
Visualisations can be misleading, manipulating, 
oversimplified, biased, or simply confusing or over-
whelming. If, for example, the y-axis of a line chart 
has been cropped, a small improvement may be 
mistakenly interpreted as a substantial one. The cor-
rect interpretation of information may also require 
what is often referred to as visual literacy (including 
data and information literacy, see Locoro et al., 
2021) on behalf of the viewers. A diagram is some-
times worth ten thousand words (Larkin & Simon, 
1987), but at times it requires that many words of 
explanation to properly understand it.

To avoid such risks, professionals need to choose 
the right visualisation format for the task at hand 
and use it diligently and in line with existing guide-
lines (such as those made popular by Tufte, 2001) 
and our perceptual preferences (Ware, 2020). There 
is research on both of these questions, i.e., on the 
available types of visualisation (Shneiderman, 1996; 
Chi, 2000) and on their proper use (see for example 
Ware, 2020).

In terms of segmenting the different kinds of 
graphic representations for operations management 
contexts, one can, at the highest level, differentiate 
between quantitative and qualitative information 
visualisation. This distinction is based on the type of 
information that is represented: in the case of num-
bers or data this is referred to as quantitative visual-
isation. Typical examples of this genre of 
visualisation are business intelligence dashboards or 

simple overhead slides with bar and pie charts. Pie 
charts, however, are perceptually problematic, as we 
cannot visually distinguish pie section sizes accur-
ately, let alone compare them in different pie charts. 
In the case of concepts, arguments, ideas, or issues 
this is often labelled as qualitative visualisation. 
Argument mapping (Bresciani & Eppler, 2018) is 
one approach within this group that is already used 
in different management contexts. Whereas quanti-
tative visualisation is mostly software-based, qualita-
tive visualisation can be done on paper, walls, 
flipcharts, and other physical media.

There are, of course, also instances of mixed visu-
alisations that combine quantitative information and 
qualitative insights in a single image (see Eppler & 
Kernbach, 2016, for such combined representations). 
An example of such a hybrid visualisation would be 
a business intelligence dashboard (consisting of 
charts) that reveals conceptual diagrams through 
mouse-over comments (or vice versa).

The aforementioned distinctions are part of one 
tradition of visualisation research, namely the classi-
ficatory or taxonomic approach (see, for example, 
Shneiderman, 1996). This research stream or visual-
isation perspective aims at providing a systematic 
and comprehensive overview on all forms of infor-
mation visualisation that are useful for the engineer-
ing or management sector.

Another theoretical framing of the visualisation 
field comes from the literature on graphic represen-
tations as boundary objects that span professional 
frontiers and connect expertise across disciplines – 
through the help of joint visual displays (Black & 
Andersen, 2012). This stream of literature empha-
sises the dual nature of visualisations to be simul-
taneously fixed and fluid, clear and open to multiple 
interpretations or functions (for example the blue-
print chart of a building or the Gantt chart for a 
project).

A third influential approach to make sense of the 
use and impact of visualisation in workplace settings 
is the cognitive or collaborative dimensions 
approach (Green et al., 2006; Bresciani & Eppler, 
2018). This theoretical lens sheds light on the differ-
ent qualities of graphic representation that make 
them more or less suited to be collaboration cata-
lysts—for example based on their (procedural or 
representational) clarity, unevenness or facilitated 
insight.

A similar theoretical perspective is the affordance 
approach (Meyer et al., 2018), that highlights the 
different cognitive ‘invitations’ or incentives that vis-
ualisations can provide, such as their attention grab-
bing effect, their interpretive flexibility or their story 
telling potential.
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Another influential research stream focuses not 
on how images are best designed for their applica-
tion contexts, but on how they are appropriated and 
interpreted. Many researchers with this research 
stream employ a semiotic approach to the study of 
visualisation based on the seminal work by Kress 
and Van Leeuwen (2006). This approach is also 
informed by (research-based) insights into our per-
ception of visual information, but additionally 
enriched by the conventions and (cultural) tradi-
tions that govern our interpretation processes of 
graphic symbols.

There are of course many other research streams 
discussing the design and use of visualisation in 
management or engineering contexts. While some 
of them focus on particular visualisation formats, 
such as diagrams, maps, 3D models, or sketches, 
others focus on certain application contexts, such as 
(big data) analytics, creativity and innovation, pro-
duction simulation, or planning. This brings us to 
the actual application contexts of visualisation.

When are the visualisation formats and perspec-
tives described above mostly used? Typical applica-
tion contexts for information visualisation are 
strategising (Eppler & Platts, 2009) and planning 
sessions of managers and experts (for example with 
the help of Gantt charts or technology roadmaps 
(Blackwell et al., 2008), risk analysis (Eppler & 
Aeschimann, 2009), ideation and problem solving 
workshops (using mind mapping, argument map-
ping, or simple sketching) in product development 
and business model innovation contexts (using can-
vases and other visual framerworks), training and 
development (including knowledge transfer and 
retention), as well as for performance management, 
simulations and forecasting or scenario workshops. 
Last but not least, visual methods are also used as 
research tools in their own right (Comi et al., 2014) 
to enable better access to practitioners’ expectations, 
experiences, or priorities (Bell & Davison, 2013).

Many new application contexts are currently 
emerging within the realm of Operational Research 
and management, including new forms of visualisa-
tion. These novel forms include trainings and simula-
tions in three dimensional immersive settings such as 
the Metaverse or augmented reality visualisations for 
simulations or assisted on-site decision making or 
operations. Another fascinating recent phenomenon 
consists of images created by artificial intelligence 
based on user instructions (such as DALL-E or similar 
systems). Such artificially created, at times photo-real-
istic images, can help (for example) in the ideation, 
service innovation, or product development context. 
The rise of artificial intelligence also impacts the inter-
pretation of information visualisation: A case in point 
are data visualisation packages (such as Tableau or 

PowerBI) that (through AI) already assist the user in 
the exploration and interpretation of the provided 
data charts and suggest areas for deeper analysis. The 
visualisation field is thus a highly dynamic area with 
great promise, both in terms of its methodological rep-
ertoire as well as its application scope.

3. Applications

3.1. Auctions and bidding40

The 2020 Nobel Prize in Economics was awarded to 
Paul Milgrom and Robert Wilson for their improve-
ments to auction theory and inventions of new auc-
tion formats. Their theoretical discoveries have 
improved auctions in practice and benefited sellers, 
buyers and taxpayers around the world (RSAS 
2020).

An auction is usually a process of selling and/or 
buying goods or services that are up for bids. A bid 
is a competitive offer of a price and/or quantity tag 
for a good or service. Auction is a particular way to 
determine prices and allocation of goods or services.

Auctions have been used since antiquity for the 
sale of a variety of objects. Today, both the range 
and the value of objects sold by auction have grown 
to staggering proportions (Krishna, 2010). The con-
texts within which auctions are applied include art 
objects, antiques, rare collectibles, expensive wines, 
numerous kinds of commodities, livestock, radio 
spectrum, used cars, real estate, online advertising, 
vacation packages, wholesale electricity and emission 
trading, and many more.

In the basic economic model, the price of a good 
or service is obtained when the supply and demand 
meet and it is normally an equilibrium value after 
adjustments over time. However, in some situations 
such adjustments cannot be made to reach an equi-
librium. As Haeringer (2018) points out, auctions 
are commonly used when (a) sellers and/or buyers 
have little knowledge of what would be the “right” 
price (e.g., a tract of land with an unknown amount 
of oil underground); (b) the supply is scarce (e.g., 
an art painting); (c) the quantity or quality of the 
good changes very frequently (e.g., electricity or 
fish); and (d) transaction frequency is low (e.g., 
radio spectrum).

Bidders behave strategically. Based on the avail-
able information, what they know themselves and 
what they believe other bidders to know, it is diffi-
cult to analyse the outcomes of different bidding 
rules. This is where auction theory comes in, which 
is closely linked to many other domains of oper-
ational research, such as game theory (§2.11), 
behavioural OR (§2.2), combinatorial optimisation 
(§2.4), computational complexity (§2.5), linear pro-
gramming (§2.14) and integer programming (§2.15).
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3.1.1. Key concepts and results
As detailed by Haeringer (2018), an auction consists 
of the following component rules: (a) bidding for-
mat (e.g., a price, a price and a quantity, a quantity 
only, or a list of items if more than one item are for 
sale); (b) bidding process (e.g., auction stopping cri-
teria and information for bidders); and (c) price and 
allocation (i.e., auction winner(s) and the final 
price(s)).

In studying auctions, it is important to bear in 
mind the underlying model of valuation, the values 
attached to the objects by individual buyers and/or 
sellers. If the value, though unknown at the time of 
bidding, of an object is the same for all bidders, 
then the evaluation is of a common value. More 
generally, in situations of private values, the value of 
an object varies from one bidder to another. These 
values can be independent or interdependent.

If there is only one item to be sold, we have the 
most basic auction. Some common forms of such 
simple auctions are well known. In an open-outcry 
auction, an auctioneer takes bids from the partici-
pants and at some point of time a winner is 
declared, who will then pay for the item at some 
price related to the bids. If all bids follow the 
dynamics of ascending prices and the winner is the 
highest bidder, who pays his bidding price, then we 
have an English auction. In the case of private val-
ues, the English auction is strategically equivalent to 
the second-price sealed-bid auction (Krishna, 2010), 
in which bidders submit written bids without know-
ledge of other bids. The highest bidder wins but 
pays the price that is the second highest in the auc-
tion. On the other hand, if the auctioneer in an 
open-outcry auction begins with a high asking price 
(in the case of selling) and lowers it until some par-
ticipant accepts the price (or until it reaches a pre-
determined reserve price), then we have a Dutch 
auction. This type of open-outcry descending-price 
auction is most commonly used for goods that are 
required to be sold quickly such as flowers, or fresh 
produce (Mishra & Parkes, 2009), as it has the 
advantage of speed since a sale never requires more 
than one bid. The Dutch auction is strategically 
equivalent to the first-price sealed-bid auction 
(Krishna, 2010), which is the same as the second- 
price sealed-bid auction except that the winner pays 
his bidding price.

If there are multiple homogeneous (resp., hetero-
geneous) items to be sold, we have a multiunit 
(resp. combinatorial) auction.

One of the most important results in auction the-
ory is the revenue equivalence theorem (Heydenreich 
et al., 2009; Nisan, 2007), which in its simple form 
states that when bidders’ valuations are private and 
uniformly distributed, the expected revenue of the 

seller is the same in the English (or second-price) 
and Dutch (or first-price) auctions.

In a forward auction, a number of buyers com-
pete to obtain goods or services from one seller 
(e.g., spectrum auction). In contrast, in a reverse 
auction, a number of sellers compete to obtain busi-
ness from one buyer (e.g., electricity capacity mar-
ket). In a double auction, there are multiple sellers 
and multiple buyers (e.g., wholesale electricity mar-
ket). Potential buyers submit their bid prices and 
potential sellers submit their ask prices to the mar-
ket institution, which then chooses the price that 
clears the market. At this price p, all the sellers who 
asked no more than p sell and all buyers who bid at 
least p buy.

The main issues that guide auction theory involve 
a comparison of the performance of different auc-
tion formats. Naturally revenue is by far the most 
common yardstick from the seller’s perspective. 
However, if the auction concerns the sale of a pub-
licly held asset to the private sector, such as the case 
of spectrum auction, efficiency may be more impor-
tant – the object ends up in the hands of whoever 
values it most ex post, or in the more general case 
of multiple items, the sum of realised values for all 
participants is maximised. Besides, simplicity and 
susceptibility to collusion among bidders are among 
other criteria for the choice of an auction format 
(Krishna, 2010).

3.1.2. Some best practices
One of the most important applications of auction 
theory is the implementation of spectrum auctions 
to allocate licenses to mobile phone carriers, who 
act as buyers in the forward auction. One of the 
auction formats introduced by Milgrom (1987) and 
Wilson (1998) was first used in 1994 by the US 
authorities to sell radio frequencies. This practice 
has since spread globally and led to great benefit to 
society.

There can be many ways for allocating licences in 
general. In addition to an auction, it can proceed 
either with a lottery in which any interested party 
would just have to sign up possibly with an entry 
fee, or with a beauty contest in which all those 
wishing to obtain a licence are required to present a 
case and the final winners would be selected by a 
committee. Haeringer (2018) provides a detailed 
argument why a lottery or a beauty contest is 
inappropriate in the case of radio frequencies and 
why an auction offers a more attractive solution. 
There are a number of issues in selling licences of 
spectrum, such as those concerning collusion, 
demand reduction and lack of entry. Of particular 
relevance for common-value auctions is the so- 
called winner’s curse – the winner pays too much 
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and loses out. Haeringer (2018) discusses how a 
suitable format of an auction can be used to address 
these issues.

A wholesale electricity market exists when com-
peting generators offer their electricity output to 
retailers. Double auctions are normally used for 
such a market (Mayer & Tr€uck, 2018). By its nature 
electricity is difficult to store and has to be available 
on demand. Consequently, unlike other products, it 
is not possible, under normal operating conditions, 
to keep it in stock, ration it or have customers 
queue for it, so the supply should match the 
demand very closely at any time despite the con-
tinuous variations of both (Weron, 2014, §3.19). 
The supply uncertainty becomes particularly rele-
vant with an increased use of green energy (such as 
solar, tidal, wind energy).

The electricity capacity market becomes necessary 
to build and maintain electricity capacity that may 
be called upon in time of need to maintain the grid 
balance. In the UK’s system for purchasing Short 
Term Operating Reserve (STOR) for electricity sup-
ply (National Grid ESO 2022), the National Grid 
maintains a reserve generation ability in case of sud-
den demand or supply variations. Part of the operat-
ing reserve is made up by contracts through 
auctions. In this market, the bids come as electricity 
capacity, so the National Grid determines the right 
amount of capacity to reserve from a competitive 
tender. Tenders are assessed on the basis of avail-
ability prices and utilisation prices together with a 
consideration of response times and geographical 
locations. In this reverse auction, the National Grid 
acts as the buyer, while individual electricity opera-
tors act as sellers. Extensive studies on such auctions 
can be found in Chao and Wilson (2002) and 
Schummer and Vohra (2003). More recently, 
Anderson et al. (2017, 2022) investigate the problem 
under more general settings. They show that a nat-
ural equilibrium is not only efficient but also opti-
mal for individual bidders.

The Internet is a new exciting venue for auctions 
and eBay is certainly the most well-known auction 
place on the Internet. Auctions on eBay face new 
challenges due to the nature of the Internet, where 
an auction can take days or even weeks and poten-
tial buyers can bid whenever they want. In response, 
eBay uses proxy bidding wherein a computer pro-
gramme is used to bid on behalf of the bidder, who 
enters an auction effectively with a maximum bid. 
The computer programme raises rival bids by the 
minimum increment set beforehand as long as it is 
below the maximum bid. It is easy to see that such 
an auction is effectively a second-price auction in 
which the amount entered by the bidder serves as 
the bidding amount. Ariely and Simonson (2003) 

propose an analytical framework for studying bid-
ding behaviour in online auctions. Chothani et al. 
(2015) provide an overview of online auctions. 
Hickman (2010) analyses significant differences 
between electronic auctions and non-electronic 
auctions.

3.1.3. Closing remarks
There are many excellent surveys of auction theory 
and applications. Milgrom (1985) and McAfee and 
McMillan (1987) provide a cogent account of the 
theory of single-object auctions and explain many 
extensions and applications of the theory. Milgrom 
(2004) provides a comprehensive introduction to 
modern auction theory and its important new appli-
cations. Samuelson (2014) examines the use of auc-
tions, paying equal attention to theory and practice. 
Haeringer (2018) and Kagel (2020) give respectively 
an overview of empirical and experimental studies 
on auctions. Cassady (1967) provides a colourful 
and insightful overview of real-world auction 
institutions.

3.2. Community operational research41

Community Operational Research (COR) reflects 
the aspirations of OR’s early theorists and practi-
tioners of “science helping society” (Cook, 
1973/1984, p.36). There is a long tradition of COR 
practice that includes Ackoff’s, 1970 engagement 
with members of the Mantua ghetto in Philadelphia, 
Cook’s projects with inner-city community organisa-
tions (Cook, 1973; Luck, 1984), Beer’s work with the 
Allende Government in Chile (Beer, 1981), and 
numerous projects undertaken from the University 
of Bath (Jones & Eden, 1981; Sims & Smithin, 
1982). See Jackson (2004) and Rosenhead (1993) for 
a discussion of such work. Although these early 
examples of COR are significant, they were far from 
the norm as a focus on “science helping the estab-
lishment” predominated (Cook, 1973, 1984, p.36). 
In recognition of this, Rosenhead (1986) posed the 
question of “who O.R. worked for (“custom”)” 
(p.335) in his inaugural address as President of the 
UK’s Operational Research Society. Rosenhead 
answered his own question in stating that the cus-
tomers were, in the main, “big business, public util-
ities, the military and central government 
departments, with a thin scatter of local govern-
ments and health and other public authorities” 
(p.336) to the neglect of other groups “located out-
side the power structure” (p.337). Rosenhead (1986) 
not only discussed the custom of OR, but also 
tackled the related issue of practice in asserting that 
“The evolved forms of tools reflect the circumstan-
ces of their use” (p.338). Hence, mainstream OR’s 
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focus on quantification and modelling reflected its 
customers’ privileging of technical matters over dia-
logue between stakeholders and issues of emancipa-
tion (Rosenhead, 1993, drawing on Habermas, 
1972), and involved the use of OR methods “beyond 
the comprehension of most people” (Rosenhead, 
1986, p.339), effectively masking the social and 
value-laden nature of much decision making. In 
contrast, concerns for better mutual understanding 
in society and freedom from oppressive power rela-
tionships inspired the call for a more transparent 
OR to support “a more lively, complex and elabor-
ate social process of decision-making” (Rosenhead, 
1986, p.339).

Such was the impact of Rosenhead’s inaugural 
speech and his efforts within the OR Society that 
engagement with non-traditional clients quickly 
became legitimised and formalised through the 
founding of a research centre, the Community 
Operational Research Unit, located at Northern 
College, which later moved to its present location at 
the University of Lincoln, UK. In the 1980s, the OR 
Society also provided support for the Centre for 
Community OR at the University of Hull (later to 
be merged into the Centre for Systems Studies), and 
the Community OR Network of around 300 OR 
practitioners. The universities of Lincoln and Hull 
continue to actively practice and promote COR. 
More recently, in 2011, the OR Society created a 
Pro Bono OR scheme that connects volunteer ana-
lysts with good causes42,43.

Given the multi-faceted and often complex nature 
of COR projects, there appears to be no one par-
ticular OR approach that has emerged as dominant. 
There are, though, three streams of complementary, 
sometimes overlapping, approaches that have proven 
useful in multiple reported cases of COR:

1. Problem Structuring Methods (PSMs) are a col-
lection of approaches that offer decision support 
by “way of representing the situation (that is, a 
model or models) that will enable participants 
to clarify their predicament, converge on a 
potentially actionable mutual problem or issue 
within it, and agree commitments that will at 
least partially resolve it” (Mingers & Rosenhead, 
2004, p.531). The modelling effort may involve 
clarification of normative agendas through dia-
logue, as PSMs are largely founded on interpre-
tivist or social constructivist epistemologies 
(Jackson, 2006). For more on PSMs see §2.20.

2. Critical Systems Thinking (CST) and Critical 
Systems Practice (CSP) focus on the distinction 
of a broad range of problem contexts and the 
development of systems-based methods appro-
priate to those contexts (Flood & Jackson, 

1991a, 1991b; Mingers & Brocklesby, 1997). 
Having a broad range of systems methodologies 
to draw on is necessary but not sufficient for 
good practice. Consequently, Jackson (2000) 
encapsulated the notion of good practice in his 
statement of three commitments of CSP: critical 
awareness, relating to critique of the different 
systems methodologies, and social awareness of 
the societal and organisational context; 
improvement, referring to the achievement of 
something beneficial, reflecting a cautious 
approach to the aspiration of universal liber-
ation; and pluralism, the need to work with 
multiple paradigms without recourse to some 
unifying metatheory. For more on systems 
thinking, see §2.23.

3. Systemic Intervention (SI) developed out of 
CST and took as its two primary concerns crit-
ical reflection on boundaries of inclusion and 
exclusion (Churchman, 1970; Ulrich, 1983, 
1987; Midgley, 2000) and methodological plur-
alism. Midgley (2000) defines SI thus: “If inter-
vention is purposeful action by an agent to 
create change, then systemic intervention is 
purposeful action by an agent to create change 
in relation to reflection on boundaries” (p.129). 
He shows how exploring boundaries informs 
the methodological design of a project, with the 
meaningful engagement of communities built 
in. For more on SI see section §2.23.

These three streams of approaches have much in 
common with action research (AR; Levin, 1994; 
Midgley, 2000; Mingers & Rosenhead, 2004) and, 
perhaps not surprisingly, AR has been a focus of a 
lot of COR work. Indeed, the Community 
Operational Research Unit explicitly articulated a 
working philosophy of AR following the traditions 
established in Latin America and Scandinavia 
(Thunhurst, 1992). Over the years, a considerable 
and diverse body of COR work has amassed, with 
some contemporary and notable examples including 
conference papers (e.g., Wong & Hiew, 2020), case- 
based research papers (e.g., Rosenhead & White, 
1996; Deutsch et al., 2022; Paucar-Caceres et al., 
2022; Pinzon-Salcedo & Torres-Cuello, 2022; 
Chowdhury et al., 2023), journal special issues (e.g., 
Johnson et al., 2018), project reports (e.g., Stephens 
et al., 2018) and edited books (e.g., Bowen, 1995; 
Ritchie et al., 1994; Midgley & Ochoa-Arias, 2004; 
Johnson, 2012a).

What counts as COR is not a simple matter 
though, and there have been several papers over the 
years that have critically discussed this (see for 
example the different understandings reflected in 
Midgley et al., 2018, and White, 2018). Importantly, 
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Johnson and Smilowitz (2012) suggest that some 
examples of COR might be more appropriately 
classed as capacity-building instead of “applications 
based on analytic models intended to provide spe-
cific policy and operational guidance to decision- 
makers in a way that extends existing theory and 
methods” (p.39). While some COR might indeed be 
classed as capacity building (for example, Boyd 
et al., 2007, are explicit that capacity building was 
part of their project), it is important not to confuse 
such interventions with those that are based on the 
use of models of a qualitative rather than quantita-
tive nature. Indeed, the commitment to knowledge 
being embedded within the client organisation 
(Klein et al., 2007), handing over tools and techni-
ques (Gregory & Jackson, 1992a, 1992b; Boyd et al., 
2007; Gregory & Ronan, 2015) and self-organised 
learning (Herron & Mendiwelso-Bendek, 2018) serve 
to bring about capability-building alongside model 
building and the use of analytical approaches at the 
local level, which does not rule out modelling and 
data analysis. The needs and skills of citizens and 
associated groups have moved on since the 1980s, 
such that the tools of OR (data and models) are not 
so incomprehensible as they might previously have 
been regarded, and are familiar to most if not all 
citizens (Caulkins et al., 2008). Indeed, Hindle and 
Vidgen’s (2018) work with the Trussell Trust on 
mapping food bank data demonstrates that charities 
can make good use of big data and data 
visualisation.

Although there are examples of COR projects being 
undertaken world-wide, sustained organised support 
has been most evident in the UK and US. Johnson 
(2012a, 2012b) brought renewed interest to the field in 
the US with his promotion of a stream of activity that 
goes by the title of Community-Based Operations 
Research (CBOR). Johnson and Smilowitz (2012) define 
CBOR as “a subfield of public-sector OR … that 
emphasizes most strongly the needs and concerns of 
disadvantaged human stakeholders in well-defined 
neighborhoods. Within these neighborhoods, localized 
characteristics vary over space and exert a strong influ-
ence over relevant analytic models and policy or oper-
ational prescriptions” (p.38). Complementary to the 
remit of CBOR is the Institute for Operations Research 
and the Management Sciences (INFORMS) Pro Bono 
AnalyticsVR initiative44.

Whilst COR, CBOR and pro-bono OR may be 
said to have a related remit, it is worth mentioning 
a key difference, “COR takes as its remit to work 
with (i.e., to take as its clients) disadvantaged com-
munity groups themselves” (Rosenhead, 2013, 
p.610), whereas CBOR and pro-bono OR are more 
focused on making OR and analytics available to 
third sector and public organisations. This 

distinction is not undisputed (Midgley et al., 2018), 
but the important thing is that such efforts, geared 
to meaningful community engagement, have not 
only enabled community access to OR, but have 
also provided a strong impetus for its theoretical 
and methodological development in a way that hon-
ours the legacy of OR’s early founders.

As we have an increasing number of ways to con-
nect with others and form communities, it would be 
easy to assume that, going forwards, COR merely 
needs to develop new forms of practice to support 
communities in these different realms. But, in a 
VUCA (volatile, uncertain, complex and ambiguous) 
world (Bennis & Nanus, 1985), we must be alert to 
the need to challenge simple assumptions. Rather, 
there is a good argument for a critical turn in COR 
involving the explicit examination of underpinning 
values and ethics (C�ordoba & Midgley, 2006; 
Jackson, 2006). Midgley and Ochoa-Arias (2004) 
have already claimed that “if practitioners do not 
reflect on the different visions that it is possible to 
promote, then there is a danger that they will 
default to the understanding of community that is 
implicit in the liberal/capitalist tradition” (p.259). 
This brings with it missed opportunities to pursue 
more challenging and empowering practices that 
enable political activism and give some of the most 
marginalised people in our society a meaningful 
voice in OR projects. Much of COR has arguably 
been quite tame, doing good in local communities 
without challenging the political status quo (Wong 
& Mingers, 1994), but in an era of climate change, 
biodiversity loss, rising nationalism, insecure 
employment, mass migration, and increasing wealth 
inequality, a new, more critical agenda for COR is 
urgently needed.

3.3. Cutting and packing45

Cutting and packing (C&P) problems are geometric 
assignment problems, in which small items are 
assigned to large objects such that a given objective 
function is optimised and two basic geometric feasi-
bility conditions hold, specifically containment and 
non-overlap. They appear in a wide range of set-
tings, but are most commonly investigated for appli-
cations in manufacturing and transportation. For 
example, cutting pattern pieces from material or 
packing boxes into containers. These are combina-
torial optimisation problems and NP-hard. 
Depending on the size or geometry of the problem, 
there exists strong formulations that can be solved 
using exact methods. However, there remains many 
open problems that have instances that cannot be 
solved to optimality, or computational times are 
impractical for applications in practice. Moreover, 
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there are problems where bounds are weak and only 
toy instances can be solved to optimality. As a 
result, heuristics remain an important tool in C&P.

Given the wide variety of C&P problems, 
Dyckhoff (1990) and later W€ascher et al. (2007) 
defined a typology of problems using the following 
dimensions:

3.3.1. Objective function
� Output maximisation: packing the greatest value 

of items in a given fixed dimension finite num-
ber of large object(s).

� Input minimisation: pack all items using the 
minimal number of fixed dimension objects or 
the minimum size large object with at least one 
unconstrained dimension.

3.3.2. Assortment of small items (items to be 
packed)
� All items are identical.
� Weakly heterogeneous: few item types given the 

total number of items.
� Strongly heterogeneous: many item types that are 

unique or have few copies.

3.3.3. Assortment of large items
� Single large object: fixed dimension for output 

maximisation, open dimension(s) for input 
minimisation.

� Multiple large objects: fixed dimension, either 
identical or heterogeneous.
These distinctions lead to named problem types, 

e.g., bin packing problems (BPP) are input mini-
misation problems, with strongly heterogeneous 
small items and multiple large objects, while a knap-
sack problem (KP) shares the same characteristics 
but is an output maximisation problem. Note that 
problem names and their definitions are not univer-
sally accepted or consistently used, so researchers 
should check the articulated problem definition in 
the paper when selecting literature.

The following focuses on two-dimensional (2D) 
and three-dimensional packing (3D) as these include 
the unique challenges of the geometric constraints 
associated with C&P problems. One-dimensional 
(1D) problems remain interesting and challenging 
(see Martinovic et al., 2018; Munien & Ezugwu, 
2021). For an introduction to C&P, see Scheithauer 
(2017).

3.3.4. Geometry
Handling the geometric characteristic of C&P prob-
lems adds significantly to the computational burden 
and the number of variables needed in a model. 
These increase with the spatial dimensions and with 
the irregularity of the shape of the small items. For 

1D problems, the geometric constraints of overlap 
and containment are trivial. Regular shapes (rectan-
gles, boxes, circles, spheres) add complexity through 
additional item location variables x, y (and z) co- 
ordinates, and dimensions: length, width (and 
depth). However, the common characteristics of the 
shape mean these are straightforward to model. 
Pairwise constraints between items and between 
each item and the boundary of the large object 
ensure feasibility.

In the case of irregular shaped items, accurate 
non-overlap constraints cannot be reduced to com-
paring a set of common dimensions. While the item 
location is still determined by a defined origin, the 
arbitrary nature of the shape significantly increase 
the complexity of assessing geometric feasibility. At 
a basic level, it requires testing for edge intersections 
between items and containment of one item inside 
another. Methods to reduce the complexity include 
the nofit polygon, raster method and phi-functions 
in 2D and voxels and phi-functions in 3D. Bennell 
and Oliveira (2008) provide a tutorial in geometric 
methods for 2D nesting problems. Lamas-Fernandez 
et al. (2022) describe approaches for modelling 3D 
geometry. Developing solution methods for irregular 
packing problems requires a comprehensive, fast 
and robust geometry library.

3.3.5. Constraints
There exists a wide range of practical constraints 
arising from the applications. These may relate to 
the material being cut having defects or quality vari-
ability, the cutting tool requiring space between 
items or constraints on the types of cut. There may 
be sequencing constraints or assignment constraints 
that include precedence or prevent/require the pack-
ing of items together. In 2D rectangle C&P, a com-
mon requirement is guillotine cuts where all cuts 
must be orthogonal and span the entire width or 
breadth of the rectangular material sheet. 
Furthermore, the number of alternate cuts (e.g., a 
switch from vertical to horizontal cuts) may be 
restricted. Applications in 3D container loading pro-
vide a challenging set of constraints on the arrange-
ment of boxes to ensure weight distribution, 
horizontal and vertical stability of load and consider 
the weight baring strength of the stacked boxes. 
Bortfeldt and W€ascher (2013) describe the different 
types of constraints and their adoption by 
researchers.

3.3.6. Two-dimensional problems
In two dimensions, research has focused on rect-
angle packing problems, and irregular shape packing 
problems, often called nesting problems. There is 
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also a smaller body of literature on circle packing 
(Hifi & M’Hallah, 2009).

Exact solution approaches to the 2D rectangle 
packing problem are reviewed by Iori et al. (2021) 
and cover the main problem types. The paper evi-
dences the recent advances in exact methods for 
these problems while identifying a number of open 
problems that remain very challenging. Specifically, 
they identify the open-dimension problem, some 
specific instances of BPP, and problems with mul-
tiple heterogeneous large objects. Moreover, nesting 
problems remain a rich area of research for develop-
ing high fidelity and scalable exact methods.

Heuristics and metaheuristics are a natural choice, 
particularly for problems with a large number of 
small items. Early research focused on placement 
heuristics such as First Fit and Next Fit for BPP 
(Coffman Jr. et al., 1980), Bottom Left and Bottom 
Left Fill for open dimension problems (Albano & 
Sapuppo, 1980; Chazelle, 1983; Burke et al., 2004b). 
These place items into the large object in a given 
sequence according to the placement rule and observ-
ing any additional placement constraints. A natural 
evolution of this approach is to apply a metaheuristic 
to re-sequence the packing order to obtain better sol-
utions, of which there are many examples.

The 2D rectangle identical item packing problem 
is known as the manufacturer’s pallet loading prob-
lem. Research is mature with exact methods and 
heuristics that perform well across benchmark 
instances. Silva et al. (2016) comprehensively review 
these problems. Fewer papers have looked at the 
case where the small item is irregular, for example 
cutting metal blanks (e.g., Costa et al., 2009).

Output maximisation problems focus on the 2D 
rectangle knapsack problem, with few articles consid-
ering problems with weakly heterogeneous data. 
Problems cover guillotine and non-guillotine cutting 
and item values may be equivalent to area or have 
an assigned value. Furthermore, the constrained 
variant places upper and lower bounds on the num-
ber of each item type placed. The guillotine variant 
where area and value align has a fast exact method 
(Oliveira & Ferreira, 1990). Non-aligned item values 
and non-guillotine cutting is still challenging. 
Cacchiani et al. (2022b) includes a summary of 
2DKP. Packing a single large object is often a com-
ponent of a larger practical problem, where the 
decision problem of whether a set of rectangles will 
fit into a fixed dimension rectangle, referred to as a 
2D orthogonal packing problem, is of interest 
(Clautiaux et al., 2007).

Cutting stock problems have been studied for over 
60 years with the seminal paper by Gilmore and 
Gomory (1965) that described the column gener-
ation approach for 2D rectangle cutting stock 

problem with guillotine cuts. Most papers focus on 
ILP/MILP approaches. A notable feature of these 
problems and how they differ from the BPP, is the 
way solutions are constructed arising from the data 
instances. Since there are few item types, but many 
items of each type, the solutions are composed of 
pattern types that are repeated across multiple stock 
sheets leaving a residual problem of unmet demand.

Bin packing problems have been extensively 
studied and include the guillotine and non-guillotine 
variant. Lodi et al. (2014) provide a review of BPPs. 
Early heuristic approaches (Berkey & Wang, 1987) 
include two-phase algorithms that pack multiple bin 
width strips and then solve a 1D BPP where the 
item size is the height of the strip, while single- 
phase algorithms pack directly into the bins either 
using a level packing approach or a placement heur-
istic such as bottom-left. Increasingly, researchers 
are focusing on exact methods; see for example 
Pisinger and Sigurd (2007) who use branch and 
price for variable size and fixed size bins. There are 
very few examples of bin packing with irregular 
shapes, where one example is glass cutting (Bennell 
et al., 2018).

The open dimension problem variant is often 
called the strip packing problem. This can be for-
mulated as a linear mixed integer programme, 
although practical size problems are still very chal-
lenging. Martello et al. (2003) develop bounds by 
relaxing the problem so it can be solved as a one 
dimensional BPP. Placement heuristics (bottom left 
and bottom left fill) based on sequencing of items 
within a (meta)heuristic framework are widely used. 
Hopper and Turton (2001) undertook an extensive 
analysis of this type of approach.

Nesting problems, where the small items are 
irregular, are commonly formulated as open dimen-
sion problems. Solution approaches are dominated 
by the use of heuristics and metaheuristics. Bennell 
and Oliveira (2009) provide a review of these meth-
odologies including using exact models to improve 
local optima. This approach is also used by Stoyan 
et al. (2016) who use phi-functions, which allow 
orientation as a decision variable. In the last decade, 
researchers have developed formulations that can be 
solved to a global optimum for small problems. 
Toledo et al. (2013) approximates the items and the 
packing area to a discrete set of points allowing the 
problem to be solved as a MIP model. Alvarez- 
Valdes et al. (2013) used the nofit polygon to define 
a finite set of convex spaces and used binary varia-
bles to activate constraints.

3.3.7. Three dimensional problems
These problems are solved across the range of prob-
lem types, largely considering single container 
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output maximisation, multi-container input mini-
misation and the open dimension problem. For 
packing boxes, the mix of constraints addressed 
across the literature is inconsistent and frequently 
not congruent with industry standards. Solutions to 
the problem focus on building walls, layers or blocks 
of identical boxes. See Zhao et al. (2016) for a com-
parative review of algorithms including exact meth-
ods. Recent papers are now looking at the 
additional constraints arising from a vehicle, such as 
axle load and stability under breaking and acceler-
ation (see Ali et al., 2022). 3D packing of irregular 
shapes is an open problem that had increasing rele-
vance in areas such as additive manufacturing. 
Efficient handling of the geometry is a significant 
factor in the solution approach along with the level 
of fidelity required for the application.

3.3.8. Data
Across all problem types there are standard data 
sets and data generators that provide a useful means 
to test the effectiveness of solution approaches. 
Many of these are listed on the EURO Special 
Interest Group on Cutting and Packing (ESICUP) 
website46.

3.4. Disaster relief and humanitarian logistics47

Humanitarian logistics (HL) is one of the key appli-
cation areas that Operational Research (OR) has 
been offering solutions to improve the welfare of 
the society under difficult circumstances. 
Humanitarian logistics problems are highly relevant 
in today’s world due to various challenges including 
but not limited to, climate change and its conse-
quences (increases in extreme weather events such 
as heatwaves, floods), natural disasters (e.g., earth-
quakes, tsunamis), man-made conflicts (e.g., Syria 
and Ukraine crises) and health-related catastrophic 
events (e.g., pandemics). Humanitarian logistics 
operations involve complex systems with multiple 
stakeholders such as victims, planners, public/private 
service providers, volunteers, general public and 
media, each with their own preferences and prior-
ities; and the inherently challenging decisions of 
scarce resource allocation have to be made over a 
long time span, under high uncertainty. We use 
humanitarian logistics as an umbrella term, which 
covers relief logistics, disaster logistics, and develop-
ment logistics. The humanitarian literature uses all 
these terms interchangeably. Actually, disaster logis-
tics and relief logistics should refer to the cases 
where a disaster is/was/is expected to be in action 
whereas development logistics refers to cases which 
aim to improve daily life.

In relief logistics, the operations require advanced 
planning, hence the authorities are constantly facing 
challenges in the four main stages of: mitigation, 
preparedness, response, and recovery (Altay and 
Green III 2006; Çelik et al., 2012; Kara & Savaşer, 
2017). In Table 3, we list some of the most fre-
quently considered problems, categorised based on 
the phase that they arise. As seen in the table, miti-
gation and preparedness phases mostly consist of 
activities related to planning, which involves net-
work design, location, allocation and routing opera-
tions as well as provisioning processes that include 
inventory and other supply chain-related decisions 
(see, e.g., Balcik & Beamon, 2008; Rawls & Turnquist, 
2010, for applications in location and prepositioning, 
respectively).

Response activities occur after the crisis or the 
disaster hits. In this phase, the aim is providing a 
rapid response, prioritising the survival needs. This, 
however, does not preclude considering efficiency 
in these operations as the system requires scarce 
resource allocation such as personnel, equipment 
and supplies across demand points, invoking a need 
for good decision support mechanisms. In line with 
this need, a large body of work is devoted to the 
application problems arising in this phase. Finally, 
recovery phase focuses mainly on debris manage-
ment and infrastructure repair and restoration. Most 
of the mentioned operations involve additional deci-
sions regarding workforce planning and scheduling 
and require structured methods for data manage-
ment, information sharing and coordination, which 
are key for effective response (Altay & Labonte, 
2014). Some of these models require quantification 
of human suffering due to lack of services or goods 
and the deprivation cost can be used for this pur-
pose, as discussed in detail in Holgu�ın-Veras et al. 
(2013).

Not all humanitarian operations are triggered by 
challenges stemming from a single well-defined event. 
There are crises that can not be attributed to a single 
cause e.g., famine in under-developed countries. 
There are well-established efforts in the development 
logistics literature to alleviate the effects of such cri-
ses. Some examples are global health projects for 
increasing access to health coverage and fighting dis-
eases that occur in low and middle-income countries 
on a wide-scale, such as malaria and AIDS, through 
distribution of effective tools and/or medication. 
Vaccine development and distribution to poorer 
regions as well as distribution of other basic needs to 
the deprived populations: food aid distribution 
(Rancourt et al., 2015; Mahmoudi et al., 2022), clean 
water network design and distribution (Laporte et al., 
2022), energy, education and hygiene provision are 
also widely considered. A recent trend is utilising 
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cash and voucher distribution whenever possible, 
since it is a method that respects human dignity, 
avoids complications of relief item logistics and sup-
ports the local market (Karsu et al., 2019).

The recent COVID-19 pandemic has also moti-
vated a wide range of HL applications such as per-
sonnel protective equipment allocation and 
distribution, frontline workforce planning and sys-
tem design for testing, tracing and vaccination 
(Farahani et al., 2023).

The HL literature also integrates newer technolo-
gies to the delivery systems: There has been recent 
attempts to use drones in the last mile distribution 
as they constitute a convenient tool to reach remote 
areas in short time (examples include delivery of 
blood samples, vaccines and food aid; see also 
Gentili et al., 2022; Ghelichi et al., 2021; Alfandari 
et al., 2022).

OR offers decision support for humanitarian set-
tings based on a wide range of quantitative and 
qualitative tools. Mathematical modelling and opti-
misation is used in almost all problems arising in 
HL to make the related location, allocation, routing 
and network design decisions. The models are 
shaped by the priorities in the phase and constraints 
imposed by the physical infrastructure, resource 

availability as well as the social, economic and cul-
tural environment. As the underlying technical 
problems are difficult to solve, various mathheuristic 
and metaheuristic approaches are employed. There 
is also an increasing trend in using system dynamics 
(Besiou & Van Wassenhove, 2021) and empirical 
analysis (Pedraza-Martinez & Van Wassenhove, 
2016).

There is no one-size-fits-all methodology but 
some key properties require specific methods to be 
used. In most relief logistics problems the environ-
ment is highly stochastic, calling for applications of 
forecasting and stochastic programming. The uncer-
tain factors include but are not limited to the num-
ber of affected individuals, the extent of the effect, 
types of needs, and usability status of the infrastruc-
ture and other resources. Multiple stakeholders and 
conflicting criteria are involved, requiring multicrite-
ria decision making (Ferrer et al., 2018) approaches. 
Unlike commercial logistics systems, fairness is a 
key concern in humanitarian settings. Fairness or 
equity, however, is hard-to-quantify and is context 
dependent: a rule that is considered fair under some 
circumstances may not be deemed so in others. The 
policy makers may want to prioritise beneficiaries 
based on attributes such as socio-economic status 

Table 3. Problems in relief logistics.
Phase Main problems considered Main decisions involved Main concerns

Preparedness and mitigation Infrastructure and network structuring Network design Connectivity
(mainly for strengthening purposes)

Risk assessment Prioritization Data preparation
(of roads, buildings, arcs) for further analysis

Evacuation planning Location of gathering points Traffic
Allocation of evacuees Accessibility
Routing Evacuation Time

Behavioral factors
Shelter location (and allocation) Selecting among potential locations Ensuring accesibility

Shelter utilization
Infrastructure (Risk)
Behavioral factors

Prepositioning Locating point of distributions Budget
Provisioning (of supplies) Accessibility
Related supply chain decisions Fairness
(supplier selection, allocation and routing) Speed

Efficiency
Supply chain (procurement) planning Contract design Quality

Efficiency
Response Damage assessment Demand assessment Speed

Infrastructure assessment Accuracy
Search and rescue operations Team formation and allocation Speed

Fairness
Capacity

Evacuation Location Speed
Allocation Risk
Routing

Shelter management Location Physical environment
Allocation Risk
Related supply chain decisions Accessibility
(distribution, routing) Fairness

Utilization
Donation management/ Allocation Fairness
Resource allocation Routing Efficiency

Inventory Management
Recovery Debris management Network design

Prioritization and scheduling
(deciding which nodes/arcs to clean first)
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and hence ensure vertical equity or may consider 
them indistinguishable and seek horizontal equity 
(Karsu & Morton, 2015).

HL has been receiving attention with an increas-
ing rate, which led to many review studies that the 
interested reader can refer to: see, e.g., Luis et al. 
(2012); Çelik (2016); Aringhieri et al. (2017); Besiou 
et al. (2018); Baxter et al. (2020); D€onmez et al. 
(2021). See also Kunz et al. (2017) for a discussion 
on how to make humanitarian research more 
impactful for humanitarian organisations and 
beneficiaries.

Next we categorise the future of the humanitarian 
applications to motivate and direct new researchers:

� OR is responsive to the difficulties the world is 
facing and humanitarian challenges are no excep-
tion to this. The recent COVID-19 pandemic has 
shown that relief logistics can be applied in 
health-related crisis management to provide 
quick, effective, efficient and fair responses to 
health care problems. WHO “urges countries to 
build a fairer, healthier world post-COVID-19” 
and this is doable with good humanitarian prac-
tices relying on OR. The recent efforts in design-
ing fair and efficient systems using OR would 
contribute in addressing inequities in health and 
welfare, which have been exacerbated by the pan-
demics. We believe that there is still room for 
improvement in adopting a holistic approach 
and conducting multidisciplinary work when 
designing such systems. One example is the vac-
cine implementation and roll-out problem: con-
ceptualising this problem as a sole logistics 
problem may not be the best practice as the suc-
cess of any design highly depends on human 
behaviour. People have different views, risk atti-
tudes and preferences over available options, 
which affects how any proposed policy will per-
form. Incorporating such behavioural factors is 
an important yet scarcely studied issue.

� The underlying technical problems in the HL 
domain are hard to solve due to uncertainty in 
various parts of the system, lack of (reliable) data 
and multiple criteria that are involved. Moreover, 
a significant portion of these problems are com-
binatorial optimisation problems, i.e., they 
require choosing from a prohibitively large set of 
solutions that are implicitly defined by con-
straints of the system. Therefore advances in OR 
methodology to obtain better, quicker solutions 
to optimisation problems, and in data analytics 
on handling big data such as the one obtained 
through geographic information systems (GIS), 
would pave the way for quicker and better 
response. Effective data analysis would especially 

help when learning from past practice. Indeed, 
lessons learned from humanitarian supply chain 
practice can also be used in managing supply 
chain disruptions in other sectors, as discussed 
in (Kov�acs & Falagara Sigala, 2021).

� UN’s Sustainable Development Goals emphasise 
the global challenges faced including poverty, 
inequality, climate change, environmental deg-
radation, peace and justice (SDG 2022). As stated 
in (Street et al., 2016), “Increases in extreme wea-
ther events and climate change can compound 
risks of international food shocks, water insecur-
ity, conflict and other humanitarian emergencies 
and crises. Difficulty of access to critical resour-
ces such water and food may trigger migrations 
or exacerbate conflict risks.” All these areas are, 
by definition, related to humanitarian operations, 
hence humanitarian logistics has a lot to offer in 
these domains.

� The Turkey/Syria earthquakes in February 2023 
have clearly demonstrated the importance of 
effective coordination and strategic planning. 
Thus, we would like to emphasise the need for 
collaborative research that brings field expertise 
(of e.g,. municipalities, NGOs and volunteers) 
and academic know-how together.

3.5. E-commerce48

3.5.1. What is E-commerce about?
E-commerce deals with the transactions of goods 
and services through online communications (com-
puters, tablets, smartphones, etc.). Both business-to- 
business (B2B) and business-to-consumer (B2C) 
realisations are observed in practice. In B2B, compa-
nies operate their supply chains through online net-
works. In B2C, products and services are sold 
directly to consumers. E-commerce sales steadily 
increased for years and amounted to $5,211 billion 
worldwide in 2021, with the pandemic being a 
major contributor.49,50

E-fulfilment describes all fulfilment activities for 
e-commerce. All necessary steps for a customer to 
receive an order after placing are thus referred to as 
the e-fulfilment process. Due to the nature of the e- 
commerce domain, these e-fulfilment activities often 
occur in a city context (Savelsbergh & Van 
Woensel, 2016). E-fulfilment processes are planning 
intensive, and creating a profitable business in this 
environment is challenging. Customer service 
expectations are high, however, and the customer is 
more and more in the lead on how and where their 
orders need to be delivered (the “logsumer” takes an 
active role in time, price, quality, and sustainability 
decisions of logistic services DHL, 2013).
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The e-fulfilment process can be divided into three 
steps, namely (i) order acceptance, (ii) order assem-
bly, and (iii) order delivery (Campbell & 
Savelsbergh, 2005). For most online companies, 
these steps take place separately, one after the other. 
However, new on-demand companies have consid-
erably shortened lead times and perform these steps 
simultaneously (Waßmuth et al., 2022).

During order acceptance, customer requests arrive 
on a retailer’s website and ask for service. As fulfil-
ment capacities are limited (for example, delivery 
capacities), the retailer wants to accept the most 
profitable subset of all customer requests. However, 
customer requests arrive one at a time. Thus, the 
retailer does not know the total delivery costs until 
all customers are accepted and the final delivery 
route is planned. In addition, when a request is 
accepted, the retailer does not know whether 
requests with higher revenues will arrive afterward 
for which capacity should have been reserved. To 
estimate costs, vehicle routing methods are adapted 
for usage as customer acceptance mechanisms (e.g., 
Ehmke & Campbell, 2014; K€ohler & Haferkamp, 
2019)). Revenue management methods are used to 
allocate capacities to high revenue requests (e.g., 
Cleophas & Ehmke, 2014; Klein et al., 2019)). 
However, since decisions in the online environment 
must be made instantly, the use of complex and, 
thus, computationally intensive solution methods is 
limited.

The warehouse picking and consolidating ordered 
goods are summarised under order assembly. Before 
this, the retailer must decide on the location and 
design of the warehouses. Choosing the location is 
closely linked to the fulfilment capacity of the 
retailer and must be well-planned. The design of 
the warehouse determines the efficiency of picking 
the ordered items. Finding efficient picking strat-
egies to reduce retailer costs is studied in, for 
example, Schiffer et al. (2022). Lastly, the retailer 
must determine the optimal stock level of items. 
Given the short lead times in e-commerce, this task 
must be completed before customer requests arrive. 
The task is closely linked to the research field of 
inventory management, where techniques such as 
forecasting (Ulrich et al., 2021) or artificial intelli-
gence (Albayrak €Unal et al., 2023) are commonly 
used to address this challenge effectively.

For order delivery, routes are planned for all 
accepted orders. For e-commerce, the last-mile 
delivery is usually towards the customer’s location, 
i.e., the consumer’s home or company site (Agatz 
et al., 2008), leading to a magnitude of fragmented 
delivery locations with small drop sizes. Significant 
challenges arise from how these last-mile deliveries 
(routes) are designed. Delivery route planning is 

closely related to the established field of vehicle 
routing, and approaches are being adapted for use 
in e-fulfilment (e.g., Emeç et al., 2016). Two-echelon 
routing systems are often considered to maintain 
economies of scale and satisfy the emission zone 
requirements in the cities (Sluijk et al., 2022a, 
2022b)). In most cases, delivery is made by conven-
tional delivery vehicles. However, individual retailers 
are also starting to bring orders to customers in the 
city centre using bikes. We also see drones (e.g., 
Ulmer & Thomas, 2018; Dayarian & Savelsbergh, 
2020)) and robots (e.g., Simoni et al., 2020).

3.5.2. E-fulfilment challenges
E-fulfilment processes present several challenges. For 
unattended deliveries, delivery is possible without the 
customer being present. Pick-up point delivery 
enhances the efficiency of the delivery operations via 
consolidation opportunities. Consumers can also find 
it a more convenient delivery option than waiting for 
the delivery at home. There is a need for incentive 
mechanisms to increase the attractiveness of pick-up 
points (e.g., reduced delivery price). Galiullina et al. 
(2022) study this problem as a trade-off between 
routing cost savings gained from steering the cus-
tomer demand and the investments required to influ-
ence customer behaviour. Another challenge is to 
find the optimal locations for pick-up points, such 
that delivery costs are minimised and customers still 
have convenient access, which is, for example, con-
sidered in Lin et al. (2020b) and Wang et al. (2020). 
The customer must accept the delivery herself for 
attended deliveries, e.g., to prevent grocery spoiling. 
To avoid delivery failures, the customer and the 
retailer usually agree on a delivery time window.

Customers expect short time windows, which 
increase the retailer’s delivery costs (K€ohler et al., 
2020). As the time windows assignment to orders is 
crucial for the retailer’s profitability, several 
approaches consider balancing demand along the 
offered time windows. One possibility is to withhold 
specific time windows from customers and only offer 
a subset of beneficial time windows. Campbell and 
Savelsbergh (2005) and Cleophas and Ehmke (2014) 
consider routing costs and customer value and only 
offer time windows to customers that are expected to 
maximise the profit. Another possibility is to assign 
prices to time windows to nudge customers to spe-
cific time window options (Campbell & Savelsbergh, 
2006; Yang et al., 2016; Klein et al., 2019). Some 
approaches consider adapting the time window 
design to increase routing flexibility. K€ohler et al. 
(2020) only offer short time windows to customers 
when it does not impact the routing costs too much, 
and Strauss et al. (2021) hand out time window 
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bundles to customers that are only narrowed down 
to one option once more customers requests are 
known.

Recently, many online retailers began offering on- 
demand deliveries, so customers can receive their 
orders the same day (some grocery stores promise 
delivery times within a few minutes51). Shortening 
lead times poses another challenge as there is almost 
no time for planning or consolidation of orders avail-
able. The approach presented by Klapp et al. (2020) 
hence supports retailers in deciding which customers 
can be promised an immediate delivery and which 
can only be served from the next delivery day. Ulmer 
and Thomas (2018) investigate how the number of 
same-day deliveries can be increased if delivery is not 
only done by vehicles but additionally by drones. In 
Banerjee et al. (2022), the authors examine how 
retailers must allocate their delivery capacity to cover 
same-day delivery needs per service area.

For delivery in an urban context, high demand in 
densely populated areas often goes hand in hand 
with high traffic and unreliable travel times, and 
vice versa. Ehmke and Campbell (2014) therefore 
create acceptance mechanisms that present the cus-
tomer with a time window offer that is as reliable as 
possible so that the customer does not notice an 
unforeseen change in travel times. K€ohler and 
Haferkamp (2019) test the suitability of customer 
acceptance mechanisms for more and less densely 
populated areas to derive how well different routing 
mechanisms approximate delivery times.

Another ongoing challenge is the increasing preva-
lence of customers being granted the option to return 
ordered items free of charge by many companies. As a 
result, the e-fulfillment process expands beyond the 
three steps outlined earlier to include the management 
of returns. Despite the typically high return rates that 
result in substantial additional costs for retailers, offer-
ing a return option is still profitable due to the subse-
quent improvement in customer satisfaction and 
retention (Rintam€aki et al., 2021). The management of 
returns can be perceived as reverse order delivery, 
leading to routing challenges related to those presented 
earlier. To mitigate costs, several studies, such as 
Mahar and Wright (2017) and Yan et al. (2022b), 
explore the implementation of in-store returns.

3.5.3. Operational research challenges: Time, tim-
ing, and data
The time dimension involves all dimensions to how 
key elements are (conceptually) modelled with 
regards to the time (e.g., travel times or handling 
times). Identifying the time features in modelling 
and solution methodologies are essential qualifiers 
for realistic model representations.

The timing dimension involves all actions at a 
particular point or in a period when something hap-
pens (e.g., a new order arrives). Timing considers 
synchronisation issues where, for example, vehicles 
need to meet at a certain point in time and geo-
graphical location. Drexl (2012) presents a survey of 
vehicle routing problems with multiple synchronisa-
tion constraints. Synchronisation requirements 
between the vehicles relate to spatial, temporal, and 
load aspects. Synchronisation is a challenge, for 
example, in heterogeneous fleets (Ulmer & Thomas, 
2018) or, in the case of battery-powered vehicles 
that must be charged in time.

� Offline means that we do the planning and 
scheduling before the execution, often assigned 
to tactical planning. Data is estimated (forecast) 
based on past observations, and the operations 
are planned based on that. For example, Agatz 
et al. (2011) use expected demand to decide 
which time windows should be offered within 
different parts of the delivery area. Lang et al. 
(2021a) propose a preparation offline phase that 
serves as input to speed up decisions during later 
online customer acceptance. The data considered 
could be either time-independent (i.e., independ-
ent of time) or time-dependent (i.e., the data has 
a time-stamp). For example, travel times can be 
modelled time-independent (i.e., constant speed) 
or time-dependent (e.g., Spliet et al., 2018).

� Online refers to the optimisation in real-time, 
where revealing new data and planning and 
scheduling operations happen simultaneously. 
The terms “dynamic” or “operational planning” 
is also often used. As time is critical in online 
planning, methods are always limited by their 
solution time. Instead of finding a routing solu-
tion, delivery costs are approximated (e.g., Yang 
& Strauss, 2017; Lebedev et al., 2021) or a simple 
routing heuristic is applied (e.g., Mackert, 2019; 
Klein et al., 2018)). Alternatively, customer 
choice is estimated simply (e.g., Campbell & 
Savelsbergh, 2006) instead of complex and time- 
consuming customer choice modelling. van der 
Hagen et al. (2022) uses a machine learning 
approach to fasten up feasibility checks of time 
windows offered during order acceptance.

The data dimension refers to how the data and 
observations are modelled. The data can be handled 
deterministic or stochastic, or we observe the realised 
data. Most models assume deterministic data and build 
their solution approach around this notion. More and 
more researchers, however, recognise the challenge of 
adequately representing reality in their models. Yang 
et al. (2016) use booking data of an online grocer to 
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estimate realistic customer behaviour. K€ohler et al. 
(2022) investigate how to accept high revenue requests 
by applying a sampling procedure with booking data 
from an e-grocer in Germany.

3.5.4. Relevant literature
Agatz et al. (2013) provide the first overview of how 
retailers can manage e-fulfilment processes. A recent 
review on e-fulfilment for attended home deliveries 
can be found in Waßmuth et al. (2022). We refer 
the reader to Fleckenstein et al. (2022) and Snoeck 
et al. (2020) for a focus on routing and revenue 
management methods in e-fulfilment, respectively.

3.6. Education52

Education spans activity from kindergarten, through 
primary and secondary schooling, to higher educa-
tion. The earlier years of education are often com-
pulsory reflecting the premise that an educated 
workforce is crucial to economic performance. The 
extent to which education is publicly funded varies 
from one level of education to another, as well as 
from one country to another depending on the local 
view concerning the social return on investment. 
Public funding for education alongside the role edu-
cation and training play in the performance of an 
economy therefore make education a prime context 
for application of operational research (OR) tools. 
This section provides a brief overview of some of 
the main areas.

Many OR methods can be useful to the policy 
maker for macro-planning and financial allocation 
purposes. Forecasting student numbers can be done 
using Markov chain models (Nicholls, 2009; 
Brezav�s�cek et al., 2017) or machine learning (ML) 
and artificial intelligence (AI) (Yan & Wang, 2021) 
– the importance of AI applications to education 
will be further expanded later. Allocation of finances 
is typically supported by multi-objective decision 
analysis (Cobacho et al., 2010).

One important aspect of resource allocation 
relates to the efficient use of resources. Availability 
of published education data in many countries pro-
vides an opportunity to examine the “black box” of 
education production. Consequently, there is a 
long-standing literature surrounding efficiency 
in education, typically a not-for-profit context 
where conventional measures of performance are 
inappropriate.

Early studies of efficiency in higher education 
applied deterministic ordinary least squares methods 
to university-level data to examine efficiency in the 
production of specific outputs (Jauch & Glueck, 
1975; Johnes & Taylor, 1990) while schools adopted 
multilevel modelling methods to derive performance 

insights from pupil-level as opposed to school-level 
data (Woodhouse & Goldstein, 1988). But the 
multi-product nature of production in education 
establishments means that looking at inputs separ-
ately provides only a partial picture. The tools of 
multiple-criteria decision analysis such as principle 
components, he analytic hierarchy process and co- 
plot have therefore been adopted to examine and 
visualise the many dimensions more easily (Johnes, 
1996; Paucar-Caceres & Thorpe, 2005; Mar- 
Molinero & Mingers, 2007).

Two frontier estimation approaches to analysing 
efficiency, both of which derive from Farrell (1957), 
have evolved to address various shortcomings of 
early approaches. The non-parametric data envelop-
ment analysis (DEA) easily handles the multi-input 
multi-output nature of production observed in edu-
cation and provides easily-interpreted measures of 
efficiency (Charnes et al., 1978). DEA shows each 
observation in its best possible light (in efficiency 
terms) by computing a distinct set of input and out-
put weights. This permits the derivation of bench-
mark observations for each inefficient institution, 
i.e., the establishment(s) the observation should be 
looking to emulate to become more efficient. Non- 
parametric frontier estimation techniques have been 
applied in the context of education at all levels, pro-
viding management information at the institution 
level, and policy insights at the macro-level 
(Thanassoulis et al., 2011; Portela et al., 2012; 
Burney et al., 2013).

Network DEA provides a more forensic examin-
ation of the “black box” (F€are & Grosskopf, 2000) 
by breaking down the production process into its 
component parts, and overall efficiency can be 
decomposed into efficiency in each of the stages 
(Wang et al., 2019b; Lee & Johnes, 2022).

When longitudinal data are available, DEA can 
be used to analyse changes in efficiency using the 
Malmquist (1953) productivity index which decom-
poses productivity change into efficiency and 
technological change components Wolszczak- 
Derlacz (2018). The method can be used to make 
comparisons between groups rather than (or as well 
as) between time periods (Aparicio et al., 2017).

The deterministic non-parametric nature of DEA 
has been addressed in numerous extensions includ-
ing by introducing bootstrapping and significance 
tests (Johnes, 2006; Essid et al., 2010; Papadimitriou 
& Johnes, 2019). Second stage analyses which exam-
ine the determinants of efficiency also abound 
(Haug & Blackburn, 2017). This approach is only 
valid if the hypothesis of separability holds i.e., the 
variables used in the second stage should only influ-
ence the efficiency scores and not the determination 
of the efficiency frontier (Simar & Wilson, 2011). 
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The development of separability tests (Daraio et al., 
2018) and the robust conditional estimation 
approach address these issues (Daraio & Simar, 
2007); their application in education provide more 
robust and insightful results (L�opez-Torres et al., 
2021).

Stochastic frontier analysis (SFA) provides both 
parameter estimates (with significance tests) and 
efficiency estimates which allow for stochastic errors 
(Aigner et al., 1977; Meeusen & van den Broeck, 
1977; Jondrow et al., 1982). Compared to DEA it is 
more difficult to model multi-input, multi-output 
production; most SFA applications in education 
therefore focus on cost efficiency (Agasisti, 2016), or 
a single output model (Kirjavainen, 2012), although 
there are some exceptions (Abbott & Doucouliagos, 
2009; Johnes, 2014). The parameter estimates have 
made SFA popular in the cost function context as 
scope and scale economies can be estimated and 
these have useful policy implications (Johnes et al., 
2005; Johnes & Johnes, 2013).

In its basic form, SFA parameter estimates apply 
to every observation in the dataset. Extensions of 
the technique include latent class SFA and random 
parameters SFA which allow the parameters to vary 
by specific groups (latent class) or by each observa-
tion (random parameter). These approaches benefit 
from the advantages of DEA and SFA although are 
computationally demanding but have been applied 
in education to interesting effect (Johnes & 
Schwarzenberger, 2011; Johnes & Johnes, 2016).

The interested reader is referred to comprehen-
sive reviews of the relevant literature (Kao, 2014; 
Thanassoulis et al., 2016; De Witte & L�opez-Torres, 
2017; Johnes, 2022).

All these OR methods can be applied in the con-
texts of macro- and micro-level planning and 
budget allocation. One area at the micro-level for 
which OR techniques are useful is timetabling. 
Timetabling of examinations and/or teaching is 
most complex at secondary and tertiary levels and 
can be viewed as a scheduling problem whereby 
resources, limited in supply, are allocated to a con-
strained number of times and locations, with the 
allocation satisfying stated objectives. Timetabling 
differs from scheduling in that the resources (staff 
members) are typically specified in advance rather 
than being a part of the allocation problem; and 
while scheduling aims to minimise costs, the object-
ive of timetabling is to realise desirable objectives 
(e.g., no clashes) as closely as possible (Petrovic & 
Burke, 2004). Timetablers face both hard and soft 
constraints in constructing the timetable (Asmuni 
et al., 2009) and this is therefore a problem which 
lends itself to solution by various possible OR 

techniques in the field of combinatorial optimisa-
tion. The main approaches are briefly summarised 
below.

Mathematical programming (particularly integer 
linear programming) is commonly used in timeta-
bling (Cataldo et al., 2017) but often leads to com-
putationally demanding problems. Heuristics (see 
below) are introduced for increased efficiency 
(Dimopoulou & Miliotis, 2001). Case-based reason-
ing approaches use a past solution (stored in the 
case base) as the starting point for a new timetable 
and use similarity measures to identify the optimal 
solutions (Burke et al., 2006). These approaches are 
often problem-specific making them non-transfer-
able. Their computational demands can be 
addressed by using heuristics (Petrovic et al., 2007). 
The multi-criteria approach assumes that there are 
solutions to the timetabling problem satisfying the 
hard constraints and then the quality of these solu-
tions is assessed on the basis of how well each one 
satisfies the soft constraints (Burke & Petrovic, 
2002). As with other methods it is often combined 
with heuristics.

Heuristics are an increasingly common method 
for application to timetabling either on their own or 
in combination with other methods. Low level con-
struction heuristics include largest degree, largest 
weighted degree, largest colour degree, largest enrol-
ment, saturation degree and random. Extensions 
include meta-heuristics which work in the search 
space guiding neighbourhood moves to a solution 
(Qu et al., 2015); fuzzy heuristics which can find a 
best approach in the initial timetable construction 
phase (Asmuni et al., 2009); and hyper-heuristics 
which find or generate appropriate heuristics to 
solve complex search problems as encountered in 
timetabling (Qu et al., 2015). Given their focus, 
hyper-heuristics have the potential to provide more 
generalised solutions to timetabling problems than 
other approaches (see Pillay, 2016, for a review).

The interested reader is referred to reviews of 
educational timetabling approaches (Oude Vrielink 
et al., 2019; Tan et al., 2021).

Finally, an emerging area of interest is the appli-
cation of AI and ML to education. AI and ML are, 
as already highlighted, useful for forecasting as they 
can analyse rich data on, for example, student num-
bers, retention, achievement, teaching and quality to 
derive better predictions and/or understanding of 
the challenges (Alyahyan & D€usteg€or, 2020; Bates 
et al., 2020; Teng et al., 2022). They can also be 
used in the teaching and learning process itself by 
personalising each student’s experience for example 
through use of chatbots, by creating exercises for 
students which address their weaknesses, and by 
reviewing assessments highlighting strengths and 
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weaknesses (Teng et al., 2022). In the growing dis-
tance learning education arena where it is more dif-
ficult to manage participants who have more 
freedom to learn when they want and may encoun-
ter more distractions, AI can be used to support 
teachers in gauging student engagement. Thus AI 
algorithms can be used to develop an online educa-
tion classroom management system (Wang, 2021). 
AI and ML have much to offer in education but 
their potential across all disciplines has yet to be 
properly explored (Bates et al., 2020). See Zawacki- 
Richter et al. (2019) for further literature.

3.7. Environment53

Environmental problems are at the centre of societal 
concerns, and of many research activities, also in 
Operational Research (OR). It is impossible to com-
prehensively present this literature. Instead, we first 
introduce characteristics of environmental problems, 
then present some insights from specific OR fields, 
mainly citing review articles. Thereafter, we discuss 
Decision Analysis (§2.8) methods applied to environ-
mental problems.

Environmental problems are usually multi-faceted 
and complex (French & Geldermann, 2005; Gregory 
et al., 2012; Reichert et al., 2015). Since 50 years, 
such public policy issues are known as “wicked 
problems” (Rittel & Webber, 1973). In many envir-
onmental cases, uncertainties are high. It may be 
difficult to establish scientific knowledge and 
adequately model environmental systems. They usu-
ally span all sustainability dimensions, which 
requires making trade-offs between achieving envir-
onmental, economic, and societal objectives. Various 
decision-makers and stakeholders with different 
world-views are affected, sparking conflicts of inter-
est. Any action may have irreversible or far-reaching 
consequences over long time horizons. Additionally 
to the temporal dimension, spatial considerations 
over varying geographic regions may be important. 
As wicked problems are typically unique, we might 
need to find new solutions in each case. OR meth-
ods can be highly suitable to disentangle and struc-
ture complex environmental problems, and can 
certainly contribute to problem solving. Below, we 
present some viewpoints.

Soft OR methodologies, and problem structuring 
methods (PSMs; see also §2.20) have been developed 
to tackle complex real-world problems in interaction 
with stakeholders (Rosenhead & Mingers, 2001; 
Smith & Shaw, 2019). However, most (review) 
articles are not specific to environmental problems. 
Using an applied example, White and Lee (2009) 
explored the potential of soft OR for a city develop-
ment case. Marttunen et al. (2017) reviewed the 

combination of PSMs with Multi-Criteria Decision 
Analysis (MCDA) methods. More complex PSMs 
seem to be under-utilised, suggesting that their ben-
efits cannot sufficiently inform real-world issues, 
including environmental decision-making. Similarly, 
French (2022) argued that literature of quantitative 
and qualitative OR approaches has developed in 
silos, and that an intertwined, cyclic understanding 
of soft and hard OR methods is needed to address 
complex problems. This author was also concerned 
that behavioural issues are less well understood in 
qualitative compared to quantitative model building. 
Related to problem structuring, stakeholder analysis 
and participation is central to environmental prob-
lems. Such research is recently gaining increased 
interest by OR (de Gooyert et al., 2017; Gregory 
et al., 2020; Hermans & Thissen, 2009). Behavioural 
OR (BOR; §2.2) is also gaining momentum (Franco 
et al., 2021). BOR strongly focuses on interventions, 
and could increase the understanding of societal 
and psychological issues in environmental problems. 
However, to date an environmental perspective is 
rarely taken. One exception is a conceptual paper 
about behavioural issues in environmental modelling 
(H€am€al€ainen, 2015). A meta-analysis of 61 environ-
mental and energy cases analysed patterns and 
biases that may occur in the problem structuring 
phase of decision-making (Marttunen et al., 2018).

Sustainable supply chains (see also §3.24) have 
been recently reviewed by Barbosa-P�ovoa et al. 
(2018). These authors took a multi-stakeholder per-
spective along the supply chain to achieve sustain-
ability goals. They found a predominance of 
optimisation methods applied to strategic decision 
levels. Most of the 220 reviewed articles focused on 
economic and environmental aspects, leaving behind 
the social aspects. Similarly, another review focused 
on combinatorial optimisation (§2.4), integrating 
reverse logistics (see also §3.14) and waste manage-
ment (Van Engeland et al., 2020). Among other 
aspects, the authors emphasised the importance of 
environmental, social and performance indicators, 
and stakeholder integration, when dealing with 
flows of waste products. Taking a life-cycle perspec-
tive, usually addressed with life cycle sustainability 
assessment (LCSA), Thies et al. (2019) reviewed 
advanced OR methods for sustainability assessment 
of products. While most articles used ecological indi-
cators, the integration of economic and social indi-
cators is emerging. They concluded that improved 
systematic procedures for uncertainty treatment are 
needed, and better integration of qualitative social 
indicators as well as spatially explicit data.

Other authors reviewed specific OR methods. For 
instance, Zhou et al. (2018) reviewed Data 
Envelopment Analysis (DEA; §2.7) for sustainability 
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assessments. Again, economic and environmental 
measures were well included, but the literature 
lacked social measures such as customer satisfaction. 
New DEA methods should be developed that 
include social network relationships. Mathematical 
programming and optimisation methods to support 
biodiversity protection were reviewed by Billionnet 
(2013). Some of these difficult combinatorial opti-
misation problems were well solved, but further 
research is needed to satisfactorily address real- 
world biodiversity issues. For conservation manage-
ment, spatial aspects are central, for example 
creating biological corridors in the landscape to 
increase biodiversity. Future research should include 
the temporal dimension and needs of practitioners. 
Robust optimisation (§2.21) could be a research 
avenue to handle uncertainty. A review of invasive 
species also took a mathematical perspective 
(B€uy€uktahtakın & Haight, 2018). Among other con-
clusions, research should develop more realistic 
models to capture spatial and temporal dynamics of 
invasive species, improve uncertainty treatment and 
coordination among stakeholders, and include holis-
tic approaches for addressing trade-offs between 
conservation management and costs of such 
programs.

Multi-criteria decision analysis (MCDA; §2.8) 
provides a rich literature addressing environmental 
decision problems. French and Geldermann (2005) 
discussed properties of wicked environmental prob-
lems from a conceptual point of view (introduced 
above), and implications for decision support. 
Cinelli et al. (2014) analysed MCDA methods for 
sustainability assessments. They voiced some con-
cern that choosing the MCDA methods is rather 
based on preferences, not analytic considerations. 
Indeed, text-mining of 3,000 articles provided little 
evidence that particular environmental application 
fields used certain methods more frequently, pos-
sibly because researchers are unaware of specific 
method merits (Cegan et al., 2017). To overcome 
this, Cinelli et al. (2014) classified five MCDA meth-
ods using ten criteria important for sustainability 
assessments, e.g., uncertainty management and test-
ing robustness of results, software, and user-friendli-
ness. We know of two general articles for 
systematically choosing a suitable MCDA method 
(Cinelli et al., 2020; Roy & Słowi�nski, 2013). Several 
articles reviewed decision support systems (DSS) to 
identify features and best practices for supporting 
environmental problems (Mustajoki & Marttunen, 
2017; Walling & Vaneeckhaute, 2020). Moreover, 
there are many reviews of MCDA applied to a spe-
cific environmental field, but only few were pub-
lished in OR journals (e.g., Colapinto et al., 2020; 
Kandakoglu et al., 2019). There is a pronounced 

increase of articles applying MCDA in all environ-
mental areas (e.g., water, air, energy, natural resour-
ces, and waste management; Cegan et al., 2017; 
Huang et al., 2011). Below, we introduce some 
important findings from decision analysis.

Some authors defined frameworks for environ-
mental assessments taking a method perspective. 
Gregory et al. (2012) proposed structured decision 
making (SDM) to tackle real-world environmental 
decision problems. Based on multi-attribute value 
theory (MAVT), SDM can be applied without much 
(mathematical) formalisation. This textbook dis-
cusses many practical environmental issues, high-
lighting solutions from international decision cases. 
Reichert et al. (2015) proposed a framework for 
environmental decisions that emphasises uncertainty 
of scientific knowledge and societal preferences. 
They argued that theoretical requirements are best 
met by combining multi-attribute utility theory 
(MAUT) with scenario planning and probability the-
ory, illustrated with a river management case. 
Scenario planning has been advocated by various 
authors for tackling wicked problems (Wright et al., 
2019). The combination of scenario planning with 
MCDA has been reviewed by Stewart et al. (2013), 
and applied to e.g., nuclear remediation manage-
ment (Geldermann et al., 2009), coastal engineering 
under climate change (Karvetski et al., 2011), or 
water infrastructure planning (Scholten et al., 2015). 
Scenario analysis has also been combined with prob-
abilistic statements and mathematical optimisation 
for risk assessment (see also §2.18) of nuclear waste 
repositories (Salo et al., 2022). A climate policy 
review illustrates the importance of integrating vari-
ous OR methods to effectively support decision- 
making (Doukas & Nikas, 2020). The currently 
predominant evaluation of policy strategies with cli-
mate-economy or integrated assessment models 
(IAMs) fails to incorporate all relevant uncertainties 
and stakeholders, and sufficiently address system 
complexity. These authors proposed integrated 
approaches, including participatory stakeholder 
processes with fuzzy cognitive maps, combined with 
MCDA and portfolio analysis (PA). PA is especially 
useful as meta-analysis, and has been reviewed by 
Liesi€o et al. (2021). A PA-framework for environ-
mental decision-making has been proposed by 
Lahtinen et al. (2017).

To address spatial aspects of environmental prob-
lems, geographic information systems (GIS) are often 
combined with MCDA, sometimes also developing 
DSSs (Keenan & Jankowski, 2019). Risk analysis 
(§2.18) and OR research increasingly focuses on 
spatial planning (Ferretti & Montibeller, 2019; 
Malczewski & Jankowski, 2020). One example is the 
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axiomatic foundation of spatial multi-attribute value 
functions (Harju et al., 2019; Keller & Simon, 2019).

Many reviews found that stakeholder integration 
throughout the decision-making process was insuffi-
ciently considered, e.g., in flood risk management 
(de Brito & Evers, 2016) or nature conservation 
(Esmail & Geneletti, 2018). This reflects generally 
found deficits in problem structuring (§2.20), for 
instance insufficient consideration of social objec-
tives (Kandakoglu et al., 2019), or systematic under-
estimation of the importance of economic objectives 
(Marttunen et al., 2018; Walling & Vaneeckhaute, 
2020). Moreover, there is a tendency to choose too 
many objectives in environmental cases (Diaz- 
Balteiro et al., 2017), potentially inducing biases in 
later stages of MCDA (Marttunen et al., 2019).

Many reviews emphasised the importance of 
uncertainty analyses in environmental decisions, but 
this is strongly ignored in practice. One review found 
that only 19% of 271 articles included uncertainty 
analysis, 17% using fuzzy techniques to capture 
imprecise numbers (Diaz-Balteiro et al., 2017). In 
another review, 34% of 343 articles dealt with the 
imprecision of predictions, 70% using fuzzy sets, and 
20% stochastic modelling (Kandakoglu et al., 2019). In 
both reviews, only 20%–30% of the articles per-
formed sensitivity analysis. Additionally, only 5% of 
343 reviewed papers included temporal aspects of the 
environmental decision (Kandakoglu et al., 2019).

As conclusion, OR researchers are widely engaging 
in environmental problems. Environmental problems 
are intriguingly complex, thus offering opportunities 
for inspiring research. Although our evaluation is 
neither comprehensive nor systematic, some general 
research needs appear across all OR fields. Many 
articles emphasised the importance of better integrat-
ing practitioners and stakeholders in environmental 
problems, and of better considering societal objec-
tives. Various fields require improved methods to 
address the complexities of environmental problems, 
including appropriately dealing with many types of 
uncertainties, time, and space. Combining soft with 
hard OR, improving problem structuring, and inte-
grating questions from behavioural OR will increase 
the chances of finding sustainable solutions for our 
worlds’ environmental problems. This can also spark 
cross-disciplinary research over different fields of OR.

3.8. Ethics and fairness54

There is substantial literature on the ethical practice 
of operational research, surveyed in Brans and Gallo 
(2007), Ormerod and Ulrich (2013), Tsoukias 
(2021), and Bellenguez et al. (2023). While this is a 
vitally important discussion, it is useful to consider 
how the science of operational research can 

contribute to ethics, as well as how ethics can con-
tribute to the practice of operational research. It has 
accomplished this primarily through the develop-
ment of modelling techniques and algorithms that 
embody ethical concepts, notably distributive justice.

An operational research model that aims simply 
to minimise total cost or maximise total benefit may 
unfairly distribute costs or benefits across stakehold-
ers. This concern arises in a number of application 
areas, including healthcare (§3.11), disaster relief 
(§3.4), facility location (§3.13), task assignment, tele-
communications (§3.26), and machine learning 
(§2.1). It poses the problem of finding a suitable 
formulation of equity or fairness that can be incor-
porated into a mathematical model.

For example, if donated organs are allocated in 
the most economically efficient fashion, patients 
with certain medical conditions may wait far longer 
for a transplant than other patients (McElfresh & 
Dickerson, 2018). If earthquake shelters are located 
so as to minimise average distance from residents, 
persons living in less densely populated areas may 
have much further to travel (Mostajabdaveh et al., 
2019). If a machine learning algorithm awards mort-
gage loans so as to maximise expected earnings, 
members of a minority group may find themselves 
unable to obtain loans even when they are 
financially responsible (Saxena et al., 2020). If traffic 
signals at intersections are timed to maximise traffic 
throughput, motorists on side streets may have to 
wait forever for a green light (Chen et al., 2013).

We provide here a brief overview of mathemat-
ical formulations of fairness that have been pro-
posed for OR and AI models. Comprehensive 
treatments can be found in Karsu and Morton 
(2015) and Chen and Hooker (2022b). In addition, 
Ogryczak et al. (2014) review formulations devel-
oped for telecommunications and facility location, 
two major users of fairness models. Recent years 
have seen an enormous surge of interest in fairness 
criteria for machine learning, many of which are 
surveyed in Mehrabi et al. (2022).

We suppose that the model into which one 
wishes to incorporate fairness allocates utilities to a 
collection of stakeholders, and we are concerned 
about the fairness of this allocation. Utility could 
take the form of wealth, resources, negative cost, 
health outcomes, or some other type of benefit. 
Stakeholders can be individuals, organisations, 
demographic groups, geographic regions, or 
other entities for which distributive justice is a 
concern.

Fairness models can be divided into three broad 
categories. Inequality measures are normally used to 
constrain the degree of inequality in solutions 
obtained by maximising total benefit or minimising 
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total cost. Some of these focus on inequalities across 
individuals, and others on inequalities across groups. 
Various statistics for measuring the former are dis-
cussed in Cowell (2000) and Jenkins and Van Kerm 
(2011). Perhaps the best known is the Gini coeffi-
cient, widely used to measure income or wealth 
inequality (Gini, 1912; Yitzhaki & Schechtman, 
2013). The Hoover index (Hoover, 1936) is propor-
tional to the relative mean deviation of utilities and 
represents the fraction of total utility that must be 
redistributed to achieve perfect equality. Both the 
Gini coefficient and the Hoover index can be given 
linear formulations (§2.14) in an optimisation model 
by means of linear-fractional programming 
(Charnes & Cooper, 1962). Jain’s index (Jain et al., 
1984), well known in telecommunications, is a 
strictly monotone function of the coefficient of 
variation.

Inequality between groups, generally referred to 
as group disparity, is by far the most discussed type 
of inequality metric in the machine learning field 
(§2.1; Verma & Rubin, 2018; Mehrabi et al., 2022). 
It assesses whether AI-based decisions (e.g., mort-
gage loan awards, job interviews, parole, college 
admission) are biased against a designated group, 
perhaps defined by race, ethnic background, or gen-
der. Fairness implementations in machine learning 
typically strive to minimise loss (due to defaults on 
loans, etc.) while placing a bound on some measure 
of resulting group disparities. The best known meas-
ures are demographic parity (Dwork et al., 2012), 
equalised odds (Hardt et al., 2016), and predictive 
rate parity (Dieterich et al., 2016; Chouldechova, 
2017), and counterfactural fairness (Kusner et al., 
2017; Russell et al., 2017). The first two have mixed 
integer/linear programming (MILP) formulations 
(§2.15), and the third a mixed integer/nonlinear for-
mulation. Weaknesses of group parity measures 
include a lack of consensus on which one is suitable 
for a given application (Castelnovo et al., 2022), as 
well as on which groups should be monitored for 
bias.

A second category of models is concerned with 
fairness for the disadvantaged. They strive for equal-
ity, but with greater emphasis on the lower end of 
the distribution. The maximin criterion, based on 
the famous difference principle of John Rawls, maxi-
mises the welfare of the worst-off individual or 
social class (Rawls, 1971). It is defended with a 
social contract argument that has been intensely dis-
cussed in the philosophical literature (as surveyed in 
Freeman, 2003; Richardson & Weithman, 1999). A 
more sophisticated form of the principle is lexico-
graphic maximisation (leximax), which maximises 
the worst-off, then the second worst-off, and so 
forth. The McLoone index compares the total utility 

of stakeholders at or below the median utility to the 
utility they would enjoy of all were brought up to 
the median. It is based on a concern that no one be 
disadvantaged but tolerates inequality in the top half 
of the distribution. It has been used to assess the 
allocation of public services, particularly education 
(Verstegen, 1996) and can be given an MILP formu-
lation (Chen & Hooker, 2022b).

Criteria that balance efficiency and fairness can be 
placed in three categories: convex combinations of 
efficiency and fairness, criteria from classical social 
choice theory, and threshold criteria. Convex combi-
nations provide the simplest approach, as for 
example a combination of total utility and a fairness 
measure (e.g., Mostajabdaveh et al., 2019). Other 
formulations are given by Yager (1997), Ogryczak 
and �Sliwi�nski (2003), and Rea et al. (2021). Convex 
combinations and other weighted averages pose the 
general problem of justifying a choice of weights, 
particularly when utility and equity are measured in 
different units, although Argyris et al. (2022) pro-
pose a means of avoiding this issue.

The task of balancing fairness and efficiency gave 
rise to one of the oldest research streams in social 
choice theory, beginning with the Nash bargaining 
solution, also known as proportional fairness (Nash, 
1950a). Proportional fairness has seen application in 
such engineering contexts as telecommunication and 
traffic signal timing (Mazumdar et al., 1991; Kelly 
et al., 1998) and elsewhere. Nash gave an axiomatic 
argument for the criterion, while Harsanyi (1977), 
Rubinstein (1982), and Binmore et al. (1986) have 
shown that it is the outcome of certain bargaining 
procedures. Alpha fairness generalises proportional 
fairness by introducing a parameter a that governs 
the importance of fairness, where a ¼ 0 corresponds 
to a purely utilitarian criterion, a ¼ 1 to propor-
tional fairness, and a ¼ 1 to the maximin criterion 
(Mo & Walrand, 2000; Verloop et al., 2010). Alpha 
fairness has been derived from a set of axioms (Lan 
et al., 2010; Lan & Chiang, 2011), including an 
“axiom of partition” that is largely responsible for 
the result. It provides an objective function to be 
maximised that is nonlinear but concave (§2.16). 
Another criterion, Kalai-Smorodinsky bargaining, 
likewise has an axiomatic defence (Kalai & 
Smorodinsky, 1975) and addresses what one might 
see as a weakness in Nash bargaining, namely that it 
can result in reduced utility for some stakeholders 
when the feasible set is enlarged. The Kalai- 
Smorodinsky criterion can be viewed as a kind of 
normalised maximin, as it calls for allocating to 
each stakeholder the largest possible fraction of his 
or her potential utility (ignoring other stakeholders) 
on the condition that this fraction be the same for 
everyone. This criterion has received support from 
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Thompson (1994) as well as the “contractarian” eth-
ical philosophy of Gauthier (1983) and has been rec-
ommended for wage negotiations and similar 
applications (Alexander, 1992).

Threshold criteria are of two types. One, based on 
an efficiency threshold, imposes a maximin objective 
until the efficiency cost becomes unacceptably great, 
at which point some stakeholders are switched to a 
utilitarian criterion. The other, based on an equity 
threshold, imposes a utilitarian criterion until 
inequity becomes unacceptably great, at which point 
a maximin criterion is introduced. Originally pro-
posed for two stakeholders (Williams & Cookson, 
2000), the threshold criteria have been extended to 
n persons, using an MILP formulation for the for-
mer (Hooker & Williams, 2012) and a linear pro-
gramming model for the latter (Elçi et al., 2022). A 
parameter D regulates the equity/efficiency trade-off 
in both models, in that stakeholders with utility 
within D of the worst-off are given special priority. 
Thus, the parameter D may be interpretable in a 
practical situation in a way that a in the alpha fair-
ness criterion is not. Both threshold criteria inherit 
a weakness of the maximin criterion, namely that 
they may be insensitive to the equity position of dis-
advantaged stakeholders other than the very worst- 
off. This has been addressed for the efficiency 
threshold by combining a utilitarian criterion with a 
leximax rather than a maximin criterion. McElfresh 
and Dickerson (2018) accomplish this by assuming 
there is a pre-existing priority ordering of stakehold-
ers. Chen and Hooker (2022a) avoid this assump-
tion by giving greater priority to stakeholders with 
utilities closer to the lowest, and by solving a 
sequence of MILP models to balance the leximax 
element with total utility.

Fairness modelling is a relatively recent research 
program in operational research that may forge new 
connections with other fields. Much as interactions 
between OR and economics, management, and 
engineering have been mutually beneficial on both a 
theoretical and practical level, collaboration with 
ethicists on the precise formulation of fairness con-
cepts may bring similar benefits to both ethical phil-
osophy and operational research.

3.9. Finance55

The use of mathematical models and numerical algo-
rithms to solve an extensive range of problems in 
finance is widespread, by both researchers and practi-
tioners. In this subsection, we offer an overview of 
some established models and discuss a selection of 
the corresponding OR approaches and techniques.

3.9.1. Resource allocation models
As in any other industry, the optimal allocation of 
resources to activities is a central problem in 
finance. Prototype models include short-term cash 
flow management (a linear program), portfolio dedi-
cation and immunisation (linear programs), capital 
budgeting (knapsack problem), asset/liability man-
agement (stochastic program with recourse), and 
portfolio selection (quadratic program).

The portfolio selection model introduced in 
Markowitz (1952) and discussed in Markowitz and 
Todd (2000) is one of the best known optimisation 
models in finance. This mean-variance model con-
sists of determining the composition of a portfolio 
of risky assets – a vector of weights – where the 
performance (to be maximised) is measured by 
the expected portfolio return, a linear function of 
the assets’ weights, while the risk (to be minimised) 
is measured by the variance of the portfolio return, 
a quadratic function of the weight vector. The 
resulting optimisation problem gives rise to a con-
vex quadratic program. This model and its analytical 
properties led to a formalisation of diversification as 
a strategy to mitigate risk and to important develop-
ments in financial theory.

While the Markowitz model represents a consid-
erable simplification of the portfolio management 
problem, mean-variance optimisation models are 
still very much applied in practice. Straightforward 
variations of the Markowitz model can account for 
various constraints on the asset weights (e.g., 
bounds, minimum participation, regulatory or oper-
ational restrictions, logical constraints, etc.), yielding 
mixed integer quadratic programs.

Mean-variance models rely on sets of parameters 
describing the expected returns and their correlation 
matrix in the universe of the set of considered 
assets. Various forecasting approaches (§2.10) have 
been proposed to obtain estimates of these parame-
ters, often relying on some assumptions about the 
correlation structure. One important issue related to 
the use of mean-variance optimisation models is the 
sensitivity of their solutions to the estimated param-
eter values (Michaud, 1989), specifically when the 
feasible region is relatively unconstrained. Robust 
optimisation (see also §2.21) is increasingly used to 
limit the estimation risk of mean-variance portfolio 
solutions (Ismail & Pham, 2019; Yin et al., 2021; 
Blanchet et al., 2022).

Another related limitation of mean-variance 
models is the fact that they are static models, that 
is, expectations and correlations of asset returns are 
assumed to be known and constant over the plan-
ning horizon. In practice, estimations are updated 
periodically to reflect changes in data, and portfolios 
are rebalanced to the optimal composition 
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corresponding to the new set of estimates. Small 
perturbations in the values of the input parameters 
may lead to significant changes in the composition 
of the portfolio from one period to the next (for 
instance, when groups of assets have similar charac-
teristics). When the costs associated with changing 
the composition of the portfolio are significant, a 
static model may be far from optimal. The portfolio 
selection problem can be readily extended to a 
multi-period context, allowing to account for trans-
action costs and/or to use a dynamic model of the 
evolution of asset prices over time (Li & Ng, 2000). 
Dynamic models can also account for additional 
frictions, such as taxes on capital gains or losses 
(Dammon et al., 2001). The resulting dynamic port-
folio selection problem may be a large-scale stochas-
tic dynamic program (§2.9; §2.21). Moreover, risk 
measures based on portfolio variance are not addi-
tively separable, precluding the efficient use of 
dynamic programming. Steinbach (2001) proposes 
a solution approach based on scenario 
decomposition.

3.9.2. Risk management
While, in OR, the classical way to deal with deci-
sions under risk is utility theory, finance models 
usually take a different approach by directly measur-
ing and/or pricing risk. Various measures, such as 
variance, semi-variance, Value at Risk (VaR) or 
Conditional value at risk (CVaR) have been pro-
posed to characterise risk56. VaR is effectively con-
cerned with computing quantiles of the predictive 
distrubution (see also §2.10 and §3.19). In the fol-
lowing paragraphs, we present two contrasting fami-
lies of approaches to financial risk management.

Diversification and hedging approaches are closely 
related to the resource allocation models presented 
above. They consist in setting up and managing 
portfolios of securities with desirable properties. 
Diversification is effective in reducing risk that is 
uncorrelated across securities, while hedging is used 
to reduce systematic risk, for instance by holding 
securities exposed to the same risk factors to elimin-
ate uncertainty, or by buying insurance in the form 
of derivative contracts. In general, hedging positions 
must be continuously adjusted to account for the 
time evolution of risk factors and security prices. In 
addition, investment portfolios are often required to 
satisfy institutional or regulatory constraints. Risk 
mitigation portfolio planning problems give rise to 
dynamic stochastic mathematical programs. In 
recent years, CVaR has become prominent for 
measuring portfolio risk; CVaR is well-suited to 
measure down-side risk in skewed distribution and, 
as shown in Artzner et al. (1999), it has the desir-
able properties of a coherent risk measure. 

Moreover, the use of CVaR in optimisation models 
gives rise to convex or linear programs, allowing to 
efficiently solve the large-scale problems encoun-
tered in practice (Rockafellar et al., 2000; Andersson 
et al., 2001; Rockafellar & Uryasev, 2002).

Risk pricing approaches rather seek to evaluate 
the consequence of unpredictable events and are 
notably used for the management of credit and 
counterparty risk, that is, the risk that the issuer of 
a security (for instance, a corporate bond) will not 
be able to meet its future obligations. A variety of 
models have been proposed to evaluate the VaR of 
debt instruments, mainly for the purpose of assess-
ing regulatory requirements ensuring that financial 
institutions put aside sufficient capital to sustain 
eventual losses. Crouhy et al. (2000) presents a 
review of methodologies currently proposed by the 
industry to evaluate the probability and consequen-
ces of default events. Most approaches used in the 
industry to price credit and counterparty risk are 
based on probabilistic models or Monte-Carlo simu-
lation (§2.19) and, as such, cannot account for stra-
tegic behaviour by the debtor or the lender (Breton 
& Marzouk, 2018).

3.9.3. Asset pricing
Most asset pricing models are founded on an 
absence of arbitrage assumption, which is usually 
motivated by the efficiency of markets. Under this 
assumption, the value of a financial asset is equal to 
the expected value of its future payoffs, under a 
suitable probability measure. One specific applica-
tion is the valuation and replication of contingent 
claims, such as financial options. The contribution 
of OR to this area lies in the development and 
implementation of efficient numerical pricing meth-
ods for complex financial securities.

Starting from the binomial tree model of Cox 
et al. (1979), numerical methods for option pricing 
include Monte-Carlo (§2.19) and quasi-Monte-Carlo 
approaches (Acworth et al., 1998; L’Ecuyer, 2009); 
dynamic programming (§2.9) and approximate 
dynamic programming models accounting for opti-
mal exercise strategies (Ben-Ameur et al., 2002; 
Longstaff & Schwartz, 2001); and robust control 
models (§2.21) accounting for transaction costs and 
model uncertainty (Davis et al., 1993; Bernhard, 
2005; Bandi & Bertsimas, 2014). Numerical algo-
rithms developed for option pricing have also been 
applied to the valuation of numerous instruments, 
including corporate bonds, credit derivatives, con-
tracts, and, under the designation of real options, 
managerial flexibility (Trigeorgis, 1996; Schwartz & 
Trigeorgis, 2004; Dixit & Pindyck, 2009).

In the context of algorithmic trading, asset pricing 
algorithms have been revisited using artificial 
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intelligence approaches, for instance by using 
machine learning to identify factor models or 
reinforcement learning to compute optimal exercise 
strategies (Dixon et al., 2020; Gu et al., 2020), or by 
augmenting the set of covariates with textual data 
(Algaba et al., 2020).

3.9.4. Strategic interactions
Decisions made by investors, firms, financial institu-
tions, and regulators have a direct impact on asset 
values, returns and risk. Players in the financial sec-
tor have competing interests and interact strategic-
ally over time, and these interactions are recognised 
in many game-theoretic models of investment and 
corporate finance (§2.11). Important issues include 
market impact and market manipulation, option 
games, strategic exercise of real options, agency con-
flicts, corporate investment, dividend and capital 
structure policies, financial distress, and mergers 
and acquisitions.

Optimal execution refers to the determination of 
a trading strategy minimising the expected cost of 
trading a given volume over a fixed period, account-
ing for the impact of the trades on the price of the 
security. This problem is addressed in Bertsimas and 
Lo (1998), using a stochastic dynamic program min-
imising the execution costs, and in Almgren and 
Chriss (2001), where a combination of volatility risk 
and transaction costs is minimised. Optimal execu-
tion and market impact are particularly significant 
issues in the context of algorithmic trading and 
have been addressed by the recently developed 
mean-field game theory, acknowledging the fact that 
price is impacted by the trades of many atomic 
players (Firoozi & Caines, 2017; Cardaliaguet & 
Lehalle, 2018; Huang et al., 2019).

Option games appear in asset pricing models 
when a security gives interacting optional rights to 
more than one holder, that is, when the exercise of 
an optional right by one holder modifies those of 
the others. Examples include callable, putable and 
convertible bonds, warrants, and, especially, instru-
ments subject to credit or counterparty risk. In gen-
eral, the pricing of such financial instruments 
corresponds to the solution of a non-zero-sum sto-
chastic game where players use feedback strategies 
(Ben-Ameur et al., 2007).

Financial distress models are used to price cor-
porate debt, according to various assumptions about 
strategic default, debt service and bankruptcy proce-
dures (Fan & Sundaresan, 2000; Broadie et al., 2007; 
Annabi et al., 2012).

Finally, a large literature in corporate finance 
uses game-theoretic models to deal with financial 
decisions made by firms, such as the choice between 
debt and equity when financing operations, the 

amount of dividends paid out to shareholders, 
and decisions about whether to invest in risky 
projects.

3.9.5. Further readings
The recognition of finance as an thriving applica-
tion area for OR methods developed about thirty 
years ago (see, for instance, Dahl et al., 1993a, 
1993b, for an introduction to optimisation prob-
lems underlying risk management strategies and 
instruments). A review of practical applications of 
OR methods in finance appeared in Board et al. 
(2003). For a comprehensive textbook covering 
optimisation models in finance, we refer the 
reader to Cornuejols and T€ut€unc€u (2006). A uni-
fied framework for asset pricing can be found in 
Cochrane (2009) and a review of applications of 
dynamic games in finance in Breton (2018). 
Recent discussions about the interface of opera-
tions, risk management and finance as a promis-
ing research area are presented in Wang et al. 
(2021) and Babich et al. (2021).

3.10. Government and public sector57

This subsection will present some OR applications 
within the UK’s government operational research 
service (GORS). GORS represents over 26 depart-
ments and agencies across Great Britain and 
Northern Ireland with analysts working in multi- 
disciplinary teams to find workable solutions to real 
life problems. The outbreak of the Coronavirus pan-
demic in 2020 introduced a new global backdrop 
and we were faced with the challenge of producing 
appropriate analysis to answers questions during an 
ever-changing landscape where time was of the 
essence. This led to collaborations across a wide 
range of departments across the nations.

A few examples of where this collaborative 
approach was adopted successfully are highlighted 
by the work carried out by the Department for 
Transport (DfT) and the Office for National 
Statistics (ONS). The ONS worked with other gov-
ernment departments such as Department of Health 
and Social Care (DHSC) and schools across the UK 
to monitor infection rates. They also applied their 
expertise in artificial intelligence (AI) in the form of 
semantic maps to gather insight into the pandemic. 
Additionally, the DfT along with other government 
departments used agent based modelling and dis-
crete event simulation to unpick the issues around 
border disruptions and international travel.
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3.10.1. Coronavirus (COVID-19) infection survey 
and schools infection survey
The Office for National Statistics (ONS) played a 
vital role during the pandemic in monitoring infec-
tion rates. The Coronavirus (COVID-19) infection 
survey estimates how many people across England, 
Wales, Northern Ireland, and Scotland would have 
tested positive for a COVID-19 infection, regardless 
of whether they report experiencing symptoms. This 
study was a collaboration with academic partners 
and funded by Department of Health and Social 
Care. This major study involved asking people up 
and down the country to provide nose and throat 
swabs on a regular basis. These are analysed to see 
if they have contracted COVID-19. In addition, 
some adults are also asked to provide blood samples 
to determine what proportion of the population has 
antibodies to COVID-19. Further details of the 
methodology can be found in Office for National 
Statistics (2022a).

Estimates of the total national proportion of the 
population testing positive for COVID-19 are 
weighted to be representative of the population that 
live in private-residential households in terms of age 
(grouped), sex and region. The analysis for the 
infection study is complex, the model generates esti-
mated daily rates of people testing positive for 
COVID-19 controlling for age, sex, and region. This 
technique is known as dynamic Bayesian multi-level 
regression post-stratification (MRP). Details about 
the methodology are also provided by Pouwels et al. 
(2021).

Estimates from the ONS survey are published 
weekly, a critical element was how best to commu-
nicate the uncertainty, for dissemination estimates 
were translated into, for example, 1 in 50 people, 
with appropriate visuals including the ONS insights 
tool (Office for National Statistics, 2022b). A com-
plementary piece of work was monitoring transmis-
sion and antibody levels within schools, enabling 
the government to accurately assess the risk of dif-
ferent policy options.

The Schools Infection Survey (SIS) was a longitu-
dinal study which collected data through polymerase 
chain reaction (PCR) tests, antibody tests and ques-
tionnaires. As well as monitoring transmission 
within a school environment, this data was used to 
assess the wider impacts of the pandemic and repeat 
lockdowns on our children and young people, 
including long covid, mental health and physical 
activity levels. Further detail can be seen in Office 
for National Statistics (2022c) and Hargreaves et al. 
(2022).

The Daily Contact Testing (DCT) trial was a 
blind medical trial which compared infection rates 
across two groups subject to different policies: the 

control group where children were in “bubbles”, 
and after one child testing positive the entire bubble 
would be sent home from school, and the interven-
tion group where after a child tested positive, close 
contacts would then test daily and were allowed to 
remain in school as long as their results were nega-
tive. The study was a success and led to a policy 
change that resulted in schools being kept open for 
longer. Further detail can be seen in Young et al. 
(2021).

3.10.2. Semantic maps and their use for under-
standing regional disparities
Semantic Maps are a type of knowledge graph, 
championed in the world of robotics and Artificial 
Intelligence as a way to provide infrastructure to 
exploit all kinds of potentially even crowdsourced 
data and information in such a way as to provide 
dynamic, online, interactive visualisations that sup-
port the controlled and secure use of live data. The 
can be geospatial in nature, but they can also reflect 
connections through semantic relationships. These 
maps populated with data would provide users with 
many different ways to consume the underlying 
data and help inspire citizens about the potential 
power of data to drive understanding and generate 
insights.

During the development of the Levelling Up 
White Paper the evidence base needed to be devel-
oped across government in order to define the key 
metrics and measures to focus policies in areas that 
would drive change. The white paper itself was 
delivered by the Levelling Up Taskforce in the 
Cabinet Office, however, ONS worked with the geo-
spatial commission in convening a group of chief 
analysts from all departments on a regular basis. 
ONS and the Levelling Up Taskforce used the group 
to commission and collate existing evidence and 
then worked with officials in His Majesty’s Treasury 
(HMT) to develop a systems thinking model from 
that evidence. This systems mapping was the basis 
of the theory of change that underpins the white 
paper. Subsequently, the metrics and missions were 
developed and refined with this group in recogni-
tion of the fact that there needs to be a focus across 
the system to reduce disparities that are often larger 
within areas such as local authorities or regions 
than they are between them.

ONS took this and developed a semantic map 
that identifies potential data sources for various 
aspects of the knowledge graph, using this to both 
prioritise filling evidence gaps where data and evi-
dence do not currently exist and developing an inte-
grated data asset for Levelling Up. This data is in 
the process of being acquired and engineered to be 
able to be easily linked through a set of linking 
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‘spines’ referred to as the reference management 
database. This engineering and architecture is key 
for supporting the sharing of information in a way 
that ensures privacy. It is intended that in future 
this asset will be made available across government 
and in a secure integrated data service.

3.10.3. Agent based modelling
The COVID-19 pandemic presented challenges for 
the international travel community. Government 
officials in transport and health needed to model 
the preventative effect of the various policy options 
including testing and isolation on importation of 
infections from international travel.

The approach chosen in the Department for 
Transport to support this fast-moving policy area 
was agent based modelling which built upon the 
more scientific epidemiological modelling under-
taken by colleagues in Health and academia. This 
allowed for the incorporation of the various differ-
ing parameters of international travellers including, 
where they were coming from and their risk of 
being infected and infectious, the uncertainty over 
incubation and infectious periods, and their likely 
behavioural response to various isolation and testing 
regulations.

Whilst not designed to be a scientific forecast, 
the modelling allowed the cross-government com-
munity to estimate the relative effectiveness of pol-
icy options. This work supported policy making 
during a highly uncertain and changing environ-
ment when Government had to balance risk with 
the wider impacts on the aviation sector and the 
second order impacts on the economy.

3.10.4. Discrete event simulation
As part of the EU Exit preparations, it was impor-
tant for both the Department for Transport, the 
Home office and regional resilience teams to under-
stand the impact of the expected border disruption 
at UK ports for roll-on roll-off freight traffic travel-
ling to EU Member States. As the issue was around 
changes to the time taken and resource available to 
carry out additional border processes, the natural 
choice was discrete event simulation. Analysts in 
government developed a detailed model of the Short 
Strait crossings (Port of Dover and the Channel 
Tunnel to France accounting for 84% of accompa-
nied heavy goods vehicles travelling to continental 
Europe in 2019; Department for Transport, 2022). 
Regional models were developed to cover other 
ports. These allowed government officials to under-
stand the likely queues and flow of vehicles and to 
understand the impact of changes to the system, 
which was vital to supporting contingency planning.

3.10.5. Statistical analysis and forecasting
The COVID-19 lockdowns of 2020 accelerated the 
uptake of new and novel data sources for under-
standing mobility. Government analysts rapidly 
ingested new data sources such as that provided by 
Google mobility as open source data as well as pro-
curing in additional anonymised and aggregated 
mobile network operator data. By analysing these 
new data sets alongside traditional demographic and 
geographic data sets it was possible to generate 
insights into the changes in mobility being seen 
across the country as a result of the various national 
and regional restrictions. Regression analysis was 
undertaken to produce a predictive model. It was 
then possible to forecast the impact of later changes 
to restrictions on population mobility.

3.10.6. Net zero – system thinking
In 2020 the UK Prime Minister’s Council for 
Science and Technology advised on the following: ‘a 
whole systems approach can provide the framework 
that government requires to lead change across pub-
lic and private sectors and … enables decision mak-
ers to understand the complex challenges posed by 
the net-zero target and devise solutions and innova-
tions that are more likely to succeed’ (Council for 
Science & Technology, 2020). The Prime minister 
agreed.

As transport represents a huge portion of the 
challenge, ORs have run participatory systems map-
ping workshops in the Department for Transport 
with modal subject matter experts to identify the 
key causes and effects in the Transport Net Zero 
system. This aims to enable those working on 
Transport policy to explore the evidence, gain new 
insights and visibility of interdependencies within 
the system, and to understand the likely wider 
impact of their policy choices.

3.10.7. Conclusions
All these examples help to illustrate the breadth of 
analysis undertaken across central government dur-
ing the global pandemic to tackle real life issues; 
and the ranges of techniques we have as OR analysts 
to find workable solutions in an ever changing 
world.

3.11. Healthcare58

Why is the organisation and delivery of health and 
care services so difficult to manage, plan for and 
improve? Difficulties and delays in accessing care 
services, cancellations and increasing costs have a 
negative impact on all of us: patients, carers, and 
care professionals. Despite the attention and resour-
ces invested in addressing these problems, many 
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health systems face increasing pressure to improve 
the effectiveness and efficiency of their operations. 
Part of the problem is the complexity inherent in 
the organisation of care services and our limited 
understanding of how changes will affect their deliv-
ery. Another problem is the intrinsic uncertainty 
and variability in many aspects of care service deliv-
ery. Add the multifaceted dynamics arising in this 
very complex socio-technical system involving pro-
fessionals, patients and existing and new technolo-
gies, against a background of increased demand and 
budgetary constraints, and it is no surprise the effort 
to improve healthcare has been termed ‘rocket sci-
ence’ (Berwick, 2005).

Operational research has a long established his-
tory in this area with the first application (schedul-
ing outpatient hospital appointments) reported in 
the early 1950s (Bailey, 1952). Since then, there has 
been a proliferation of OR applications reported in 
the literature (Katsaliaki et al., 2010), and evidence 
of use to support policy making and care delivery 
(Royston, 2009). This is not a surprise given the 
importance of healthcare in our lives and that many 
of the problems faced by those managing and deliv-
ering care services are amenable to the methods and 
ethos of OR (Utley et al., 2022). In the short review 
that follows, which is by no means exhaustive and 
draws primarily (but not exclusively) from the UK 
academic community and the National Health 
Service (NHS), I have attempted to give examples of 
review and individual studies grouped in a few 
broad areas of healthcare.

3.11.1. Applications to hospital settings
Hospital care has been the setting of a large number 
of OR studies (Jun et al., 1999). Hospitals typically 
survive reorganisations and funding cuts (unlike 
management, policy and other statutory bodies), 
and are large enough to be able to engage meaning-
fully in research projects (unlike, for example, many 
primary care practices). Some (mainly teaching) 
hospitals host large biomedical research centres, 
with many of the professionals working in them 
active researchers.

A specific area that has attracted the attention of 
operational researchers is the Emergency 
Department (ED). A recent review article identified 
21 studies that used a computer simulation method 
to capture patient progression through the ED of an 
established UK NHS hospital, mainly focusing on 
service redesign (Mohiuddin et al., 2017). Individual 
studies have addressed the micro (single hospital) 
level (Baboolal et al., 2012), as well as the meso-level 
of emergency and on-demand healthcare within a 
region (Brailsford et al., 2004). The study by Lane 
et al. (2000) used System Dynamics to model the 

interaction of demand patterns and resources 
deployed in ED and other parts of the hospital to 
examine the link between emergency and elective 
operations in hospitals.

Another hospital area that has been the focal 
point of OR is peri-operative care. Sobolev et al. 
(2011) in their systematic review identified 34 stud-
ies modelling the flow of surgical patients. Various 
forms of optimisation have also been applied to sur-
gical scheduling problems including operating room 
(Fairley et al., 2019), staffing (Bandi & Gupta, 2020) 
and nurse rostering (Xiang et al., 2015) among 
others. Cardoen et al. (2010) identified almost 250 
papers, with the rate of published studies accelerat-
ing at around the start of the new millennium (simi-
lar trends have been observed across many 
disciplines). The review revealed that most of the 
research was directed towards the planning and 
scheduling of elective patients in highly stylised 
scenarios – although many operational challenges 
are triggered by factors such as the arrival of non- 
elective (emergency) patients. More recently, the 
problems tackled have become more realistic to 
include considerations of downstream resource 
availability such as critical care and general ward 
beds (F€ugener et al., 2014), and scheduling elective 
operations in such a way that randomly arriving 
emergency patients can be accommodated without 
excessive delays (Jung et al., 2019).

An area OR has demonstrably made a beneficial 
impact is the organisation of acute stroke services. 
Several studies have attempted to address the rate 
and speed with which patients with suspected acute 
ischemic stroke go through the initial diagnostic 
steps and receive treatment (Meretoja et al., 2014). 
Monks et al. (2012) made a number of recommen-
dations for improving treatment rates in a rural hos-
pital. In a follow-up study that evaluated the results 
of their recommendations, mean door-to-needle 
times (a key performance metric with direct impact 
on patient survival and recovery) fell from 100 min 
to 55 min while thrombolysis rates increased to 
14.5% (Monks et al., 2015). More recently, the focus 
has shifted to supporting decision around the cen-
tralisation of regional acute stroke services (Wood & 
Murch, 2020; Wood et al., 2022), as well as the sup-
porting the introduction of endovascular thrombec-
tomy, a new and very effective treatment for 
ischemic stroke (Maas et al., 2022).

3.11.2. Applications to non-acute hospital care 
settings
Much of healthcare is delivered outside of large hos-
pital facilities. Primary care, home and community 
care, social care are significant components of the 
healthcare ecosystem. Primary care, whether provided 
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by physicians, nurse practitioners or pharmacists, is 
typically concerned with providing a first contact and 
principal point of continuing care and/or coordinat-
ing other specialist care. There are early examples of 
theoretical work to assist primary care planning by 
estimating the coverage achieved by staff and facili-
ties, using antenatal care as an example (Kemball- 
Cook & Vaughan, 1983). More recently in the area 
of maternity care provided in community as well as 
hospital facilities, Erdo�gan et al. (2019) developed 
and empirically tested an open source facility location 
solver to assist with a decision on the number and 
location of regional maternity facilities.

Home-based care has attracted considerable 
attention from operational researchers (Grieco et al., 
2021). This review identified studies proposing 
models and solution methods for operational deci-
sions on staff rostering, the allocation of staff to 
patient visits, the scheduling of visits and the rout-
ing of staff. An example of impactful OR project is 
the Swedish study by Eveborn et al. (2009), where a 
set of algorithms and accompanying software tool 
were developed to provide solutions to staff-to- 
patient allocations, staff scheduling and staff routing 
problems. Having deployed the tool to more than 
200 units/organisations, operational efficiency was 
increased by up to 15%, resulting in annual savings 
of 20-30 million euros. More recently, modelling 
work has supported the effort to address the timely 
discharging of hospital patients by using a combin-
ation of home-based and bedded ‘step-down’ com-
munity care (Harper et al., 2021).

Mental health, one of the leading causes of dis-
ease burden internationally, has also received the 
attention of operational researchers (Long & 
Meadows, 2018). Specific areas of application varied 
from psychiatric ICUs (Moss et al., 2022) to system 
design (Smits, 2010) and planning (Vasilakis et al., 
2013), medical decision making (Afzali et al., 2012), 
and epidemiology (Ciampi et al., 2011).

3.11.3. Public health, health system preparedness 
and resilience, and pandemic response
Public health, the science and practice of helping 
people stay healthy and protecting them from 
threats to their health, is another area of OR appli-
cations. The review article by Fone et al. (2003), 
identified OR studies of infection and communic-
able disease, screening, and several epidemiological 
and health policy studies. Microsimulation, a type 
of simulation which models individual life trajecto-
ries through a number of healthy and disease 
states, has found wide applicability in the area of 
public health (Krijkamp et al., 2018), such as fore-
casting the long-term care needs of the older popu-
lation in England (Kingston et al., 2018a). 

Multicriteria decision analysis (MCDA) methods 
have also been used extensively to address ques-
tions of health policy or health technology assess-
ment (Glaize et al., 2019).

An area that has seen increased attention over 
the last two decades is that of emergency prepared-
ness and health system resilience (Tippong et al., 
2022). Emergency preparedness studies include a 
study of red blood cell provision following mass cas-
ualty events (Glasgow et al., 2018). Examples of 
health system resilience studies include the paper by 
Crowe et al. (2014), which examined the feasibility 
of using modelling to assess the capacity of a care 
system to continue operating in the face of major 
disruption.

The COVID-19 pandemic not only gave rise to a 
large number of modelling studies, it also raised the 
profile of mathematical modelling with the general 
public and policy makers. Pagel and Yates (2022), in 
their excellent article on the role of modelling in the 
pandemic response, discussed the early lessons 
learnt from this experience including the poor 
understanding of policy makers and the public of 
key concepts such as exponential growth. They 
argue that infection disease modelling, which gener-
ated much of the evidence used to support decisions 
of pandemic response (Brooks-Pollock et al., 2021), 
is intrinsically difficult given the complex relation-
ships between the model parameters, and the 
difficulties associated with quantifying these 
parameters.

The possible benefits of modelling in addressing 
the challenges presented by the pandemic were out-
lined by Currie et al. (2020). Indeed, several studies 
emerged early in the pandemic including, for 
example, an attempt to forecast the number of 
infected and recovered cases used univariate time 
series models (Petropoulos & Makridakis, 2020). 
Wood et al. (2020) published one of the first OR 
studies that examined the likely impact of increases 
in critical care capacity as a means to reduce the 
COVID-19 death toll. In a follow-up study, the 
sophistication of the model was increased to cap-
ture notions of triaging access of patients to critical 
care beds during periods of intense demand (Wood 
et al., 2021b). The operation of large vaccination 
centres was also the topic of several modelling 
studies, both theoretical (Franco et al., 2022) and 
empirical (Wood et al., 2021a; Valladares et al., 
2022).

3.11.4. Concluding remarks
Despite the large body of literature, the role and 
impact of OR on improving care systems is less 
clear. Hospitals have “largely failed to use one of the 
most potent methods currently available for 
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improving the performance of complex organ-
isations” (Buhaug, 2002) and “staff may be largely 
unaware of the potential applications and benefits of 
OR” (Utley et al., 2022). A systematic review found 
that only half of the included studies reported mod-
els that were constructed to address the needs of 
policy-makers, and only a quarter reported some 
involvement of stakeholders (Sobolev et al., 2011). 
Recent positive developments include the introduc-
tion of guidelines to improve the reporting of OR 
studies (e.g., Monks et al., 2019), studies that recog-
nise the importance of behavioural factors in 
attempts to influence practice and decision making 
with OR (Crowe & Utley, 2022) and attempts to 
systematically generate evidence on the value and 
impact of OR on patient and system outcomes 
(Monks et al., 2015; Soorapanth et al., 2022). The 
research agenda should continue to evolve with the 
aim of addressing the challenges around engage-
ment, implementation and evidencing the impact of 
OR applied to healthcare problems.

3.12. Inventory59

Inventories are the materials, parts, and finished 
goods held by an organisation for future use or sale. 
Not having enough inventory is costly. Shortages of 
materials and parts cause interruptions in produc-
tion processes, delays in product delivery, and stock-
outs of finished goods. On the other hand, carrying 
inventory is costly, too, involving the cost of capital 
due to tied-up capital, storage cost, insurance, taxes, 
and spoilage and obsolescence costs.

Inventory theory studies analytical models and 
solution techniques to help organisations meet the 
service requirement most cost-effectively or minim-
ise the total expected costs of ordering, inventory- 
holding, and shortage. It does so by quantifying the 
tradeoffs driven by economies of scale, lead time 
(the time it takes to receive the ordered quantity 
after placing an order), and supply and demand 
uncertainties. It prescribes effective inventory-con-
trol policies that govern when to order an item 
(called reorder point) and how much to order (called 
order quantity).

Inventory models distinguish from each other 
along several features: single or multiple planning 
periods, discrete- or continuous-time inventory 
monitoring, single- or multi-product, single- or 
multi-stage (or location), demand nature (determin-
istic or stochastic, stationary or nonstationary, dis-
tribution known or unknown), product perishability, 
lost sales or backlogging when shortages occur, 
deterministic or stochastic lead time, supply system 
(single- or dual-source, exogenous or endogenous, a 
finite or infinite capacity), and cost structure (with 

or without a fixed ordering cost, etc.). The following 
research-based textbooks and handbooks offer more 
detailed coverage and references: Arrow et al. 
(1958), Axs€ater (2006), de Kok and Graves (2003), 
Graves et al. (1993b), Hadley and Within (1963), 
Nahmias (2011), Porteus (2002), Silver et al. (1988), 
Simchi-Levi et al. (2014), Snyder and Shen (2019), 
Song (2023), and Zipkin (2000).

One class of models focuses on characterising the 
optimal inventory-control policy under a given sup-
ply and demand environment and cost structure. A 
common approach is formulating a multi-period 
inventory decision problem as a dynamic program 
and transforming the original formulation into a 
simpler one through state reduction. Next, identify 
the structural properties of the single-period cost 
function to determine the optimal policy form for a 
single-period problem. Then, show that these prop-
erties are preserved by the (Bellman) optimality 
equation, so the policy form is optimal for each 
period. The optimal policy parameters may not be 
easy to compute; hence some works develop effi-
cient algorithms to calculate the optimal policy 
parameters.

Another class of models focuses on developing 
efficient performance evaluation tools for a given 
type of inventory policy that is either commonly 
used in practice or of simple structure and easy to 
implement. This is particularly important for systems 
where state reduction is not viable and the dimension 
of the system state grows exponentially in the num-
ber of periods (the so-called curse of dimensionality), 
so the optimal policy has no simple form. Typically, 
this type of work analyses a continuous-review sys-
tem in which demand follows a stochastic process 
and derives steady-state performance measures of any 
given policy, such as average inventory, average back-
orders, and stockout rate, as well as the long-run 
average cost. Then, optimisation tools can be devel-
oped to find the optimal policy parameters that min-
imise the long-run average cost.

The third class of models conducts asymptotic 
analysis to establish asymptotic optimality of some 
simple-structured policies for less tractable inventory 
systems with unknown and complex optimal 
policies.

The following are several classic models where 
the optimal policies are shown to have simple 
forms. Unless otherwise stated, the models assume a 
single stage, a single source, and a single nonperish-
able product.

The EOQ (Economic Order Quantity) Model was 
first developed by Harris (1913) (see the reprint 
Harris, 1990) and popularised by Wilson (1934). It 
concerns the balancing of holding and ordering 
costs due to economies of scale in procurement or 
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production. It is a continuous-review model over an 
infinite planning horizon, assuming the annual 
demand for the stocked item is a constant k: There 
is a fixed procurement cost k independent of the 
order size, accounting for administrative, material 
handling, and transportation-related costs. The 
annual per-unit inventory-holding cost is h. The 
optimal order quantity (EOQ) that minimises the 
annual order and holding costs equals 

ffiffiffiffiffiffiffiffiffiffiffiffi
2kk=h

p
, 

which is insensitive to small perturbations of the 
model parameters. Variations of this model can 
accommodate finite production rate, planned back-
logs, random yield, a quantity discount, and time- 
varying demand (also known as the dynamic lot 
sizing problem; see Wagner & Whitin, 1958; Silver 
& Meal, 1973). It also forms the basis for the devel-
opment of efficient multi-item joint replenishment 
policies and multiechelon coordinated replenish-
ment policies such as the power-of-two policies; see 
Roundy (1985), Roundy (1986). For major develop-
ments and references, see Axs€ater (2006), Muckstadt 
and Roundy (1993), Silver et al. (1988), Simchi-Levi 
et al. (2014), and Zipkin (2000).

The Newsvendor Model, which originated from 
Edgeworth (1888) in a banking application, was for-
malised by Arrow et al. (1951) in the general inven-
tory context. It optimises the tradeoff between too 
much and too little inventory caused by demand 
uncertainty for a seasonal product. It is a single- 
period model with only one ordering opportunity 
before the selling season, assuming an estimated 
demand distribution. The fixed order cost is negli-
gible. After the ordered quantity arrives, the selling 
season begins, and demand realises. At the end of 
the season, there will be either unsold units (over-
age) or unmet demand (underage). The unit overage 
cost (o) ¼ purchasing cost less - salvage value, while 
the unit underage cost (u) is the lost profit. The 
optimal newsvendor order quantity equals to the 
fractile of the demand distribution at the critical 
ratio u=ðuþ oÞ: The model can be generalised in 
many ways, including random yield, different cost 
structures, pricing, and distribution-free bounds 
(Gallego & Moon, 1993; Petruzzi & Dada, 1999; 
Porteus, 1990; Qin et al., 2011) and multi-location 
with risk-pooling effect (Bimpikis & Markakis, 2016; 
Eppen, 1979).

Dynamic Backlogging Models. The most tractable 
and developed setting for multi-period models with 
stochastic demand and a constant lead time is full 
backlogging. When stockouts are rare, this model is 
a reasonable approximation for the lost-sales system. 
An important concept (due to state reduction) is 
inventory position, which is the sum of the on-hand 
inventory plus total pipeline inventory minus 

backorders. This is the total system inventory avail-
able to satisfy future demand if we do not order 
again.

Assume demand is independent over time. A 
base-stock policy is optimal if the order cost is linear 
(no fixed order cost). Each period has a target 
inventory position called the base-stock level. If the 
inventory position before ordering is below this 
level, order up to this level; otherwise, do not order. 
If the demand is stationary, the myopic base-stock 
level that minimises a single-period expected cost is 
optimal. The base-stock level has the same form as 
the newsvendor quantity, with the holding cost as 
the overage cost, the backorder cost as the underage 
cost, and the demand during a lead time replacing 
the single-period demand. For nonstationary 
demand, as long as the myopic base-stock levels are 
nondecreasing in time, the myopic base-stock level 
is still optimal. See Veinott Jr (1965) and Porteus 
(1990).

When the order cost is linear plus a fixed cost k, 
the optimal policy is an (s, S) policy. In each period, 
if the inventory position before ordering is below a 
threshold s, order up to S; otherwise, do not order. 
The key enabler of this result is that the single- 
period cost is k-convex, a property discovered by 
Scarf (1960a). When the demand is stationary, the 
policy is also stationary. In a continuous-review sys-
tem with Poisson demand, the optimal policy is an 
(r, q) policy: When the inventory position reaches r, 
order q units. It is equivalent to the (s, S) policy 
with r ¼ s and q ¼ S � s: A simple yet effective 
heuristic policy is to use the optimal base-stock level 
to approximate r, and use the EOQ formula to 
approximate q; see Zheng (1992) and Axs€ater 
(1996).

These policy structures have been extended to 
more complex models, such as Markov modulated 
demand (Iglehart & Karlin, 1960; Song & Zipkin, 
1993; Sethi & Cheng, 1997), exogenous and sequen-
tial stochastic lead times (Kaplan, 1970; Nahmias, 
1979; Ehrhardt, 1984; Song, 1994; Song & Zipkin, 
1996), capacity constraints (Federgruen & Zipkin, 
1986a, 1986b), unknown demand distribution (Scarf, 
1959, 1960b; Azoury, 1985), and a dual-source prob-
lem where the lead times of the two sources differ 
by one period (Fukuda, 1964) or the lead times are 
stochastic and endogenous (Song et al., 2017). See 
Veinott Jr (1966), Perera and Sethi (2022b), Perera 
and Sethi (2022a), Porteus (1990), and Zipkin 
(2000) for more detail.

Multiechelon (or multi-stage) inventory systems 
are common in supply chains where the stages are 
interrelated, such as production facilities, ware-
houses, and retail locations. The literature focuses 
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on understanding three basic system structures: ser-
ies, assembly, and distribution systems.

In a series system with N stages and backlogging, 
random customer demand arises at stage 1, stage 1 
orders from stage 2, and so on, and stage N orders 
from an outside supplier with ample supply. There is a 
constant transportation time between two consecutive 
stages. Define the echelon inventory of each stage to be 
the inventory at the stage plus all downstream invento-
ries (including those in transit). Assuming no fixed 
order costs, Clark and Scarf (1960) establish that an 
echelon base-stock policy is optimal for all stages. That 
is, we can treat each echelon as a single location and 
order the echelon inventory position up to a target 
base-stock level. Axs€ater and Rosling (1993) show that 
for any echelon base-stock policy, there is an equivalent 
local base-stock policy; therefore, the implementation of 
the optimal policy is simple. Federgruen and Zipkin 
(1984b) find that the optimal echelon base-stock policy 
for the infinite horizon problem can be efficiently 
obtained. Rosling (1989) proves that under certain mild 
conditions, an assembly system can be transformed 
into an equivalent series system, so the Clark-Scarf 
result applies. Chen and Zheng (1994) further stream-
line the proofs of these results. Shang and Song (2003) 
construct effective single-stage newsvendor solutions to 
approximate the optimal echelon base-stock levels. 
Chen and Song (2001) show that a state-dependent 
echelon base-stock policy is optimal for Markov-modu-
lated demand. See Axs€ater (1993), Axs€ater (2003), 
Axs€ater (2006), Angelus (2023), Federgruen (1993), 
Kapu�sci�nski and Parker (2023), and Shang et al. (2023) 
for more developments, including batch ordering, cap-
acity limits, distribution systems, transshipment, and 
expediting.

Many other features are much less tractable, such 
as lost-sales systems (Bijvank et al., 2023), censored 
demand data, perishable products (Li & Yu, 2023), 
general dual-sourcing systems (Xin & Van 
Mieghem, 2023), distribution systems, and assem-
ble-to-order systems (Atan et al., 2017; Song & 
Zipkin, 2003; DeValve et al., 2023). Nonetheless, sig-
nificant progress has been made in recent years on 
structural properties of the optimal policy, asymp-
totic optimal policies, and effective heuristics, thanks 
to more analytical tools such as discrete convexity, 
asymptotic analysis, and machine learning algo-
rithms. See Chao et al. (2023), Cheung and Simchi- 
Levi (2023), Shi (2023), and other chapters in Song 
(2023).

3.13. Location60

In the domain of operations research, location prob-
lems are concerned with determining the location of 
a facility or multiple facilities to optimise one or 

more objective functions under constraints. Location 
problems seek answers to questions such as how 
many facilities should be located, where should each 
facility location be, how large should each facility 
be, and how should the demand for the facilities’ 
services be allocated to these facilities (Daskin, 
1995). An example of a facility to be located is a 
factory, distribution centre, warehouse, cross-dock, 
or hub, where demand can be for raw materials, 
components, products, passengers, data, etc.

Location decisions arise in a variety of public and 
private sector decision-making problems. Some 
examples from different sectors include locating 
landfills where demand is for disposal of household 
waste (Erkut & Neuman, 1989), ambulances where 
demand is for transporting emergency patients to 
hospitals (Brotcorne et al., 2003), warehouses where 
demand is for storing products arriving from facto-
ries (Aghezzaf, 2005), schools where demand is for 
students (Haase & M€uller, 2013), regenerators in 
optical networks where demand is for data (Yıldız 
& Karaşan, 2017), shelter sites where demand is for 
refugees (Bayram & Yaman, 2018), and charging 
stations where demand is for electric vehicles that 
need to charge (Kınay et al., 2021). More applica-
tions of location problems from practice can be 
found in Eiselt and Marianov (2015).

Location decisions refer to the placement of a 
facility considering its interactions with demand 
points (e.g., customers, suppliers, retailers, house-
holds) and possibly with other facilities to be 
located. It includes selecting the location and deter-
mining how this location supports meeting a deci-
sion-maker or organisation’s objective. It is 
important to note that facility location decisions are 
different from facility design decisions. Facility 
design decisions usually consist of facility layout and 
material handling systems design. The layout entails 
all equipment, machinery, and furnishing within the 
building, whereas material handling systems com-
prise the mechanism needed to satisfy the required 
facility interactions. Facilities planning and design 
are extensively discussed in Tompkins et al. (2010).

Several factors influence facility location deci-
sions, the most prominent ones being transportation 
costs and the availability of the transportation infra-
structure. Among other important factors are the 
availabilities and costs of land, market, labour, mate-
rials, equipment, energy, government incentives, and 
competitors as well as geographical factors and wea-
ther conditions. Distance is usually considered to be 
one of the most important criteria in facility loca-
tion models. Several distance metrics can be used in 
location models such as Euclidean (straight-line), 
rectilinear (Manhattan), Cheybyshev (Tchebychev), 
and network distance. Network distance is the 
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distance that is calculated on an existing transporta-
tion network, for example, through using Google or 
Bing maps.

An important criterion to be considered in loca-
tion problems is how demands are to be satisfied by 
the facilities to be located. In some applications, the 
whole demand of each customer must be satisfied 
from a single facility (“non-divisible” demand) 
which is referred to as a single source or single allo-
cation. Single allocation location problems are also 
referred to as location-allocation problems as each 
demand point is allocated to a single facility. On the 
other hand, in multiple source/allocation problems, 
the demand of a single customer can be served from 
several facilities.

Location decisions are usually classified according 
to their decision space. In continuous or planar loca-
tion problems, the facilities can be located anywhere 
in the decision space. The search is for the optimal 
coordinates; i.e, latitude and longitude. In discrete 
location problems, a finite set of potential facility 
locations is provided, possibly determined through a 
pre-selection process. In network location problems, 
on the other hand, there is a given network and the 
facilities are to be located on this network. In net-
work location problems, facilities can further be 
restricted to be placed only on the vertices or nodes 
of this network and not on the edges or arcs, 
referred to as vertex- or node-restricted location 
problems.

Continuous location problems focus on minimis-
ing some function related to the distance between 
the facilities to be located and the existing facilities 
or demand points, such as suppliers and customers, 
where minisum (minimising the total weighted dis-
tance) and minimax (minimising the maximum or 
worst weighted distance) are among the most com-
monly employed objectives. Special cases of continu-
ous single-facility location problems with commonly 
used distance metrics (e.g., rectilinear and 
Euclidean) are well-studied and polynomial time 
solution algorithms exist (Francis et al., 2004). In 
the case of multi-facility continuous location prob-
lems, the facilities to be located can be homoge-
neous or non-homogeneous; in the latter, there are 
different types (e.g., a factory and a warehouse) or 
sizes of facilities to locate.

One of the most studied discrete location prob-
lems is the p-median problem. The goal is to pick a 
subset p of (homogeneous) facilities to open from 
among a given set of potential locations that minim-
ise the total transportation cost of satisfying each 
demand point from the (nearest) facility it takes ser-
vice from. There is a well-known node optimality 
theorem by Hakimi (1965) for the p-median prob-
lem on networks that proves that at least one 

optimal solution to the p-median problem consists 
of locating the facilities only on the nodes of the 
network (even though a facility is allowed to be 
located anywhere on the network including any 
point on an edge between the nodes). Possible appli-
cations of the p-median problem are clustering, 
transit network timetabling and scheduling, place-
ment of cache proxies in a computer network, 
diversity management, cell formation and much 
more (Mar�ın & Pelegr�ın, 2019).

An important related problem is the uncapaci-
tated facility location problem (UFLP) which is also 
referred to as the simple plant location problem. 
Unlike the p-median problem, in UFLP, the number 
of facilities to be located is no longer known and 
determined by optimising an objective function that 
considers the trade-off between the fixed costs of 
locating facilities and the transportation costs. 
Numerous extensions of UFLP with uncertainty, 
multiple commodities (e.g., products or services), 
multi-period planning horizon, multiple objectives, 
and network design decisions have been studied 
with applications in several domains such as supply 
chain and distribution systems design.

A nice structure of p-median and UFLP is that 
since the facilities to be located are assumed to have 
enough capacity (e.g., space or labour hour), all 
demands of each customer can be served from a 
single facility with minimum allocation costs. This 
is no longer the case for capacitated versions of the 
facility location problems, where single- and mul-
tiple-allocation versions are both extensively studied. 
For multiple allocation capacitated (fixed-charge) 
facility location problems, when the set of open 
facilities is given, the resulting subproblem of find-
ing the best allocations is a transportation problem. 
In the single allocation case, on the other hand, 
when the set of open facilities is pre-determined the 
resulting allocation subproblem is a generalised 
assignment problem (Fern�andez & Landete, 2019).

When the worst-case is more important than the 
average, it might be better to consider the furthest 
or most disadvantaged demand point to ensure 
equity in servicing the demand. Accordingly, the p- 
centre problem aims to locate p facilities such that 
the maximum distance (or travel time/cost) from a 
demand point to its nearest facility is minimised 
(minmax). The p-centre problem can be used to 
locate public schools and various emergency service 
facilities such as police stations, hospitals, and fire 
stations. Different variations of this problem have 
been studied such as the capacitated, conditional, 
continuous, fault-tolerant, and probabilistic p-centre 
problems (Çalık et al., 2019).

In covering location problems, the aim is to 
locate facilities so as to cover demand. Typically, a 
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demand point is considered to be covered if it is 
within a certain distance or travel time of a facility. 
Unlike in the previous models, the demand points 
are not assigned to facilities in covering location 
problems. The two most common covering location 
problems are set covering and maximal covering 
location problems. In the set covering location prob-
lem, the aim is to minimise the total cost of locating 
facilities to cover all demand points, whereas, in the 
maximal covering location problem, the aim is to 
maximise the total demand covered subject to a 
budget constraint or a constraint on the total num-
ber of facilities to locate. Continuous variants of 
these covering location problems are also studied 
(Plastria, 2002). Several different versions of cover-
ing location problems have been studied in the lit-
erature, including, but not limited to weighted, 
redundant, hierarchical, backup covering problems 
with applications in emergency services, crew sched-
uling, mail advertising, archaeology, metallurgy, and 
nature reserve selections (Garc�ıa & Mar�ın, 2019).

In general, facility location problems consider 
and model only a single echelon; i.e., either the 
flows of commodities (e.g., products, customers) 
coming into or out from the facilities to be located 
are negligible, for instance, when one of those trans-
portation costs is borne by another decision-maker 
and somehow not related to the current decision- 
making problem. An example would be a manufac-
turing company determining the location of its new 
factory for delivering products to its customers with 
minimum total cost, where the company is not dir-
ectly involved in the delivery of raw materials from 
their suppliers to the factory. When the flow of 
commodities coming into the facilities to be located 
as well as the flow going out of those facilities are 
simultaneously considered in the models, these loca-
tion problems are referred to as two-echelon location 
problems. For example, while locating a distribution 
centre, the transportation cost of products from the 
factory to this distribution centre as well as the 
transportation costs from the distribution centre to 
the retailers may need to be considered in the 
model. Sometimes there are facilities to be located 
at several echelons where flows of commodities in 
and out of all those facilities need to be considered. 
These multi-echelon types of location problems are 
encountered for several applications of supply chain 
network design (Melo et al., 2009). Another related 
category is when there is a hierarchical network 
structure among the facilities to be located, referred 
to as hierarchical facility location problems (Şahin & 
S€ural, 2007). An example of a hierarchical location 
problem is designing a postal delivery network 
where the locations of the sorting centres as well the 

locations of the post offices that are to be allocated 
to those sorting centres need to be determined.

There might also be interactions among the facili-
ties to be located. This is the case, for example, for 
hub location problems where the demand is defined 
between pairs of demand points (origin-destination 
pairs) as opposed to having the demand of an indi-
vidual point. In that case, to satisfy the demand 
from an origin to a destination point, flow can be 
transported between the facilities to be located en 
route to the destination, where those facilities can 
act as switching, transshipment, sorting, connection, 
consolidation, or break-bulk points. Hub location 
models have several applications in passenger and 
freight airlines, express shipment, postal delivery, 
trucking, public transit, and telecommunication net-
work design (Alumur et al., 2021).

Location problems have been a testbed for many 
algorithmic and methodological advances in opera-
tions research. Most discrete location problems 
commonly belong to a class of NP-hard decision 
problems (§2.5) and they can usually be formulated 
with mixed-integer programming (MIP) models (see 
§2.15). In addition to using commercial MIP solvers, 
several exact and (meta)heuristic algorithms (§2.13) 
have been developed and tested on benchmark 
instances from the literature. Some of those bench-
mark instances can be obtained from Beasley 
(1990), Posta et al. (2014), and Fischetti et al. 
(2017b).

Location science is a very broad field of research 
that encompasses geography, continuous and dis-
crete optimisation (§2.4), graph theory (§2.12), 
logistics (§3.14), and supply chain management 
(§3.24). This section only highlights the basic and 
most well-known location models. For a more 
detailed overview of the field of location science, we 
refer the reader to several books written in this field, 
such as Drezner and Hamacher (2004), Eiselt and 
Marianov (2011), and Laporte et al. (2015).

3.14. Logistics61

Logistics refers to the organisation and implementa-
tion of the processes related to the procurement, 
transport and maintenance of materials, personnel 
and facilities. The application of operational 
research to logistics dates back to 1930 (Schrijver, 
2002), where Tolstoı (1930) solved to optimality the 
problem of transporting salt, cement, and other 
cargo on the railway network of the Soviet Union. 
In general, the objective of logistics management 
can be summed up as “getting the right thing/people 
to the right place at the right time in the right 
quantity at the right cost”. For materials, logistics 
operations require the co-ordination of forecasting, 

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 505



purchasing, inventory control, warehousing, distri-
bution, transportation, delivery and installation. 
Logistics management of personnel involves, in add-
ition, skills matching, capabilities training, labour 
rules and worker preferences. At a strategic level, 
logistics involves the design of the transport net-
work and facilities. In this subsection, we discuss 
several major domains of logistics applications, 
namely, military, inventory, time-sensitive, reverse 
and humanitarian logistics. We also mention some 
new technologies for emerging logistics applications.

3.14.1. Military logistics
Logistics play an important role in military opera-
tions. Indeed, the word “logistics” itself is derived 
from the position Mar�echal des logis created in the 
French army in the 17th century, whose responsibil-
ities of establishing camps and arranging transport/-
supplies were referred as “la logistique” (de Jomini, 
1862). Many historians credited logistics as the suc-
cess factor in wars from ancient to modern times. 
During World War II, the need for large-scale logis-
tics planning accelerated the development of oper-
ational research. The ability to sustain the convoy of 
supply ships was a major factor in the Battle of the 
Atlantic (Kirby, 2003). The 1948-1949 Berlin Airlift, 
where over 2.3 million tons of goods were flown to 
besieged West Berlin, is well-known as the first use 
of logistics as a military and political strategy (Tine, 
2005).

The North Atlantic Treaty Organisation defines 
logistics as the science of planning and carrying out 
the movement and maintenance of forces, and cov-
ers acquisition, transport, maintenance and evacu-
ation of materiel, personnel and facilities, and 
provision of services and medical support. 
Operational research methodologies are extensively 
used (Scala and Howard II, 2020). Reliability and 
operability of the supply lines are a major concern 
in military logistics (McConnell et al., 2021), and 
simulation is much utilised. Cioppa et al. (2004) 
review agent-based simulation for military applica-
tions. Emerging technologies – such as additive 
manufacturing (den Boer et al., 2020) and 
unmanned transport (Jotrao & Batta, 2021) – have 
also sparked research in smart military logistics 
(Sch€utz & Stanley-Lockman, 2017). The reader is 
also referred to §3.16.

3.14.2. Inventory logistics
In modern logistics, most activities are related to 
products and goods, where their availability to cus-
tomers or users is a key concern. Inventory, thus, 
plays an important role in this respect. A classic 
problem related to inventory logistics is the inven-
tory-routing problem (IRP), introduced by Bell et al. 

(1983) for the distribution of industrial gases. Since 
then, various IRP applications have been studied, 
including those related to automobile components 
(Blumenfeld et al., 1985), groceries (Gaur & Fisher, 
2004), cement (Christiansen et al., 2011). Typically, 
IRP arises in vendor-managed inventory systems as 
the supplier monitors the inventory and makes 
replenishment decisions for its retailers (Archetti 
et al., 2007). Because inventory can be carried from 
one period to the next, IRP considers joint decisions 
of inventory and routing across multiple periods 
and aims to minimise the total transportation and 
inventory holding costs over the planning horizon, 
subject to all demands being satisfied. Speranza and 
Ukovich (1994) extended the IRP to settings with 
multiple products. When demands are uncertain, 
IRP becomes stochastic IRP (Federgruen & Zipkin, 
1984a; Trudeau & Dror, 1992), where the objective 
function includes additional shortage cost. Coelho 
et al. (2014) investigated the stochastic dynamic IRP 
where decisions are made as customers’ demand 
become realised. Inventory logistics is even more 
timely today due to e-commerce (Archetti & 
Bertazzi, 2021). The main challenge of these inven-
tory logistics problems is due to the computational 
complexity of solving multiple NP-hard problems 
simultaneously. The reader is also referred to §3.12.

3.14.3. Time-sensitive logistics
The quality and functionality of items, in storage or 
transit, deteriorate over time. For items such as 
fresh vegetables, the value degrades continuously. 
Other perishables, such as blood, have fixed life-
times and cannot be used beyond expiry. Logistics 
management of time-sensitive goods must consider 
production, distribution and transport jointly. 
Federgruen et al. (1986) was one of the first papers 
to consider jointly inventory allocation and trans-
portation for fixed-lifetime perishables with prob-
abilistic demand. Since then, there has been much 
research exploring additional issues, such as freight 
consolidation (Hu et al., 2018), storage/transport 
capacities (Crama et al., 2022) and environmental 
concerns (Govindan et al., 2014). Shaabani (2022) 
gives a comprehensive literature review.

For continually decaying food items, delivery 
costs must be traded off with freshness-upon-arrival 
which may lead to lost sales or revenue (Mirzaei & 
Seifi, 2015). The overall network design – especially 
decisions on where along the supply chain process-
ing occurs – is important, since deterioration rates 
differ for unprocessed vs. finished/packaged goods, 
and for items in transport vs. in storage (de Keizer 
et al., 2017).

An important category of perishable goods is 
blood. Integer-programming models were developed 
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by Hemmelmayr et al. (2009) for collection and dis-
tribution of blood products to Austrian hospitals, 
and by Ara�ujo et al. (2020) for blood delivery in 
south Portugal. Pirab�an et al. (2019) survey research 
on blood supply chain management.

3.14.4. Reverse logistics
Due to increased sustainability awareness and legis-
lation, reducing the environmental impact of pro-
duction and distribution has become important. 
Twenty years ago, Beamon (1999) advocated that 
supply chains must be extended from one-way to a 
closed loop, where used products and materials are 
recovered for re-use, recycle or re-manufacture. 
Reverse logistics, thus, refer to the material flow 
from the point of consumption back upstream for 
regenerating value (Rogers & Tibben-Lembke, 
2001). Compared to a forward supply chain, reverse 
logistics processes are more complicated. Firstly, the 
source, quality and quantity of recoverable used pro-
ducts/materials from end-users are highly unpredict-
able. There is an added decision-stage for 
inspection, evaluation and sorting of the collected 
materials, and streaming them into various proc-
esses (re-use, re-manufacture, disassembly, disposal, 
etc.). These re-purposing processes may be expen-
sive, so trade-offs must be made between recovery 
cost and salvage value.

Re-manufacturing, where items are repaired to 
serviceable (like-new) condition, is an important 
aspect of reverse logistics. Simpson (1978) was the 
first to address a multi-period repairable inventory 
problem with random demand and returns supply; 
using dynamic programming, he found the optimal 
policy structure which specified the repair, purchase 
and scrap levels for each period. Later, the model 
was extended to consider side-sales (Calmon & 
Graves, 2017) and warranty demands (Lin et al., 
2020a). Nowadays, the concept of reverse logistics is 
broadened holistically to closed-loop supply chains 
and the circular economy (Santibanez Gonzalez 
et al., 2019). See Van Engeland et al. (2020) for a 
recent review.

3.14.5. Humanitarian logistics
When disasters strike, speedy evacuation and 
prompt delivery of resources to affected areas are 
critical. From some sparse early studies (Sherali 
et al., 1991), humanitarian logistics research grew 
rapidly since 2000. The research stream yielded 
insights that have changed how humanitarian agen-
cies plan and manage disaster relief. A key concept 
is inventory pre-positioning where depots are set up 
already stocked with supplies in anticipation of dis-
aster occurrences, instead of scrambling for procure-
ment in the aftermath. Duran et al. (2011) 

developed a facility-location and supply pre-posi-
tioning plan for CARE. See also Rawls and 
Turnquist (2011). Many of the models used are 
large-scale mixed-integer-programming models.

Humanitarian logistics involve multiple objec-
tives: costs, response urgency and fairness are all 
important. Huang et al. (2012) considered equity in 
last-mile distribution; Sheu (2014) incorporated per-
ceptions of people awaiting rescue. Other research-
ers considered decision under uncertainty: Mete and 
Zabinsky (2010) developed a stochastic model for 
location and delivery of medical supplies. Yet other 
research took an interdiction approach and antici-
pated post-disaster deployment (O’Hanley & 
Church, 2011; Irohara et al., 2013). Recent techno-
logical advances have stimulated new research and 
practices. Maharjan et al. (2020) investigated pre- 
positioning of mobile logistics/ telecommunications 
hubs for Nepal. See Behl and Dutta (2019) for a sur-
vey. The reader is also referred to §3.4.

3.14.6. Emerging technologies
As technologies advance, the role of logistics has 
become more important in the Industry 4.0 era 
(Tang & Veelenturf, 2019). Tracking and locating 
technologies (RFID, GPS, IoT, etc.) enable organisa-
tions and companies to acquire information in real 
time. Powerful computing facilities can perform 
analytics of massive volumes of historical data to 
support near real-time solutions for large-scale 
problems – essential for city logistics involving 
thousands of orders to fulfil within a day, or even 
an hour. Exciting emerging applications include 
TSP/VRP for routing of drones (Masmoudi et al., 
2022) and/or autonomous vehicles (Reed et al., 
2022), risk analysis powered by block-chain technol-
ogy (Choi et al., 2019), flow-based optimisation for 
crowd-sourcing logistics (Sampaio et al., 2020) and 
cargo hitching (Fatnassi et al., 2015), demand-driven 
optimisation for car/bike sharing systems (Wang 
et al., 2022e), and queuing and simulation for 
robotic warehouses (Fragapane et al., 2021).

These more complex and larger-scale problems 
with tighter response times require new solution 
methodologies. Most of these new approaches are 
combinations of operational research and data sci-
ence techniques, for example, robust optimisation 
(Zhang et al., 2021), reinforcement learning (Yan 
et al., 2022c) and other machine learning-based 
optimisation approaches (Bengio et al., 2021).

3.15. Manufacturing62

Manufacturing is the production process from mate-
rials to goods. Such goods can be finished goods 
sold to end consumers or components sold to other 
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manufacturers for the production of other more 
complex products. Manufacturing has gone through 
several different phases (Industry 2.0 to 4.0) in the 
twentieth and twenty-first centuries. Here we offer 
an overview of important manufacturing topics in 
different time periods.

In Industry 2.0 (from the end of nineteenth cen-
tury to the 1980s), demand was relatively stable. 
Important manufacturing systems include the 
Toyota production system (TPS) and cellular manu-
facturing. The aim of these systems is to increase 
productivity with lower production cost, which fits 
the needs of a stable market during this time 
period.

Taichi Ohno published Toyota Seisan Hoshiki 
describing the TPS in 1978. TPS is an integrated 
production system that can supply products to meet 
both requirements of product volumes and product 
varieties. Research and practical papers, reports, and 
books were published in various media to describe 
TPS. The underlying management principles and 
theoretical mechanisms of TPS are well-known. A 
TPS is an integrated production system that gener-
ates products to satisfy requirements of volumes and 
varieties simultaneously with minimum resource 
waste. A large number of TPS enablers have been 
reported and include just-in-time material system 
(JIT-MS), seven wastes, heijunka, multi-skilled 
workers, quick set-up and changeover, and keiretsu. 
Excellent analysis and review papers on the TPS are 
de Treville and Antonakis (2006), Hines et al. 
(2004), and Narasimhan et al. (2006).

Cellular manufacturing (CM) uses group technol-
ogy to efficiently produce a high variety of parts. 
Cells are converted from job shops with functional 
layouts to improve efficiency (Yin & Yasuda, 2006). 
A cell consists of a machine group and a part fam-
ily. The first step in CM system design is cell forma-
tion. Part families and machine groups are 
identified to form manufacturing cells such that the 
intercell movements of parts are minimised. Parts in 
the same family have similar machining sequences. 
Machines in a cell are arranged to follow this 
sequence. In this way, parts flow from machine to 
machine in their processing sequence, resulting in 
an efficient machining flow that is similar to an 
assembly line. For each part family, the volume of 
any particular part type may not be high enough to 
utilise a dedicated cell. The total volume of all part 
types in a part family should be high enough to util-
ise a machine cell well. CM attempts to flexibly 
accommodate high variety and simultaneously effi-
ciently take advantage of flow lines (Celikbilek & 
S€uer, 2015).

In Industry 3.0 (from the 1980s to today), 
demand is relatively volatile because of technological 

innovations, higher product variety, and shorter 
product life cycles. The important manufacturing 
topics include flexible manufacturing systems 
(FMSs) and seru production system. The theme of 
these topics is to meet the increased demand for 
high variety and short delivery time. Product life 
cycles decreased during this time period, which 
drives manufacturers to focus on responsiveness and 
delivery time. Short changeover time between differ-
ent product types is useful.

An FMS is an integrated, computer-controlled 
manufacturing system of automated material han-
dling and computer numerically controlled machine 
tools that can simultaneously process medium-sized 
volumes of a variety of part types. A fully automated 
FMS can attain the efficiency of well-balanced, 
machine-paced transfer lines, while utilising the 
flexibility that job shops have to simultaneously 
machine multiple part types (Stecke & Solberg, 
1981; Stecke, 1983; Browne et al., 1984).

A seru production system is an assembly system 
that has been adopted by many Japanese electronics 
companies. Yin et al. (2008) is the first English lan-
guage paper on seru production. They describe and 
analyse the success of seru production systems in 
Canon and other Japanese companies. It is more 
flexible than TPS, which cannot achieve the required 
responsiveness in this innovative time period. A 
seru production system consists of one or more 
serus. Serus within a seru system are quickly recon-
figurable, i.e., they can be constructed, modified, 
dismantled, and reconstructed frequently in a short 
time. There are three types of serus, called divisional 
serus, rotating serus, and yatais. They represent the 
evolutionary development of serus. A divisional seru 
is a short, often U-shaped, assembly line staffed 
with several partially cross-trained workers. Tasks 
within a divisional seru are divided into different 
sections. One worker is in charge of each section. A 
rotating seru is often arranged in a U-shaped short 
line with several workers. Each worker performs all 
required tasks from start to finish without interrup-
tion. Tasks are performed on fixed stations, so 
workers walk from station to station. A worker fol-
lows the worker ahead of her or him, and is also 
followed by the worker behind her or him. A seru 
with only one worker is called a yatai. An important 
performance of the seru production system is that it 
can quickly respond to product varieties with fluctu-
ated volumes. By applying seru, delivery time is 
reduced. Variety and volume are easily handled.

The TPS-based assembly line became inefficient 
because of an inability to change very frequently to 
produce small-volume demands. The typical seru cre-
ation process in Sony and Canon can be summarised 
as follows (Yin et al., 2017). Assembly lines were 
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dismantled and replaced with divisional seru systems 
through resource co-location and removal/replacement, 
cross training, and autonomy. The technique of kara-
kuri (involves procedures to discover and appropriate 
the useful functions of expensive equipment into inex-
pensive self-made equipment) is applied to replace 
expensive dedicated equipment by inexpensive self- 
made and/or general-purpose equipment that can be 
duplicated and redeployed as needed by serus. As 
cross-training progresses, divisional serus evolve into 
rotating serus and yatais.

More details about the underlying management 
and control principles of seru can be found in 
Stecke et al. (2012), Yin et al. (2008), Yin et al. 
(2017), and Liu et al. (2014). Roth et al. (2016) 
reviews the last 25 years of OM research and pro-
vides eight promising research directions, one of 
which is seru production systems.

Today, manufacturing has entered a new age 
(Industry 4.0) because of the emergence of disrup-
tive technological innovations. Examples of impor-
tant manufacturing topics include smart 
manufacturing, mass-customisation, sustainable 
manufacturing, and additive layer manufacturing. 
Strozzi et al. (2017) examines the evolution, trends, 
and emerging topics of a smart factory and provides 
topics for future research. Hughes et al. (2022) pro-
vides a review for manufacturing in the Industry 
4.0 era.

Smart manufacturing refers to flexible and adapt-
able manufacturing processes through integrated 
systems and using advanced technologies such as 
sensors, IoT, cloud computing, big data, artificial 
intelligence, automation, robots, cyber-physical sys-
tems, and additive layer manufacturing. Some 
detailed discussions can be found in Ivanov et al. 
(2016), Kersten et al. (2017), Liao et al. (2017), 
Theorin et al. (2017), Thoben et al. (2017), and 
Hughes et al. (2022).

One important benefit of smart manufacturing is 
that it aids the capability of mass customisation and 
short lead time to quickly meet changing demands. 
Zawadzki and _Zywicki (2016) suggested smart prod-
uct design and production control for efficient oper-
ations in a smart factory to enable mass 
customisation. Brettel et al. (2014) show that self- 
improving smart manufacturing systems can utilise 
data and quickly react (e.g., reconfigure) to person-
alised customer orders, which helps realise mass 
customisation. Some efficient mathematical models 
that use big data to manage and control manufac-
turing processes can be applied in smart factories 
(Ivanov et al., 2016, 2017).

Sustainable manufacturing aims to minimise 
negative environmental impacts while conserving 
energy and natural resources. Sustainable 

manufacturing also enhances employee, community, 
and product safety. The emergence of blockchain 
technology and its potential disruption within the 
manufacturing and supply chain industries present 
opportunities for greater levels of sustainability in 
Industry 4.0. The immutability and smart contract 
capability of blockchain technology allow the prov-
enance and integrity of products to be monitored 
more effectively. These factors contribute to reduc-
ing verification costs and the provision of real-time 
status information on the quality of materials 
throughout the supply chain (Ko et al., 2018). The 
disintermediation attributes of blockchain can dir-
ectly contribute to manufacturing sustainability by 
effectively reducing complexity, and improving effi-
ciency with less waste via the streamlining of the 
supply chain (Hughes et al., 2019).

Additive layer manufacturing may generate a dis-
ruptive and revolutionary impact on manufacturing 
(Garrett, 2014). It enables a manufacturer to further 
increase responsiveness by reducing lead time and 
increasing customisation levels. Long et al. (2017) 
provide a definition, characteristics, and mainstream 
technologies of 3D printing. Dong et al. (2016) com-
pared the optimal assortment strategies under trad-
itional flexible technology and 3D printing to find 
that 3D printing may allow a larger set of product 
assortment. Song and Zhang (2020) and Ivan and 
Yin (2017) examined the use of 3D printing on a 
logistics system for spare parts inventory design. 3D 
printing tends to be slower than other manufactur-
ing methods, which currently limits its use in 
practice.

For a detailed encyclopedic overview of the man-
ufacturing field, both in terms of theory and prac-
tice, see Yin et al. (2017). They discuss and compare 
production systems from Industry 2.0 to Industry 
4.0. The demand dimensions of each industry era 
are analysed and provided as the driving force for 
the changes in the production systems over time.

3.16. Military and homeland security63

The birth of OR is related to the use of optimisation 
modelling for military operations and resource plan-
ning during the Second World War. The early linear 
programming (§2.14) problems ranged from the 
efficient use of weapon systems to logistics and 
strategy planning. Today, the arena of defence has 
expanded extensively with new areas including 
information and cyber warfare. The need to counter 
terrorism has created the field of homeland security. 
OR has a role in all these emerging topics. One can 
say that all OR methods are applied in military and 
homeland security problems.
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Optimisation methods are used in a wide range 
of defence and security applications. For instance, 
assigning weapons to targets (Kline et al., 2019) 
using integer programming (§2.15; §2.4) has been 
addressed with a variety of optimisation algorithms. 
Other integer programming studies include, for 
example scheduling of training for military person-
nel (Fauske & Hoff, 2016) as well as military work-
force and capital planning (Brown et al., 2004). 
Mixed integer linear programming is utilised in 
diverse applications such as path planning of 
unmanned ground and areal vehicles including 
drones, mission planning, acquisition decisions of 
military systems as well as load planning in trans-
portation. Optimisation of vehicles’ routes is also 
carried out by solving network optimisation prob-
lems (§2.12) with shortest path algorithms (Royset 
et al., 2009). Network optimisation is also used, e.g., 
in developing military countermeasures. Examples 
of bilevel and robust optimisation (§2.21) formula-
tions cover positioning of defensive missile intercep-
tors (Brown et al., 2005) and design of a supply 
chain for medical countermeasures against bioat-
tacks (Simchi-Levi et al., 2019). Multiobjective opti-
misation has been applied, for example in 
optimising boat resources of coast guard (Wagner & 
Radovilsky, 2012) and planning of airstrikes against 
terrorist organisations (Dillenburger et al., 2019). 
Inherent structures of specific military optimisation 
problems have motivated the development of new 
solution techniques (Boginski et al., 2015) including, 
for example, metaheuristics (§2.13). Such techniques 
are used, e.g., for solving nonlinear military opti-
misation tasks (§2.16) such as design of projectiles.

Game theoretic modelling (§2.11) is used in 
many defence studies. Information related topics 
include misinformation in warfare (Chang et al., 
2022) and public warnings against terrorist attacks 
(Bakshi & Pinker, 2018). Examples of game theor-
etic strategy design problems cover the optimal use 
of missiles and the validation of combat simulations 
(Poropudas & Virtanen, 2010). Designing security 
and counter strategies against enemies, terrorists 
and adversarial countries naturally lead to the use of 
game models. Interdiction network game models 
arise in security applications (Holzmann & Smith, 
2021), and they are used, e.g., in route planning 
through a minefield.

Military simulation models (§2.19) are classified 
into constructive, virtual and live simulations (Tolk, 
2012). Constructive simulations do not involve real- 
time human participation. They are based on well- 
known modelling methodologies such as Monte 
Carlo, discrete event and agent-based simulations. 
Applications of constructive models cover, e.g., the 
development and use of weapons, sensor and 

communications systems, planning of operations 
and campaigns, improving maintenance processes of 
military systems, and evaluating effects of fire. In 
addition, cyber-defence analyses have been con-
ducted (Damodaran & Wagner, 2020). Constructive 
simulations have also been used in simulation-opti-
misation studies such as scheduling maintenance 
activities of aircraft, military workforce planning, 
and aircraft fleet management (Mattila & Virtanen, 
2014; Jnitova et al., 2017).

The complexity of modelling human behaviour 
generates a major challenge for constructive simula-
tion. This issue is avoided in virtual simulations, i.e., 
simulators in which real people operate simulated 
systems and in live simulations where real people 
operate real systems with simulated weapon effects. 
These practices are typically used, e.g., in military 
exercises and training of personnel. An emerging 
trend is to combine live, virtual and constructive 
simulations into a single simulation activity 
(Mansikka et al., 2021b). Applications of this simu-
lation type vary from training to testing large-scale 
systems and mission rehearsals (Hodson & Hill, 
2014). In a combined simulation, new ways to meas-
ure performance are introduced (Mansikka et al., 
2021a) by complementing traditional measures such 
as loss exchange or kill ratio by human measures 
such as participants’ situation awareness, mental 
workload and normative performance (Mansikka 
et al., 2019).

Features of virtual simulation can be recognised 
in wargaming (Turnitsa et al., 2021) that has been 
used for military training and educating since the 
early 19th century. Other wargaming areas are, for 
example, examination of warfighting tactics as well 
as evaluation of military operations and scenarios. 
Nowadays, wargames are also applied in studies of 
international relations and security as well as in 
analyses of government policy, international trade, 
and supply-chain mechanics (Reddie et al., 2018). 
The implementations of wargames range from man-
ual tabletop map exercises to computer-supported 
setups in which different OR and artificial intelli-
gence techniques are utilised (Davis & Bracken, 
2022).

Dynamic phenomena regarding military and 
defence are often represented with differential or 
difference equations. Examples of these models are 
Lanchester attrition equations that describe the evo-
lution of strengths of opposing forces in gunfire 
combat (e.g., Jaiswal, 2012). There are also several 
modifications of these equations aiming to model, 
e.g., asymmetrical combat, tactical restrictions and 
even morale issues. Another example of simple 
combat models is the salvo model that represents 
naval combat of warships involving missiles 
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(Hughes, 1995). Optimal control (see also §2.6) has 
been utilised, for example in planning optimal paths 
of military vehicles as well as in guidance systems of 
unmanned aerial vehicles, drones and missiles 
(Karelahti et al., 2007). For a recent overview, see 
for example Israr et al. (2022). Another type of opti-
mal control application is the assignment of resour-
ces to counter-terror policies and measures (Seidl 
et al., 2016). Markov decision processes and 
approximate dynamic programming (§2.9) have 
recently emerged as important techniques for analy-
sing dynamic military decision-making problems 
related to, e.g., missile defence interceptors and mili-
tary medical evacuation (Jenkins et al., 2021).

The need for multicriteria evaluation is common 
in military decision-making. Example applications of 
multi-criteria decision analysis (MCDA; see also 
§2.8) are acquisition of military systems and equip-
ment procurement, military unit realignments and 
base closures, locating military bases, and assess-
ment of future military concepts and technologies 
(Ewing et al., 2006; Geis et al., 2011; Harju et al., 
2019). Public procurement even for the military is 
regulated in many countries, and directives require 
it to consider multiple criteria (Lehtonen & 
Virtanen, 2022). It is interesting to notice that the 
recent acquisition decision of a 5th generation multi-
role fighter aircraft in Finland was, indeed, sup-
ported by MCDA (Ker€anen, 2018). MCDA 
weighting methods have also been used to create 
measures of mental workload in military tasks 
(Virtanen et al., 2022). In portfolio decision analysis 
problems, the goal is to find the best set of compo-
nents, e.g., in weapons systems or in force mix for 
reconnaissance, with respect to multiple criteria 
(Burk & Parnell, 2011). The evaluation of the effect-
iveness of military systems calls also for the use of 
cost-benefit analysis (§2.18; Melese et al., 2015). 
Data envelopment analysis (§2.7) is a multicriteria 
approach helping to seek efficiency also in military 
problems such as personnel planning.

MCDA studies in homeland security is a broad 
area ranging from the design of countermeasure 
portfolios to threat analysis and cyber-security 
(Wright et al., 2006). The questions of interest 
include, e.g., identification of terrorists’ goals and 
preferences, estimation of attacks’ consequences, and 
comparison of countermeasure actions (Abbas et al., 
2017). Cost-benefit models are also relevant in ter-
rorism research (Hausken, 2018).

Today, we are witnessing the vast growth of the 
use of machine learning and artificial intelligence 
(§2.1) in military and security problems (Dasgupta 
et al., 2022; Gal�an et al., 2022). Such problem areas 
are, e.g., wargaming and simulation, command and 
control of autonomous unmanned vehicles including 

drones, air surveillance, and cyber-security only to 
mention a few. Data analytics (see also §2.3) is nat-
urally also used in military OR (Hill, 2020), e.g., for 
supporting logistics planning. Considering uncer-
tainty is essential, e.g., in intelligence analysis and 
risk analysis related to terrorism (see also §2.18) . 
Adversarial risk analysis (Rios Insua et al., 2021) 
uses Bayesian approaches (see also §2.18) for taking 
into account information, beliefs and goals of adver-
saries. A similar approach is also applied in the 
modelling of pilot decision-making in air combat 
with influence diagrams (Virtanen et al., 2004). 
Markov models and Bayesian networks are used to 
evaluate risks and conduct time dependent probabil-
istic reasoning related to military missions 
(Poropudas & Virtanen, 2011). Kaplan (2010) stud-
ies the infiltration and interdiction of terror plots 
using queueing theory (§2.17).

In the future, combat models need to include 
socio-cultural and behavioural factors (Numrich & 
Picucci, 2012). We are also likely to see an increase 
in the modelling of individual and group behaviour 
as well as the consideration of behavioural issues in 
military and homeland security contexts. 
Behavioural game theory can give insights into mili-
tary strategy and conflict situations. Behavioural OR 
(§2.2), which studies the impacts of the human 
modeller and model users including cognitive biases 
in decision support, is likely to receive increasing 
attention in military applications as well.

For further readings, we refer to the military OR 
textbooks by Fox and Burks (2019) and Jaiswal 
(2012). The recently edited volume by Scala and 
Howard II (2020) describes various OR methods 
and how to apply them in military problems. Abbas 
et al. (2017) and Herrmann (2012) focus on home-
land security modelling.

3.17. Natural resources64

Climate change and natural resource management 
require different quantitative and qualitative models 
that support public policy (Ackermann & Howick, 
2022). One of the early papers on the use of model-
ling for natural resource utilisation describes a 
resource analysis simulation procedure to assess the 
environmental impact of human activities (Bryant, 
1978). The procedure comprises a structural model 
to express the complex network of interacting 
human activity systems and a parametric model to 
determine the scale of the activity being modelled.

An integrated decision support system for water 
distribution and management was built to generate 
alternative water allocation and agricultural produc-
tion scenarios for a semi-arid region (Datta, 1995). 
The model considers ground and surface water 
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sources as the supply. The water demand is a com-
bination of the need for drinking, irrigation, house-
hold and public utility, natural vegetation, industrial 
use, and ecological balance. The decision support 
tool visualises water allocation to competing crops 
under a range of simulation scenarios, providing a 
wider set of options to the department taking deci-
sions how water is distributed.

A web-based decision support system developed 
for the US Fish and Wildlife Service and the US 
Geological Survey initiative facilitates cross-organisa-
tional data sharing and performs analyses to 
improve conservation delivery (Hunt et al., 2016). 
Situation-specific management actions such as con-
trolled burn or prescribed graze required by this 
decision support tool improves ecological outcomes 
of other conservation efforts. Buffelgrass is an inva-
sive species that causes significant damage to the 
native desert ecosystem. A multi-period multi- 
objective integer programming model was proposed 
to find optimal treatment strategies to control the 
buffelgrass population in the Arizona desert 
(B€uy€uktahtakin et al., 2014). The multiple objectives 
minimise damage to threatened resources: a native 
cactus species (saguaros), buildings, and vegetation 
subject to budget and labour constraints. The results 
show the necessity of cooperation between different 
interest groups to establish reasonable treatment 
strategies and the need for a policy change because 
current resources cannot stop an ecological disaster 
in the future.

A mixed-integer programming model is devel-
oped to evaluate fishery management policies over 
an infinite horizon by incorporating steady state lev-
els of variables into a multi-period analysis frame-
work (Glen, 1997). This model is intended to be 
used annually with updated stock estimates to set a 
dynamic total allowable catch per year depending 
on the stock estimates over several years. Statistical 
and fuzzy multiple criteria analysis establishes which 
materials contribute the most to the presence and 
the abundance of species in artificial reef structures 
(Shipley et al., 2018). Managers of fisheries can use 
this model to screen different species without loss of 
rigour and validity of results. Multiple-criteria ana-
lysis is used in conjunction with integer program-
ming to assist complex management plans in 
ecology and natural resources (�Alvarez-Miranda 
et al., 2020). A case study on the Mitchell River 
catchment (Australia) shows the trade-offs between 
ecological, spatial, and cost criteria, enabling deci-
sion-makers to explore and analyse a broad range of 
conservation plans. The use of catastrophe theory in 
management of natural resource systems are 
described with cases on forestry and fishery man-
agement (Wright, 1983). Catastrophe theory applies 

the mathematical theory of structural stability to 
practical systems. It allows modelling of ecosystems 
with low and high levels of predator and prey popu-
lations. It helps model a catastrophic jump from 
one level to the other, supporting decision making 
for management of natural resources.

As a natural resource, wind provides clean, 
renewable, and sustainable energy. A multi-objective 
model minimises cost and idle time under reliability 
thresholds, maintenance priority, and opportunism 
(Ma et al., 2022). Reliability thresholds trigger main-
tenance activity. Maintenance priority indicates 
which maintenance tasks need to be performed 
under limited maintenance resources. Opportunistic 
approach indicates whether additional maintenance 
should be performed when a maintenance team is 
already out to service several turbines. The proposed 
multi-objective optimisation model is tested using a 
stochastic simulation model of a wind farm and con-
firmed to keep the wind system at a higher perform-
ance level with lower cost and higher availability.

Natural resource exploration is frequently subject to 
real options analysis (Nishihara, 2012; Martzoukos, 
2009). A stochastic mixed integer nonlinear programme 
is proposed to incorporate geological and market 
uncertainty into mineral value chain optimisation 
(Zhang & Dimitrakopoulos, 2018). Simulation of mine 
deposits and commodity market informs the profitabil-
ity of strategic and tactical plans. A range of real 
options applied to natural resource management 
include investments in infrastructure, use of land, and 
management of natural resources (Trigeorgis & 
Tsekrekos, 2018). Firms require high output price levels 
to invest in environmental technologies, because they 
would not want to commit to an investment that could 
turn out to be unprofitable in the event of a price fall 
(Cortazar et al., 1998).

Several papers are published on the use of oper-
ational research for natural resource management. 
Typical operational research problems and actors in 
agricultural supply chains informs strategic investment 
and operations management under increased pressure 
on natural resources (Pl�a et al., 2014). The contribution 
of operational research applications to agricultural value 
chain sustainability and resilience call for applications 
of complex systems methods such as agent-based mod-
elling, systems modelling, and network analysis 
(Higgins et al., 2010). A review of environmental man-
agement and sustainability papers in major manage-
ment science/operational research and systems journals 
revealed dominance of hard optimisation methods 
(Paucar-Caceres & Espinosa, 2011).

The environment-development problem concerns 
reconciling industrial development and environmen-
tal protection. A methodological framework is 
proposed to model the environmental impact of 
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development under uncertainty arising from the 
degree of unpredictability arising from decision 
makers and environmental processes (Dzidonu & 
Foster, 1993). Natural resource development con-
tracts depend on the bargaining power of trans-
national corporations and host country governments 
(Anandalingam, 1987). Contracts that stipulate shar-
ing of the net income from resource development 
between the developing corporation and the govern-
ment show that government would receiver higher 
income if many corporations are involved and if the 
government agrees to contribute to production 
costs. A review of Operational Research in mine 
planning reports optimisation and simulation 
applied to surface and underground mine planning 
problems, including mine design, long- and short- 
term production scheduling, and equipment selec-
tion (Newman et al., 2010). The operational research 
on mining is evolving to solve larger and more 
detailed and realistic models.

A series of cases studies from Asia, Africa, and 
Latin America presents principles and applications of 
an integrated approach to natural resources manage-
ment, including the complexity of systems and redi-
recting research towards participatory approaches, 
multi-scale analysis, and tools for systems analysis, 
information management, and impact assessment 
(Campbell & Sayer, 2003). A specialised book on the 
Baltic region presents scientific research on activities 
depleting natural resources, emissions from energy 
use, pollution, and strategies for environmental 
management (Fenger et al., 1991). Stochastic Models 
and Option Values: Applications to Resources, 
Environment and Investment Problems presents a 
collection of research papers on the use of control 
theoretic methods to address problems that arise in 
natural resource development (Lund & Oksendal, 
1991). Strategic Planning in Energy and Natural 
Resources contain innovative and methodologically 
rigorous operational research applications (Lev et al., 
1987). The Handbook of Operations Research in 
Natural Resources collate research papers that 
address optimal allocation of scarce resources in agri-
culture, fisheries, forestry, mining, and water resour-
ces (Weintraub et al., 2007). Operations Research 
and Environmental Management organises its con-
tent by regional and global policies (Carraro & 
Haurie, 1996). Models help local and regional author-
ities optimise their energy distribution and minimise 
natural resource waste.

3.18. Open-source software for OR65

Commercial solvers for solving Operational 
Research (OR) problems have been used for several 
decades and have provided both practitioners and 

academics with access to the state-of-the-art OR 
techniques. Mathematical programming solvers IBM 
ILOG CPLEX (IBM 2022), Gurobi (Gurobi, 2022), 
BARON (Sahinidis, 1996), and discrete event simu-
lation software Arena (Rockwell Automation, 2022) 
and Simul8 (Simul8 Corporation, 2022) are among 
the best-known examples. There also exists ad-hoc 
software for particular problems raising in manufac-
turing (e.g., AIMMS; AIMMS, 2022), healthcare 
(e.g., SimCAD Pro Health; CreateASoft Inc., 2022), 
and logistics (e.g., AnyLogistix The AnyLogic 
Company, 2022). The strength of commercial soft-
ware is primarily based on the fact that they provide 
users with a simple interface to declare a problem, 
utilise state-of-the-art solution algorithms, and visu-
alise the result with minimal effort.

These software do not only solve problems but 
also provide modelling, debugging, and scenario ana-
lysis to improve the solution process (Dagkakis & 
Heavey, 2016). However, the lack of access to the 
source code and knowledge of how these tools work 
internally inhibit users from customisation. It is diffi-
cult to contribute to the development of commercial 
software as it is a black-box to the end-user. The 
high licence costs of those software has been one of 
the most prominent factors blocking many compa-
nies, especially small and medium enterprises, from 
integrating them into their tactical and operational 
planning (Linderoth & Ralphs, 2005). Dagkakis and 
Heavey (2016) argued that the lack of reusability and 
modularity have been the additional factors impeding 
the use of commercial OR software.

Open-source software, on the other hand, enable 
users to solve OR problems without a significant 
initial investment. Although using open-source soft-
ware does not require licensing fees, the effort to 
deploy it may require a significant amount of effort 
and time. Nevertheless, the opportunity to access 
the core components of a solver (or simulator) and 
ease of development has driven the OR community 
to shift from a strict, slow-pace black-box software 
development to modular, flexible, and quick open- 
source software development.

In this section, we discuss open-source OR soft-
ware, categorising them into two main groups: (i) 
open-source solvers and (ii) open-source simulators. 
The former category covers the software focusing on 
solving mathematical programming problems. The 
latter includes software for simulating a real-world 
environment and helping decision makers to under-
stand and analyse the system without consuming 
physical resources. Note that we neither provide the 
specific features of such software nor the character-
istics in terms of programming languages, etc. 
Interested readers are referred to the comprehensive 
reviews in Linderoth and Ralphs (2005) and 
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Dagkakis and Heavey (2016) for some of the soft-
ware we mention below.

3.18.1. Open-source solvers
A solver can be defined as a set of computationally 
efficient analytical tools that can find optimal (or 
near-optimal) solutions to a mathematical program-
ming model. In 2000, a public initiative was built by 
the IBM Research Division (Pulleyblank et al., 2000) 
to promote and support community-driven develop-
ment of open-source solvers that utilise the state-of- 
the-art research in OR. Subsequently, a public 
project called COIN-OR (COIN-OR Foundation, Inc. 
2022) has been initiated to host a range of open- 
source solvers with an open-source interface that ena-
bles contributors, users, and developers to implement 
their own algorithms. The repository has been 
expanded to provide different open-source solvers for 
different programming problems such as CLP (Forest 
et al., 2022) and HiGHS (Huangfu & Hall, 2018) for 
linear programming (LP); ABACUS (J€unger & 
Thienel, 2000), BCP (Lad‘anyi, 2004), CBC (Forrest 
et al., 2022), Pyomo (Bynum et al., 2021), and 
SYMPHONY (Ralphs & Guzelsoy, 2005) for mixed 
integer linear programming (MILP); Bonmin 
(Bonami et al., 2005), Couenne (Belotti et al., 2009), 
DisCO (Bulut et al., 2019), Ipopt (W€achter & Biegler, 
2006), and SHOT (Lundell et al., 2022) for linear and 
mixed integer nonlinear programming (MINLP); SMI 
(King, 2022) and Pyomo (Bynum et al., 2021) for 
Stochastic Programming (SP). COIN-OR also 
includes several other projects that would help users 
to improve their experience with modelling like PuLP 
(Mitchell et al., 2022) and visualising such as GiMPy 
(Ralphs et al., 2022).

SCIP Optimization Suite (Bestuzheva et al., 2021) 
can be used as a framework for mixed-integer linear or 
nonlinear programming as well as a standalone solver 
for such problems. A recent initiative commenced by 
the introduction of Julia language (Bezanson et al., 
2017), which is a high-level, high-performance dynamic 
language for technical computing, is JuMP (Dunning 
et al., 2017) which helps users to solve a variety of 
problem classes including linear, mixed-integer linear, 
and nonlinear programming. It allows developers to 
use its framework and introduce new open-source 
solvers for particular problem classes.

We would like to also mention GLPK (Makhorin, 
2020), which is the default linear programming 
solver behind some of the aforementioned mixed 
integer linear programming solvers. GLPK can also 
be used as a standalone linear programming solver. 
Finally, a suite of open-source solvers has been 
developed by Google (Google, 2022) to tackle inte-
ger programming and constraint programming 
problems. The OR-Tools provide a modelling 

interface and allow users to select different commer-
cial or open-source solvers to generate solutions.

3.18.2. Open-source simulation software
Simulation software can be categorised into three 
based on the methods that they use to define the 
system and its resources. We should note that we 
cover the software that has been applied particularly 
in OR domains. We opt to omit open-source soft-
ware that focus on specific domains, e.g., 
OMNetþþ (Andras, 2010) for communication net-
works, for the sake of brevity. We refer interested 
readers to the works of (Dagkakis & Heavey, 2016) 
and (Lang et al., 2021b) and references therein for a 
broader review. An experimental comparison of 
some of the software presented here can be found 
in Kristiansen et al. (2022).

The first method, Discrete Event Simulation 
(DES), is based on the processes of a system. In DES, 
the processes are defined as hosts of resources that 
run different operations on entities. For instance, one 
can define a part to be manufactured as an entity 
and create a manufacturing process with three 
machines to shape the part. DES software can be 
used to model and visualise complex queuing systems 
in order to help decision makers better understand 
the interactions between entities and processes.

JaamSim (JaamSim Development Team, 2016) is 
one of the most popular open-source DES with its 
user-friendly interface, easy-to-use drag and drop 
facilities, and continuous maintenance support. 
JaamSim provides a standalone executable which 
allows users to start using the software without tech-
nical knowledge on installations. Another DES 
framework is SimPy (Scherfke, 2021) which is based 
on standard Python functions. Its simple structure 
enables users to quickly obtain results for their 
simulation problems. SimPy has also initiated two 
other DESs, SimSharp (Beham, 2020) and SimJulia 
(Lauwens, 2021), which are the implementations of 
SimPy on C# and Julia languages, respectively. The 
last DES we would like to mention is Facsimile 
(Facsimile Simulation Library, 2021) which uses 
Scala as its basis scripting language. The main pur-
pose of Facsimile, is to provide a high-quality dis-
crete-event simulation library that can be used for 
industrial projects.

The second method, known as System Dynamics 
(SD), is based on representing a system as a causal 
loop diagram to define interactions between differ-
ent components of a system. Some of the open- 
source SD software are PySD (Martin-Martinez 
et al., 2022), InsightMaker (InsightMaker, 2016), 
SysDyn (Simantics System Dynamics, 2017), and 
OpenModelica (Fritzson et al., 2020). PySD can con-
vert the well-known commercial SD software 
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Vensim (Ventana Systems Inc. 2022) input and 
allow user to configure. SysDyn uses the 
OpenModelica environment for simulation but pro-
vides an alternative built-in environment to speed 
up the simulation process. All these software have 
their own visualisation and reporting tools.

The third method is called Agent Based 
Simulation (ABS) and focuses on the autonomous 
individuals, i.e., agents, in a system. Each agent in 
ABS has its own characteristics and its way to inter-
act with the other agents and the surrounding envir-
onment can differ. One of the open-source ABS 
software is Gama (Taillandier et al., 2019), which 
provides users a modelling language, a cross-plat-
form to reproduce simulations, as well as a visual-
isation tool. InsightMaker (InsightMaker, 2016) is 
another open-source ABS software that allows users 
to create their own model on a web-based interface. 
Lastly, NetLogo (Wilensky, 1999) provides a model-
ling environment together with different applica-
tions to interact with other scripting languages.

We would like to complete this section with a 
brief summary of the application areas of both solv-
ers and simulation software. Table 4 provides exam-
ples of areas on which the OR software can be used.

3.18.3. Discussion
For the sake of completeness, we should also men-
tion that there are also several ad-hoc software that 
address specific OR problems. For instance, 
OptaPlanner (Red Hat, 2022) can solve staff roster-
ing, scheduling, timetabling, and Vehicle Routing 
Problems (VRPs). Another example is VRP 
Spreadsheet Solver (Erdo�gan, 2017), which is an 
Excel-based solver. Although these software provide 
easy and fast access to solutions, the lack of general-
isation to more complex OR problems and limited 
development opportunities can be seen as barriers 
to widespread impact.

As a final discussion point, we would like to list 
some of the essential features of an open-source OR 
software. First and foremost is the performance of 
the software. A user would expect a comparable 
level of performance from an open-source software 
with respect to commercial software. Secondly, the 
scalability of a solver, i.e., its performance when the 
problem size increases, is one of the factors desired 
by practitioners. Finding an optimal solution to a 

VRP instance with 20 customers does not guarantee 
that a VRP solver will achieve the same performance 
when the number of customers increases to 2000. 
Thirdly, technical support for a software has a cru-
cial role in attracting users. Continuous develop-
ment, documentation, and clear descriptions to 
change requests are some of the aspects that an 
open-source software should address to improve its 
maintainability. Finally, integration with existing 
libraries would help an open-source software widen 
its community and attract more developers to 
contribute.

3.19. Power markets and systems66

The energy industry relies on forecasts (§2.10) and 
decision support tools (§2.8) for operations and 
planning. While long-term demand forecasts – with 
lead times measured in months, quarters or years – 
have been used for planning purposes for over a 
century, contemporary energy forecasting literature 
focuses more on the short- (minutes, hours) and 
mid-term (days, weeks) horizons (Hong et al., 
2020). Since the late 1990s, the workhorse of power 
trading and a typically used reference point for 
long-term contracts is the day-ahead market (Mayer 
& Tr€uck, 2018), where prices for all load periods of 
the next day are determined at the same time dur-
ing a uniform-price auction (Weron, 2014, see also 
§3.1). No wonder, the majority of studies focus on 
predicting intermittent generation from renewable 
energy sources (RES), electric load (or demand) and 
prices for the 24 hours of the next day (Maciejowska 
et al., 2021). Two classes of approaches dominate: 
regression-based models and artificial neural net-
works (ANN; Lago et al., 2021, see also §2.1).

Regression and ANN models of the 1990s and 
2000s were built on expert knowledge, often inde-
pendently for each hour of the day. Their inputs 
included past values of (depending on the context) 
RES generation, loads or prices from the last few 
days, day-ahead forecasts of exogenous variables 
(e.g., temperatures for load, load for prices) and a 
seasonal component captured by sinusoidal func-
tions or weekday dummies (Hong, 2014; Weron, 
2014). Their sub-optimal performance could be 
readily improved by combining forecasts across dif-
ferent models (Bordignon et al., 2013), calibration 

Table 4. Application areas of solvers and simulation software.
Subject Methodology Application areas

Solver LP Transportation, agriculture, manufacturing
MILP Logistics, healthcare, network design, pooling, disaster response
MINLP Scheduling, telecommunication, energy systems, layout design, network design, portfolio optimization, water systems
SP Supply chain planning, production planning, process control and optimisation

Simulation DES Manufacturing, network design, healthcare operations, financial systems, inventory management
SD Telecommunication, macro- and micro-economics, social systems, ecological systems
ABS Stock markets, robotics, epidemiology, game theory, evacuation planning
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sets (Nowotarski et al., 2016) or calibration windows 
(Hubicka et al., 2019). Interestingly, combining is 
not only a remedy for time-varying point forecasting 
performance. Together with quantile regression it 
provides a simple, yet powerful tool for probabilistic 
predictions – Quantile Regression Averaging (QRA; 
Nowotarski & Weron, 2018). During the Global 
Energy Forecasting Competition 2014, teams using 
variants of QRA were ranked 1st and 2nd in the 
price track (Gaillard et al., 2016; Maciejowska & 
Nowotarski, 2016). QRA can be also used to con-
struct dynamic strategies aiming at finding the opti-
mal trade-off between risk and return when trading 
the intraday and day-ahead markets (Janczura & 
W�ojcik, 2022).

With the advent of easily accessible computa-
tional power, the models became more complex and 
expert knowledge was no longer enough to handle 
them. A major breakthrough came with the intro-
duction of regularisation methods to energy fore-
casting in the 2010s. Although regularisation is a 
much older concept, its use in load (Chae et al., 
2016; Ziel & Liu, 2016), price (Uniejewski et al., 
2016; Ziel, 2016; Ziel & Weron, 2018), wind 
(Messner & Pinson, 2019) and solar forecasting 
(Yang, 2018) began only recently. Ridge regression 
has not seen many applications in energy forecast-
ing, however, the least absolute shrinkage and selec-
tion operator (LASSO) and elastic nets (Hastie et al., 
2015) have been shown to yield extremely competi-
tive predictive models. LASSO-estimated autoregres-
sive (LEAR) models often have hundreds of inputs, 
e.g., spanning all hours of the past week, but LASSO 
can shrink redundant coefficients to zero and, thus, 
perform variable selection. Despite their ability to 
handle only linear relationships between variables, 
LEAR models tend to be only slightly inferior to the 
much more complex and much harder to estimate 
deep ANNs (Lago et al., 2021).

The availability of high-performance GPUs and 
advances in optimisation algorithms made it pos-
sible to efficiently train ANNs with hundreds of 
inputs and outputs, multiple hidden layers and 
recurrent connections (§2.1). This led to a wave of 
deep learning and hybrid energy forecasting models 
in the late 2010s (Gao et al., 2019; Wang et al., 
2017). A prominent, yet relatively parsimonious 
example is the deep neural network (DNN) model 
proposed for price forecasting (Lago et al., 2018). It 
uses a feedforward architecture with two hidden 
layers, 24 outputs (one for each hour of the next 
day) and ca. 250 inputs: past prices from the previ-
ous week, day-ahead forecasts of fundamental varia-
bles (demand, RES generation) and weekday 
dummies. To decrease the computational burden, its 
hyperparameters (number of neurons per layer, 

activation functions, optimisation algorithm, etc.) 
and inputs (treated as binary hyperparameters – 
either selected or discarded) are jointly optimised 
once every few weeks, while the weights are recali-
brated every day to account for the most recent 
market data. Despite this simplification, daily recali-
bration of the DNN model is two orders of magni-
tude slower than of the LEAR model with the same 
inputs (minutes vs. seconds on a quadcore i7 CPU; 
see Lago et al., 2021).

The increased complexity of deep ANNs is a 
major obstacle in understanding the underlying 
processes. Partial remedy provide recently proposed 
architectures like the neural basis expansion analysis 
for interpretable time series forecasting (NBEATS; 
Oreshkin et al., 2021; Olivares et al., 2023), which 
project the time series onto basis functions in the 
fundamental blocks of the network structure. The 
final forecasts can be decomposed into interpretable 
components returned by groups of blocks (called 
stacks). Separate stacks can account for the trend, 
seasonality and exogenous variables. Another recent 
innovation in energy forecasting is a distributional 
ANN (Mashlakov et al., 2021). It only requires a 
small change in the architecture – instead of the 24 
hourly forecasts, the network can return the param-
eter sets of 24 probability distributions (e.g., the 
mean and standard deviation for the Gaussian). The 
benefits are clear. The downside, however, is that 
the distribution itself has to be estimated (it is a 
hyperparameter). Somewhat surprisingly, distribu-
tional ANNs not only can yield more accurate prob-
abilistic predictions, but also better point forecasts 
(Marcjasz et al., 2022).

For horizons beyond the next 48 hours other 
approaches have been proposed (Weron, 2014), not 
necessarily forecasting per se. Structural models 
define the functional relationships between physical 
(weather, generation, consumption, etc.) and eco-
nomic (bidding, trading) variables that set the price, 
then utilise – typically – parsimonious statistical or 
machine learning techniques to provide the stochas-
tic inputs. Due to the nature of fundamental data, 
often of weekly or monthly granularity, such models 
are more suitable for medium-term risk manage-
ment, portfolio optimisation and derivatives pricing 
(Kiesel & Kusterman, 2016), than for short-term 
forecasting (Mahler et al., 2022). In the class of 
multi-agent approaches, Ventosa et al. (2005) iden-
tify three trends: equilibrium, simulation and opti-
misation models. The former (Nash-Cournot 
framework, supply function equilibrium, strategic 
production-cost models) have seen limited applica-
tion in oligopoly markets (Ruibal & Mazumdar, 
2008). Agent-based simulations are used when the 
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problem is too complex to be addressed within an 
equilibrium framework (Fraunholz et al., 2021).

Optimisation models address profit maximisation 
from the point of view of a firm competing in the 
market. One of the simplest settings is that of the 
price clearing process being exogenous to electricity 
generation optimisation – as the price is fixed, the 
market revenue is a linear function of the production 
and linear programming (§2.14) or mixed integer lin-
ear programming (MILP) can be employed (Ventosa 
et al., 2005). On the other hand, Virtual Power Plant 
(VPP) operations constitute a more complex problem 
of decision-making under uncertainty. A VPP is a 
cluster of dispersed generating units (e.g., intermit-
tent rooftop solar panels on residential houses), flex-
ible loads and battery storage that operates as a 
single entity. Robust optimisation and stochastic pro-
gramming can be used to derive the optimal VPP 
trading strategy (Morales et al., 2014).

To support broader regulatory decisions at the 
firm or country level, frontier analysis methods are 
employed. Such methods aim to estimate the efficient 
frontier of the evaluated production units, to measure 
their relative efficiency (against the frontier) and to 
provide targets that can support policymakers. The 
benchmarking nature of these methods has estab-
lished them as a flexible and multifaceted decision- 
making tool. In particular, Data Envelopment 
Analysis (DEA, §2.7) has been employed in a wide 
spectrum of energy applications. Early DEA studies 
relied only on a few factors (labour, fuel, capital, elec-
tricity production) to assess the technical efficiency of 
electric utilities (F€are et al., 1983). Later studies took 
into account sustainable practices by including envir-
onmental variables. Such factors are commonly 
treated as undesirable outputs that arise as by-prod-
ucts of the production process (F€are et al., 1996) or 
as non-controllable variables, which reflect external 
factors that the unit under evaluation cannot control 
(Hattori et al., 2005). When price information is 
available, DEA allocation models can be used to 
evaluate revenue, cost and profit efficiency. Ederer 
(2015) argued that sophisticated cost efficiency assess-
ment methods should be employed to evaluate RES, 
and relied on DEA models to assess the capital and 
the operating cost efficiency of offshore wind farms. 
Notably, DEA is often combined with multi-criteria 
decision-making techniques to incorporate decision 
maker’s preferences into the assessment (Lee et al., 
2011; Wang et al., 2022a) and econometric techni-
ques to study causal effects (Shah et al., 2022).

For a review and outlook into the future of energy 
(load, price, wind, solar) forecasting see Hong et al. 
(2020). Hong and Fan (2016) offer a tutorial review on 
probabilistic load forecasting. The standard reference 
for electricity price forecasting is Weron (2014). Lago 

et al. (2021) offer a more recent viewpoint focusing on 
deep learning and hybrid models. They also provide a 
set of guidelines/best practices and make freely available 
the epftoolbox with Python codes for two highly com-
petitive benchmark models (LEAR, DNN). Two thor-
ough treatments of probabilistic price forecasting are 
Nowotarski and Weron (2018) and Ziel and Steinert 
(2018). Sweeney et al. (2020) present a brief overview 
of the state-of-the-art in RES forecasting, whereas Yang 
et al. (2022) jointly discuss atmospheric science and 
power system engineering in the context of solar fore-
casting. Finally, for detailed literature reviews on energy 
related applications of DEA see Mardani et al. (2017), 
Sueyoshi et al. (2017) and Yu and He (2020).

3.20. Project management67

Operational Research methods play a fundamental 
role in managing a portfolio of projects, in project 
selection and in the management of each individual 
project. Project portfolio management is concerned 
with the optimal mix and prioritisation of proposed 
projects in order to maximise the organisation’s 
overall goals (Levine, 2005). At the strategic level, 
project selection deals with the selection of and 
resource allocation among a group of projects 
(Kavadias & Loch, 2004). Static models rely on 
mathematical programming, scoring and sorting, 
financial modelling, graphical and charting techni-
ques. Dynamic models for selecting projects from a 
stream of arrivals may rely on queueing theory 
(§2.17), simulation (§2.19), decision theory (§2.8) 
and stochastic dynamic programming (§2.9; §2.21).

At the tactical and operational levels, project 
management (Meredith & Mantel, 2003) basically 
involves the planning, scheduling and control of 
project activities to achieve performance, cost and 
time objectives for a given scope of work, while 
using resources efficiently and effectively. The scope 
of a project is the magnitude of the work that must 
be performed to make sure that the product or 
items to be provided (the project result or the pro-
ject deliverables) meet the requirements or accept-
ance criteria agreed upon at the onset of a project. 
Once the project is properly defined in terms of its 
scope and objectives, the planning phase may start 
through the identification of the project activities, 
the estimation of time and resources, the identifica-
tion of relationships and dependencies between the 
activities and the identification of the schedule con-
straints. The activities can be graphically portrayed 
in the form of a project network showing the neces-
sary interdependencies of the activities. Based on 
the type and quantities of resources required, cost 
estimates can be made. Project scheduling 
(Demeulemeester & Herroelen, 2002) then involves 
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the construction of a project base plan which speci-
fies for each activity the precedence and resource 
feasible start and completion dates, the amounts of 
the various resource types that will be needed dur-
ing each time period, and as a result the budget. 
Once a baseline schedule has been established, it 
must be implemented. This involves performing the 
work according to the plan and controlling the 
work by monitoring the progress and taking neces-
sary corrective action when the project is on its way 
to run behind schedule, to overrun the budget, or to 
violate the original technical specifications.

3.20.1. Construction of the project network
A project network is a graph consisting of a set of 
nodes and a set of arcs. In the activity-on-arc repre-
sentation (AoA), the nodes represent the events and 
the arcs represent the activities. AoA networks form 
the basis of the Project Evaluation and Review 
Technique (PERT; Malcolm et al., 1959) and the 
Critical Path Method (CPM; Kelley, 1961). The pre-
cedence relationship used is the finish-start relation-
ship with a zero time lag: an activity can start as 
soon as all its predecessor activities have finished. In 
the mostly used activity-on-node representation 
(AoN) the nodes represent the activities and the 
arcs denote the precedence relations. The AoN rep-
resentation allows for the specification of generalised 
precedence relations of four types: start-start, start- 
finish, finish-start and finish-finish with minimal 
and/or maximal time lags. A minimal time lag 
specifies that an activity can only start (finish) when 
its predecessor activity has already started (finished) 
for a certain time period, whereas a maximal time 
lag specifies that an activity should be started (fin-
ished) at the latest a number of time periods beyond 
the start (finish) of another activity.

3.20.2. Temporal analysis for deterministic uncon-
strained project scheduling
In this case, a single deterministic duration estimate 
is used for the activities. Basically, the temporal ana-
lysis then involves the computation of the activity 
start times under the objective of minimising the 
project duration. In the presence of strict finish-start 
precedence relations, this can be achieved by simple 
forward and backward pass calculations. Generalised 
precedence relations with maximal time lags call for 
the use of graph algorithms for computing the lon-
gest path (critical path) in networks.

The temporal analysis may also be performed 
under the objective of maximising the net present 
value of the project. The deterministic max-npv 
problem can be formulated as a nonlinear problem. 
An efficient recursive solution procedure has been 
developed for AoN networks and has been extended 

to deal with the case of time-dependent cash flows 
(Vanhoucke et al., 2001b).

Another non-regular performance measure is the 
minimisation of the weighted earliness-tardiness 
penalty costs of the project activities, where activ-
ities have an individual due date with associated 
unit earliness and unit tardiness penalty costs. The 
problem can be solved by an exact recursive search 
procedure (Vanhoucke et al., 2001c).

3.20.3. The deterministic resource-constrained pro-
ject scheduling problem
Project activities require resources for their execution. 
Renewable resources (e.g., manpower, machines) are 
available on a per-period basis. Their introduction 
into the analysis complicates matters considerably. 
Computing a precedence- and resource-feasible deter-
ministic schedule that minimises the project duration, 
the resource-constrained project scheduling problem 
(RCPSP) is NP-hard in the strong sense (§2.5). Both 
exact and suboptimal procedures have been presented 
in the literature.

Many mathematical programming formulations 
(§2.15), either binary or mixed integer linear pro-
grams, have been developed (Demassey, 2008). The 
RCPSP may also be solved through constraint-based 
scheduling (Laborie & Nuijten, 2008). Also a num-
ber of branch-and-bound algorithms have been pre-
sented for optimally solving the RCPSP (Brucker 
et al., 1998; Demeulemeester & Herroelen, 1992).

Heuristic procedures broadly fall into two catego-
ries: constructive heuristics and improvement heuris-
tics. Constructive heuristics start from an empty 
schedule and add activities one by one until a feasible 
schedule is obtained. Activities are ranked by priority 
rules which determine the order in which the activ-
ities are added to the schedule. Improvement heuris-
tics start from a feasible schedule that was obtained 
using a constructive heuristic. Operations are then 
performed on a schedule which transforms a solution 
into an improved one. These operations are repeated 
until a locally optimal solution is obtained.

Project scheduling metaheuristics come in a wide 
variety and broadly include tabu search (Baar et al., 
1999), simulated annealing (Bouleimen & Lecocq, 
2003), genetic algorithms (Hartmann, 2002), ant col-
ony optimisation (Merkle et al., 2002), scatter search 
and electromagnetic approaches (Debels et al., 
2006).

3.20.4. Resource problem variants and 
generalisations
Branch-and-bound may be used for solving the RCPSP 
with generalised precedence relations (Demeulemeester 
& Herroelen, 1997; De Reyck & Herroelen, 1998), 
when activities may be preempted (Demeulemeester & 
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Herroelen, 1996), when the problem has to be solved 
under the objective of maximising the net present 
value (Vanhoucke et al., 2001b) or with the earliness- 
tardiness objective (Vanhoucke et al., 2001a).

The resource levelling problem aims at complet-
ing the project within its deadline with a resource 
usage that is leveled as much as possible over the 
entire project duration. Exact solution procedures 
based on integer or dynamic programming and 
branch-and-bound as well as heuristic procedures 
have been developed (Neumann & Zimmermann, 
2000). The resource availability cost problem, that 
consists of scheduling the project activities such that 
the total cost of acquiring the necessary resources is 
minimised, assuming that a resource is assigned to 
the project for the total project duration, can be 
solved optimally (Demeulemeester, 1995). The 
resource renting problem (N€ubel, 2001) which 
assumes that resources can be added or removed 
from the resource pool over the project life, can be 
solved optimally using branch-and-bound or heuris-
tically using genetic algorithms and scatter search 
(Ballest�ın, 2007a; Kerkhove et al., 2017).

The multi-mode RCPSP assumes limited avail-
ability of renewable and nonrenewable (e.g., money) 
resource types and assumes that a project activity 
may be executed in multiple modes, where an activ-
ity mode corresponds to the assignment of a mode- 
specific number of units of a (non)renewable 
resource type to the activity with correspondingly 
resulting activity duration. The project decisions 
then involve the decisions to start and perform the 
activities in a specific mode in order to minimise 
the project duration. Branch-and-bound (Hartmann 
& Drexl, 1998), branch-and-cut, local search (De 
Reyck & Herroelen, 1999) and genetic algorithms 
(Hartmann, 2001) are available.

For projects with a flexible project structure, 
where activities to be performed are not known in 
advance, decisions for the implementation of 
optional activities can be made using genetic algo-
rithms and tabu search (Kellenbrink & Helber, 
2015; Servranckx & Vanhoucke, 2019a, 2019b).

3.20.5. Dealing with uncertainty
Risk analysis involves the identification of the quali-
tative and quantitative assessment of the risk factors 
for the project through the estimation of the prob-
ability of the risk factors (activity duration, cost and 
resource requirement increases, start time delays) as 
well as their potential impact. The impact of each 
risk is best assessed individually and mapped to the 
duration of a project activity (Creemers et al., 2014). 
Risk responses may then involve risk avoidance by 
performing an alternative approach without the risk, 
taking actions to reduce the risk, and risk impact 

reduction by switching to a different execution 
mode, adding additional resources, etc.

Stochastic scheduling does not generate a baseline 
schedule before the start of the project, but deals 
with time uncertainty by viewing the scheduling 
problem as a multi-stage decision process where 
scheduling policies are used to decide at each of the 
stages which occur serially through time at random 
decision points, which activities selected from the 
set of precedence and resource feasible activities 
have to be started under the objective of minimising 
the expected project duration (Demeulemeester & 
Herroelen, 2011).

Proactive project scheduling generates a robust 
baseline schedule through solving the RCPSP and 
subsequently tries to protect it as well as possible 
against time and resource disruptions that may 
occur during project execution. This protection can 
be achieved by deciding on a clever way to transfer 
the renewable resources between the activities (Leus 
& Herroelen, 2004). Both branch-and-bound and 
heuristics are available for the minimisation of the 
weighted sum of the difference between the planned 
and the realised activity start times (Van de Vonder 
et al., 2008; Lambrechts et al., 2008). Another way 
involves the insertion of time buffers that should 
prevent the propagation of distortions throughout 
the schedule. The critical chain methodology 
(Goldratt, 1997; Herroelen & Leus, 2001; Newbold, 
1998) defines the critical chain as that set of tasks 
which determines the overall project duration. 
Protection is then realised through the insertion of 
feeding buffers and resource buffers in combination 
with a project buffer at the end of the critical chain.

When during the actual execution of the project 
disruptions occur that cause deviations from the 
protected baseline schedule or even render this 
schedule infeasible, reactive scheduling procedures 
may be deployed.

For reviews and comprehensive textbooks on 
project management and scheduling we refer the 
reader to Demeulemeester and Herroelen (2002), 
Demeulemeester and Herroelen (2011), Hartmann 
and Briskorn (2010), Herroelen (2007), Herroelen 
and Leus (2005), Meredith and Mantel (2003), 
Neumann et al. (2003), Shtub et al. (2004), and 
Vanhoucke (2018).

3.21. Revenue management68

The discipline of revenue management (RM) deals, 
in the widest sense, with demand management deci-
sions to improve overall revenue or profit. Demand 
management decisions aim at influencing demand, 
such as pricing and availability control. Occasionally, 
demand management decisions can also take 
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different forms like ranking lists (e.g., when showing 
customers of a meal delivery platform a rank order 
of restaurants that offer home delivery) or green van 
icons to denote which time slots for grocery home 
delivery are more environment-friendly (because 
there is a delivery planned to take place already any-
way). RM is about IT-supported decision-making, 
mostly on the operational level, in contrast to stra-
tegic pricing theory encountered in the marketing 
domain.

Such decision support systems, referred to as RM 
systems, have been first developed in the airline 
industry in the 1970s when deregulation introduced 
competition in the US airline market. They were so 
successful that the practice of RM soon spread to 
other industry domains, particularly to those that sell 
services or perishable goods (perishability creates 
pressure to sell within a limited selling horizon). 
Examples include restaurant tables, hotel rooms, ren-
tal cars, or airline seats, among many other applica-
tions. In these industries, the supply is usually fairly 
inflexible, fixed costs are high and variable costs are 
relatively low (which also makes revenue maximisa-
tion mostly equivalent to profit maximisation, hence 
the name revenue management).

In this section, we first outline recent research 
trends on demand models (and their estimation) 
that are required to provide an input to the RM 
optimisation system. Then, we present recent 
research on efficient optimisation of demand man-
agement decisions. Finally, we outline further read-
ing suggestions including some current popular 
application areas. We mostly use the passenger air-
line industry throughout this subsection to illustrate 
developments in the field of RM.

3.21.1. Modelling demand
In order to make good demand management deci-
sions, we first need to have a model of demand to 
describe the response to specific RM actions (such 
as pricing or changing the availability of products or 
services). The first demand models used in RM 
assumed that demand for a given product is inde-
pendent of what else is offered. These so-called 
‘independent demand models’ are relatively easy to 
estimate. However, this independence assumption 
usually only holds in applications where rate fences 
(such as advance purchase requirements) strongly 
limit customers’ abilities to substitute a product 
with one another.

One way to relax the – often unrealistic – inde-
pendent demand assumption is by considering that 
the customer looks at all alternatives available and 
chooses one. The requires modelling of customers’ 
choice behaviour; the seminal paper by Talluri and 
Van Ryzin (2004a) introduced discrete choice 

modelling to the domain of revenue management. 
In choice-based RM, demand for a product is 
assumed to depend on the available purchase alter-
natives and their attributes. These models tend to be 
more accurate in predicting demand if the inde-
pendent demand assumption is not met, at the cost 
of being more difficult to estimate and implement 
(Klein et al., 2020). Much research has been carried 
out on choice-based RM since 2005; for a recent 
review, see Strauss et al. (2018).

Among the most recent trends – building on the 
aforementioned choice-based RM literature with 
fixed choice model parameters – is a stream of work 
on personalisation and choice model parameter 
learning. For example, Cheung and Simchi-Levi 
(2017) solve an online personalised assortment opti-
misation problem formulated as a multi-armed ban-
dit problem. Demand learning models balance the 
trade-off between gathering new samples (and 
thereby learning more about the true customer 
behaviour) and applying the RM decision that, 
based on the current belief of customer behaviour, 
looks to be the best. In the short term, this means 
that we occasionally make decisions that seem not 
very promising, yet that will gain us insights into 
customer behaviour (for instance, by offering price 
points that were never offered before). For our air-
line example, a potential application is the ongoing 
learning of model parameters governing the choice 
of ancillary products (like seat upgrades, extra lug-
gage, etc.). Models like the one by Agrawal et al. 
(2019) can be used for this purpose.

Demand models in RM may be biased if they are 
estimated on constrained data, meaning that the 
sales data does not necessarily reflect the actual 
demand. For example, if a flight is fully booked, we 
observe no further sales transactions for that flight. 
Yet demand may well exceed flight capacity and, as 
such, should be estimated somehow. Methods to 
statistically unconstrained demand data are reviewed 
in Guo et al. (2012).

Another dimension of demand modelling is rep-
resented by strategic versus myopic customer behav-
iour. One of the earliest papers on this topic is the 
work by Su (2007). He considers customers who 
may delay their purchase when they expect lower- 
priced offers in the future. With RM mostly focus-
ing on myopic customers (meaning customers who 
do not anticipate future developments in their pur-
chase decision), the behaviour of strategic customers 
leads to inefficiency. Su (2007) proposes an inter-
temporal pricing component to adjust the offering 
based on the market composition between these 
customer types, and more work has built on this 
since.
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3.21.2. Optimisation advances
A central element of an RM system is the decision 
of what to offer whenever a customer arrives. 
Decision policies (essentially a mapping from the 
state space of available information to the action 
space) are used to determine which products are 
made available (i.e., availability control), or at which 
price (i.e., dynamic pricing) – and sometimes, a 
combination of both. Using dynamic prices to man-
age demand can be very similar to availability con-
trol: when there are products defined with identical 
features but different price tags such that there is a 
discrete set of prices to choose from for a product, 
it can be considered a special instance of the afore-
mentioned availability control (Strauss et al., 2018). 
This can be observed in airline’s implementations of 
differently priced booking classes for the same seat 
such that a customer can only purchase that seat for 
the fare of the booking class made available to 
them. The groundbreaking papers by Gallego and 
van Ryzin (1994, 1997) also featured a dynamic 
pricing concept for a single-commodity and a net-
work-level problem, respectively. Both papers also 
considered the effect of significant cancellations and 
no-shows (meaning bookings that are not actually 
being used in the end). In that context, it can be 
valuable to accept more reservations than physical 
capacity would allow. This practice is called over-
booking and is widespread in many industries where 
the risk of having to reject a customer with a valid 
reservation is not overly costly (with examples such 
as Simon, 1968, showing it being applied already 
before RM but now usually integrated into systems 
to manage demand for available capacity). For an 
overview of recent contributions on this matter, see 
Klein et al. (2020).

Decision policies in RM are trading off the 
immediate reward of having a customer buy a prod-
uct versus the so-called opportunity cost associated 
with this purchase, stemming from having to com-
mit some resources to a given sale. For example, a 
resource might be a flight with a specific seat cap-
acity. Selling a ticket for a seat on this flight requires 
us to commit a seat to this customer, which other-
wise might have still gotten sold in the future at a 
potentially larger fare. Therefore, by having a cus-
tomer buy the product, we incur the cost of losing 
the opportunity to sell the associated resource units 
in the future. This value (or at least an approxima-
tion thereof) is sometimes used as a revenue thresh-
old defining which products shall be shown as 
available; such special versions of availability control 
are known as bid price policies, with the bid price 
being this threshold, and only products with reve-
nues that exceed the bid price being shown.

There are two major challenges in deriving opti-
mal decision policies: first, we need to somehow 
obtain the opportunity costs involved with having a 
customer book a particular product at a given point 
in time; second, we need to solve the resulting opti-
misation problem to give us the actual decision to 
be implemented.

The latter decision problem, given opportunity 
cost, may be as simple as a comparison of two num-
bers (traditionally used in independent-demand set-
tings), but can be non-trivial in the presence of 
sophisticated models of customer behaviour 
(dependent demand settings). Much research over 
the past few years has been devoted to studying 
properties of choice models that can be exploited to 
efficiently solve – or at least closely approximate – 
the online RM decision problem. This work is fur-
ther motivated by the need to solve these RM deci-
sion problems quickly to ensure an acceptable user 
experience. Within availability control, assortment 
optimisation under various choice models has 
received particularly much attention because this 
problem becomes NP-hard for many customer 
choice models unless a certain structure can be 
exploited; for a review, see Strauss et al. (2018).

The other challenge in deriving optimal decision 
policies is the computation of opportunity costs. 
This is usually the more difficult task for real appli-
cations because the opportunity costs depend on 
time, the current state (of inventories), and future 
demand and actions. Dynamic programming (DP; 
§2.9) is usually being applied to solve or at least 
characterise the optimal decision policy over a given 
booking horizon.

However, obtaining opportunity costs using DP 
is often only possible when dealing with problems 
that have a single resource (like optimising for a 
single flight only, for example in Wollmer, 1992). 
When there are products that use more than one 
resource (like a itinerary of multiple flights connect-
ing in a hub), then we speak of network RM prob-
lems. These require much more effort to solve (so 
as to get opportunity cost estimates for our decision 
policy) due to the fact that decisions on one product 
may affect many others that are using the same 
resource. Therefore, to reach at least an approximate 
solution for a network RM problem, one usually 
needs to resort to deterministic linear programming 
(Liu & van Ryzin, 2008, §2.14) or approximate 
dynamic programming (Gallego & Topalo�glu, 2019, 
describe how approximate dynamic programming 
can be used in RM). In practical applications, the 
network-level optimisation problem is often decom-
posed into a collection of single-resource problems 
such as in Kemmer et al. (2012) who were moti-
vated by methods deployed by Lufthansa Systems in 
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their RM optimisation module. In older RM sys-
tems, booking control was typically implemented 
using versions of the so-called Expected Marginal 
Seat Revenue (EMSR) heuristics (Belobaba, 1987a), 
which are in turn rooted in the work of Littlewood 
(2005), originally written in 1972.

Once a decision policy has been obtained (by first 
obtaining opportunity costs and then solving the corre-
sponding decision problem), we then need to evaluate 
the decision policy using simulation or even in real- 
world trials. Bertsimas and De Boer (2005) give an 
overview of different decision rules for airline RM that 
are evaluated with a simulation study. Further details 
on simulation techniques can be found in §2.19. An 
example of testing a dynamic pricing policy in live tri-
als is the work by Fisher et al. (2018).

3.21.3. Further reading
RM is also applied in retailing, both for e-commerce 
and offline shopping. Agatz et al. (2013) provide a 
practical overview of ways online retailers imple-
ment RM in their business. But there are also retail 
RM applications outside of online shopping. For 
example, Caro and Gallien (2012) describe how 
brick-and-mortar fashion stores optimise their price 
markdowns during season clearing sales.

In particular, linking RM to general transportation 
problems has received significant attention over recent 
years. An overview of advances in that field is given by 
Fleckenstein et al. (2022). Applications thereof can be 
seen here especially in business models with delivery 
constraints, such as same-day deliveries (Ulmer, 2020) 
or for attended home delivery (AHD) which is com-
mon for online grocery shopping. Customers’ desire for 
short and guaranteed time windows in AHD leads to 
less than optimal routings. Yang et al. (2016) show 
how RM can be used to steer demand for delivery time 
slots towards a routing solution closer to the optimum, 
thereby increasing overall profit for businesses shipping 
goods that require AHD. Another example of applying 
RM ideas to new transportation problems is the work 
by K€unnen and Strauss (2022). They analyse how an 
air traffic network manager could reduce overall delays 
for all airspace users (i.e., airlines) by offering dynamic-
ally priced flight trajectories.

For more detailed readings about the develop-
ment of the RM domain, the techniques being used, 
and more applications, we refer the reader to the 
books by Talluri and Van Ryzin (2004b) and 
Gallego and Topalo�glu (2019).

3.22. Service industries69

Service industry from the perspective of operations: 
Service industry is a concept from economics origin-
ally defined by what it is not. It is not a 

manufacturing industry that produces tangible 
goods (cars, clothes, equipment), but industry that 
provides intangible outputs, such as hospitality, 
healthcare, and education. In service research, serv-
ices are also defined by additional characteristics. In 
addition to intangibility, the so-called IHIP charac-
teristics, recognises heterogeneity, inseparability, and 
perishability as the defining characteristics of service 
industries.

In Operations and Operational Research, service 
industry is approached not from its characteristics 
but operationally to support actionable insights 
(Burger et al., 2019). For Operational Research 
applications, service industry can be approached 
through the FTU-framework, defining services as a 
particular type of transformation (Figure 2). Service 
industries are distinguished from goods industries 
through the direct provision and integrative decision 
making. In services the decision making of custom-
ers and providing companies is intertwined, while in 
goods industries customer and providers make 
autonomous decisions. In service industries the 
value is directly provided to the customer, while in 
goods industries indirectly through the product.

However, operational reality is not this clear-cut. 
In manufacturing industries, through servitisation 
(Kohtam€aki et al., 2018), some companies seek to 
make their products more like services to differenti-
ate their offering, and directly create value to their 
customers. In service industries, managers seek to 
make services more like goods, to be able to run 
service facilities more like factories and improve 
productivity (Levitt, 1972; Schmenner, 2004). OR 
methods that were initially developed in manufac-
turing industries (e.g., forecasting, queuing, schedul-
ing, simulation), are increasingly applied in service 
industries to make service facilities operate more 
like factories (cf. Eveborn et al., 2009). For servitisa-
tion, OR presents a more limited range of methods. 
Methods supporting the servitisation of products are 
for example, value constellation modelling 
(Holmstr€om et al., 2010; Brax & Visintin, 2017), 
and ecosystem modelling to support innovation and 
new business model design in an open environment 
(Talmar et al., 2020).

The challenge in service industries is that service 
systems tend to be open, problems wicked, and opti-
mising solutions difficult to develop and apply. 
Value provision often requires interaction with cus-
tomers (customisation) limiting the situations where 
facilities can be organised for flow and efficiency as 
service factories. Also, servitisation of products 
occurs in an open systems environment, requiring 
responsiveness to influences and disturbances from 
the outside, as will be seen for our application 
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examples from industrial services and home 
healthcare.

Service industry applications: In the following we 
will present two examples on the use of OR meth-
ods for creative insight and novel solutions in ser-
vice provision. The examples are homecare of 
elderly patients (Groop et al., 2017), and line main-
tenance of commercial aircraft (€Ohman et al., 2021). 
In the first example systems thinking, in the form of 
soft OM methods from Theory of Constraints 
(Davies et al., 2005), is used in combination with 
design science research (implementation and evalu-
ation). In the second example design and simulation 
are used in combination, uncovering an unexpected 
new way of simultaneously improving resilience and 
reducing costs in a commercial airline.

Homecare of elderly patients (Groop et al., 2017): 
Nurses, team leaders, and healthcare management 
had distinct and diverging views on what is the 
problem with the homecare operations. Strongly 
held and divergent views are an indication of a pos-
sibly wicked problem (Sydelko et al., 2021). The 
divergent views in the case were uncovered through 
engagement (following actors in their work) and 
interviewing, with the purpose of articulating what 
different stakeholders identified as undesirable 
effects (UDE) of the current solution. UDE is think-
ing tools terminology from Theory of Constraints 
(Dettmer, 1997). These UDEs of the current oper-
ation were pruned for overlaps and narrowed down 
to a list of seven (including the seeming contradic-
tion between low utilisation of full-time employed 
nurses, stressed-out nurses, and chronic under-staff-
ing requiring frequent use of temporary staff). 
Using effect-cause logic, the interconnections 
between effects, and mechanisms behind the effects 
were specified and then evaluated by all stakeholder 
groups in joint workshops. In this case, the first 
effect-cause analysis pointed towards a core prob-
lem, a contradiction, which when addressed, would 

improve efficiency. The needed change was in the 
way the nurse visits are scheduled to improve effect-
iveness. Instead of scheduling nearby patients after 
each other to save travelling time, the home care 
organisation should focus on only scheduling nurses 
for time-critical visits (visits that must be performed 
at a specific time) at the peak-demand in the morn-
ing. This way the time of full-time nurses will be 
more effectively used.

However, when implemented, the scheduling 
change had next to no effect. With the initial solu-
tion a failure, the evaluation of the implemented 
change pointed to issues with the problem framing. 
Going back, considering the stated problems 
(UDEs) and initial solution, the field researchers 
found that they had missed an important undesir-
able effect originating from the way the organisation 
operated. In the mapping nobody had raised as a 
problem that full-time nurses, when not busy, do 
not help-out in other teams. When nurses stay 
within their teams, work is evenly divided between 
everybody in the team, which is not a problem for 
nurses, nor for team leaders. Instead, when there is 
need for more nurses, outside temporary nurses are 
called in, and they move between teams if needed, 
but not the full-time employed nurses.

Management, for whom the low utilisation of 
full-time employed nurses is a cost issue (with pay-
ment of salaries both for idling full-time nurses and 
busy temporary nurses), were not aware of how 
nurses staying with their team was a mechanism 
behind the low utilisation. Nor had the researchers 
working in the field realised this before failing with 
the first solution design. Re-framing the problem 
once more, another solution changing the schedul-
ing for employed nurses was proposed. Instead of 
dividing work equally between all nurses in their 
teams, the team leaders should seek to schedule 
work so that one, or even two nurses in their teams 

Figure 2. An actionable framework for service industries: facilities-transformation-usage (adapted from Moeller, 2010)
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have no work, and can be made available to help- 
out in other teams.

Line-maintenance of commercial aircraft (€Ohman 
et al., 2021): The second example illustrates the use 
of simulation in problem reframing and finding a 
new type of solution. The service operations are line- 
maintenance of aircraft in an airline. Initially the 
problem was framed by management as improving 
departure reliability without increasing the number of 
maintenance technicians. The intended solution was 
introducing lean in the turn-around of aircraft.

However, in line maintenance there are no mater-
ial and time buffers for which lean approaches have 
been so impactful in manufacturing. The minimum 
frequency and content of maintenance tasks are regu-
lated. Departures are delayed by technical problems 
that add unplanned tasks, which need to be carried 
out. Here, lean principles can increase productivity 
but not reduce the unplanned tasks. To reduce the 
delays caused by unplanned tasks a resource buffer of 
maintenance technicians appears necessary.

In this example, the same method of engagement 
was applied as in the homecare example. Observing 
and interviewing different actors involved, field 
researchers sought to articulate a set of undesirable 
effects of the current way of operating. However, no 
agreement on a core problem to address could here 
be reached. Instead, problem framing ended with a 
question and a puzzling response that pointed in a 
new direction. Line-maintenance scheduling 
assumed that maximising the interval for planned 
tasks is optimal, also when there are unplanned 
tasks and constrained resources. Engaging and inter-
viewing maintenance planners for both long-haul 
and short-haul fleets and operations, production, 
and resource planning, field researchers began to 
gain an in-depth understanding of the airline main-
tenance planning function. Heuristics and principles 
related to dealing with over-maintenance not visible 
in the operational documentation were encountered.

To explore the implications, the researchers first 
modelled the relationship between over-maintenance 
and planned workload variance in a deterministic set-
ting, focusing solely on scheduled maintenance. The 
model indicated a promising relationship: an increase 
of one percent in the total planned workload (over- 
maintenance) could result in up to a six percent 
reduction in workload variance. Next, simulation of 
the airline operation and maintenance included the 
unplanned events according to their historical distri-
bution. The simulation surprisingly indicated that 
increasing over-maintenance could reduce over-all 
costs and improve departure reliability, if combined 
with a re-scheduling solution for maintenance task. 
Re-scheduling introduces a new type of time buffer, a 
frontlog of planned maintenance tasks that can be 

postponed to allow technicians to address unplanned 
tasks without disruptions to departure schedule.

Summary and conclusion: In service industry 
applications problem framing methods are particu-
larly important. The openness of service operations 
and wicked problems often require the Operational 
Researcher in service industry applications to go out-
side their comfort zone regarding methods (Mingers, 
2011b, 2015) to search for actionable insight (Burger 
et al., 2019). In the examples provided, a combin-
ation of approaches, tools, and methods were contin-
gently employed in the search for a good problem 
framing as the basis for an effective solution design. 
For the application of OR methods in service indus-
tries, the homecare example illustrates the use of a 
soft OR method in framing the problem (from the 
practice of Theory of Constraints, Davies et al., 
2005), the use of scheduling from hard OR as a solu-
tion component, and implementation as a method of 
design science for evaluation and redesign 
(Holmstr€om et al., 2009; Sein et al., 2011). The 
second example illustrates the use of simulation as a 
method of explorative design. In the empirical 
grounding of the simulation model we encountered 
the good problem, which is the key to success in 
simulation projects (Law, 2003). Through simulation 
we developed and explored the effect of the dynamic 
re-scheduling and buffer management approach, with 
surprising outcomes. Before the simulation study 
nobody knew about the opportunity to both improve 
departure reliability and reduce costs.

The example multi-method approach combined 
soft OR, simulation, and systems thinking for fram-
ing the problem. As in cross-agency problem solving 
in government and public administration, service 
industry problem solving benefits from mapping dif-
ferent actor perspectives, as the purposes, perspectives 
and values of the service supply chain actors can eas-
ily be in conflict (Sydelko et al., 2021). However, in 
addition to methods for actionable insight, methods 
for turning insights into solution proposals are also 
needed. For proposing and developing a solution 
design, the two examples relied on explorative design 
science (Holmstr€om et al., 2009), relying on OR 
methods in evaluation when implementation is pos-
sible, and simulation for substituting implementation. 
In the search of effective solution designs, OR meth-
ods such as scheduling, and forecasting were applied 
as potential solution components in both examples.

3.23. Sports70

Moneyball (Lewis, 2003) told the story of how the 
Oakland Athletics Major League Baseball team was 
able to leverage an inefficiency in the labour market 
for baseball players, and perform above expectations 
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(given the team’s salary spend). Its impact on how 
quantitative analysis is viewed within sport and 
wider society is unprecedented. We have moved 
from an age when society tended to undervalue 
quantitative skills to a post-Moneyball era where 
analytics is generally accepted as being “cool”. Told 
in both a best-selling book (Lewis, 2003), and a 
Hollywood movie of the same name, Moneyball has 
driven a rapid expansion of interest in the field of 
sports analytics. For an analysis of Moneyball, see, 
for example, Hakes and Sauer (2006).

The history of quantitative analysis in sports 
dates back to centuries before the Moneyball story, 
and to the conception of probability itself. The con-
cepts of chance are as old as the first dice games, 
but they did not evolve into the mathematical prin-
ciples of probability until the 17th century when 
Pascal and Fermat exchanged ideas in a series of let-
ters during 1654. The letters were written in 
response to the following problem: two players, A 
and B, each stake 32 pistoles on a first-to-three-point 
game. When A has 2 points and B has 1 point, the 
game is interrupted and cannot continue. How 
should the stakes of 64 pistoles be fairly distributed? 
Fast forward three centuries and the similarities of 
this problem with the problem encountered in lim-
ited-overs cricket, when a match is cut short because 
of rain, are uncanny. Indeed, the solution offered by 
Duckworth and Lewis (1998) is one of the great suc-
cess stories of OR in sport, or arguably OR in any 
field. That sports fans routinely use the names of a 
statistician, and an operational researcher should be 
the source of great pride to the OR community.

The field of sports analytics now boasts specialist 
journals, regular special issues in top-rated main-
stream journals, large departments in sports teams, 
and many stories of success and over-achievement 
in professional sport.

3.23.1. What is ‘sports analytics’?
Analytics is largely an umbrella term for data sci-
ence, statistics, operational research, and nowadays, 
machine learning. A simple definition of sports ana-
lytics is the use of analytics to gain a competitive 
edge in sport. A wider definition would be the use of 
analytics to improve decision making in sport.

Research has been published on the use of ana-
lytics in almost all popular sports including: football, 
tennis, cricket, golf, American football, baseball, 
motor sport, martial arts, and many more. Rather 
than review the field by sport, it is more logical to 
consider the field by task. The following is not a 
comprehensive list of such tasks, but provides an 
overview of the more common objectives of sports 
analytics.

3.23.2. Ranking and rating
Ranking of competitors is, to a large extent, the 
entire purpose of organised sport, and rating is a 
popular area of research. There are several families 
of models used to rate competitors. Paired compari-
sons models are used when two competitors play in 
each contest. For example, Elo ratings were first 
developed for use in chess, but have since been used 
by, for example, Hvattum and Arntzen (2010) for 
forecasting football results. Glickman (2001) pre-
sented a more general Elo model based on a 
Bayesian updating system and applied it to the 
problem of dynamic ratings of chess players. 
Another paired comparisons model is the Bradley- 
Terry model and this was used in McHale and 
Morton (2011) to forecast the results of tennis 
matches. Multiple comparisons models are used 
when several competitors play in each contest and 
Baker and McHale (2015) use a time-varying mul-
tiple comparisons model to rate golfers from differ-
ent eras. Langville and Meyer (2013) provide an 
excellent overview of rankings models.

Rating individuals in team sports is a somewhat 
more complex task than the examples given above, 
especially when the individuals have different objec-
tives, as is the case in football for example, where 
some players are mainly responsible for defending, 
whilst others are mainly responsible for attacking. 
Basketball, ice-hockey and football all fall into this 
category. In such circumstances plus-minus ratings 
are useful. At its most basic level, a player’s plus- 
minus rating is a comparison of a team’s perform-
ances with and without the player. Rosenbaum 
(2004) presented a method for calculating plus- 
minus player ratings in basketball, before extensions 
were added by Macdonald (2012) and Kharrat et al. 
(2020) to account for the intricacies of ice-hockey 
and football, respectively.

The availability of more granular data, such as 
event data (detailing each and every event in a 
game, e.g., the timing, coordinates and players 
involved in a pass) and player tracking data (the 
coordinates of all players on the field of play 
recorded at several times per second), has enabled 
more advanced measures of player performance to 
be calculated. One such measure is that of expected 
value of possession (EVP) for valuing individual 
actions in team sports. The concept of EVP was first 
presented in Cervone et al. (2016) and asks the 
question “what is the probability of the objective 
happening before an action, compared to the prob-
ability after an action?”. The objective may be to 
score a goal in football. If an action is a good one – 
the probability of a goal should increase, whilst if it 
is a bad one, the probability of a goal will likely 
decrease. The change in the probability of the 
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objective occurring is then the value of the action. 
Recent applications of deep reinforcement learning 
have seen EVP calculated for football (e.g., Liu 
et al., 2020; Fern�andez et al., 2021). Indeed, it is 
likely that the EVP concept will be used in many 
sports in the future.

Akhtar et al. (2015) uses the change in probabil-
ity of a team winning a Test match to rate crick-
eters. The idea is similar to the EVP idea proposed 
by Cervone et al. (2016), but uses multinomial 
regression to calculate probabilities of a team win-
ning/drawing/losing the match, before and after 
each ball of the match.

The idea of monitoring the change in an 
expected value is also used in golf’s ‘strokes gained’ 
metric (Broadie, 2012). Strokes gained measures 
how good an individual shot is, and by aggregating 
over many shots, one can identify how good a 
player is overall, or how good certain areas (e.g., 
putting and driving) of a player’s game are.

3.23.3. Decision making
A core tenet of sports analytics is that it should 
drive improvement, indeed improving decision mak-
ing is central to the OR paradigm. There are many 
papers looking to use analytics to improve decision 
making in a sports context.

Perhaps the costliest consequences of decision 
making in sport concern the recruitment of athletes. 
Indeed, the Moneyball premise is built on the idea 
of avoiding overpaying for talent.

Football clubs exchange huge sums of money to 
acquire the services of players. These transfer fees 
were studied in Coates and Parshakov (2022) who 
consider the issue of the wisdom of the crowd in 
estimating the fees. McHale and Holmes (2022) use 
machine learning techniques to model transfer fees 
as a function of performance metrics and contract 
status, amongst other things.

In lucrative team sports such as American foot-
ball, football and basketball, recruitment of young 
talent with high potential is of potentially great 
value, but it appears a relatively little researched 
area. In one of only a handful of papers on this 
issue, Craig and Winchester (2021) present a model 
to predict the potential of college quarterbacks to 
one day play in the NFL.

In addition to making good decisions around 
player recruitment, sports teams must make good 
decisions about their coaches. Peeters et al. (2020) 
consider the impact of coaches on the performance 
of Major League Baseball teams, whilst 
Muehlheusser et al. (2018) rate coaches in German 
football. Identifying good coaches is just one dimen-
sion of decision-making surrounding running a 
sports team, and it is often the case that team 

owners are faced with the decision of whether or 
not to fire a coach. The impact of managerial dis-
missals has been the focus of attention in the eco-
nomics literature. In football, Tena and Forrest 
(2007) measure the consequences of mid-season 
managerial dismissals on a team’s performance and 
find that there is a short-term improvement in 
results, but only in home matches.

The final area of decision making we note is that 
of team selection. In cricket the ordering of the bat-
ting line-up was considered in Perera et al. (2016), 
whilst Watson et al. (2021) use machine learning to 
optimise team selection in rugby union. Cao et al. 
(2022) look at optimising team selection in soccer.

3.23.4. Other areas of sports analytics
Sport has attracted the attention of quantitative ana-
lysis in numerous other areas, though some do not 
have the objective of improving performance and/or 
decision making. For example, OR has been used to 
inform scheduling of tournaments (see also §3.27).

The popularity of sports betting means forecast-
ing results has received a great deal of attention in 
the literature. As the sport with the largest global 
betting market, football has attracted the most atten-
tion in the forecasting literature. A notable contri-
bution was that of Dixon and Coles (1997), whose 
Poisson model has been used as the basis of subse-
quent work for over two decades. More recently, 
machine learning techniques have begun to outper-
form Poisson-type models. See Dubitzky et al. 
(2019) for details of the results of the ‘Soccer 
Prediction Challenge’.

Tournament design has been the subject of 
research in, for example, Scarf et al. (2009). The 
idea is that tournaments should maintain excite-
ment. On a similar theme, Friesl et al. (2017) and 
Scarf et al. (2019) looked at the rules of ice-hockey 
and rugby and considered how they might be 
adjusted to increase excitement. By lowering scoring 
rates, the outcome of a game is more uncertain, and 
according to the uncertainty of outcome hypothesis 
this is what drives interest. However, there is con-
flicting evidence on the uncertainty of outcome 
hypothesis (see, for example, Forrest & Simmons, 
2002). Understanding what drives the interest of 
fans was the subject of Buraimo et al. (2020) who 
looked at how suspense, surprise and shock during 
a match drives in-match television viewing figures.

To find more articles on sports analytics, the 
interested reader has several options including spe-
cialist journals (the Journal of Quantitative Analysis 
in Sports, the Journal of Sports Economics, and the 
Journal of Sports Analytics), and discipline journals 
such as the European Journal of Operational 
Research, the Journals of the Royal Statistical Society, 
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the Journal of the Operational Research Society, and 
the International Journal of Forecasting, together 
with a plethora of blogs and websites all focused on 
sports analytics.

3.24. Supply chain management71

The field of supply chain management (SCM) is 
concerned with the information, material, and cash 
flows within and between supply chain members. 
Materials generally flow down a supply chain (like 
water in a river); information and money flow up 
the supply chain. The way we design, source, pro-
duce, move, store, schedule, communicate, collabor-
ate, and compete are important factors in SCM.

3.24.1. Lean production
SCM is built on the foundations of good industrial 
engineering. The pioneering industrial engineers 
Frank and Lilian Gilbreth provided us with time 
and motion studies (Gilbreth, 1911), human factors, 
and scientific management. During the 1920s scien-
tific management techniques were imported into 
Japan’s Imperial Navy’s shipyards and factories to 
improve efficiency and quality. Initially, some table 
top management games learnt from the Gilbreths in 
the United States were taken to the Kure Navel 
Arsenal (a navel shipyard) in 1923 (Robinson & 
Robinson, 1994). The table top management games 
were used demonstrate the efficient flow, and organ-
isation, of work. Robinson and Robinson (1994) 
claims these table top games facilitated Japan in 
general, and Toyota in particular, to become highly 
efficient at producing high quality, low cost, reliable 
products. The Toyota Production System (TPS) 
became the world standard in the highly efficient 
lean production technique (Ohno, 1988). Western 
companies soon sought to emulate the success of 
TPS (Womack et al., 1990), hunting high and low 
for the seven lean wastes (Hines & Rich, 1997). 
Holweg (2007) provides an excellent summary of 
the genealogy of lean production.

3.24.2. Value stream mapping
One of the best ways to document and understand a 
supply chain is to draw a value stream map (VSM; 
Rother & Shook, 1999). VSMs detail how the mater-
ial flow is controlled by the information flow and 
decision-making activities. Key is to determine the 
point in the material flow where the customer order 
directly regulates the production cadence. This point 
is known as the pacemaker process or the customer 
order decoupling point (CODP; Olhager, 2010). 
The pacemaker is often the process that separates 
the work that is pulled through the system by a 

Kanban system, and the work that flows out to the 
customer in a first-in-first-out (FIFO) queue.

3.24.3. Agile and leagile supply chains
Lean supply chains are characterised by just-in-time 
inventories and high capacity utilisation. But not all 
supply chains should be lean. Some supply chains 
need to be responsive, with extra inventory and 
spare capacity held in reserve so the system can 
quickly respond to unexpected demand (Fisher, 
1997). This has become known as agile production. 
The lean and agile paradigms can integrated in 
together in a concept known as leagility (Naylor 
et al., 1999). In leagile supply chains, the material 
flow is set up to follow lean principles upstream 
from the CODP; downstream from the CODP, agile 
principles are followed.

3.24.4. Bullwhip and supply chain dynamics
The bullwhip effect is one of the biggest areas of 
SCM research. The moniker, coined by Lee et al. 
(1997), refers to the tendency of the slowly changing 
consumer demand (the bullwhip handle) to create 
wildly fluctuating fast moving demand at the raw 
material processors (the bullwhip popper). This 
variance amplification effect is caused by the deci-
sion-making activities (Forrester, 1958). The seminal 
paper by Lee et al. (1997) highlights four causes of 
the bullwhip effect: demand signal processing, order 
batching, shortage gaming, and price fluctuations.

Demand signal processing has been the most studied 
cause of the bullwhip effect. Demand signal processing 
refers to the activity of forecasting the demand over the 
lead time (and review period), so that one may deter-
mine production and/or replenishment order quantities 
to maintain finished goods inventory and raw material 
levels close to a target. Setting target inventory levels is 
a problem similar to the newsvendor problem 
(Churchman et al., 1957). As orders eventually turn 
into the inventory here is a feedback loop in the deci-
sion; there is also a work-in-progress feedback loop in 
the system (Sterman, 2000). Both these feedback loops 
contain delays. This creates a complex system whose 
dynamics are in part driven by the external demand, 
but are mostly an internally generated effect caused by 
the fundamental structure of the supply chain 
(Sterman, 2000).

Control engineers have developed a large toolkit 
to understand and manipulate the dynamics of feed-
back systems. Towill (1982) and John et al. (1994) 
studied the dynamics of continuous time replenish-
ment rules with the Laplace transform. 
Dejonckheere et al. (2003) studied discrete time 
replenishment rules via the z-transform and the 
Fourier transform. They showed the order-up-to 
replenishment policy with moving average and 
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exponential smoothing forecasts, for all lead-times 
and all possible demand patterns, always created 
bullwhip.

Michna et al. (2020) studied stochastic lead times, 
revealing the forecasting of lead times is an impor-
tant cause of the bullwhip effect. Gaalman et al. 
(2022) explores the interaction between the lead 
time and bullwhip under general order auto-regres-
sive moving average demand. They reveal the inter-
action between demand, lead times, and bullwhip is 
complex and subtle; bullwhip does not always 
increase in the lead time. Wang and Disney (2016) 
provides a recent review of the bullwhip effect, its 
causes, solution approaches, and thoughts on future 
research directions.

3.24.5. Location and localisation
The number, and location, of distribution centres 
(DC) is an important problem in distribution net-
work design. Too few DCs result in longer travel 
distances (and times) to customers; too many result 
in high amounts of distribution inventory. The 
square root law for inventory (Maister, 1976) shows 
the amount of inventory in a distribution network 
falls by 1=

ffiffiffi
n
p

when n DC’s are consolidated into a 
single DC. The transportation costs involved in 
delivering customer demand from n DCs can be 
accurately modelled using transportation planning 
software (Hammant et al., 1999). This software typ-
ically includes: road maps, speed limits, tolls, con-
gestion, as well as various methods for modelling 
transport costs.

Postponement can also reduce inventory in supply 
chains. Postponement involves delaying final assem-
bly until demand reveals itself; products are then 
quickly customised to meet the consumer’s desires. 
For example, HP build generic printers in Mexico 
to ship to Europe. Upon arrival, they are assigned 
to a country and the correct power pack is 
“assembled” into the product (Feitzinger & Lee, 
1997). With postponement HP holds less generic 
inventory to buffer the shipping lead time compared 
to the amount of country specific inventory it would 
need if the power packs were assembled in Mexico.

Another important SCM decision is where to 
produce? Should you produce locally where perhaps 
labour cost is high, or should you outsource, or off- 
shore, to a low labour cost country? Sometimes, 
offshore production is supplemented with a local 
factory or a near-shored supplier in a dual sourcing 
arrangement (Allon & Van Mieghem, 2010). A tail-
ored base surge policy sends constant orders to the 
offshore supplier with the long lead time, while the 
near-shore supplier flexes production quantities with 
a short lead time. A small local SpeedFactory may 
be able to correct for the forecast errors and gain 

enough of an inventory advantage to offset the 
increased local labour costs (Boute et al., 2022).

3.24.6. Information flows in supply chains
Changing the information used in replenishment 
decisions can improve the dynamics of supply 
chains. The sharing of demand information with 
upstream suppliers is often referred to as the infor-
mation sharing (Lee et al., 2000), or information 
enrichment strategy (Dejonckheere et al., 2004). 
Knowing the end consumer demand allows 
upstream members to base their demand forecasts 
on the real demand information, removing one of 
the potential causes of the bullwhip effect. Indeed, 
information sharing allows for a linear, rather than 
a geometrically, increasing bullwhip effect as orders 
go echelon-to-echelon up the supply chain (Chen 
et al., 2000). Kaipia et al. (2017) considers the prac-
ticalities of implementing the information sharing 
strategy.

Sharing both demand and inventory information 
with your supplier can enable the vendor managed 
inventory (VMI) strategy (Dong & Xu, 2002). In the 
VMI strategy, the consumer demand and down-
stream inventory information is used by the supplier 
(the vendor) to make replenishment decisions on 
behalf of his customer. This allows two supply chain 
echelons to behave dynamically as one echelon, 
removing a bullwhip generating decision from the 
supply chain (Holweg et al., 2005).

3.24.7. Coordinating supply chain contracts
Supply chains often consist of many different organ-
isations, each operating to maximise their own 
profit. Due to the double marginalisation problem, if 
each player acts solely in their own interests, the 
supply chain will not be able to reach the first best 
solution; money will be left on the table. Sometimes, 
the first best solution can be reached by a central-
ised decision-maker coordinating the supply chain; 
at other times the altruistic behaviour of one supply 
chain member, in return for a transfer payment, can 
coordinate.

There are many different types of contracts 
(Cachon & Lariviere, 2005): revenue sharing, buy- 
back, price-discount, quantity-flexibility, sales-rebate, 
franchise, and quantity discount contracts to name 
just a few. All have their strengths and weakness 
and are applicable in different settings. Many con-
tracts are based on newsvendor principles (Lariviere, 
2016). Another important concept in contract 
design is the idea of Pareto improving contracts, 
where no player is worse off than the (locally opti-
mised) base case, but at least one other player is bet-
ter off. Other contracts allow for the arbitrary 
allocation of profits between players, and for the 
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delegation of decision-making activities to others 
(Chintapalli et al., 2017).

3.24.8. Emerging topics in the field of supply 
chain management
Emerging topics in the SCM field include:

� The distributed ledger technology behind block 
chains (Babich & Hilary, 2020) and cryptocurren-
cies (Choi, 2020) can be used to create a perman-
ent record of provenance and ownership. 
Ensuring your cotton has not been produced by 
slaves, your diamonds are not conflict, and chil-
dren did not mine your Lithium is vital now as 
UK Directors can face prison time under the 
Proceeds of Crime Act for crimes committed in 
their supply chains.

� Opaque pricing is a technique used to sell last 
minute travel industry inventory (e.g., hotel 
rooms) at discounted prices. The traveller books 
a room without knowing the exact hotel brand. 
Cost sensitive travellers are happy because they 
get a bargain. The hotel is happy because they 
get extra income without damaging their brand. 
Opaque pricing can be used for products as well; 
for example, a red pen sells for $10, and a blue 
pen sells for $10, but if you don’t care which col-
our you have, a red-or-blue pen is offered at the 
opaque price of $8. The vendor is able to use the 
customer’s lack of preference to reduce inventory 
requirements (Ren & Huang, 2022).

� Quantum computing allows one to solve 
NP-hard problems (such as the travelling sales-
man problem) to optimality instantaneously, 
rather than waiting for months with regular 
computers (Srinivasan et al., 2018). This technol-
ogy has the potential to make supply chains 
more efficient.

3.25. Sustainability72

In this subsection, we focus on the area of sustain-
able operations from the perspective of closed-loop 
supply chains (CLSC). We consider literature that 
focuses on product-, module/part-, and material- 
level recovery and reuse activities. These activities 
provide economic and environmental benefits. 
CLSC entail transportation and acquisition of used 
products; sorting, grading and disposition for differ-
ent recovery methods; disassembly and reassembly 
(i.e., remanufacturing operations); and marketing of 
remanufactured products. Guide and Van 
Wassenhove (2003) and Ferguson and Souza (2010) 
provide comprehensive overviews of the strategic, 
tactical, and operational aspects of CLSC.

The supply side in CLSC differs from traditional 
supply chains in the following ways. The quantity of 
used products being returned is uncertain; the tim-
ing of when they are returned is uncertain; and the 
condition (quality) in which they are returned is 
also uncertain. These differences lead to uncertain 
recovery rates and processing times, uncertain cost 
of recovery, and imperfect matching between supply 
of used products and demand for remanufactured 
products, and hence the subsequent demand for 
new parts needed to make the remanufactured (fin-
ished) product. Below, we provide a brief overview 
of some of the methods used to optimise the differ-
ent activities in CLSC, while managing these 
uncertainties.

The reverse logistics (RL) network (see also §3.14) 
handles the collection of used products from end- 
users, and their transportation between collection 
points, consolidation centres, testing, sorting, and 
grading facilities, and recovery (e.g., remanufactur-
ing, reuse, recycling) facilities and landfill locations. 
Stylised and game-theoretic models are developed to 
determine the optimal collection strategy for pro-
ducers (if they choose to, or are required to collect 
used products). The collection strategy includes 
decisions on whether producers should collect dir-
ectly from end-users, or use the retail network as 
collection points, or use third-party collectors (e.g., 
Savaskan & Van Wassenhove, 2006). In further ana-
lysis of the collection strategy, the continuous 
approximation method is used to determine whether 
the producer (or business) should offer to pick-up, 
or have end-users drop-off the used product (e.g., 
Fleischmann, 2003).

Several quantitative models are developed to 
determine the optimal RL network design. An 
extensive discussion of these models and solution 
approaches can be found in Akçalı et al. (2009). 
Linear programming, mixed-integer linear program-
ming (MILP), and stochastic programming are 
widely used to determine optimal network struc-
tures. Fleischmann et al. (2004) provide and excel-
lent overview of MILP and stochastic programming 
models for facility location and network design for 
dedicated reverse, and integrated (forward and 
reverse) logistics networks. Mixed-integer nonlinear 
programming models are also sometimes used to 
determine the optimal RL network structure (e.g., 
de Figueiredo & Mayerle, 2008). In addition to opti-
mal network design, vehicle routing models (§3.32) 
are used to determine optimal collection and pick- 
up routes. These vehicle routing problems are often 
NP-hard, and are based on location of demand: 
node, arc, and general. The models are extended to 
include vehicle routing with backhaul, routing with 
simultaneous delivery and pick-up, and routing with 
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partially mixed deliveries and pick-ups (see Beullens 
et al., 2004, and references therein).

One way of managing the supply uncertainty in 
CLSC is to forecast the return of used products. 
Different methods are used to compute the product 
return probability. These include modelling returns 
as a function of past sales (via a known delay distri-
bution), regression models (Samorani et al., 2019), 
simulation models, and queueing models (e.g., 
Toktay et al., 2000)

Buyers of used products (i.e., producers or their 
contract-remanufacturers, and third-party remanu-
facturers) actively manage the supply uncertainty 
(timing, quantity, and quality) by using incentive 
mechanisms such as quality-based pricing, trade-ins, 
and buybacks. Buyers acquire used products either 
in sorted (i.e., known quality-levels) or unsorted 
(i.e., unknown quality-levels) form. Lot-sizing mod-
els are developed to determine the optimal acquisi-
tion quantity when the used products are available 
in unsorted form (e.g., Galbreth & Blackburn, 2006); 
and when they are available in sorted (continuous 
or discrete quality-levels) form (e.g., Mutha et al., 
2016). The acquisition process has also been ana-
lysed in the context of buyer-supplier contracts. The 
objective of these analyses is to determine the opti-
mal contract structure with known or unknown 
quality levels, e.g., quality-dependant acquisition 
costs and quantities (Mutha et al., 2019), and coord-
ination mechanisms (Debo et al., 2004; Vedantam & 
Iyer, 2021; Li et al., 2023). Several models are also 
developed to determine the optimal acquisition cost 
for used products and selling price for remanufac-
tured products for an exogenous set of discrete 
quality-levels of used products (e.g., Guide et al., 
2003).

Testing, sorting, and grading of the acquired used 
products are important activities in product recov-
ery operations. Hahler and Fleischmann (2017) pro-
vide a detailed description of these operations for 
used consumer electronics. Sorting defective, and 
economically and technically infeasible-to-remanu-
facture units from the acquired quantity streamlines 
the subsequent operations (e.g., transportation, dis-
assembly, and reassembly). Knowing the quality of 
the incoming units before scheduling recovery oper-
ations significantly improves the performance of the 
system. The benefit of yield information (i.e., infor-
mation on the quality distribution of the incoming 
units) has been analysed using lot-sizing models and 
simulation models (e.g., Ketzenberg et al., 2003). 
Several models are developed to optimise the differ-
ent decisions in the grading process, e.g., the opti-
mal number of grades (e.g., Ferguson et al., 2009), 
the resulting optimal grade-wise remanufacturing 
cost and selling price (e.g., Mutha & Bansal, 2023), 

and the optimal location and timing of the sorting 
and grading process, for example at the point of col-
lection/return or at the disassembly stage (e.g., 
Guide et al., 2006; Zikopoulos & Tagaras, 2008).

The disposition of sorted and graded used prod-
ucts typically involve a problem of optimal assign-
ment of the economically and technically 
recoverable units to different recovery options, e.g., 
product-level recovery (i.e., remanufacturing); mod-
ule/part-level recovery (i.e., reuse for making rema-
nufactured and new products, or for spares); and 
the non-recoverable products for material-level 
recovery (i.e., recycling). The assignment decisions 
are usually based on considerations of supply (yield 
information, processing times, and costs) and 
demand (revenue, opportunity cost, and inventory 
cost). Optimal control models (e.g., Inderfurth et al., 
2001) and revenue management-based models (e.g., 
Pinçe et al., 2016; Calmon & Graves, 2017; Calmon 
et al., 2021) are widely used to determine optimal 
disposition decisions. Depending on the type of the 
product, single-period models (for products with 
short lifecycles, e.g., cellphones) and multiperiod 
models (for products with long lifecycles, e.g., 
engines) are used in the disposition analyses. For 
example, €Ozdemir-Akyıldırım et al. (2014) formu-
late the optimisation problem as a multiperiod 
Markov decision process (MDP) and provide a lin-
ear-programming model for solving the determinis-
tic approximation of the MDP model.

Within the production planning and control lit-
erature in CLSC, a relatively small part has focused 
on disassembly planning and sequencing, and 
material requirement planning (MRP). Inderfurth 
et al. (2004) provide an extensive overview of the 
various optimisation models developed to optimise 
these elements, including shop floor control rules, 
in remanufacturing-only and hybrid (joint manufac-
turing and remanufacturing) systems. Disassembly 
sequencing is mainly analysed using direct graphs 
(see Lambert, 2003, and §2.12), and MRP decisions 
are analysed from an inventory control perspective 
(e.g., Inderfurth & Jensen, 1999; Ferrer & Whybark, 
2001). A significant part of the literature on CLSC 
has focused on inventory management. Optimal 
inventory control policies are derived using peri-
odic-review models (e.g., Teunter et al., 2004; Zhou 
et al., 2011) and continuous-review models (e.g., van 
der Laan et al., 1999; Toktay et al., 2000; Jia et al., 
2016). The single-period newsvendor-like models 
are largely analysed as acquisition lot-sizing models 
(discussed in the preceding paragraphs).

The research on market (selling)-related aspects 
of CLSC is focused around understanding the profit 
and pricing implications due to the co-existence of 
new and remanufactured products in the (same) 
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market, and on understanding the customers of 
remanufactured products. Optimisation models are 
developed to determine the pricing and profitability 
of remanufactured products (e.g., Ovchinnikov, 
2011; Abbey et al., 2015). Game-theoretic models 
are developed to determine optimal market-seg-
ments (based on pricing) for new and remanufac-
tured products (e.g., Debo et al., 2005; Atasu et al., 
2008). The market for- and customers of- remanu-
factured products are mostly analysed using empir-
ical methods, e.g., using sales data from websites 
selling used and remanufactured products, usually 
accompanied by customer surveys (e.g., Guide & Li, 
2010; Subramanian & Subramanyam, 2012). 
Behavioural experiments are used to understand 
consumer perceptions (e.g., quality, functionality), 
their acceptance (and rejection), and willingness to 
pay for remanufactured products (e.g., Abbey et al., 
2017, and references therein).

3.26. Telecommunications73

Operational Research plays a key role in the design 
and management of telecommunication networks. A 
large variety of applications of both exact methods 
and heuristics can be found in the literature. We 
focus here on the applications for wired networks.

3.26.1. Topological network design
The earliest works on telecommunication networks 
focused on wired fixed line telephony. For the long- 
term planning of these networks, clients’ demands 
are not known in advance, or with a lot of uncer-
tainty. This often gives rise to two-stage approaches 
where only the fixed cost of opening links are con-
sidered first, and the decisions on routing and cap-
acity allocation taken in a second (later) stage. This 
approach is relevant when the fixed costs are very 
high compared to routing and capacity costs, and/or 
when topological decisions do not affect capacity 
decisions too much . For example, digging a trench 
to install fiber optic cables is very costly, while 
increasing capacity can be done by adding or 
upgrading equipment into nodes, which is relatively 
simple and cheap. The objective is to build a net-
work at minimum cost, considering only the fixed 
cost associated with opening a link, ignoring cap-
acity and routing costs.

Two main issues appear in the planning process 
of such networks: economy and survivability. 
Economy refers to the construction cost, while sur-
vivability refers to the restoration of services in the 
event of equipment failure. A network is called a 
tree if it is connected (i.e., there exists a path 
between all pairs of nodes), and removing any link 
disconnects at least one pair of nodes. Trees satisfy 

the primary goal of minimising the total cost while 
connecting all nodes. The minimum cost spanning 
tree problem therefore received a lot of attention, 
see e.g., Magnanti and Wolsey (1995).

However, only one node or edge breakdown 
causes a tree network to become disconnected and 
therefore to fail in its main objective of enabling 
communication between all pairs of nodes. This 
means that some survivability constraints have to be 
considered while building the network. Usually, 
these constraints come in the form with k-connect-
ivity requirements, i.e., the ability to restore network 
service in the event of a failure of at most k – 1 
components of the network. In their earliest 
work on the subject, Gr€otschel and Monma (1990) 
introduced a general model for survivability 
requirements, and studied the polytope associated 
with an integer programming formulation of the 
problem.

The minimum-cost two-connected spanning net-
work problem, that consists in finding a network 
with minimal total cost for which two node-disjoint 
paths are available between every pair of nodes, was 
studied extensively, starting with the work of 
Monma and Shallcross (1989). Such networks have 
been found to provide a sufficient level of surviv-
ability in most cases, but it turns out that the opti-
mal solution of this problem is often very sparse. In 
such a topology, primary routing paths and re-rout-
ing paths in case of failure might become very long, 
introducing large delays in the network.

Two kinds of solutions have been proposed to 
remedy this problem: The first one imposes a con-
straint on the length of the paths (in terms of num-
ber of links crossed), the so-called hop-constrained 
models. The second approach consists of imposing 
that each edge belongs to at least one cycle (or ring) 
whose length is bounded by a given constant.

Hop-constraints were first considered by 
Balakrishnan and Altinkemer (1992) in order to 
generate alternative solutions for a network design 
problem. Later on, Gouveia (1998) presented a lay-
ered network flow reformulation that has since been 
used in many network design applications involving 
hops-constraints.

The second approach to avoid long re-routing 
paths in case of failure is based on the technology 
of self-healing rings. These are cycles in the network 
equipped in such a way that any link failure in the 
ring is automatically detected and the traffic 
rerouted by the alternative path in the cycle. Many 
problems involve setting a bound on the length of 
the ring including each edge. Network design prob-
lems with bounded rings were first studied in Fortz 
et al. (2000).
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3.26.2. Location problems
Location problems play a central role in telecommu-
nications network design. We focus here on prob-
lems arising in wired (optical) telecommunications 
networks. These problems are mostly concerned 
with decisions related to the placement of specific 
equipments into nodes of the network, and are 
closely related to hub location problems (Alumur & 
Kara, 2008).

The Concentrator Location Problem is probably 
the most basic application of equipment placement. 
The problem consists of determining the number 
and location of concentrators that are used to aggre-
gate end-user demands before sending them on the 
backbone network. The allocation of end-users 
demands to the concentrators has also to be deter-
mined such that the capacities of the concentrators 
are not exceeded. This problem has received much 
attention in the literature, starting with the work of 
Pirkul (1987).

Another classical problem arises with the replace-
ment of an old technology by a new one, e.g., when 
telecommunications companies replace outdated 
copper twisted cable connections by fiber optic con-
nections. The Connected Facility Location Problem 
(ConFL) aims at optimising the building cost for 
networks involving the two technologies, which is 
modeled as tree-star networks: the core network, 
made of fiber optic connections, has a tree topology 
and interconnects multiplexers that switch traffic 
between fiber optic and copper connections. Each 
multiplexer is the centre of a star-network of copper 
connections to the customers. Early work on ConFL 
concentrated on approximation algorithms, such as 
the primal-dual procedures proposed by Swamy and 
Kumar (2004). The currently best-known constant 
approximation ratio is given by the 4-approximation 
algorithm of Eisenbrand et al. (2010). Heuristic 
approaches have been proposed by Ljubi�c 
(2007) and Bardossy and Raghavan (2010). Different 
Mixed Integer Programming models for 
ConFL were proposed by Gollowitzer and Ljubi�c 
(2011).

In addition to these long-term design problems, 
operational short-term decisions are related to the 
routing of demands in the network, with a focus on 
avoiding congestion. Most networks nowadays oper-
ate the Internet Protocol. The internet is a collection 
of inter-connected networks called autonomous sys-
tems, that operates under a hierarchy of layers. An 
Autonomous System (AS) is defined as a set of 
routers under a single technical administration, such 
as an internet service provider or a country. As 
of July 2022, over 100, 000 ASes were 
registered74, connecting over 5 billion internet users 
worldwide75.

3.26.3. Traffic engineering
Traffic engineering (TE) addresses the problem of 
efficiently allocating resources in the network so 
that user constraints are met. Several criteria can be 
used to measure the effectiveness of a routing con-
figuration. The selection of the objective function 
may drastically change the quality of the resulting 
routing. This distinction has been illustrated in 
Pi�oro and Medhi (2004). Balon et al. (2006) discuss 
various TE objective functions and evaluate how 
well these objective functions meet TE 
requirements.

The internet routing protocols can be clustered 
into two main groups: inter-domain and intra- 
domain. While inter-domain are used to route traf-
fic between ASes, Interior Gateway Protocols (IGPs) 
handle the routing within ASes. As inter-domain 
protocols are mostly governed by administrative and 
political considerations, there is not much room for 
Operational Research techniques to be applied for 
performing TE. On the other hand, the optimisation 
of IGPs have received a lot of attention. The most 
popular IGPs are based on shortest path routing: 
shortest paths are calculated using a link metric sys-
tem, which corresponds to the set of link weights or 
link metrics that belong to the same AS. The net-
work operator controls the routing of the traffic 
indirectly by setting the link metrics. This gives rise 
to very challenging optimisation that have mostly 
been tackled heuristically by many authors, starting 
with the seminal work of Fortz and Thorup (2000). 
Some exact models have also been proposed, e.g., by 
Pi�oro et al. (2000).

Recently, Filsfils et al. (2015) proposed Segment 
Routing (SR), a new routing protocol developed to 
address known limitations of traditional routing 
protocols in IP networks. SR offers the possibility to 
deviate from the shortest path by using detours in 
the form of nodes or links respectively called node 
segments and adjacency segments. Optimisation of 
SR is a very active field of research and has been 
already addressed in Bhatia et al. (2015); Hartert 
et al. (2015); Jadin et al. (2019).

3.26.4. Further readings
For surveys on survivable network design, we refer 
the reader to Christofides and Whitlock (1981); 
Kerivin and Mahjoub (2005); Fortz and Labb�e 
(2006); Fortz (2021). Location problems in telecom-
munications are surveyed in Skorin-Kapov et al. 
(2006); Fortz (2015) and a unified view on location 
and network design problems was proposed by 
Contreras and Fern�andez (2012). For a detailed sur-
vey on the Concentrator Location Problem, see 
Chapter 2 in Yaman (2005). Traffic engineering 
with shortest paths routing protocols is covered in 
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the surveys of Bley et al. (2009); Fortz (2011); Altın 
et al. (2013).

3.27. Timetabling76

Timetabling represents a particular subgroup of 
scheduling problems, namely the set of problems for 
which activities must be assigned to resources 
within a set of fixed timeslots. Nevertheless, the two 
disciplines, scheduling and timetabling, are tightly 
related and benefit from mutual advancements in 
both modelling and method development.

Practical timetabling problems appear in many 
sectors, for example, in education, healthcare, sports 
and public transportation. They have been drawing 
academic attention for a few decades, partly because 
they are easy to grasp but challenging to solve. The 
timetabling community gathered at its first inter-
national conference in Edinburgh in 1995, one year 
before the Association of European Operational 
Research Societies (EURO) established a EURO 
Working Group on the Practice and Theory of 
Automated Timetabling (EWG PATAT 1996). Ever 
since the third conference, which took place in 
2000, the timetabling community has gathered 
every two years77 to share ideas on both theoretical 
and practical aspects of timetabling.

This subsection provides a brief overview of time-
tabling history, while highlighting what makes time-
tabling problems computationally challenging, which 
initiatives have boosted timetabling research and 
how state-of-the-art knowledge, models and algo-
rithms can be applied in practice. We restrict the 
discussion to timetabling problems involving human 
resources, such as students, teachers, healthcare 
workers and sports teams.

3.27.1. Problem definition
Let us consider a set of timeslots T ¼ f1, :::, jTjg, a 
set of activities A ¼ f1, :::, jAjg and a set of resour-
ces R ¼ f1, :::, jRjg: A timetabling problem then 
consists in assigning (all) the activities in A to 
resources in R and timeslots in T in such a way that 
a set of constraints is met. Constraints may apply to 
resources, timeslots and activities. They usually 
restrict the number of assignments to certain 
resources within subsets of T.

Constraints are usually divided into two catego-
ries: hard constraints, which must be strictly satis-
fied, and soft constraints, for which violations may 
be tolerated but should be avoided if possible. 
Weights may be set on the soft constraints, denoting 
their relative importance. A common timetabling 
objective is to minimise the weighted sum of soft 
constraint violations. This objective sometimes has 
to be combined with other timetabling objectives, 

for example, to minimise the cost associated with 
the employed resources.

3.27.2. Educational timetabling
Educational timetabling problems can be split into 
three major groups: university examination timeta-
bling, university course timetabling and high-school 
timetabling. In examination timetabling, the task is 
to assign examinations in A to a limited number of 
timeslots in T and rooms in R such that no student 
has more than one exam at a time. Each student’s 
exams should be spread out in time as much as pos-
sible. Additional constraints may include precedence 
constraints between exams, special room require-
ments, and limited room capacities. Course timeta-
bling involves the assignment of course sections 
(lectures, tutorials, lab sessions, seminars) to specific 
days of the week and times of the day. Real-world 
problems may require sectioning, when students 
have to be split into separate subgroups for different 
sections. Typically, the objective is to minimise the 
number of students’ conflicts. High-school timeta-
bling assumes that students are split into classes and 
each class has to take a set of resources. Given a set 
of timeslots, each activity (involving both a student 
group and a teacher) must be assigned to a timeslot 
so that no teacher and no student group are partici-
pating in more than one activity at a time. Most 
practical problems have additional constraints; for 
example, teachers may have limited availability and 
some activities may require more than one timeslot. 
In general, educational timetabling problems are 
NP-hard (de Werra et al., 2002). Additionally, the 
constraints often pose a feasibility challenge.

The educational timetabling community made a 
considerable effort to create rich sets of benchmark 
instances to be used for comparing methods. The 
first set of examination timetabling instances was 
defined by Carter et al. (1996). Four competitions 
on educational timetabling, entitled ITC-2002 
(McCollum, 2002), ITC-2007 (McCollum et al., 
2007), ITC-2011 (Post et al., 2016) and ITC-2019 
(M€uller et al., 2018), further advanced the develop-
ment of timetabling algorithms. Post et al. (2012) 
developed a general format and benchmark instan-
ces for high-school timetabling, which were 
extended later by Post et al. (2014). Ceschia et al. 
(2022) published a review of educational timeta-
bling, presenting detailed characteristics of all 
benchmark instances and state-of-the-art results. 
OPTHUB78 provides a common platform for storing 
problem instances and solutions to selected opti-
misation problems, including educational 
timetabling.
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3.27.3. Personnel timetabling
Personnel timetabling, also referred to as employee 
timetabling or rostering, concerns the construction 
of a timetable for personnel in R in such a way as 
to satisfy coverage constraints throughout a time 
horizon (Ernst et al., 2004). The timeslots in T often 
represent shifts, which correspond to tasks or duties 
in A. Some activities may require certain skills, and 
hence can only be conducted by a subset of R. 
Many work-rest-related objectives are formulated in 
terms of time-related constraints, restricting, for 
example, the number of hours worked, the number 
of weekends worked, the number of consecutive 
night shifts (Burke et al., 2004a). Additionally, per-
sonnel rostering problems typically consider per-
sonal preferences as regards working time or days 
off. Whereas the problem is generally considered 
NP-hard, Smet et al. (2016) showed that some per-
sonnel rostering problems are polynomially solvable, 
provided they do not contain a particular class of 
constraints. De Causmaecker and Vanden Berghe 
(2011) developed a categorisation of personnel ros-
tering problems, based on the characterisation of 
resources, objectives and constraints. Kingston et al. 
(2018b) complemented this work by providing a 
unified notation for nurse rostering problems.

The Practice and Theory of Automated 
Timetabling (PATAT) community organised two 
International Nurse Rostering Competitions, entitled 
INRC I and INRC II. The problem definition of 
INRC I (Haspeslagh et al., 2014) was based on the 
instances collected by Burke and Curtois (2014). 
INRC II (Ceschia et al., 2019) incorporated real- 
world constraints concerning subsequent rostering 
horizons. The competition datasets have been col-
lected and published79.

Apart from the constraints and objective func-
tions considered in the two INRCs, some sectors 
expect their personnel rosters to be cyclic (Musliu, 
2006; Rocha et al., 2013). Recent trends also include 
objectives related to fairness (Gross et al., 2019) and 
well-being (Petrovic et al., 2020). Objective priorities 
set by the users may lead to unwanted solutions. To 
address this issue, B€oðvarsd�ottir et al. (2021) devel-
oped an approach to automatically set acceptable 
weights which avoid conflicting objectives from 
leading to poor solutions.

3.27.4. Sports timetabling
Sports timetabling problems often address tourna-
ment or competition scheduling. They require 
assigning sports activities in A, represented by pairs 
of teams in R, to timeslots in T in such a way that 
each team meets all the other teams. Constraints 
depend on the competition’s rules, which may differ 
in different parts of the world (Ribeiro, 2012; 

Dur�an, 2021). Specific sports timetabling constraints 
prescribe that teams must not meet the same 
opponent within consecutive timeslots, or that the 
number of consecutive home or away games is 
restricted. The travelling tournament problem 
(TTP), introduced by Easton et al. (2001), is an aca-
demic adaptation of the Major League Baseball com-
petition in the United States. The objective of the 
TTP is to minimise the sum of travelling distances 
for each team. Travelling umpire scheduling (Trick 
et al., 2012) is subject to similar constraints, but it 
assumes that the tournament is fixed and that each 
game is assigned an umpire.

Rasmussen and Trick (2008) provided a review 
on round robin sports timetabling, where each team 
plays against each other team twice, once at home 
and once away. Drexl and Knust’s (2007) review 
focused on graph-theoretical approaches to sports 
timetabling. Briskorn et al. (2010) investigated the 
complexity of several variants of the round-robin 
tournament problem, and similarly, de Oliveira 
et al. (2015) studied the complexity of travelling 
umpire scheduling problems. The characteristic 
sports timetabling constraints, which forbid the 
assignment of activities to subsets of T, can be chal-
lenging in terms of feasibility.

Trick (2001) and Toffolo et al. (2015) boosted 
sports timetabling research by publishing challeng-
ing benchmark instances and monitoring best 
known and/or optimal results. Van Bulck et al. 
(2021) organised the first international sports time-
tabling competition, for which the instances are 
available at the website of STT (2021).

3.27.5. Timetabling and related problems
Academic timetabling problems are often considered 
in isolation from other problems. However, many 
real-world situations face timetabling entangled with 
other optimisation problems. Solutions for one of 
them have an impact on the solution for the other 
problems. For example, the staffing problem is con-
cerned with optimising a group of human resources 
and their characteristics such as skills and contracts 
in an organisation, across a relatively large time 
horizon. From a staffing perspective, the personnel 
structure should adequately cover the organisation’s 
anticipated workload while respecting the available 
budget. On the other hand, from a rostering per-
spective, the personnel structure should enable com-
puting good quality rosters across many subsequent 
rostering periods (Komarudin et al., 2020). 
Similarly, task scheduling usually assumes personnel 
rosters are fixed, but both problems can also be 
addressed in an integrated manner (Paul & Knust, 
2015). The workforce routing and scheduling prob-
lem is related to vehicle routing. Apart from 
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scheduling a fleet of vehicles to serve a set of cus-
tomers, timetabling issues, such as temporal con-
straints, contracts and skills are also imposed on the 
problem (Castillo-Salazar et al., 2016). Some produc-
tion scheduling and inventory problems are subject 
to additional timetabling restrictions which apply to 
their employees (Sartori et al., 2021).

3.27.6. Where do we stand and what is the future
Academic timetabling has made good progress and 
instances, models and algorithms have been shared 
and published. For example, the heuristic search 
strategies Step Counting Hill-climbing (Bykov & 
Petrovic, 2016) and Late Acceptance Hill-climbing 
(Burke & Bykov, 2008) were initially developed for 
solving timetabling problems. Due to their simplicity 
and effectiveness, they continue to be used in a 
much wider application domain by many computa-
tional experts.

So long as some instances remain unsolved, or 
solutions for instances have not been proven opti-
mal, algorithm development remains open for 
improvement. Future challenges may also apply to 
new combinatorial optimisation problems encom-
passing a timetabling component. They may not 
necessarily map to any of the three timetabling cate-
gories detailed in this chapter. However, they may 
gain importance due to either increased practical 
need or academic initiatives, such as the publication 
of benchmarks or the organisation of competitions.

Apart from these future computational chal-
lenges, timetabling research should also focus on 
how to address human resources’ considerations. 
Besides the traditional work-rest constraints and 
objectives, academia should also reconcile personnel 
well-being with their perception of fair workload 
within a team and with their level of autonomy in 
determining their personal timetables. Research 
should also focus on how to address the increasing 
personnel resignation in human-centric working 
environments such as education and healthcare. 
Robust timetabling, for example, has a lot of poten-
tial and at the same time induces scientifically inter-
esting modelling questions.

3.28. Transportation: Rail80

The transportation of goods and passengers by rail 
has played an important role in the evolution of 
industrialised societies, contributing to their devel-
opment and prosperity. Rail freight transport still 
holds critical importance in supporting the eco-
nomic growth of many countries around the world 
due to its contribution to guaranteeing an efficient 
flow of goods internally and across borders. 
Furthermore, rail transportation is also essential for 

the movement of people, being the preferred trans-
portation mode for commuters in many large urban 
areas. This preponderant role also affects the 
internal mobility of cities. First, a differentiation 
must be made between freight and passenger trans-
port. Freight trains are longer and heavier than pas-
senger trains, and can often have multiple 
propulsion units. Compared to that, passenger trains 
are much lighter and have more horsepower per 
tonne. There are also important planning and oper-
ational differences, whereas passengers decide freely 
where they will travel, each load of freight must be 
managed and routed from a specific origin to its 
destination. These differences originate very differ-
ent problems in both areas. Even in passenger trans-
portation, different problems arise depending on the 
type of service; long- and medium-distance, com-
muter rail, urban rapid transit, and scenic and sight-
seeing train transportation; see, for instance, 
Caprara et al. (2007).

Despite all these differences, a set of common 
hierarchical stages can be highlighted in the process 
of planning and operating a rail transportation sys-
tem (Bussieck et al., 1997): network design and/or 
line planning, timetabling, platforming, rolling stock 
circulation, shunting, and crew planning.

At a strategic level, the problems are character-
ised by long planning horizons and typically involve 
resource acquisition. This level includes network 
design and line planning problems. The first refers 
to the construction or modification of existing rail-
way infrastructure and mainly concerns urban rapid 
transit systems. For a railway company or agency, 
the line planning problem consists of defining a set 
of lines and determining their frequencies, and it is 
usually the first stage in planning medium and 
long-distance passenger rail networks.

Bussieck et al. (2004) considered the design of 
line plans in public transport with the objective of 
minimising the total cost. Goossens et al. (2006) 
presented several models for solving line planning 
problems in which lines can have different halting 
patterns. Laporte et al. (2007) proposed a first rail-
way rapid transit network design model to maximise 
the expected trip coverage. Guti�errez-Jarpa et al. 
(2013) presented a model to minimise travel cost 
while maximising the captured demand. See also 
Laporte and Pascoal (2015) for an extension where 
the idea consists of first building a set of segments 
within broad corridors connecting some vertex sets 
to later assemble the segments into lines.

A different set of works pays attention to the for-
mulation of network design models from scratch. 
Starting from an underlying network, these models 
construct lines by joining edges, incorporating topo-
logical constraints to guarantee connectivity between 

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 535



consecutive edges of each line. This approach gives 
rise to complex models which are quite difficult to 
solve using exact procedures; see, for instance, the 
work by Szeto and Jiang (2014), or the recent works 
by Canca et al. (2017) and Canca et al. (2019) which 
concern the design of a railway rapid transit 
network.

For a comprehensive review of the different 
methodologies used in practice to solve this prob-
lem, the readers can consult the review of Guihaire 
and Hao (2008). More recent reviews of Sch€obel 
(2012) and Ibarra-Rojas et al. (2015) present a sys-
tematic classification of problem variants, consid-
ered objectives and solving methodologies.

At the tactical level, the next stage in planning a 
railway system consists of several problems, starting 
with scheduling and timetabling, followed by rolling 
stock planning, crew rostering, and crew scheduling. 
The timetabling problem concerns the determin-
ation of the arrival and departure times of trains to 
stations. When overtaking and overlapping are 
allowed, the timetabling problem becomes a train 
scheduling problem. Timetables can be cyclic, regu-
lar, hybrid, and demand-driven. Concerning the 
design of cyclic timetables, Caprara et al. (2002) 
proposed a graph-theoretic formulation for the train 
timetabling problem using a directed multigraph in 
which nodes correspond to departures and arrivals 
at a certain station at a given time instant. Liebchen 
and M€ohring (2002) used a Periodic Event 
Scheduling problem (PESP) with several add-ons 
concerning problem reduction and strengthening. 
Chierici et al. (2004) extended the classical timeta-
bling model to take into account the reciprocal 
influence between the quality of a timetable and the 
transport demand captured by the railway with 
respect to alternative means of transport. Cacchiani 
et al. (2008b) proposed heuristic and exact algo-
rithms for the (periodic and non-periodic) train 
timetabling problem on a corridor.

Regular timetables have been commonly used in the 
case of railway rapid transit systems, especially at rela-
tively short time planning horizons where demand can 
be considered approximately constant. Canca et al. 
(2016) proposed a sequential optimisation approach to 
determine the best regular timetable for a railway rapid 
transit network where lines share tracks. Canca and 
Zarzo (2017) incorporated aspects of energy consump-
tion in the design of a two-way rapid rail transit line. 
Later, Canca et al. (2018) extended the previous work 
to a full network, taking into account transfers between 
lines. Robenek et al. (2017) proposed a new type of 
timetable combining both the regularity of the cyclic 
timetables and the flexibility of the non-cyclic ones.

During recent years, starting from the works of 
Canca et al. (2014) and Niu and Zhou (2013) many 

researchers have paid attention to the design of 
demand-driven timetables (see, for instance, Barrena 
et al., 2014a, 2014b). The design of a specific train 
timetable can be combined by using different acceler-
ation strategies such as stop-skipping and short-turning. 
For example, given predetermined train skip-stop pat-
terns, Niu et al. (2015) proposed a quadratic integer 
programming model with linear constraints to syn-
chronise effective passenger loading and train arrival 
and departure times at stations. Zhou et al. (2022) pro-
posed a mixed integer linear programming model to 
jointly optimise the train timetable and the rolling stock 
circulation plan, allowing rolling stock to change its 
composition through coupling/decoupling operations at 
the terminal stations of a metro line. Yuan et al. (2022) 
introduced a new integrated optimisation model for 
train timetabling that also considered rolling stock 
assignment and incorporated a short turn strategy on a 
bidirectional metro line.

Several authors have also proposed methods to 
increase the transport capacity of a given timetable (see 
Burdett & Kozan, 2009). Cacchiani et al. (2010) studied 
the problem of incorporating freight transport trains in 
railway networks, where both passenger and freight 
trains are running. To finish this description of the OR 
contributions for the train timetabling problem, a spe-
cial mention of the work by Kroon et al. (2009) is con-
venient. In this research, the authors generated several 
real timetables using Operational Research techniques 
for the Dutch railway network.

Rolling stock management is probably the most 
complex stage in the classical sequential railway 
planning process and plays a key role in the efficient 
operation of railway networks. At a tactical level, 
the rolling stock circulation plan consists of a set of 
interrelated subproblems such as train composition 
decisions (coupling and decoupling operations 
involving locomotives and carriages), selection of 
rest locations, the design of vehicle circulations (spe-
cific paths that vehicles must follow to guarantee an 
efficient and safe operation), and the definition of 
maintenance policies (Caprara et al., 2007). In a 
general rolling stock circulation problem, every train 
circulation has a variable length (distance and num-
ber of days) and incorporates information about the 
allowed specific rolling stock types, composition, 
coupling/decoupling operations, maintenance and 
cleaning activities. (Mar�oti & Kroon, 2005, 2007). 
Other practical considerations such as rolling stock 
availability, depot capacity (Lai et al., 2015), cou-
pling and decoupling activities (Fioole et al., 2006), 
turnaround times, maintenance (Mar�oti & Kroon, 
2007), and track and platform capacities are simul-
taneously considered depending on the specific 
problem. Given the importance of this topic within 
the set of planning tasks, other contributions have 
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been proposed for different problems concerning 
rolling stock management, as, for instance, deter-
mining a set of minimum cost equipment cycles 
such that the most convenient rolling material is 
assigned to each planned trip Cordeau et al. (2000) 
or obtaining the optimal circulation of rolling stock 
considering order in train compositions (Alfieri 
et al., 2006; Peeters & Kroon, 2008). Maintenance 
also plays an important role in several rolling stock 
management contributions, see, for instance, the 
works by Mar�oti and Kroon (2005); Giacco et al. 
(2014) and D’Ariano et al. (2019). Robustness is 
another topic of interest in the related literature. 
Interested readers can consult the works by 
Cacchiani et al. (2008a, 2012).

After rolling stock management, the crew scheduling 
process determines the set of duties that covers all pro-
grammed services (Caprara et al., 1998). Finally, the 
crew is assigned to serve the crew schedule and the 
corresponding train services (Huisman et al., 2005). 
The rostering process aims at determining an optimal 
sequencing of a given set of duties into rosters satisfy-
ing operational constraints deriving from union con-
tract and company regulations (Caprara et al., 2003).

To finish this section, two important problems of 
rail freight transportation are briefly commented. The 
first concerns the strategic design of freight transport 
networks and the second concerns the tactical oper-
ation of marshalling yards. Concerning the design of 
service networks, Crainic et al. (1984) analysed the 
problems of routing freight traffic, scheduling train 
services, and allocating classification activities between 
yards on a rail network. Crainic et al. (1990) developed 
a model of rail freight transportation adapted for the 
strategic planning of freight traffic considering other 
transportation modes. Zhu et al. (2014) addressed the 
problem of scheduled service network design for freight 
rail transportation integrating service selection and 
scheduling, car classification and blocking, train 
makeup, and shipments routing based on a three-layer 
cyclic space-time network representation.

Shunting yards, also known as marshalling or 
classification yards, play a key role in rail freight 
transport networks, acting as hubs where inbound 
trains are first disassembled and the carriages are 
then to form new convoys, generating new trains 
which transport the load towards the correct desti-
nations. This procedure allows carriages to be sent 
through the network according to their destinations 
without the need for many connections. Therefore, 
time savings in shunting operations (Jaehn et al., 
2015) have a great impact on cost savings in the 
movement of freight through the rail network 
(Boysen et al., 2012). In passenger transportation, 
shunting operations focus on train units that are 
not necessary to operate a schedule and must be 

parked at shunt yards. Since different types of trains 
use the rail infrastructure, the specific type of a unit 
restricts the set of shunt tracks where they can be 
parked. The aim of this problem is to assign train 
locations to the shunt tracks while minimising rout-
ing costs from platforms to the corresponding shunt 
tracks (Huisman et al., 2005; Kroon et al., 2008). 
For a more detailed description of the optimisation 
problems involved in shunting operations, we refer 
the reader to the works by Jaehn and Michaelis 
(2016) and Ruf and Cordeau (2021).

3.29. Transportation: Maritime81

Maritime transportation carries more than 80% of the 
world’s trade and some 70% of the value of that trade 
(UNCTAD 2022). The spectrum of Operational 
Research (OR) applications in maritime transportation 
is broad. Following the classification of Christiansen 
et al. (2013), these problems can be broken down into 
three levels: strategic, tactical and operational. Some typ-
ical problems in each of these levels will be described 
in this section.

It is important to note that, in much of the OR 
maritime transportation literature, traditional economic 
criteria such as cost minimisation or profit maximisa-
tion are the norm, and environmental criteria (for 
instance emissions minimisation) are less frequent. 
However, with the quest to decarbonise shipping (IMO 
2018), the body of knowledge that includes environ-
mental criteria is growing very fast in recent years. 
Sometimes environmental criteria map directly into 
economic criteria: if for instance fuel cost is the criter-
ion, and since it is directly proportional to ship emis-
sions, if fuel cost is to be minimised as an objective, so 
will emissions, and the solution is win-win. However, 
for other objectives this direct relationship may cease to 
exist and one would need to look at environmental cri-
teria in their own right.

In conceptual terms, if x is a vector of the deci-
sion variables of the problem at hand, f(x) is the 
fuel cost associated with x, c(x) is the cost other 
than fuel and m(x) are the associated maritime 
emissions (carbon, sulphur, or other), then a generic 
optimisation problem is the following:

Minimise aðf ðxÞ þ cðxÞÞ þ bmðxÞ
s:t: x 2 X 

where a and b are user-defined weights (both � 0) 
representing the relative importance the decision maker 
assigns to cost versus emissions, and X represents the 
feasible solution space, usually defined by a set of 
constraints.

One can safely say and without loss of generality 
that if d(x) is the amount of fuel consumed, p is the 
fuel price, and e is the emissions coefficient (kg of 
emissions per kg of fuel), then f ðxÞ ¼ pdðxÞ and 
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mðxÞ ¼ edðxÞ: Therefore f ðxÞ ¼ kmðxÞ with k ¼ p=e, 
as both f(x) and m(x) are proportional to the amount 
of fuel consumed d(x). The cases that different fuels are 
used onboard the ship, for instance in the main engine 
vs the auxiliary engines, or if fuel is switched from high 
to low sulphur along the ship’s trip, represent straight-
forward generalisations of the above formulation. Then 
the above problem can also be written as

Minimise acðxÞ þ ðakþ bÞmðxÞ
s:t: x 2 X 

The following special cases of the above problem 
are important:

1. The case a ¼ 0, b > 0, in which the problem is 
to minimise emissions.

2. The case a > 0, b ¼ 0, in which the problem is 
to minimise total cost.

3. The case c(x) ¼ 0, in which fuel cost is the only 
component of the cost.

A solution x� is called win-win if both case (1)
and case (2) have x� as an optimal solution. It is 
important to realise that such a solution may not 
necessarily exist.

It is also straightforward to see that in case (3), 
cost and emissions are minimised at the same time 
and we have a win-win solution. It is clear that c(x) 
¼ 0 is a sufficient condition for a win-win solution. 
But this is not a necessary condition, as it is conceiv-
able to have the same solution being the optimal 
solution under two different objective functions. An 
interesting question is to what extent policy makers 
can introduce either (a) a Market Based Measure 
(MBM) such as a fuel tax and/or (b) a set of con-
straints, that would make win-win solutions possible.

Let us now examine some typical OR problems 
in the 3-level hierarchy.

Strategic level problems involve planning horizons 
of several years (from 1 to 25). Among them, fleet 
size and mix problems involve the basic questions, 
what is the best mix for a shipping company’s fleet 
in the years ahead? How large should these ships be? 
How many should they be, and how fast they should 
go? See Alvarez et al. (2011), Zeng and Yang (2007) 
and Pantuso et al. (2014) for some work in this area.

Network design problems also belong to the stra-
tegic problem category and are special to liner ship-
ping. They involve the design of a liner company’s 
network, which comprises the ports it would serve, 
the routes it will use, which ports will be chosen as 
hub ports, how are the company’s feeder networks 
configured, and whether the company will use the 
hub-and-spoke concept or direct calls. See Agarwal 
and Ergun (2008), Reinhardt and Pisinger (2012), 
and Brouer et al. (2014) for more on these problems.

Tactical level problems involve intermediate plan-
ning horizons, from a few days to a year. Among 
them, ship routing and scheduling is perhaps the 
most important problem class, mainly for tramp 
shipping, with works by Christiansen et al. (2013), 
Andersson et al. (2011), Fagerholt et al. (2010), and 
Lin and Liu (2011). Routing and scheduling of off-
shore supply vessels belongs also to this area 
(Halvorsen-Weare & Fagerholt, 2011; Norlund & 
Gribkovskaia, 2013). All of these problems call for 
the determination of the best set of ship routes 
under some predefined criteria.

Fleet deployment is also included in the class of tac-
tical level problems, calling for the allocation of ships 
to routes (see Meng & Wang, 2011; Andersson et al., 
2015; Lai et al., 2022, among others). Speed optimisation 
problems are also tactical level problems and have 
received increased attention in recent years, due to the 
pivotal role of ship speed with regard to both economic 
and environmental criteria. Due to the fact that fuel 
consumption is a nonlinear function of ship speed, 
these problems are typically nonlinear. Related formula-
tions attempt to find best vessel speeds along the legs 
of the route, according to specific criteria (see Psaraftis 
& Kontovas, 2013; Fagerholt & Ronen, 2013; Magirou 
et al., 2015). These problems may also involve flexible 
frequencies (Giovannini & Psaraftis, 2019).

Speed and route decisions may also be combined 
(Psaraftis & Kontovas, 2014; Wen et al., 2017). One of 
the perhaps counter-intuitive results of these combined 
scenarios is that sailing the minimum distance route at 
minimum speed does not necessarily minimise fuel 
consumption and hence emissions. This may be so 
whenever the minimum distance route involves a heav-
ier load profile for the ship. Depending on ship type, 
the difference in fuel consumption between a fully 
loaded and a ballast (empty) condition can be up to 
40%. A result that is less surprising is that expensive 
cargoes sail faster and hence induce more emissions. 
This is to be expected if cargo in-transit inventory costs 
are taken into account.

Modal split/discrete choice models examine scenarios 
in which shippers may choose a transportation mode 
that is alternative to the maritime mode as a result of 
unfavourable time, cost, or other considerations. As a 
result, cargoes from the Far East to Europe may prefer 
the rail vs the maritime mode, or cargoes in European 
short sea trades may choose the road mode as opposed 
to shipping. Such modal shifts may increase the overall 
level of CO2 and may warrant mitigation measures by 
the shipping lines and the policy makers. Papers that 
look into this problem include Psaraftis and Kontovas 
(2010) and Zis and Psaraftis (2017, 2019). A multi- 
commodity network flow formulation in the context of 
China’s Belt and Road initiative is given by Qi et al. 
(2022).
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Operational level problems concern problems with 
planning horizons from a few hours to a few days. 
Among them, a very important class of problems con-
cerns weather routing scenarios. The important differ-
ence vis-�a-vis the ship routing and scheduling problems 
described earlier is that weather routing problems are 
typically path problems defined as trying to optimise a 
ship’s track from a specified origin to a specified destin-
ation, under a prescribed objective and under time 
varying and maybe also stochastic weather conditions. 
Decision variables include the selection of the ship’s 
path and the speeds along the path, and typical objec-
tives include minimum transit time and minimum fuel 
consumption. Several constraints such as time windows, 
or constraints to accommodate a feasible envelope on 
ship motions, vertical and transverse accelerations and 
ship loads such as shear forces, bending moments and 
torsional moments can be introduced. The influence of 
currents, tides, winds and waves, which may be varying 
in both time and space should be taken into account. 
See Perakis and Papadakis (1989), Lo and McCord 
(1998), and Zis et al. (2020) for some references on this 
topic.

Disruption management is also another important 
operational level problem class and typically refers 
to liner shipping. It entails actions that can help the 
shipping company manage its recovery from pos-
sible disruptions of its schedule. Such disruptions 
may be the result of bad weather, port strikes, 
equipment malfunction, or more recently, the 
COVID-19 pandemic that caused massive conges-
tion in many ports worldwide or the Ever Given 
incident that disrupted traffic in the Suez Canal and 
the Far East to Europe route in 2021. See Qi (2015) 
and Asghari et al. (2023) for work in this area.

Terminal management, berth allocation, and stowage 
planning problems also belong to the class of oper-
ational level problems, as they deal with an important 
part of the overall maritime supply chain, that of the 
coordination between a ship and a port. See Moccia 
et al. (2006), Goodchild and Daganzo (2007), and Zhen 
(2015) for some related work.

To conclude, maritime transportation constitutes 
an important application area for OR, and the 
related problems are interesting and significant, 
both from a methodological perspective and from a 
business and policy perspective. This is so both for 
traditional economic performance criteria and for 
environmental criteria, the importance of the latter 
getting higher in recent years.

3.30. Transportation: Aviation82

According to the Air Transport Action Group, in 
2019, the world’s 1,478 airlines transported 4.5 bil-
lion passengers to 3,780 airports, generating 11.3 

million direct jobs. Today’s airlines are sophisticated 
businesses making aviation a worldwide economic 
engine. Yet, aviation is a competitive industry, vul-
nerable to exogenous shocks, e.g., oil prices, infec-
tious diseases or terrorism. This leads to high costs, 
and low profit margins, even in the best of times. 
To tackle these challenges, the industry relies heavily 
on Operational Research (OR) for decision-making. 
Prominent OR application domains within aviation 
include revenue management, airline schedule plan-
ning, airline operations recovery, airport flight 
scheduling, and air traffic flow management. 
Additionally, some recent OR studies focus on mod-
elling delay propagation through aviation networks

3.30.1. Revenue management (RM)
RM is broadly defined as the strategies and tactics 
to increase revenues by optimally matching demand 
for products/services with the available capacity. 
Seat allocation and pricing are the two main deci-
sions to control ticket sales of different fare-classes. 
Models using capacity allocation as the control vari-
able are called quantity-based RM models. They 
allocate seats to fare-classes with exogenously deter-
mined prices. In contrast, price-based RMs uses 
pricing policies to maximise revenues. Early RM 
models focused on overbooking – the practice of 
selling more tickets than seats to hedge against can-
cellations or no-shows. Though various static and 
dynamic models have been presented since the pio-
neering work of Rothstein (1971), airlines mostly 
use simpler static policies in practice.

Static and dynamic models have been proposed 
for both single-leg and network-wide seat allocation. 
Static models optimise seat allocation at a certain 
time, typically the beginning of the booking period. 
Dynamic models monitor and adjust to the booking 
process over time. The earliest static leg-based 
approach (Littlewood, 1972) considered two fare- 
classes. Brumelle et al. (1990) relaxed the assump-
tion of statistical independence between demands. 
For the multi-class problem, Belobaba (1987b) intro-
duced the Expected Marginal Seat Revenue heuristic, 
a widely used approach in practice. Many studies 
(e.g., Brumelle & McGill, 1993) provided optimality 
conditions for static models, while others developed 
methods to compute optimal protection levels in the 
absence of demand information, using optimality 
conditions (Van Ryzin & McGill, 2000) or stochastic 
approximations (Kunnumkal & Topaloglu, 2009). 
Dynamic formulations allow time-based controls, 
but require restrictive demand assumption for tract-
ability, limiting practical impact. Solving network 
models exactly is computationally hard. 
Accordingly, most studies on network models use 
approximations, based on deterministic linear 
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programming (Talluri & Van Ryzin, 2004a), rando-
mised linear programming (Talluri & Van Ryzin, 
1999) or decomposition into single-resource prob-
lems, as well as solutions using simulation-based 
optimisation (Bertsimas & De Boer, 2005). Seat 
inventory control usually assumes capacity to be 
fixed, an assumption relaxed by B€using et al. (2019) 
integrating capacity uncertainty in leg-based RM. 
Others integrated inventory control and pricing 
(You, 1999).

Simplest deterministic pricing models are price- 
sensitive versions of the well-known newsvendor 
problem (Gallego & Van Ryzin, 1994). This allows 
mathematical derivations of optimal prices. Several 
studies, such as, Feng and Gallego (1995), general-
ised this problem to include demand dynamics 
and/or multiple products. Stochastic dynamic pro-
gramming is a natural way to tackle dynamic pric-
ing. Dynamic models depict reality more accurately, 
but are harder to solve (Gallego & Van Ryzin, 
1994). Interestingly, solutions to deterministic mod-
els are usually good approximations for their sto-
chastic counterparts, and are often used in practice. 
Traditional RM assumed independent demand, 
ignoring product substitutability. With the seminal 
paper of Talluri and Van Ryzin (2004a), the RM 
field has shifted toward including customer choice 
behaviors within pricing and capacity decisions. 
§3.21 provides a detailed overview of RM concepts 
and trends beyond aviation.

3.30.2. Airline schedule planning (ASP)
ASP is the process of designing airline schedules 
maximising profits subject to resource constraints. 
Taking demand, airport and aircraft characteristics, 
and maintenance and personal requirements as 
inputs, ASP outputs selected flight timetables, air-
craft schedules and crew duty plans. Most ASP steps 
typically occur before RM actions and thus con-
strain the set of decisions available to RM systems. 
Key ASP steps include fleet planning, route plan-
ning, frequency planning, timetable design, fleet 
assignment, aircraft routing and crew scheduling. 
Fleet planning involves decisions regarding purchas-
ing, selling, and leasing of aircraft fleet, while route 
planning selects airport pairs to operate nonstop 
flights. Early studies, e.g., Hane et al. (1995), 
matched a predetermined set of flights with aircraft 
types, developing a fleet assignment model (FAM). 
The FAM specifically focuses on fleet assignment, 
which is one particular step within the overall ASP 
process. The basic FAM, a mixed-integer linear pro-
gram, minimised costs of operating aircraft and pas-
sengers unserved, given passenger demand for 
individual flight legs. This leg-based approach 

ignores that passengers often fly on multiple flights 
in connecting itineraries.

Barnhart et al. (2002) overcame this limitation 
via an itinerary-based FAM to explicitly model net-
work effects. Some studies developed tractable solu-
tion approaches. Barnhart et al. (2009) proposed a 
subnetwork-based decomposition for capturing 
FAM’s revenue implications, an approach recently 
extended by Yan et al. (2022a) to solve a FAM 
incorporating passenger choice. Others extended 
FAM by incorporating incremental timetable design 
decisions, e.g., changes to flight timings (Desaulniers 
et al., 1997) or selection of optional flights 
(Lohatepanont & Barnhart, 2004). Wei et al. (2020) 
developed a clean slate heuristic optimising entire 
timetables and fleet assignments under choice-based 
demand. Frequency planning, which optimises the 
number of flights operated during a day or part of a 
day, rather than deciding exact timetables, has also 
received attention, with an emphasis on capturing 
affects of competition from other airline and high- 
speed rail operators (e.g., Cadarso et al., 2017).

The last two steps in schedule planning are con-
ceptually similar. Aircraft routing assigns individual 
aircraft to flights while ensuring that each aircraft 
undergoes periodic maintenance, and crew schedul-
ing assigns crew to operate flights while satisfying a 
myriad of crew regulations. Early studies individu-
ally optimised aircraft routing (Gopalan & Talluri, 
1998) or crew scheduling (Graves et al., 1993a). 
Lavoie et al. (1988) used column generation, an 
effective solution approach for both problems, to 
crew scheduling, while Cordeau et al. (2001) used 
Benders decomposition to jointly solve both 
problems.

Good schedules not only minimise planned costs, 
but are also robust to disruptions, to keep the actual 
costs low. Researchers in early 2000s optimised 
robustness proxies, e.g., station purity, short cycles, 
crew swapping opportunities, and crew schedule 
slack (Schaefer et al., 2005). Later studies directly 
minimised total planned and unplanned costs of air-
craft routing (Lan et al., 2006) and crew scheduling 
(Yen & Birge, 2006) separately, and also jointly 
(Dunbar et al., 2012). Recent studies have used 
robust optimisation to solve the aircraft routing 
(Yan & Kung, 2018) and crew scheduling (Antunes 
et al., 2019) problems.

3.30.3. Airline operations recovery (AOR)
AOR encompasses the actions undertaken to repair 
schedules, when disruptive events such as inclement 
weather, equipment failures, etc., take place. 
Rosenberger et al. (2003) developed a model and a 
solution heuristic for repairing aircraft routing, 
whereas Lettovskỳ; et al. (2000) tackled crew 
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recovery. For the integrated recovery problem, 
Petersen et al. (2012) developed a decomposition 
strategy, while Maher (2016) used column-and-row- 
generation. Recent recovery studies incorporated 
other key elements, including flight planning (Marla 
et al., 2017) and passenger no-shows (Cadarso & 
Vaze, 2022).

3.30.4. Airport flight scheduling (AFS)
Beyond airline decision-making, OR is also used to 
improve decision-making of central authorities and 
air traffic managers. Research over the past decade 
demonstrated the potential for enhancing social wel-
fare by constraining schedules at busy airports via 
slot-control mechanisms (Swaroop et al., 2012). 
Some studies balanced strategic cost of scheduling 
changes against tactical cost of delays, for a single 
airport (Jacquillat & Odoni, 2015) or multiple air-
ports (Wang & Jacquillat, 2020). Zografos et al. 
(2012) used an integer program for allocating slots 
to airlines under administrative controls. Fairbrother 
et al. (2020) attempted to balance the often-conflict-
ing goals of efficiency, equity and the incorporation 
of airline preferences in optimising slot-scheduling 
mechanism.

3.30.5. Air traffic flow management (ATFM)
The tactical side of airport and airspace capacity 
management has received considerable OR attention 
since the 1990s. ATFM is a broad term used to 
define key interventions, such as ground holding of 
airplanes, that ensure safe and efficient flight opera-
tions by restricting flow of aircraft into congested 
airspaces. Terrab and Odoni (1993) and Vranas 
et al. (1994) proposed the single-airport and multi- 
airport ground holding problems, respectively. The 
latter was extended to include enroute capacities by 
Bertsimas and Patterson (1998). Bertsimas et al. 
(2011b) additionally incorporated flight rerouting 
and solved larger-scale problems. Adoption of the 
collaborative decision-making (CDM) paradigm in 
practice ushered in a new era of research. 
Advocating increased agency to airlines, Vossen and 
Ball (2006) provided an integer program for slot 
trading mechanism design under CDM. Recent 
studies (e.g., Starita et al., 2020) are increasingly 
focused on explicit handling of uncertainty on both 
demand and capacity side within the ATFM opti-
misation problems.

3.30.6. Modelling delay propagation
Tightly coupled aviation networks make disruption 
management particularly challenging. Delays and 
disruptions in one part of the network propagate to 
other parts, through aircraft, crew and passenger 
connections. Recent studies quantified these 

propagation effects. First, Pyrgiotis et al. (2013) pro-
posed an analytical queuing and network decompos-
ition model for aircraft-based delay propagation. 
Barnhart et al. (2014) presented discrete choice 
models for passenger itinerary estimation and a 
reaccommodation heuristic for passenger delay 
calculations. Wei and Vaze (2018) solved inverse 
optimisation for estimating crew itineraries and 
crew-based delay propagation. These studies 
attempted bridging the gap between sparse and 
aggregate public datasets, and the detailed and dis-
aggregated data needs for aviation OR research.

3.30.7. Further reading
Readers interested in aviation OR are referred to the 
second edition of the book by Belobaba et al. 
(2015). In particular, Chapters 4 and 5 focus on 
pricing and RM, Chapters 8 and 10 on schedule 
optimisation, robustness and recovery, and Chapter 
14 on air traffic management and control. Looking 
ahead, it is apparent that OR will keep finding nat-
ural applications within aviation, especially given 
the exciting disruptive innovations within urban air 
mobility. Rapidly growing fields of passenger air taxi 
operations and drone operations for parcel deliveries 
are giving rise to new variants of well-known OR 
problems, e.g., network design (Wang et al., 2022b), 
travelling salesperson (Roberti & Ruthmair, 2021), 
vehicle routing (Dayarian et al., 2020), and facility 
location (Chen et al., 2022).

3.31. Transportation: Network design83

In a transportation context, the term Network 
Design (Magnanti & Wong, 1984) generally refers to 
planning the supply side of a transportation system 
so that it efficiently satisfies some estimate of 
demand within the quality standards of the custom-
ers using the system. The planning decisions typic-
ally prescribe the movements of vehicles, or convoys 
(e.g., a railroad train or tug and barges), between 
stations/terminals in the network to transport peo-
ple or goods. Network design is typically undertaken 
for situations wherein what is transported, be it peo-
ple or goods, is small relative to vehicle capacity. 
Thus, one primary measure of efficiency is vehicle 
utilisation, with high utilisation achieved through 
consolidation. Quality is typically measured based 
on on-time delivery.

Network design is relevant to passenger transpor-
tation systems such as urban public-transport 
(Mauttone et al., 2021) by bus (Ceder & Wilson, 
1986) or light rail (Farahani et al., 2013), as well as 
systems providing interurban transport by train 
(Hooghiemstra et al., 1999) or airplane (Franke, 
2017). It is also relevant to a wide range of goods 
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transportation markets, such as parcel and small- 
package (Barnhart & Schneur, 1996) and less-than- 
truckload freight (Powell & Sheffi, 1989). A network 
design case study for a postal carrier can be found 
in Winkenbach et al. (2016). Transportation carriers 
serving these markets may rely on one or more 
modes, including motor carrier (Bakir et al., 2021), 
rail (Chouman & Crainic, 2021), ocean 
(Christiansen et al., 2020), and inland waterway 
(Konings, 2003). The planning of vehicle and goods 
movements by each mode and synchronisation of 
goods moving from one mode to the next (e.g., 
intermodal) can be assisted by network design 
(Arnold et al., 2004).

For different modes the scope of design decisions 
prescribed by network design models may be broad-
ened in different ways. For example, modes such as 
rail and inland waterway involve multiple layers of 
consolidation. For rail (Zhu et al., 2014), goods are 
consolidated into rail cars, which are then consoli-
dated into blocks that are transported by the same 
locomotive. For motor carriers, vehicles can not yet 
move without a driver, whose movements and 
schedules are restricted by governmental safety regu-
lations and potentially labour management practices 
that dictate the driver return periodically to a spe-
cific physical location in the network (e.g., his/her 
domicile). Network design models for motor carriers 
may build schedules for drivers that observe safety 
regulations (Crainic et al., 2018) as well as deter-
mine how many drivers should be associated with 
each physical location (Hewitt et al., 2019).

The network design problem is typically modelled 
as a Mixed Integer Program (MIP) formulated on a 
directed graph (Crainic et al., 2021a). Nodes in such 
a graph model physical locations, potentially at dif-
ferent points in time. Directed edges between such 
nodes model transportation that begins in one phys-
ical location and ends at another. Edges may encode 
a scheduling dimension, such as when a vehicle 
departs from one location and arrives at another, 
that depends in part on the travel time required for 
the physical move (Erera et al., 2013). Associated 
with an edge is a function that maps the amount of 
vehicle capacity made available on that edge to cost. 
Typically, it is a step function with each step model-
ling an increase in capacity due to dispatching an 
extra vehicle. Commodities model people or goods 
that are to be transported; associated with each 
commodity is an origin node, a destination node, 
and a size.

The classical network design problem seeks to 
find a path for each commodity that begins at its 
origin node, ends at its destination node, and poten-
tially visits one or more intermediate nodes. The 
problem evaluates these paths with respect to the 

total cost of capacity made available to support 
them and seeks to minimise that total cost. Some 
network design models (Frangioni & Gendron, 
2021) instead minimise costs that are a function of 
the amount of goods transported on an edge, as 
opposed to the capacity made available to transport 
them. Network design is an optimisation problem 
that has received significant attention both for its 
practical relevance and the computational challenges 
(Johnson et al., 1978) associated with solving it.

Most MIP formulations of the network design 
problem involve commodity flow variables that 
model the transportation of goods within the net-
work and another set of edge-based variables that 
model the transportation of vehicles. Typically, com-
modity flow variables are continuous when a ship-
per’s goods can be divided and routed on multiple 
paths or binary when they cannot. Commodity flow 
variables are typically edge-based, but some models 
involve paths from shipment origin to shipment 
destination. The use of a path formulation typically 
necessitates column generation (Hewitt et al., 2019). 
However, unlike the vehicle routing problem, 
extended, path-based formulations of the network 
design problem do not provide stronger linear relax-
ations than compact, arc-based formulations. 
Depending on the context and mode the vehicle 
edge variables may either be binary or integer. 
Linking constraints are included in the formulation 
to ensure sufficient vehicle capacity travels on an 
edge to carry the commodities making that trans-
portation move. Typically, much larger cost coeffi-
cients are associated with vehicle edge variables than 
commodity flow variables.

The majority of literature on network design 
focuses on deterministic models wherein it is pre-
sumed all parameter values (costs, capacities, 
demands) are known with certainty. However, given 
that network design models are often solved as part 
of a tactical planning exercise, uncertainty has been 
studied (Hewitt et al., 2021). Much of that work 
focuses on uncertainty in commodity sizes and 
models such problems as two stage stochastic pro-
grams wherein vehicle movements are planned in 
the first stage and commodities are routed in the 
second stage given the vehicle movements pre-
scribed in the first. There has been limited work on 
robust optimisation models (Koster & Schmidt, 
2021) or those that view network design in a 
dynamic context (Al Hajj Hassan et al., 2022).

Both exact (Crainic & Gendron, 2021) and heur-
istic (Crainic & Gendreau, 2021) solution methods 
for deterministic network design models have been 
proposed. One challenge associated with solving 
MIP formulations of network design problems is 
that the linking constraints often lead to fractional 
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vehicle edge variables. Thus, the linear programming 
relaxations of network design MIPs often yield weak 
bounds on the objective function value of an opti-
mal solution to the MIP. As a result, much of the 
literature that focuses on speeding up the solution 
of MIP formulations of the network design problem 
focuses on strengthening formulations with valid 
inequalities (Nemhauser & Wolsey, 1988). Such 
inequalities are typically either based on classical 
ideas such as flow covers from integer programming 
(Gu et al., 1999) or leveraging the network structure 
of the problem (Raack et al., 2011). Another 
approach taken to solve network design problems is 
Benders decomposition (Benders, 2005; Costa, 
2005), particularly when second stage variables are 
continuous and the optimisation problem resulting 
from fixing the network design is a linear program.

Another challenge associated with solving MIP 
formulations of the network design problem is due 
to the size of the network on which the MIP is for-
mulated when that network encodes time. The clas-
sical approach to representing time in network 
design is to formulate a MIP on a network wherein 
multiple nodes represent the same physical location, 
albeit at different points in time (Crainic et al., 
2016). Similarly, multiple edges represent the same 
physical transportation move, albeit at different 
departure and arrival times. Such networks are typ-
ically referred to as time-expanded networks and 
the overall solution procedure in contexts that 
require the modelling of time is to construct such a 
network, formulate a MIP on that network, and 
then solve that MIP. Boland et al. (2019) study the 
impact on solution quality of modelling time at dif-
ferent granularities and observe that the finer the 
representation the higher the quality of the resulting 
solution. However, such an approach can be compu-
tationally challenging when long planning horizons 
must be modelled or fine representations of time 
are used, as both cases lead to networks and result-
ing MIPs that are very large. An alternate approach, 
called Dynamic Discretisation Discovery (Boland 
et al., 2017; Hewitt, 2019) proposed to instead gen-
erate time-expanded networks in a dynamic and 
iterative manner.

Heuristic methods for deterministic network 
design models can be classified into one of two cate-
gories. The first category focuses on metaheuristics 
(Hussain et al., 2019) and neighbourhood structures. 
Early heuristics (Powell & Sheffi, 1983) proposed for 
network design models searched neighbouring solu-
tions by reducing the capacity on one edge in the 
network and, if necessary, increasing the capacity on 
another. However, more recent and effective meth-
ods have proposed more complex neighbourhood 
structures such as cycles or paths (Ghamlouche 

et al., 2003). The second category focuses on what is 
generally called matheuristics (Maniezzo et al., 
2021). In these heuristics, a neighbourhood of a 
solution is searched by formulating and solving the 
MIP of the network design problem, albeit with the 
values of subsets of variables fixed to their values in 
the solution at hand (Hewitt et al., 2010). This is 
repeatedly done and with different mechanisms used 
for selecting subsets of variables to fix.

Similarly, both exact and heuristic solution meth-
ods have been proposed for stochastic network 
design models that take the form of scenario-based 
two stage stochastic programs. The vast majority of 
such stochastic programs studied to date involve con-
tinuous commodity flow variables in the second 
stage. As a result, the second stage subproblems are 
linear programs and the overall stochastic program is 
amenable to Benders decomposition (Birge & 
Louveaux, 2011). Thus, much of the methodological 
work on solving such stochastic programs has 
focused on techniques for speeding up or rendering 
more impactful different steps in the Benders scheme 
(Magnanti & Wong, 1981; Crainic et al., 2021c). 
While Progressive Hedging (Rockafellar & Wets, 
1991) is an exact method for two stage stochastic 
programs with continuous variables in both stages, it 
has been used as the basis of heuristic methods for 
stochastic network design (Crainic et al., 2011, 2014).

Crainic et al. (2021b) contains deeper dives into 
the subjects touched on here as well as discussions 
of those not discussed.

3.32. Transportation: Vehicle routing84

The Capacitated Vehicle Routing Problem (CVRP) 
was first proposed by Dantzig and Ramser (1959), 
and named the Truck Dispatching Problem. The 
goal was that of routing a fleet of identical gasoline 
delivery trucks from a central depot to service sta-
tions (often referred as ‘customers’). Each truck had 
to return to the central depot, after visiting an 
ordered subset of the customers. All customers had 
to be visited once by a vehicle delivering all their 
gasoline requirements in the one delivery. The 
objective was the minimisation of the routing costs, 
as the sum of the travelling distances of every truck. 
The CVRP classical definition is the same as that pro-
posed by Dantzig and Ramser (1959) more than 60 
years ago. Introducing a capacitated fleet of vehicles 
makes the CVRP for a much harder generalisation of 
the Travelling Salesman Problem (Flood, 1956).

The CVRP definition has been enriched over the 
decades to take into account all the delivery require-
ments of the customers and of the transportation 
providers, as well as the characteristics of the avail-
able fleet of vehicles, and the increasing availability 
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of technology (i.e., GIS and real time mapping, 
autonomous vehicles, shared mobility systems and 
so on). The research literature has flourished with 
new variants, as well as more sophisticated and flex-
ible solution approaches. This chapter aims at pro-
viding pointers to key milestones achieved in the 
last 60 years of the CVRP literature, identifying the 
latest and most successful exact and metaheuristic 
algorithms, as well as referencing the most famous 
online challenges and standard techniques for 
benchmarking CVRP solution algorithms.

The CVRP ‘classical’ variants and solution 
approaches are well summarised in Toth and Vigo 
(2002). This book provides key references and defini-
tions for critical application features, as for the 
CVRP with Time Windows, the CVRP with 
Backhauls and the CVRP with Pickup and Delivery, 
the CVRP with vehicle/site dependencies, the CVRP 
with inventory and the stochastic CVRP. Golden 
et al. (2008) extends the definition of the classical 
variants to routing problems with heterogenous fleets, 
periodic routing problems, split routing problems, 
dynamic and online routing problems. Toth and 
Vigo (2014) further widen the remit of application of 
routing algorithms to maritime applications, disaster 
relief distribution problems, and considers up-to-date 
objective functions different than minimising the dis-
tance travelled. More recently, fleets of electric 
vehicles (Pelletier et al., 2016), problems over time 
(Mor & Speranza, 2020), drones (Otto et al., 2018), 
cargo boats (Christiansen et al., 2013) and warehouse 
pickers (Schiffer et al., 2022) have been embedded in 
routing settings. The new dynamic environment 
inspired research on stochastic (Gendreau et al., 
2016), dynamic (Soeffker et al., 2022) and time- 
dependent (Gendreau et al., 2015) routing problems.

An up-to-date survey on recent trends can be 
found in Vidal et al. (2020), in which the CVRP 
extensions due to richer objective functions, the 
integration with other optimisation problems, and 
application-oriented transportation requirements are 
surveyed. Partyka and Hall (2014) discuss routing 
algorithms from the practitioners’ perspective, and 
surveys which are the requirements of a logistics 
company when they acquire a routing software.

Next the most successful CVRP solution algo-
rithms are summarised, first discussing exact meth-
ods. Formulations with a polynomial number of 
variables and constraints were the first proposed 
mathematical models, as for the two-commodity for-
mulation by Laporte (1992) and Baldacci et al. 
(2004). They have the advantage of being easy to use 
(as they just require encoding in the syntax of the 
solver). The disadvantage of them however is their 
poor performance due to high dimension of the for-
mulations, and the weakness of the continuous 

relaxation. Better results were obtained from formula-
tions with an exponential number of constraints, 
such as those in which subtour elimination con-
straints are added dynamically to the formulations in 
a branch&cut fashion (Padberg & Rinaldi, 1991). The 
CVRPSEP library by Lysgaard et al. (2004) provides 
separation procedures for subtour elimination con-
straints, as well as other strengthening additional 
inequalities. The most successful exact solution 
framework is up-to-date the branch&cut&price 
(Desaulniers et al., 2006; Laporte, 2009). This method 
is based on the Dantzig-Wolfe decomposition 
(Desrosiers & L€ubbecke, 2005). Binary variables 
model if a route is used or not in the solution, thus 
their corresponding set is exponential in size. As a 
consequence, a restricted set of variables is used to 
initiate the formulation and only profitable routes are 
iteratively generated solving a subproblem, called the 
pricing problem. The CVRP pricing problem is a 
shortest path with resource constrains, and it is typic-
ally solved through dynamic programming (Irnich & 
Desaulniers, 2005). Some of the most relevant mile-
stones in developing branch&cut&price algorithms 
for the CVRP are combining branch&cut and col-
umn generation into the first branch&cut&price 
(Fukasawa et al., 2006), applying bi-directional search 
in the subproblem (Righini & Salani, 2008), introduc-
ing subset row cuts (Jepsen et al., 2008), using ng- 
routes to speed up the subproblem solution (Baldacci 
et al., 2011), using stabilisation techniques for dual 
values (Gschwind & Irnich, 2016; Pessoa et al., 2018), 
and proposing primal heuristics based on the 
restricted master problem (Sadykov et al., 2019). The 
reader might refer to Desaulniers et al. (2002) for 
the most widely used acceleration techniques for the 
solution of the pricing problem.

Lately, the work of Pessoa et al. (2020) provides 
an impressive open-source branch&cut&price algo-
rithm, based on Pecin et al. (2017). This algorithm 
provides state-of-the-art exact solutions for the 
CVRP and, using a flexible solution representation, 
for most of the well known routing variants and 
other sequencing problems. The tool incorporates 
the algorithmic components previously mentioned, 
as well as other recent developments (see for 
example, Sadykov et al., 2021), and compares 
favourably to other branch&cut&price implementa-
tions. Some of the most powerful exact algorithms 
for the CVRP, available in different programming 
languages, are publicly available at Sadykov (2022).

Metaheuristics are capable of solving very large 
CVRP instances in limited computing time, however 
there is no proof of optimality for the solutions found. 
They are typically initialised with solutions generated 
by constructive heuristics (the Clarke and Wright is a 
famous example, Clarke & Wright, 1964). 
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Metaheuristics rely heavily on local search procedures 
to improve the solution quality and intensify the 
search, and on a metaheuristic framework to obtain a 
good balance of diversification and intensification 
(Gendreau & Potvin, 2010). In chronological order, 
popular CVRP frameworks have been the Tabu Search 
(Cordeau & Laporte, 2005), the Adaptive Large 
Neighbourhood Search (Pisinger & Ropke, 2007), the 
Iterated Local Search (Subramanian et al., 2013), and 
the Hybrid Genetic algorithm (Vidal, 2022b). The lat-
ter two examples of metaheuristic frameworks are par-
ticularly relevant to the CVRP literature due to their 
high performance, their flexibility in solving effectively 
many VRP variants, and because their code had been 
made publicly available to the research community 
(the code presented in Vidal, 2022b is, for example, 
available at Vidal, 2022a). Vidal et al. (2013) provide a 
very good summary of the features that make a CVRP 
metaheuristic successful.

More recently, examples of algorithms producing 
very high quality solutions for the CVRP have been:

� Arnold and S€orensen (2019): data mining is used 
to identify solution features, and these features are 
used to effectively guide the search algorithms;

� Christiaens and Vanden Berghe (2020): SISRs is 
a ruin and recreate algorithm based on an 
innovative string removal operator;

� Queiroga et al. (2021): POPMUSIC is a matheur-
istic that iteratively solves smaller subproblems by 
means of the branch&cut&price by Pessoa et al. 
(2020);

� Accorsi and Vigo (2021): FILO is an Iterated 
Local Search with acceleration techniques and 
annealing-based neighbour acceptance criteria;

� M�aximo and Nascimento (2021): AILS-PR is an 
Iterated Local Search metaheuristic hybridised 
with Path Relinking; and,

� Cavaliere et al. (2022): a refinement heuristic 
using a penalty-based extension of the Lin and 
Kerninghan heuristic is combined with a 
restricted column generation to iteratively select 
meaningful routes.

Clear standards have been set by the CVRP com-
munity around which benchmark instances should be 
used for testing the performance of an algorithm, and 
which are ways of testing a computer code for a fair 
comparison with other previously proposed algorithms. 
Uchoa et al. (2017) discuss the most widely used 
instances and provides a link to the repository, in 
which the input data, as well as the best known solu-
tions, are provided and kept up-to-date by the authors. 
A more recent set of instances and best known solu-
tions is available in Queiroga et al. (2022), where the 
authors provide data enabling the use of machine 

learning approaches to solve the CVRP. Accorsi et al. 
(2022) present the standard practices to test CVRP 
algorithms: how to determine computing time (typic-
ally on a single thread), common ways of tuning 
parameters, and providing best and average solutions 
on a specified number of executions, among others.

Finally, another popular and flourishing avenue 
for boosting research on the development of effect-
ive solutions approaches for the CVRP and variants 
is represented by competitions. Some of the most 
famous CVRP and routing challenges are:

� the DIMACS challenge (DIMACS 2021), where 
the goal was to promote research on challenging 
routing problem variants;

� the Amazon Last Mile Routing Research 
Challenge (Amazon last mile routing, 2021), 
where a specific problem was tackled, namely, 
the challenge of embedding driver knowledge 
into route optimisation;

� the recently launched EURO Meets NeurIPS 
2022 Vehicle Routing Competition (EURO Meets 
NeurIPS 2022 2022), with the goal of developing 
and comparing machine learning techniques for 
the CVRP.

The Vehicle Routing problem has inspired an 
incredible amount of research. This is due to the chal-
lenges it poses when it comes to solving it, to the 
many variants related to it and to the relevant prac-
tical applications. Despite the decades of research 
efforts and achievements, interest continues to grow 
mainly thanks to the emerging topics raised by the 
ever changing application environment. This chapter 
provides a brief, but hopefully sufficiently comprehen-
sive overview of the techniques, problem variants and 
emerging trends which will inspire further research.

4. Conclusions85

This encyclopedic article, dedicated to the 75th anni-
versary of the Journal of the Operational Research 
Society, is made up of an Introduction and two dis-
tinct though related sections: Methods and 
Applications. The introduction section gives an 
interesting overview of OR with an emphasis on its 
origin in the UK and highlights the methods and 
applications that are covered in this paper. A brief 
summary of the two sections is given below.

In the first main section (§2), 24 OR-based meth-
ods are presented by experts in their respective 
areas. These methods, which are given in alphabet-
ical order, are concisely described, each starting 
with the basics, then moving to advanced and con-
temporary aspects. The authors also pinpoint 
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challenging limitations while highlighting promising 
research directions.

As OR is rooted in the need to solve decision 
problems either through optimisation, statistics, 
visualisation and information technology tools, or 
through soft system methodologies, we aim to retain 
this historical flavor in summarising these methods 
by adopting a simple three-group categorisation.

The first category covers optimisation-related 
topics and includes 10 out of the 24 subsections. It 
ranges from the original optimisation model of lin-
ear programming (LP; §2.14) in the late 1940s to its 
various extensions. One is obtained by restricting 
the decision variables to discrete elements including 
binary ones (§2.15), allowing uncertainty in the 
input (§2.21), or relaxing the objective function or 
the constraints not to be necessarily linear (§2.16). 
An interesting area that had been dormant for more 
than 30 years was revived in the late 1970s and early 
1980s by studying a special case of fractional LP 
which defines relative efficiency and is known as 
data envelopment analysis (§2.7). Combinatorial 
optimisation (§2.4), a topic that has fascinated and 
intrigued many mathematicians of the 18th century, 
seeks an optimal subset or values from a large finite 
set of elements. These problems can be defined and 
solved through graphs and networks (§2.12), some 
of which are relatively more difficult than others. To 
measure the performance of algorithms in terms of 
time and space complexity, computational complex-
ity (§2.5) emerged as a solid foundation for distin-
guishing between classes defined as P and NP and 
studying a-approximation algorithms. One method-
ology can be traced back to the Ancient Greek 
times, and is based on the ‘find and discover prin-
ciple’, now known as ‘heuristic search’ (§2.13), 
which has experienced a phenomenal growth in the 
late 1980s and early 1990s. This is a major develop-
ment since these methodologies provide the best 
way to reduce not only the risk of getting stuck at 
poor local optima, but also have the power to yield 
practical solutions for complex discrete and global 
optimisation problems that could not have been 
solved otherwise. A methodology that is free from 
restrictions of linearity and convexity is the study of 
multi-stage process, as given in §2.9.

The next category includes statistics and deci-
sion-based tools and also covers 10 of the 24 subsec-
tions. For example, business analytics (§2.3), 
decision analysis (§2.8) and visualisation (§2.24), 
though they previously existed under different 
names, have grown significantly while retaining 
their simplicity. Machine learning, including artifi-
cial intelligence (§2.1), which borrowed its principles 
from heuristic search and statistics, has taken off 
very rapidly in teaching, research and applications. 

This is mainly due to computer power, sophisticated 
algorithms, freely available computer languages such 
as R and Python, and their ability to handle massive 
amount of data that are now easily available to the 
public. Other older topics, though still relevant and 
widely applicable, have also seen a surge in new 
developments. These include queueing (§2.17), fore-
casting (§2.10), control theory (§2.6), and game the-
ory (§2.11). Given the uncertainty and risk involved 
in many decisions, risk analysis (§2.18) is evolving 
fast so as to handle such environments alongside 
computer simulation (§2.19), especially discrete 
event simulation. The latter, which has a wide spec-
trum of applications in both the private and public 
sectors, has recently been enriched by incorporating 
multi-objective optimisation within its evaluation 
component.

The last category covers the remaining four sub-
sections. Although some of these research areas 
existed in other fields such as system engineering in 
the 1950s, they have become contemporary OR 
topics especially in the UK in the late 1970s. Soft 
OR and problem structuring methods (§2.20) ques-
tion the problem definition and aim to involve 
stakeholders for a better understanding, with system 
thinking (§2.23) analysing the interactions between 
people, machines and systems while also questioning 
the system boundaries. A related area is system 
dynamics (§2.22) where the dynamism is incorpo-
rated throughout and found to suit better applica-
tions with limited but plausible scaling. An 
interesting, though relatively recent OR area, but 
with a long history rooted in social psychology, is 
behavioural OR (§2.2), where people’s behaviour 
and culture are incorporated into the decision mak-
ing process. Although the methodologies included 
in this category usually do not directly aim to solve 
problems, they can be complementary to the harder 
OR techniques.

The second section covers applications that have 
been, since the very beginning, strongly intercon-
nected with the development of OR methodologies. 
This section is very rich in examples coming from 
many fields. For the sake of brevity, we will not 
refer to each subsection individually but mention 
just a few. By reading the section it is evident that, 
on the one hand OR provides appropriate modelling 
and solution tools to practical problems that arise in 
the real world and are nowadays crucial in the 
design and management of most systems, from 
healthcare and other public services, to transporta-
tion and manufacturing. On the other hand, the 
complexity and size of practical problems has always 
stimulated the progress of OR towards more effi-
cient and flexible techniques which are capable to 
cope with the challenges posed by the applications. 
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This mutual and virtuous connection is well 
reflected by the richness of the Applications section 
of this work. It highlights not only the traditional 
areas which saw tremendous research efforts and 
successful implementations, as the traditional fields 
of transportation, manufacturing, cutting and pack-
ing, and inventory management, but also relatively 
new and interesting sectors such as sports and 
education.

It is worth noting that in the Applications section 
(§3), several dimensions of OR impact in the real 
world clearly emerge. The first one is the broad 
range of fields to which OR techniques have already 
successfully been applied and offer an even larger 
potential yet to be exploited. These range from verti-
cal sectors, such as supply chain management, disas-
ter relief and recovery, or military applications, 
where a wide array of problems are defined and 
solved through appropriate and varied methodolo-
gies, to more horizontal domains which may impact 
several vertical sectors, like vehicle routing or facility 
location, for which highly specialised methods have 
been developed. The second dimension is related to 
the great variety of methodologies applied to the 
different contexts. These span the whole tool set of 
OR, including exact and heuristic methods devel-
oped to solve specific optimisation problems, to 
techniques created to handle uncertainty and multi- 
criteria and, more recently, integrating artificial 
intelligence methods. Indeed, the great improve-
ments achieved in the last decades in integer and 
nonlinear programming now allow to effectively 
model and solve many problems arising at the oper-
ational and tactical levels, where data are more 
available and reliable. The uncertainty in the data 
and the modelling typical of strategic decisions are 
successfully handled by a variety of methodologies 
that have proven to be effective in the solution of 
real applications which are well reviewed in this 
work. A third very interesting dimension is repre-
sented by the development of new broad research 
perspectives which may have a strong impact in all 
fields of OR and are deeply motivated by applica-
tions. An excellent example is the inclusion of fair-
ness and ethics in optimisation which, on the one 
hand allow for considering important issues favour-
ing the acceptability and usability of the results, and 
on the other hand pose new methodological 
challenges.

As a general conclusion, thanks to the advances 
in computer technology, the availability of massive 
amount of live data, and novel developments, in 
both optimisation and statistics, effective optimisa-
tion software, powerful machine learning techniques 
and visualisation tools now exist to solve problems 
that were considered practically unsolvable just a 

decade ago. Applications have always been a main 
driver for OR development, and the successes 
achieved increase the appetite for further 
improvements.

In the more classical area of exact and heuristic 
techniques, there is clearly a need to improve the 
capability of handling efficiently large and very 
large-scale instances to cope with more complex 
and demanding scenarios. This increase in scale is 
not only generated by the need to solve larger 
problems, but also to incorporate various steps of 
the planning processes into integrated and more 
comprehensive methods. A field that still deserves 
further research efforts is the consideration of 
uncertainty in OR methods. Important methodo-
logical obstacles have yet to be surmounted and 
there is clearly a need for the development of sim-
ple and pragmatic methods, possibly resulting from 
the integration of artificial intelligence techniques, 
which can be applied to the solution of large-scale 
problems arising in several important application 
domains. However, it is also worth stressing that 
these advances, though they are welcome, may suf-
fer from shortcomings, such as the local optimality 
trap, biased data, and impractical assumptions. 
These hidden aspects could yield poor outcomes 
on which academics and practitioners ought to 
keep an open eye.
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Appendix A 

List of acronyms 

1D One-Dimensional 
2D Two-Dimensional 
2DKP Two-Dimensional Knapsack Problem 
2S-SPR Two-Stage Stochastic Programming with 

Recourse 
3D Three-Dimensional 
ABM Agent Based Modelling 
ABS Agent Based Simulation 
ADP Approximate Dynamic Programming 
AFS Airport Flight Scheduling 
AHD Attended Home Delivery 
AHP Analytic Hierarchy Process 
AI Artificial Intelligence 
ANN Artificial Neural Network 
ANT Actor Network Theory 
AoA Activity-on-Arc 
AoN Activity-on-Node 
AOR Airline Operations Recovery 
AP Assignment Problem 
ARIMA AutoRegressive Integrated Moving Average 

(model) 
AR Assurance Region 
AR Action Research 
ARIMAX AutoRegressive Integrated Moving Average 

with eXogenous variables (model) 
AS Autonomous System 
ASP Airline Schedule Planning 
ATFM Air Traffic Flow Management 
B2B Business-To-Business 
B2C Business-To-Consumer 
B&B Branch-and-Bound 
B&C Branch-and-Cut 
B&P Branch-and-Price 
BN Bayesian Network 
BOR Behavioural OR 
BPP Bin Packing Problem 
C&P Cutting and Packing 
CBOR Community-Based Operations Research 
CDEA Centralised DEA 
CDM Central Decision Maker or Collaborative 

Decision-Making 
CLD Causal Loop Diagram 
CLSC Closed-Loop Supply Chains 
CM Cellular Manufacturing 
CNN Convolutional Neural Network 
CO Combinatorial Optimisation 
CODP Customer Order decoupling point 
ConFL Connected Facility Location Problem 
COR Community Operational Research 
CPM Critical Path Method 
CRPS Continuous Ranked Probability Score 
CST Critical Systems Thinking 
CSW Common Set of Weights 
CVaR Conditional Value at Risk 
CVRP Capacitated Vehicle Routing Problem 
DBN Dynamic Bayesian Network 
DC Distribution Centre 
DCT Daily Contact Testing 
DDF Directional Distance Function 
DEA Data Envelopment Analysis 

DEF Deterministic Equivalent Formulation 
DES Discrete Event Simulation 
DfT Department for Transport 
DHSC Department of Health and Social Care 
DMU Decision Making Unit 
DNDEA Dynamic Network DEA 
DNN Deep Neural Network 
DP Dynamic Programming 
DPSIR Drivers, Pressures, State, Impact and Response 
DS Data Science 
DSS Decision Support Systems 
EAT Efficiency Analysis Trees 
ED Emergency Department 
EMSR Expected Marginal Seat Revenue 
EOQ Economic Order Quantity 
ERP Enterprise Resource Planning 
ESICUP EURO Special Interest Group on Cutting and 

Packing 
EURO European Operational Research Societies 
EVP Expected Value of Possession 
FAM Fleet Assignment Model 
FIFO First-In-First-Out 
FMS Flexible Manufacturing Systems 
FPTAS Fully Polynomial-Time Approximation Scheme 
FSF Full-State Feedback 
FSO Fixed-sum output 
FTU Facilities-Transformation-Usage (framework) 
GIS Geographic Information Systems 
GLM Generalised Linear Model 
GMB Group Model Building 
GNN Graphical Neural Network 
GORS Government Operational Research Service 
GP Gaussian Process 
GPS Global Positioning System 
GPU Graphics Processing Unit 
GRASP Greedy Randomised Adaptive Search Procedure 
HJB Hamilton-Jacobi-Bellman 
HMT His Majesty’s Treasury 
HL Humanitarian Logistics 
HORAF Heads of OR and Analytics Forum 
IAM Integrated Assessment Model 
ICU Intensive Care Unit 
IGP Interior Gateway Protocol 
IHIP Intangibility, Heterogeneity, Inseparability, and 

Perishability 
IID Independently and Identically Distributed 
INFORMS 
Institute for Management Science and  
Operations Research 
INRC International Nurse Rostering Competition 
ILP Integer Linear Problem 
ILP Integer Linear Programming 
IoT Internet of Things 
IP Integer Programming 
IRP Inventory-Routing Problem 
JIT-MS Just-In-Time Material System 
KP Knapsack Problem 
LASSO Least Absolute Shrinkage and Selection Operator 
LCSA Life Cycle Sustainability Assessment 
LEAR LASSO-Estimated AutoRegressive (model) 
LP Linear Programming 
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LQG Linear Quadratic Gaussian 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MASE Mean Absolute Scaled Error 
MAUT Multi-Attribute Utility Theory 
MAVT Multi-Attribute Value Theory 
MBM Market Based Measure 
MC Maximum Clique or Minimum Cut (problem) 
MCDA Multi-Criteria Decision Analysis 
MCF Minimum Cost Flow (problem) 
MDP Markov Decision Process 
MF Maximum Flow (problem) 
MILP Mixed-Integer Linear Programming 
MINLP Mixed-Integer NonLinear Programming 
MIMO Multi-Input-Multi-Output 
MIP Mixed-Integer Programming 
ML Machine Learning 
MLPI Malmquist Luenberger Productivity Indicator 
MPC Model Predictive Control 
MPI Malmquist Productivity Index 
MRP Material Requirement Planning 
MRP Multi-level Regression Post-stratification 
NBEATS Neural Basis Expansion Analysis for interpret-

able Time Series forecasting 
NDEA Network DEA 
NDP Neural Dynamic Programming 
NFL National Football League 
NHS National Health Service 
NGO Non-Governmental Organisation 
OM Operations Management 
ONS Office for National Statistics 
OR Operational (or Operations) Research 
PA Portfolio Analysis 
PATAT Practice and Theory of Automated Timetabling 
PCR Polymerase Chain Reaction 
PERT Project Evaluation and Review Technique 
PESP Periodic Event Scheduling Problem 
PID Proportional Integral Derivative 
POMDP Partially Observable Markov Decision Process 
PPS Production Possibility Set 
PRA Probabilistic Risk Assessment 
PSM Problem Structuring Method 
PTAS Polynomial-Time Approximation Scheme 
QRA Quantile Regression Averaging or Quantitative 

Risk Assessment 
R&D Research and Development 

RCPSP Resource-Constrained Project Scheduling 
Problem 

RES Renewable Energy Sources 
RFID Radio-Frequency IDentification 
RINS Relaxation-Induced Neighbourhood Search 
RL Reinforcement Learning or Reverse Logistics 
RM Revenue Management 
RMSE Root Mean Squared Error 
RNN Recurrent Neural Network 
SAA Sample Average Approximation 
SARF Social Amplification of Risk Framework 
SAT SATisfiability (problem) 
SCA Strategic Choice Approach 
SCM Supply Chain Management 
SD Systems Dynamics 
SDM Structured Decision Making 
SFA Stochastic Frontier Analysis 
SI Systemic Intervention 
SIS Schools Infection Survey 
SISO Single-Input-Single-Output 
SODA Strategic Options Development and Analysis 
SR Segment Routing 
SRCPSP Stochastic Resource-Constrained Project 

Scheduling Problem 
SSM Soft Systems Methodology 
SST Shortest Spanning Trees 
STP Steiner Tree Problem (in graphs) 
SVF Support Vector Frontiers 
SVM Support Vector Machine 
TE Traffic Engineering 
TFP Total Factor Productivity 
TPS Toyota Production System 
TSP Travelling Salesman Problem 
TTP Travelling Tournament Problem 
UDE UnDesirable Effects 
UFLP Uncapacitated Facility Location Problem 
VaR Value at Risk 
VAR Vector AutoRegressive (model) 
VMI Vendor Managed Inventory 
VPP Virtual Power Plant 
VRP Vehicle Routing Problems 
VSM Viable Systems Model or Value Stream Map 
VSS Value of Stochastic Solution 
VUCA Volatile, Uncertain, Complex and Ambiguous 
WHO World Health Organisation  
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