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ABSTRACT  24 

Understanding river response to relative sea-level (RSL) changes is essential for predicting 25 

fluvial stratigraphy and source to sink dynamics.  Recent theoretical work has suggested that 26 

during RSL fall rivers can remain aggradational.  However, field data are needed to verify this 27 

response and investigate sediment deposition processes.  We show with field work and modeling 28 

that during RSL fall fluvio-deltaic systems can remain aggradational or at grade, leading to 29 

superelevation and delta lobe avulsions.  Our field site is the Goose River in Newfoundland-30 

Labrador, which has experienced steady RSL fall of around 3 to 4 mm yr-1 in the past 5 ka from 31 

post-glacial isostatic rebound.  Elevation analysis and optically-stimulated luminescence dating 32 

suggest that during RSL fall the Goose River avulsed and deposited three delta lobes.  Model 33 
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results from Delft3D show that if the characteristic system fluvial response time is longer than 34 

the duration of RSL fall, then rivers remain aggradational or at grade and continue to avulse due 35 

to superelevation.  Intriguingly, our results also suggest that avulsions become more frequent at 36 

faster RSL fall rates, provided the system response time remains longer than RSL fall duration.   37 

This work suggests that the rate of RSL fall may play an important role in setting the architecture 38 

of falling stage deposits. 39 

 40 

INTRODUCTION 41 

Predicting how rivers erode or deposit sediment in response to relative sea-level (RSL) 42 

change is critical for understanding sequence stratigraphy (Catuneanu, 2006) and source to sink 43 

dynamics (Romans and Graham, 2013).  Despite this importance, it is unclear if during RSL fall 44 

rivers incise and bypass sediment to the deep marine (e.g. Vail, 1977), or if they deposit 45 

sediment on the coastal plain starving the deep marine (e.g. Holbrook and Bhattacharya, 2012).  46 

In the latter case, strata deposited during RSL fall are typically terraced deposits with a 47 

descending shoreline trajectory (Posamentier and Morris, 2000; Catuneanu, 2006; Helland‐48 

Hansen and Hampson, 2009, Li and Bhattacharya, 2013).    While the incisional model has 49 

received considerable attention, there is mounting theoretical evidence (Muto and Steel, 2004) 50 

that deposition during RSL fall may be common, yet few studies have focused on the processes 51 

that deposit these sediments. 52 

For example, experimental work shows that a coastal river with constant sediment 53 

supply, prograding over a linear basin slope, does not just incise during steady RSL fall.  Instead 54 

the river experiences an autogenic response of multiple episodes of deltaic lobe deposition, 55 

incision through the lobe, and abandonment (van Heijst and Postma, 2001; Muto and Steel, 2002, 56 
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2004; Swenson and Muto, 2007).  But, these ideas have not been tested on field-scale rivers, nor 57 

have they been investigated with channel-resolving morphodynamic models.   58 

Our goal here is to understand the processes that control sediment deposition during RSL 59 

fall by combining elevation analysis, and optically stimulated luminescence (OSL) data from the 60 

modern Goose River, Newfoundland-Labrador, and morphodynamic modeling.  Our 61 

observations show that as RSL falls Goose River avulsions create multiple delta lobes at 62 

progressively lower elevations.  Delft3D models simulating RSL fall confirm these field 63 

observations and suggest that the number and size of delta lobes scale with the rate of RSL fall.   64 

 65 

STUDY AREA 66 

The Goose River empties into Goose Bay at the western edge of Lake Melville—a fjord-67 

type estuary located 200 km inland of the Labrador Sea, Labrador, Canada (Liverman, 1997) 68 

(Fig. 1).  The majority of Goose Bay water depths range between 20 m and 40 m, but nearshore 69 

depths shallow to 10 m (Blake, 1956).  The bay is stratified with a 5 m-thick stable fresh water 70 

surface layer overlaying saline bottom waters.  The tidal amplitude within Goose Bay is ~0.4 m 71 

(Vilks et al., 1987).  The Goose River has a drainage area of 3,450 km2
.  In its lower reaches the 72 

river averages 100 to 200 m wide and 2 to 3 m deep.  Water discharge ranges from 5 m3 s-1 73 

during winter to 500 m3 s-1 during the spring and early summer (Coachman, 1953).   74 

This region of Labrador has experienced considerable RSL fall following retreat of the 75 

Laurentide ice sheet over Goose Bay at ~8 ka (Syvitski and Lee, 1993).  While, the initial RSL 76 

fall rate was around ~50 mm yr-1 (Clark and Fitzhugh, 1991), it has slowed to steady rate 77 

between 3 and 10 mm yr-1 over the last 5 ka (Fitzhugh, 1973; Clark and Fitzhugh, 1991).  These 78 
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rates are also consistent with radiocarbon dating of stranded shorelines (Blake, 1955), and with 79 

geodetic monitoring over the past two decades (Henton, et al., 2006).   80 

FIELD DATA COLLECTION and RESULTS 81 

We mapped four extant delta lobes within the Goose River system.  At the mouth of the 82 

Goose River there is an active, sandy delta (Fig. 1D), and upstream there are at least three 83 

moribund delta lobes (Fig. 1A-C), as recognized by their lobate planform shape and visible 84 

distributary channel networks. The median grain size is between 330 and 350 μm for all delta 85 

lobes. 86 

To constrain the timing of fluvio-deltaic deposition on the Goose River, we conducted a 87 

topographic analysis using 30-m shuttle radar topography mission (SRTM) data and collected 88 

sediment cores for OSL dating from delta lobes B and C (Fig. 1). We compared the accuracy of 89 

the SRTM data with survey points from a fully corrected Leica 1320 global positioning system 90 

and found good agreement with a root mean square error of less than 1 m. The sediment cores 91 

for OSL dating (Fig. 1) came from overbank locations that were between distributary channels 92 

(i.e. centers of mouth-bar areas) to minimize contamination from recent sediments deposited 93 

during floods.   Within the sediment cores, two samples were collected at different stratigraphic 94 

elevations (Fig. DR1) to constrain lobe activity and aggradation rate.  The single-aliquot 95 

regenerative-dose (SAR) protocol (Murray and Wintle, 2000) was used to determine equivalent 96 

doses (De) and subsequent OSL ages of each sample.  Based on the character of the age 97 

distributions, we used a central age model for the lobe B samples and the minimum age model 98 

for lobe C samples (see data repository for more information on sample collection and OSL 99 

dating).     100 
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Our OSL results and topographic analysis shows that during RSL fall the Goose River 101 

avulsed to create at least three delta lobes at progressively lower elevations (Fig. 1 inset).  OSL 102 

ages suggest the Goose River delta avulsed from lobe B to C between 1 and 2 ka.  During 103 

deposition lobes B and C possessed vertical aggradation rates of ~4 and ~3 mm yr-1, respectively.  104 

Although we did not collect OSL samples for lobe A, we can estimate its age using the surface 105 

elevation and the local sea-level curve.  This method suggests it dates to ~3 ka.   106 

 107 

NUMERICAL MODELING SETUP AND RESULTS 108 

To understand the behavior of the Goose River in more detail we conducted a series of 109 

modeling experiments of delta growth under RSL fall using Delft3D.  Our model setup uses 110 

boundary and initial condition measured on the Goose River.  We simulate a fluvial system 111 

entering a standing body of water with no tides, waves, or buoyancy forces.  The river has a 112 

constant bankfull discharge of 300 m3 s-1 and carries an equilibrium concentration of 350 µm 113 

sediment.  Along the seaward boundary we specify constant RSL fall rates varying from 0 to 10 114 

mm yr-1 (consistent with temporal variability at Goose Bay) using 1 mm yr-1 increments and we 115 

simulate rates of 16 and 20 mm yr-1 to explore all of parameter space; this results in 13 runs total 116 

(Table 1).  Before RSL fall begins, a delta progrades basinward until the average topset slope 117 

reaches dynamic equilibrium.  We used this delta topography as the starting point for each RSL 118 

fall scenario (see Data Repository for more information on model setup).   119 

For analysis we mark the durations of all avulsions during RSL fall that create new, 120 

distinct delta lobes.  An avulsion is considered complete after water and sediment transported in 121 

the initial delta lobe diminishes to zero.  We define a delta lobe as a set of contemporaneous 122 

channels feeding a topset of relatively constant elevation that is separated from neighboring 123 
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depocenters by an abrupt change in elevation (Fig. 2).  We ignore the smaller intradelta lobe 124 

avulsions (sensu Edmonds et al., 2009).     125 

In our model runs, during RSL fall there is fluvio-deltaic deposition on the coastal plain 126 

that is punctuated by fluvial avulsion (Figure 2A-C).  This is consistent with observations on the 127 

Goose River and recent work (Muto and Steel, 2004).  No delta lobe avulsions occurred for runs 128 

with RSL fall of 0 to 2 mm yr-1.  We find that avulsion period decreases with increasing RSL fall 129 

rate (Fig. 2D).  Avulsion number also increases with RSL fall, until a point is reached and they 130 

decline rapidly (Figure 2D).   131 

DISCUSSION OF FIELD DATA AND MODELING 132 

Our field and numerical modeling results show that rivers can avulse and deposit multiple 133 

delta lobes on the coastal plain during RSL fall.  This result is significant as RSL fall should 134 

suppress avulsions because channel incision, if fast enough, counteracts normalized 135 

superelevation (height from water surface to sea-level relative to parent channel depth) that 136 

commonly precedes avulsion (Slingerland and Smith, 2004).       137 

We reason that avulsion can persist during RSL fall provided the channel becomes 138 

superelevated.  This would occur if the RSL fall signal does not cause enough incision in the 139 

channel.  This idea was quantified by Muto and co-workers (Muto and Steel, 2002, 2004; Muto 140 

and Swenson, 2005, 2006; Swenson and Muto, 2007) who showed that a fluvio-deltaic system 141 

will not incise when RSL falls if the fluvial response time τ is longer than the duration of RSL 142 

fall T (i.e. τ > T).  Similarly, we define the fluvial response time as  𝜏𝜏 = 𝑞𝑞𝑠𝑠 ∙ 𝑆𝑆
𝑟𝑟2

 where qs is the 143 

sediment supply per unit width of the active delta lobe (m2 s-1), S is the water surface slope, and r 144 

is the rate of RSL fall (m s-1).  We take T to be the avulsion period, since that sets the duration a 145 
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given delta lobe is exposed to RSL fall, or in the case of no avulsions we use the total duration of 146 

RSL fall.   147 

Both the Goose River and our model runs with RSL fall of 1 to 10 mm yr-1 possess τ/T  148 

>> 1 (Table 1) suggesting in these cases the fluvial system has not responded to RSL fall.  This 149 

is further supported by modeled channel bed elevations that show little incision (Fig. 3A).  We 150 

suggest avulsions continue because RSL fall superelevates the fluvial system, and also creates 151 

surface gradient advantages where steeper delta front foresets are exposed due to shoreline 152 

retreat.  Consider that prior to the avulsion in Fig. 2C the channel does not incise (because τ/T  153 

>> 1, Table 1) and sea-level decreases faster than the water surface elevation in the channel.  154 

This leads to a normalized superelevation of ~0.4 before avulsion (Fig. 3B), which is a 155 

reasonable value for avulsion initiation in other systems (Hajek and Wolinsky, 2012).  New delta 156 

lobes are created as overbank flow accelerates down steeper pathways and forms incisional 157 

avulsion channels (e.g., Hajek and Edmonds, 2014) (Fig. 3).  Thus, the avulsion period decreases 158 

with faster RSL fall rates because channels superelevate faster (Fig. 2D).   159 

At higher RSL fall rates of 16 and 20 mm yr-1 the model runs are characterized by τ/T < 1 160 

(Table 1).  In these runs, the channel bed quickly erodes through the initial delta lobe (Fig. 4C), 161 

entrenching the active channel and suppressing future avulsions.  The few avulsions that do 162 

occur arise from upstream migrating knickpoints that capture the river.  The fluvial system 163 

continues to deposit sediment and prograde as it follows the rapidly falling shoreline, but there 164 

are no terraces and the surface grade is set by the RSL rate and underlying slope (Muto and 165 

Swenson, 2006).   166 

IMPLICATIONS 167 



8 
 

Our field and numerical results suggest that for a given fluvio-deltaic system, if τ/T  >> 1 168 

falling-stage deposits are characterized by a series of terraced, downstepping deltaic lobes, 169 

whereas if τ/T ≤ 1 incision occurs through pre-existing lobes and falling-stage deposits lack well-170 

defined terraces (‘smooth-topped’ sensu Posamentier and Morris, 2000).  These are some of the 171 

first field-based results that verify the predictions of Muto and others (e.g. Muto and Steel, 2004) 172 

and also illustrate that avulsion plays a key role in depositional mechanics during RSL fall.   173 

Moreover, these results have important implications for sequence stratigraphic models.  174 

Consider that sequence-bounding unconformities created during RSL fall may not always be an 175 

erosive/bypass surface. Rather, deltaic lobe formation during RSL fall on the Goose River, 176 

suggests that sediment is burying the unconformity as it forms (‘cut and cover’ model of 177 

Holbrook and Bhattacharya, 2012).  Though, it is admittedly not clear how much of this 178 

deposition during RSL fall will be preserved in the geologic record.  Our results also suggest 179 

avulsion is an important process in emplacing falling-stage strata.  Given this, the stratigraphic 180 

architecture of falling-stage deposits depends on the rate of RSL fall, since the number of 181 

terraced deltaic lobes scales with RSL fall rate (Fig. 2D). This result has implications for 182 

reservoir properties, such as sand-body connectivity, which may decrease at higher rates of RSL 183 

fall due to the presence of more terraced deltaic lobes.  184 

CONCLUSIONS 185 

The response of fluvio-deltaic systems to relative sea level (RSL) fall has received 186 

considerable attention in the past, but new views, suggesting sediment deposition is common 187 

(e.g. Muto and Steel, 2004, Swenson and Muto, 2007; Holbrook and Bhattacharya, 2012), are 188 

emerging that require field and model verification.  Herein, using observations of the Goose 189 

River delta and Delft3D simulations, we have shown that fluvial avulsions can occur during RSL 190 
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fall.  Optically-stimulated luminescence ages show that during RSL fall the Goose River delta 191 

has avulsed on multiple times creating three delta lobes terraced at different elevations.  192 

Numerical modeling with Delft3D shows that, similar to the Goose River delta, fluvio-deltaic 193 

systems can produce avulsions and multiple terraced delta lobes during RSL fall.  Avulsions 194 

persist because the fluvial response time is slower than the duration of RSL fall, and rivers can 195 

remain aggradational, causing superelevation and avulsions to occur during RSL fall.  Moreover, 196 

our modeling results suggest that the number and size of deltaic lobes scales with RSL fall, 197 

suggesting that the sedimentary architecture of falling-stage deposits changes with the rate of 198 

RSL fall.   199 

 200 
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Table 1: Data used for τ/T calculations from Delft3D experiments and Goose River system.    qs 301 

for Goose River is calculated from average sedimentation rates for lobes B and C derived from 302 
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OSL dated horizons.  3 mm yr-1 is considered to be a reasonable RSL fall rate for the Goose 303 

River for the last 5 ka.   Delft3D results consist of average conditions during the model run.   304 

 305 
Figure 1. Google Earth image of the lower Goose River (53°21'48.32"N, 60°23'1.85"W, 306 

DigitalGlobe, June 14, 2012). Delta lobes A, B, C, and D are marked by black outline in the 307 

large image.  Delta lobes were defined by their distributary-channel networks and overbank 308 

deposits.  Inset plot shows spatially averaged elevation and ages of the four delta lobes (A-D).  309 

Boxplots show SRTM elevation distributions, where solid horizontal lines and cross-hairs are the 310 

median elevations and outliers for each lobe.  The OSL age is listed below each boxplot.  OSL 311 

sample locations are marked on lobes B and C. Inset map shows the Goose River relative to Lake 312 

Melville.   313 

 314 

Figure 2.  Serial maps of Delft3D simulation with a RSL fall of 3 mm yr-1 showing initial 315 

condition (A) and two subsequent delta lobe avulsions (B, C).  Elevations seaward of the delta 316 

shoreline are clipped.  Thick black lines indicate the position of the delta shoreline at the 317 

previous time step.  White boxes in A and B show the locations for measurements in Fig. 3A and 318 

B, respectively. (D) Results of all Delft3D simulations show that as the rate of RSL fall increase, 319 

avulsion period decreases, while number of avulsions (listed above each point) increase and then 320 

decrease.  Note that a RSL fall ≥3 mm yr-1 is required to produce delta lobe avulsions.   321 

 322 

Figure 3.  (A) Spatially averaged channel bed elevations (η) at delta head remain roughly 323 

constant for RSL fall rates below 10 mm yr-1 and become incisional at higher rates of RSL fall. 324 

See Fig. 2A for location of spatial averaging.  (B)  In the time period prior to the lobe avulsion in 325 

Fig. 2C, the normalized superelevation of the channel, defined as height from water surface to 326 
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RSL relative to channel depth, increases to ~0.4 before the avulsion occurs.  The superelevation 327 

occurs because RSL decreases faster than the water or bed surface.  See Fig. 2B for location of 328 

spatial averaging.  329 

 330 

 331 
 332 

 333 
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Figure 3.  (A) Spatially averaged channel bed elevations (η) at delta head remain roughly constant for RSL 
fall rates below 10 mm yr-1 and become incisional at higher rates of RSL fall. See Fig. 2A for location of 
spatial averaging.  (B)  In the time period prior to the lobe avulsion in Fig. 2C, the normalized supereleva-
tion of the channel (S), defined as height from water surface to RSL relative to channel depth, increases 
to ~0.4 before the avulsion occurs.  The superelevation occurs because RSL decreases faster than the 
water or bed surface.  See Fig. 2B for location of spatial averaging. 

RSL fall 
(mm yr-1)

Number of 
avulsions qs (m2 s-1) Slope T (yrs) yrs /T

0 0 3.10E-06 2.11E-04 - - -

1 0 2.10E-06 2.16E-04 298.0 14260.3 47.9

2 0 2.06E-06 2.80E-04 298.0 4544.3 15.2

3 3 6.64E-06 3.06E-04 100.0 7130.7 71.3

4 4 1.03E-05 6.19E-04 74.8 12616.5 168.8

5 5 1.08E-05 9.07E-04 60.2 12363.6 205.4

6 6 1.61E-05 3.38E-04 49.7 4759.5 95.8

7 8 1.52E-05 7.89E-04 37.8 7707.6 204.2

8 7 1.74E-05 6.97E-04 43.0 5969.2 138.8

9 8 2.02E-05 1.20E-03 37.4 9461.7 253.2

10 9 2.75E-05 1.67E-03 33.4 14451.0 432.1

16 2 5.25E-06 1.40E-04 145.0 90.6 0.6

20 1 6.06E-06 1.70E-04 185.0 81.2 0.4

3.00 3 2.27E-07 2.30E-03 1000.0 1833.6 1.8

DELFT3D RUNS

GOOSE RIVER (averages of lobes B and C)

Table 1: Data used for τ/T 
calculations from Delft3D 
experiments and Goose River 
system.    qs for Goose River is 
calculated from average 
sedimentation rates for lobes 
B and C derived from OSL 
dated horizons.  3 mm yr-1 is 
considered to be a reasonable 
RSL fall rate for the Goose 
River for the last 5 ka.   
Delft3D results consist of 
average conditions during 
the model run.  
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