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Abstract

Whispered vowels, produced with no vocal fold vibration, lack the periodic temporal fine structure
which in voiced vowels underlies the perceptual attribute of pitch (a salient auditory cue to speaker
sex). Voiced vowels possess no temporal fine structure at very short durations (below two glottal
cycles). The prediction was that speaker-sex discrimination performance for whispered and voiced
vowels would be similar for very short durations but, as stimulus duration increases, voiced vowel
performance would improve relative to whispered vowel performance as pitch information becomes
available. This pattern of results was shown for women’s but not for men’s voices. A whispered
vowel needs to have a duration three times longer than a voiced vowel before listeners can reliably
tell whether it’s spoken by a man or woman (~30 ms vs. ~ 10 ms). Listeners were half as sensitive to
information about speaker-sex when it is carried by whispered compared with voiced vowels.
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Introduction

The world is full of complex dynamically changing sources of sound. One source of sound is
other humans speaking. The information voices convey is both linguistic (what has been said)
and indexical (sociocultural status, emotional state, physical attributes, etc.; Giles &
Powsland, 1975; Krause, Freyberg, & Morsella, 2002; Ladefoged & Broadbent, 1957
Murray & Arnott, 1993; Sachs, Lieberman & Erikson, 1972). This article concerns one of
the most salient and important pieces of indexical information—whether someone speaking is
a man or a woman. Of particular interest is how speaker-sex discrimination performance
builds up with stimulus duration where the speech sounds are either voiced or whispered.
The communication sounds of mammals (including the speech sounds of humans) are
produced by the same underlying physiological mechanism. The diaphragm pushes air from
the lungs past the vocal folds. The vocal folds are muscular bands of tissue located in the
larynx at the base of the throat. In normal voiced speech, the vocal folds open-and-close very
rapidly in a vibratory motion which has the effect of breaking up the steady stream of air
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from the lungs into a series of discrete air puffs (glottal pulses). The number of these glottal
pulses per second—the glottal-pulse rate (GPR)—determines the fundamental frequency (f0)
of the laryngeal source. The perceived pitch of the voice is highly correlated with f0.
However, in whispered speech, the vocal folds are held partially open (abducted) and do
not vibrate. The steady stream of air from the lungs in whispered speech passes straight
through the partially open glottis (space between the abducted vocal folds). Crucially,
because of the lack of vibration in the vocal folds, no repetitive temporal structure is
formed in the turbulent airflow of whispered speech. Whispered speech has thus no
fundamental frequency and hence no temporal pitch associated with it.

For both voiced and whispered speech, after passing through the vocal folds, the glottal
pulses (voiced) or broad-band noise (whispered) enter into the space above the larynx (the
supralaryngeal vocal tract). For both types of speech, the frequency content entering into the
vocal tract is differentially reinforced by the resonances of the vocal tract. The vocal tract
resonances lead spectral prominences, known as formants, to form in the input frequency
spectrum; with different formants distinguishing the different speech sounds (Peterson &
Barney, 1952). The vocal tract resonances are determined by the configuration of the vocal
tract which can be rapidly changed by different positioning of the various mobile articulators
such as tongue, lips, jaws, and soft palate, and so forth. For the general principles of speech
production, see Fant (1970) and Titze (2000).

The voices of men and women (and children) are distinguished by characteristic differences
in GPR (Titze, 1989) and vocal-tract length (Fant, 1970; Fitch & Giedd, 1999). The length
and mass of the vocal folds dictate the rate at which they can vibrate—the larger mass of a
man’s vocal folds do not permit as rapid a vibration as those of a woman or child (Titze,
1989). Sexual dimorphism in GPR and hence f0 is marked, with men having a mean f0 of
around 130Hz and women having a mean f0 of 220 Hz (Hillenbrand, Getty, Clark &
Wheeler, 1995). Such a difference is highly salient given that listeners can detect a 2%
difference in voice pitch of individual vowels (Smith, Patterson, Turner, Kawahara,
& Irino, 2005), thus f0 is a strong cue to speaker sex (e.g., Lass, Hughes, Bowyer, Waters,
& Bourne, 1976; Whiteside, 1998).

The length of the supralarygneal vocal-tract is highly correlated with speaker height (Fitch
& Giedd, 1999). As vocal-tract length (VTL) increases, the formants in speech shift toward
lower frequencies (Fant, 1970). When we add the spurt in VTL arising from increased
testosterone in pubertal male adolescents which stimulates growth in the laryngeal
cartilages (Beckford, Rood, & Schaid, 1985), to the generally greater height of males
compared with adult females, we find that the formant frequencies of adult males are
about 15% less than those of adult females (Fitch & Giedd, 1999; Hillenbrand et al., 1995;
Peterson & Barney, 1952). This means that formant frequency consequent upon differences in
VTL is also a potential cue for speaker sex (e.g., Coleman, 1976; Ingemann, 1968; Schwartz &
Rine, 1968).

Smith (2014) investigated the pattern of speaker-sex discrimination performance both as a
function of stimulus duration and across different manipulations of f0 and formants. The
results suggested that for very brief duration vowel sounds the listener uses VTL-related
perceptual cues (frequencies of the formants) to distinguish men’s voices from women’s
voices. However, at the point at which the percept is available, the listener switches to
increasingly using GPR-related perceptual cues (voice pitch). The JND for VTL- and
GPR-related perceptual cues are of the order of 8% and 2%, respectively (Smith et al.,
2005). The suggestion is that in a speaker-sex discrimination task, the listener combines
what information is available using early-available (but less reliable) information at the
start of the decision process but, as time exposed to the stimulus increases, switches to
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late-available (but more reliable) information. Such an approach (which can be characterized
as Bayesian) maximizes performance in a rapidly changing dynamic environment. This
reflects a general philosophy of increasing the weighting of the more reliable cue when
combining across multiple information sources (e.g., Hillis, Watt, Landy, & Banks, 2004;
Jacobs, 2002) where the reliability of those cues change over time (for review of Bayesian
learning see Knill & Pouget, 2004).

One prediction of this view of how perceptual information is recruited across different time
scales is that there should be different speaker-sex discrimination performance as a function
of stimulus duration for whispered compared with voiced speech. When humans whisper, the
normal vibratory motion of the vocal folds is suspended, and consequently there is no
periodic f0 component in whispered speech. This contrasts with voiced speech, where the
glottal pulses generated as the vocal folds vibrate, form a periodic f0 component in the speech
sound which is clearly heard as the pitch of the voice. Thus, voiced speech has an extra
speaker-sex cue of voice pitch compared with whispered speech. Interestingly, pitch needs at
least two glottal cycles to be present in the sound, so for durations less than two glottal cycles
both voiced and whispered speech possess no pitch information. However, both whispered
and voiced speech have formant peaks imposed on their frequency spectrum by the filtering
action of the vocal tract, so they both have VTL-related cues to speaker sex. Speaker-sex
discrimination performance as a function of stimulus duration for whispered speech should
thus take a different form than for voiced speech. At the very shortest of durations, where
speaker-sex discrimination performance is driven by early-available VTL-related cues (Smith,
2014), voiced and whispered speaker-sex discrimination performance should be similar. But
as stimulus duration increases and GPR-related information becomes available, voiced
speech performance should improve relative to whispered speech performance (as shown
in Figure 1). Thus, the underlying psychometric functions, which relate stimulus duration
to listeners’ correct speaker-sex discrimination responses, are predicted to be markedly
different for voiced and whispered speech.

Method
Participants

Twenty English-speaking listeners participated in the main experiment (14 female, age range
18-39 years, mean=20.3 years). A different group of seven English-speaking listeners
participated in the supplementary experiment (five female, age range 19-21 years, mean = 20.1
years). All listeners had normal hearing as indicated by their absolute thresholds at both ears at
0.5, 1, 2, and 4kHz on an audiogram. Listeners were naive to the purpose of the experiments and
participated to earn course credit. Written informed consent was given by the participants after
the experiments were introduced to them. The experimental procedure was approved by the Hull
Psychology Research Ethics Committee (Ref: 1415122506).

Stimuli and Apparatus

Full details of the stimuli and procedures used in this study are given in Smith (2014) and will
only be summarized here. One example of each of the five English vowels /a/, /e/, /i/, /o/, /u/,
corresponding to the vowel sounds in “fa”, “bay”, “bee”, “toe,” and ““z00,” of four adult
men and four adult women speakers were presented to listeners. Speakers provided both
voiced and whispered versions of the vowels. The speakers were native-English speaking
students at the University of Hull. Sounds were recorded with a sampling rate of 48 kHz
and an amplitude resolution of 16-bits.
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Figure |. Hypothetical speaker-sex discrimination performance as a function of duration for voiced (solid line)
and whispered (dashed line) speech. The general form of the psychometric functions is P(t) =y + (I — v — A)F(t),
where P(t) is the probability of correct discrimination of speaker sex at stimulus duration t, with guess rate 7y
(which in an mAFC task is |/m, or %2 in our 2AFC task) which sets the lower asymptote representing chance
performance, and with lapse rate A which sets the upper asymptote representing ceiling performance. The
function F is for convenience taken to be the logistic function [1 + exp(—x)] ', which takes values between 0 and |
for values of t, —00 <t < 0o (see Treutwein & Strasburger, 1999). The bracketed region “formants” indicates
durations where VTL-related information (the formants of speech) are the main cue to speaker sex discrimination,
the region “f0” indicates durations where GPR-related information (voice pitch, as determined by f0) is the main
cue for discriminating speaker sex, and the region “formants and f0” indicates durations where both formants and
fO could contribute to speaker-sex discrimination. Proportion correct values on the y axis are for illustrative
purposes only and xaxis durations are purposively left blank.

The duration of all vowels was adjusted to have six different durations (8, 12, 18, 27, 40,
and 60 ms) by taking different duration length segments from the central portion of each
vowel. Each segment was cosine-square gated to ensure that the sounds came on and went off
smoothly over the first and last 1 ms, respectively. All the vowel sounds of all durations were
normalized to the same root-mean-squared (rms) level of 0.0250 (relative to maximum
of £ 1). The sound level of the vowels at the headphones was 77dB SPL.

A noise mask was presented immediately following the offset of the short duration vowel.
The Gaussian noise mask was 500 ms in duration, with an onset and offset that was smoothed
by a cosine-gating function of 10ms. The sound level of the Gaussian noise at the
headphones was 69 dB SPL.

The stimuli were played by a 24-bit sound card (X-fi Xtreme Audio, Sound Blaster,
Creative) and presented to the listener diotically over Sennheiser HD600 headphones.
Listeners were seated in a single-walled TAC sound-attenuating booth.

Procedure

The experiments were performed using a single-interval, one-response paradigm. The listener
heard a vowel of a given duration and had to indicate whether a man or women had spoken
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the vowel. There was a 50% chance that either a man or woman had spoken the
original vowel. There was a 20% chance that the vowel was a particular vowel from
the set of five (/a—u/). The judgement of the sex of the speaker of the vowel uttered was
made by selecting the appropriate button on a visual display. The order of the “man’ and the
“woman’ buttons was quasi-randomly switched at the beginning of each run.

Listeners were first given a practice run of 30 trials with a single vowel duration of 100 ms
of either voiced or whispered vowels. The purpose of the practice was to familiarize listeners
with the experimental procedure. The five vowels were each presented six times, with half
spoken by men and half spoken by women. Which vowel and whether the vowel was spoken
by a man or a woman was quasi-randomly determined. The ability of listeners to correctly
judge the sex of the original speaker was measured. Listeners invariably found it an easy task
to judge the sex of the speaker of the voiced vowels at this duration (M =99.17%,
SD=2.39% correct) but harder to judge the sex of the speaker of the whispered vowels
(M =283.50%, SD=10.62% correct). Each listener was provided with feedback as to their
performance level only for the first practice run (whether it was voiced or whispered being
counterbalanced). The practice run took approximately 2 to 3 min to complete.

Listeners then proceeded on to the main experiment. The listener was given a run of 180
trials, consisting of six durations (8, 12, 18, 27, 40, and 60 ms), each repeated 30 times. Half
the trials were vowels spoken by men, and half the trials were vowels spoken by women
(balanced across durations and vowels). Each run consisted of either all voiced or all
whispered vowels. The duration, sex, and vowel were presented in a quasi-random order
generated by the computer. Which of the four men’s or four women’s vowels was used in any
one trial was quasi-randomly determined by the computer. Whether listeners undertook the
voiced-vowel run or the whispered-vowel run first was counterbalanced to control for the
effects of experience or fatigue. There was no feedback. After the first experimental run had
been completed, the listeners were given a practice run and then the last experimental run (all
without feedback). Thus, one participant might do practice-voiced, experimental-voiced,
practice-whispered then experimental-whispered. Another participant might do the
whispered practice and experiment first, followed by the voiced practice and experimental
conditions. Each experimental run of 180 trials took approximately 10 to 15 min to complete.
Each listener did the experiment in one session lasting approximately 45 min.

Results

Figure 2 shows proportion correct judgment of original speaker sex, as a function of duration
of the vowel, for voiced and whispered vowels. The results for the main experiment (solid
curves, large circles) are based on the mean data from 20 listeners, and the results for the
supplementary experiment (dashed curves, small circles) are based on the mean data from 7
listeners. Results are presented pooled across both men and women speaker judgments
(Figure 2(a), top), separately for men-speaker judgments (Figure 2(b), middle) and
separately for women-speaker judgments (Figure 2(c), bottom).

Main Experiment

The first finding is that proportion correct scores for the speaker-sex discrimination task are
higher for voiced than for whispered vowels for all durations (Figure 2, solid curves, filled vs.
open large circles). To characterize the relationship between vowel duration and proportion
correct for the voiced and whispered vowels, an estimate of the psychometric function was
made using non-parametric local linear regression fitting (Zychaluk & Foster, 2009).
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Figure 2. Proportion correct judgment of original speaker sex for voiced (filled circles) and whispered
(open circles) vowels as a function of vowel duration. The large circles indicate the main experiment data. The
small circles indicate the supplementary experiment data. The solid (fitted to main experiment data) and
dashed (fitted to supplementary experiment data) curves are best-fitting psychometric functions using non-
parametric local linear regression fitting (2ycha|uk & Foster, 2009). Data collapsed across correct judgments
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A “model-free”! approach to estimating the psychometric function was adopted because the
form of the underlying function is not known and because of the wish to avoid assumptions
about lower and upper asymptote limits. The lower asymptote limit is conventionally set by
the “guess rate” y (which is 0.5 in a 2 Alternative Forced Choice (2AFC) task) and the upper
asymptote limit is set by the maximum possible proportion correct minus the ‘lapse rate’ A.
Lapse rate represents incorrect responses that are unconnected to the level of the independent
variable (due to momentary loss of attention and incorrect key presses) which tend to be
minimal (affecting between 0% and 5% of trials, see Wichmann & Hill, 1999). However,
“lapse” rate can be non-trivial if it incorporates a hard barrier to further improvements in
performance, perhaps induced by lack of information, perceptual bias, change in the
weighting, or cue used to make a decision. In parametric fitting of psychometric functions,
both vy and A substantially affect the shape of the fitting function (Treutwein & Strasburger,
1999; Wichmann & Hill, 2001). In our situation, there is no reason to assume that 1 is trivially
small or vy strictly equal to chance (0.5) because there may be perceptual biases or cue
weighting changes affecting them. Local linear fitting derives the asymptotic values y and A
automatically provided the psychometric function is sampled in the required region
(Zychaluk & Foster, 2009). The non-parametric fits are as good as parametric fits, with the
only assumption being that the function must be smooth (Zychaluk & Foster, 2009).

The point at which listeners can reliably tell whether a man or woman spoke—the
duration threshold (ming,) for reliable discrimination, defined as the duration
corresponding to the 0.75 point on the fitted curve (¢ =1 for 2AFC task, see Macmillan
& Creelman, 1991)—was extracted from the fitted psychometric functions to the voiced and
whispered vowel conditions. The slope at a point equal to probability P=((1 —y — 1)/2+7)
on the fitted curve was measured to provide a value for sensitivity—how quickly speaker-sex
discrimination performance increases as a function of vowel duration. The reasoning was
slope should not be unduly affected by differences in y and A which would arise if the slope
was measured at a fixed probability such as 0.75.

The data were first analyzed pooled across both men’s and women’s voices (Figure 2(a)).
The best-fitting psychometric function for voiced vowels (solid curve fitted to filled large
circles) is clearly different from that of the whispered vowels (solid curve fitted to open
large circles). The duration threshold (min,,,) for reliable discrimination of whether a man
or woman spoke was 11.28 (£0.45) ms for voiced vowels versus 33.77 (£ 5.74) ms for
whispered vowels. The uncertainty (SD) in the threshold and slope Ms was estimated from
200 iterations in a bootstrap procedure (Foster & Bischof, 1991). Comparison of threshold
(and slope) estimates across vowel types was made using 99% confidence intervals which
maintain at least p <.01 for non-overlapping error bars when the standard error of the
estimates differs by a factor of approximately 13 (see Payton, Greenstone, & Schenker,
2003). The threshold estimates for voiced and whispered vowels (Table 1) clearly do not

Figure 2. Continued

of both men and women speakers and across all five vowels (Figure 2(a), top). Data plotted separately for
men speakers (Figure 2(b), middle) and women speakers (Figure 2(c), bottom). For the main experiment
(Figure 2(a)), each point shown for each duration is based on 600 trials [(I5 Men+ 15 Women Speaker
Repetitions) x 20 Listeners]. When plotted separately for the main experiment (Figure 2(b) and (c)), each
datum point is based on 300 trials (15 Speaker Repetitions x 20 Listeners). The supplementary experiment
data points are based on 210 trials [(15 Men + |15 Women Speaker Repetitions) x 7 Listeners] for Figure 2(a),
and 105 trials (15 Speaker Repetitions x 7 Listeners) for Figure 2(b) and (c). Error bars are standard error of
the mean across 20 listeners (main experiment) or 7 listeners (supplementary experiment).
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overlap, and we can thus be confident that there is a significant difference between the
duration thresholds for voiced and whispered vowels.

A measure of the slope was also extracted from the fitted psychometric functions for the
voiced and whispered vowels. These were measured at the P=.75 point for the voiced and at
the P=.665 point for the whispered. The slopes were 0.0263 (£ 0.0018) for the voiced and
0.0120 (£ 0.0026) for the whispered, which are significantly different from each other at least
at p <.01 (see Table 1).

The differences between voiced and whispered psychometric functions were also evident for the
speaker-sex discrimination data for the men’s voices analyzed separately (Figure 2(b)). The
threshold and slope estimates of the voiced and whispered vowels, derived from the fitted
functions, clearly do not overlap—duration threshold (min,,.) for reliably discriminating whether
a man or woman spoke was 11.02 (£ 0.47) ms for voiced vowels versus 28.87 (£ 1.72) ms for
whispered vowels, and slope estimates were 0.0316 (& 0.0029) for the voiced and 0.0146 (£ 0.0013)
for the whispered—all significantly different from each other at least at p < .01 (see Table 1).

Finally, differences between voiced and whispered psychometric functions were apparent
when the speaker-sex discrimination data for the women’s voices were analyzed separately
(Figure 2(c)). It is problematic to compare thresholds because the whispered condition for
women’s voices never reaches 0.75 probability correct—however, clearly, there is a difference
with duration threshold (miny,.,) for reliable discrimination whether a man or woman spoke being
11.49 (£0.76) ms for voiced vowels versus undefined (but at least >60ms) for the whispered
vowels. Comparing slope estimates, we have 0.021 (£ 0.002) for the voiced and 0.0088 (£ 0.0024)
for the whispered, significantly different from each other at least at p < .01 (see Table 1).

Supplementary Experiment

Although the voiced and whispered vowels were equated to the same level of 77dB SPL, it
could be argued that the whispered vowels are less salient than the voiced vowels. Thus, the
reduced discriminability of speaker-sex in the whispered relative to the voiced vowels could
be due to the whispered vowels having less perceptual loudness rather than their being
impoverished in speaker-sex cues per se. To look at this idea further, the experiments were
repeated but with the sounds all increased by 6 dB. All other details were the same.

Figure 2 (dotted line, small circles) shows probability correct judgment of original speaker
sex, as a function of duration of the vowel, for voiced and whispered vowels in the
supplementary experiment. As in the main experiment, the relationship between vowel
duration and proportion correct for the voiced and whispered vowels, was characterized
by using non-parametric local linear regression fitting (Zychaluk & Foster, 2009), to derive
a best-fitting psychometric function. Threshold and slope estimates derived from the
psychometric functions were compared between identical conditions across the
supplementary and main experiment, for example, voiced (men and women speakers) in
the supplementary versus voiced (men and women speakers) in the main experiment,
whispered (men and women speakers) in the supplementary versus whispered (men and
women speakers) in the main experiment, and so forth. In no case for the voiced vowels,
was there a significant difference between comparable conditions in the main and
supplementary experiments (compare following values against Table 1 equivalent values:
voiced (m + w) ming, 13.10 (£ 0.53) ms, slope 0.0308 (£ 0.0032); voiced (m) ming,, 12.16
(£ 0.75) ms, slope 0.0343 (£ 0.0055); voiced (W) ming 14.19 (£ 0.98) ms, slope 0.0256 (+
0.004)). For the whispered speaker-sex discrimination (men speakers), there was a significant
difference between comparable conditions in the main and supplementary experiments
(whispered (m) min,,, 41.73 (£ 3.36) ms, slope 0.0074 (£ 0.0011)), while for the other
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whispered conditions there was no significant differences (whispered (m + w) min,,, 36.68 (£
6.27) ms, slope 0.0065 (£ 0.0029); whispered (w) min,,, 56.36 (£ 11.96) ms, slope 0.0019 (&
0.0042)).

Discussion

This article investigated how speaker-sex discrimination performance improves as a function
of stimulus duration for voiced and whispered vowels. The prediction was that speaker-sex
discrimination performance for voiced and whispered vowels would be similar for very short
durations but, as stimulus duration increased, voiced vowel performance would improve
relative to whispered vowel performance. This would be reflected by markedly different
psychometric functions (see hypothetical curves in Figure 1) and poorer speaker-sex
discrimination performance (in terms of discrimination thresholds and sensitivity slope
values) for whispered compared with voiced vowels. This is the case: a whispered vowel
needs to have a duration three times longer than a voiced vowel before listeners can
reliably tell whether it’s spoken by a man or woman (~30ms vs. ~10ms). Listeners are
approximately half as sensitive to information about speaker-sex when it is carried by
whispered as opposed to voiced vowels (as shown by the slopes of the psychometric
functions).

It was suggested that the relative impairment between voiced and whispered speaker-sex
discrimination performance should be least at shorter durations where the two different types
of stimuli approach parity as both do not possess pitch information. This was partially
confirmed (Figure 2(a), solid lines, filled vs. open large circles). Interestingly, when plotting
judgments separately for men and women speakers the pattern of performance is more
mixed. Men’s voices, though showing the characteristic poor speaker-sex discrimination
performance of whispered vowels relative to voiced vowels, do not show less impairment
at very short durations relative to longer durations (Figure 2(b)). Women’s voices are more
similar to the prediction, showing little difference between whispered and vowel speaker-sex
discrimination performance at short durations but a large difference at longer vowel
durations (Figure 2(c)). Whispered speech tends to have higher formants (primarily F1)
than voiced speech for a given vowel (Kallail & Emanuel, 1984). Higher-frequency
formants cue for shorter VITL (Fant, 1970) which would indicate a women speaker, as
women on average have shorter VTLs than men (Fitch & Giedd, 1989). This could lead to
some misclassification of male vowels as being spoken by a woman. This seems to be
occurring at least at very short durations (8 ms) where performance drops below chance
(0.50) for men’s vowels (Figure 2(b)).

Another difference between speaker-sex discrimination performance for men’s and
women’s whispered vowels is at longer durations (>40ms) where women’s whispered
vowel speaker-sex discrimination performance asymptotes at approximately 0.70
proportion correct while men’s whispered vowel speaker-sex discrimination performance
increases up to 0.90 (at 60ms). The male glottis has a medial surface bulge in the vocal
folds while the female glottis converges more linearly (Titze, 1989). This could lead to
perceptual differences at longer durations in male and female whispered vowels which
might aid speaker-sex discrimination. The difficulties associated with identifying women
compared with men speakers is consistent with other studies that have shown a perceptual
advantage for male sounds in speaker-sex discrimination tasks (Owren, Berkowitz, &
Bachorowski, 2007).

A supplementary experiment exploring whether differences in loudness between voiced
and whispered vowels might explain the observed pattern of speaker-sex discrimination
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performance involved increasing the sound level of the stimuli. This had no effect on
performance for voiced vowels (Figure 2(a)—(c), small vs. large filled circles). The effect
upon whispered vowels was only significant for men’s voices (Figure 2(b), small vs. large
open circles), where increasing the sound level by 6 dB led to poorer performance at medium
durations. There was no difference in speaker-sex discrimination performance for whispered
women’s voices (Figure 2(c)) or when men’s and women’s voices were plotted together
(Figure 2(a)). This implies that changes in perceptual loudness do not underlie differences
in speaker-sex discrimination performance between voiced and whispered vowels. The
suggestion is that the differences are due to a lack of temporal pitch information in
whispered speech.

In summary, the impoverished representation of speaker-sex cues (no temporal pitch) in
whispered speech leads to poorer speaker-sex discrimination performance for whispered
compared with voiced vowels—a whispered vowel has to be three times as long (34 ms) as
a voiced vowel (11 ms) to reach the threshold of discrimination (ming,,). The difference
between voiced and whispered vowel speaker-sex discrimination performance is least at
very short durations because both voiced and whispered vowels contain VTL-related
information and have no GPR-related information. However, at longer durations, GPR-
related information becomes available in the voiced vowels while still being absent from
the whispered vowels. Consequently, whispered vowel speaker-sex discrimination
performance does not improve as much as voiced vowel speaker-sex discrimination
performance. This is consistent with Smith (2014) in that it provides further support for
the idea that speaker-sex discrimination is mediated by VTL-related information at the
very shortest durations and then switches to being dominated by GPR-related information
when it is available at longer durations. This makes best use of what information is
available—using early-available but less reliable information in the beginning of a decision
process and then switching to late-available but reliable information as it comes on stream.
Such an approach maximizes performance in a rapidly changing dynamic environment.
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