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Abstract 
Computational analysis of fluorescent timelapse microscopy images at the single-cell level is a powerful approach to study cellular 
changes that dictate important cell fate decisions. Core to this approach is the need to generate reliable cell segmentations and 
classifications necessary for accurate quantitative analysis. Deep learning–based convolutional neural networks (CNNs) have emerged 
as a promising solution to these challenges. However, current CNNs are prone to produce noisy cell segmentations and classifications, 
which is a significant barrier to constructing accurate single-cell lineages. To address this, we developed a novel algorithm called 
Single Cell Track (SC-Track), which employs a hierarchical probabilistic cache cascade model based on biological observations of cell 
division and movement dynamics. Our results show that SC-Track performs better than a panel of publicly available cell trackers on 
a diverse set of cell segmentation types. This cell-tracking performance was achieved without any parameter adjustments, making 
SC-Track an excellent generalized algorithm that can maintain robust cell-tracking performance in varying cell segmentation qualities, 
cell morphological appearances and imaging conditions. Furthermore, SC-Track is equipped with a cell class correction function to 
improve the accuracy of cell classifications in multiclass cell segmentation time series. These features together make SC-Track a robust 
cell-tracking algorithm that works well with noisy cell instance segmentation and classification predictions from CNNs to generate 
accurate single-cell lineages and classifications. 
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INTRODUCTION 
The analysis of time-resolved fluorescent microscopy images 
to obtain cellular dynamics at the single-cell level has enabled 
the detailed study of cellular events previously inaccessible to 
conventional cell biological approaches [1, 2]. This approach has 
led to the delineation of biological processes that induce a variety 
of cell fate decisions [3–7]. Core to this analysis is the extensive 
use of fluorescent markers to mark single cells and to classify 
cellular states. However, generating single-cell tracks from these 
fluorescent timelapse microscopy images is often challenging, 
requiring laborious optimizations of fluorescent markers and 
imaging conditions [2]. These optimizations are essential as 
good-quality cell segmentations are critical for accurate 

lineage tracing while avoiding biological artefacts caused by 
phototoxicity. 

Deep learning–based convolutional neural networks (CNNs) 
are increasingly employed to overcome the inherent limitations 
of conventional fluorescence-based microscopy approaches 
[8]. Among the most successful applications is the use of 
autoencoder CNNs, enabling computationally efficient image 
restoration of low-light microscopy images for deconvolution, 
denoising and generating super-resolution image reconstructions 
[9]. Another area where CNNs have been successfully deployed is 
in the automated segmentation and classification of microscopy 
images [10–13]. Recent work has shown that CNNs perform 
well in automatically detecting, segmenting and classifying 
heterogeneous cellular features of microscopy images, a task
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previously requiring time-consuming manual human annota-
tions [13–16]. 

However, applying deep-learning CNNs in the automated seg-
mentation and classification of fluorescent microscopy images 
presents another challenge for reliable cell tracking. State-of-the-
art CNNs are inherently noisy, with instances where objects fail to 
be detected or are misclassified [12, 13, 17, 18]. These inaccuracies 
pose a significant challenge for widely used cell-tracking solutions 
as these algorithms are not designed to confront the various 
object classification errors derived from CNNs. Thus, extensive 
finetuning of cell-tracking parameters and manual corrections of 
cell-tracking outputs are required, posing a significant barrier for 
many biologists as they often lack the technical know-how and 
time to undertake such tasks. 

To address this challenge, we developed a robust generalized 
cell-tracking algorithm called Single Cell Track (SC-Track). SC-
Track employs a hierarchical probabilistic cache-cascade model 
inspired by biological observations of cell division and movement 
dynamics of mammalian cells. We show that SC-Track can gen-
erate robust single-cell tracks from segmentation outputs from 
CNNs that contain missing segmentations to false detections. 
Furthermore, SC-Track functions well with whole cell or nuclear 
segmentations of diverse morphologies and imaging conditions 
without parameter optimizations. Finally, SC-Track can take noisy 
cell instance classifications and provide smoothed classification 
tracks to quantify cellular events accurately. 

MATERIALS AND METHODS 
Tracking algorithm overview 
SC-Track employs a tracking-by-detection approach whereby 
detected cells are linked between frames. A TrackTree data 
structure was used to store the tracking relationships between 
each segmented cell temporally and spatially (Figure 1A). Each 
branch of the TrackTree represents a single-cell lineage of the 
tracked instance of a segmented cell, where branch divisions 
indicate cell division events and the nodes on the branches 
represent the segmented instances of individual cells in a specific 
frame. The extracted features of the segmented cell are contained 
in each node of the TrackTree branch. 

During the tracking process, SC-Track initializes the Track-
Tree list with all cells from the initial frame, representing the 
initial single-cell tracks for the entire time-lapse sequence. To 
reduce computational costs, SC-Track will attempt to connect 
each segmented instance with its corresponding cell from the 
previous frame using a hierarchical tracking approach. SC-Track 
will initially examine the intersection over union (IoU) of the area 
between segmented cells between the current frame and pre-
ceding frame (Figure 2A). Segmented cells with only one overlap-
ping segmentation are assumed to be high-confidence links and 
are assigned to the corresponding TrackTree. In situations with 
multiple segmented cells with overlapping IoUs, SC-Track will 
determine the correct cells by maximizing the similarity index 
between candidate cells between frames. When no segmented 
cell in the current frame overlaps with a segmented cell from the 
previous frame, SC-Track will expand the search area to identify 
possible candidates. 

By recursively searching for candidate segmented cells from 
the previous frame, virtually all segmented cells can be accurately 
assigned to the correct TrackTree. If there are more segmented 
cells than the number of cached TrackTrees, three possible scenar-
ios will be considered: (1) The orphan cell is a false detection. (2) 
The orphan cell is an actual detection of a cell recently migrated 

into the field of view. (3) A cell division event has occurred leading 
to the generation of daughter cells. 

Detecting and assigning cell division events 
In scenario three above, SC-Track will determine if a cell division 
occurred by searching for a potential mother cell in the mitotic 
state in the preceding frame (Figure 2B). When the segmented cell 
contains cell cycle classifications, SC-Track will allow cell division 
events at the TrackTree nodes where the mother cell is classi-
fied as in mitosis (M phase). However, a cell cycle–independent 
approach will be applied if no cell cycle information is available. 
In such cases, SC-Track will attempt to determine if a cell division 
event has occurred by matching an orphan segmented cell in the 
current frame to a potential mother cell in the previous frame 
using morphological data of the segmented cells. 

To enable robust detection of cell division events without 
cell cycle data, SC-Track applies a series of rules based on 
well-established principles observed from mammalian cells 
undergoing cell division [19, 20]. When assigning a potential 
mother–daughter association from a possible cell division event, 
the following criteria must be met: (1) at least one unlinked 
segmented cell was found. (2) The segmented mother cell in the 
previous frame must be at least 1.3× the size of the segmented 
daughter cell in the following frame. (3) The candidate mother 
cell has not undergone a cell division event in the previous 50 
frames (Supplementary Figure S1 shows the effect of varying this 
adjustable parameter). (4) A candidate mother cell is identified 
in the expanded search area of the unlinked segmented cell. If 
a suitable candidate mother cell was identified in the previous 
frame for the orphan segmented cell, the TrackTree will be 
branched accordingly. However, if no appropriate candidate 
mother cells are found, SC-Track will assume a new detection 
event may have occurred. The following section will discuss the 
algorithm employed to address the possibility of new detection 
events and the initialization of new TrackTrees. 

Cache matching frames to address false and 
missing detection events 
The stochastic nature of CNNs may lead to instances where 
some cells fail to be detected or are false detections [12, 13, 
17, 18], resulting in TrackTrees that contain inaccurate cell 
segmentations. We developed a cache-matching algorithm to 
address the stochastic loss of detected instances in the segmented 
cells (Figure 3A). In this process, SC-Track will follow a tiered 
response based on the likelihood that the instance segmentations 
are accurate. Initially, SC-Track will focus on generating high-
confidence TrackTrees with cell segmentations that appear 
consecutively across multiple frames. When cell segmentations 
cannot be linked to an initialized TrackTree from the previous 
frame, and no suitable candidate mother cell is identified, SC-
Track will search for up to five preceding frames for potential 
orphan TrackTrees to link (Figure 3A). If an unlinked TrackTree 
is found within five frames, SC-Track will assign the matched 
segmented cell to the corresponding TrackTree. When no matches 
are found, SC-Track will assume a new detection event may have 
occurred, and a new TrackTree will be initialized. 

After all segmented frames are analysed, SC-Track will review 
all TrackTrees to filter high-confidence TrackTree initializations 
(Figure 3B). SC-Track assumes that TrackTrees that contain only 
one node are false-positive cell segmentations since no linking 
segmentations can be detected in subsequent frames. Therefore, 
these one node TrackTrees will be excluded in the linking pro-
cess. For TrackTrees containing at least two nodes, SC-Track will
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Figure 1. Schematic illustration providing an overview of SC-Track, the TrackTree data structure and analysis pipeline. (A) Summary of the TrackTree 
data structure. Each linked segmented cell is tracked in a TrackTree. A node in a TrackTree branch represents an instance of the segmented cell in 
a particular frame with its accompanying cell segmentation information. A branching of a TrackTree represents a cell division event. (B) Simplified 
overview of the analysis pipeline of SC-Track. Instance segmentation of cells from each frame is sequentially added to their respective TrackTrees. The 
hierarchical probabilistic cache-cascade model of SC-Track determines the assignment of each instance segmentation. If cell classification information 
is encoded in the TrackTrees, SC-Track will employ the TCS algorithm to correct the noisy cell classifications. 

assume that some of these TrackTrees are incomplete TrackTree 
fragments. To identify and repair these incomplete TrackTree frag-
ments, SC-Track will survey the terminal ends of all TrackTrees to 
determine instances where a terminal end of one TrackTree is spa-
tially and temporally proximal to a terminal end of another Track-
Tree. When such instances are detected, SC-Track will attempt 
to pair the first instance of an unlinked TrackTree with the last 
instance of another unlinked TrackTree. The linking of TrackTrees 
will follow two requirements: (1) the last segmented cell of the 
preceding unlinked TrackTree is within the expanded search area 
of the first segmented cell of the unlinked TrackTree. (2) The 
last segmented cell of the preceding TrackTree is within three 
subsequent frames of the first segmented cell of the unlinked 
TrackTree. If more than one candidate TrackTree is available for 
linkage, the similarity index of the last segmented cell instance 
of both competing candidate TrackTrees will be calculated. The 

TrackTrees containing the segmented cell instance with the high-
est similarity index will be linked ( Figure 3B). After the linking 
of terminal ends of track trees is completed, short TrackTree 
initializations that span less than 10 frames are discarded to 
remove false detection instances. Finally, the intervening gaps 
between the linked TrackTrees will be filled with the preceding 
cached cell segmentation in the linked TrackTree. 

Instance classification smoothing 
Instance classification of multiclass cell segmentations is often 
noisy [21]. We have implemented a class smoothing function 
to smooth out noisy classification of cells that transition from 
one cellular state to another. We developed the TrackTree Class 
Smoothing (TCS) algorithm to automatically correct the predicted 
results of cell type classifications (Figure 3C). TCS assumes that a 
cell classification change is more likely to occur in a time series
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Figure 2. Schematic illustration summarizing the hierarchical tracking approach for single-cell-tracking and identifying cell division events. (A) SC-
Track employs a hierarchical cell-tracking approach to minimize computational costs. The overlap between the segmented cells of the preceding and 
subsequent frame determines the linking of segmented cells between frames. If only one cell segmentation overlaps, the segmented cell in the subse-
quent frame is automatically linked to the respective TrackTree in the preceding frame. When there are multiple overlapping cell segmentations, the 
identification of the linked cells will be determined by the similarity value of the overlapping cell segmentations. If no overlapping candidate segmented 
cell was identified, the bounding box of the unlinked segmented cell will be expended to identify possible candidates. (B) When a segmented cell instance 
that cannot be linked to available TrackTrees is identified, SC-Track will attempt to determine if a cell division event has occurred. SC-Track will perform a 
search in the preceding frame to determine if a compatible candidate mother cell is available. When a compatible mother cell is detected, the segmented 
cell instance will be branched to the corresponding TrackTree, and a cell division event is recorded. If no compatible mother cell is identified, SC-Track 
will assume that the segmented cell is due to a recent appearance of a cell in the microscope field of view and a new TrackTree is initialized. 
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Figure 3. Schematic illustration describing SC-Track cached matching algorithm and TCS. (A) Diagram describing the cache matching algorithm. When 
a segmented instance of a cell is detected but no compatible TrackTree is available in the previous frame, SC-Track will perform a cached search of 
up to five preceding frames to identify a compatible unlinked TrackTree. If a compatible TrackTree is found, the segmented instance will be linked to 
the TrackTree. Missing gaps in the TrackTree will be filled with the last cached cell segmentation in the preceding frame. (B) Diagram describing the 
TrackTree linking process. When all segmented cells are analysed, SC-Track will attempt to link TrackTrees that contain more than a single node. The 
linking process is based on the last segmentation of the TrackTree and the first segmentation of a separate TrackTree. When more than one compatible 
TrackTree is available for linkage, the cell segmentation with the highest similarity will be linked. Missing gaps in the linked TrackTrees are filled with  
the last cached cell segmentation in the preceding frame. (C) When a multi-class cell segmentation is performed, it is often observed that erroneous 
cell classifications would occur stochastically. The TCS algorithm employs a probabilistic cached search algorithm to determine if a class switch has 
occurred for the respective segmented cell in a time series. Note: The vertical dotted line represents a frame of a timelapse image series, and the circles 
represent an instance of a segmented cell. An established track tree is represented by a horizontal line running through the circles across the frames. 
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when the same cell maintains the same cell classification over 
several frames. To evaluate the accuracy of the cell class change, 
TCS adopts a probabilistic cached search model. This search 
process is confined to the individual branch of the TrackTree and 
does not extend beyond the cell division branch. 

The TCS probabilistic cached search model functions with the 
following logic: During the initialization of the TrackTree, TCS will 
automatically adopt the initial classification of the detected cell 
instance as the default class. When TCS detects an instance where 
the tracked cell undergoes a cell classification change to Type A, 
the algorithm will undertake a forward search on the TrackTree 
to count the number of Type A classifications in the subsequent 
nine frames. When the number of nodes classified as Type A 
exceeds a probability threshold of 60%, TCS will conclude that 
a change in cell classification has occurred and will update the 
default classification as Type A. Otherwise, the node where Type 
A was first detected will be corrected to the default cell classi-
fication. Exiting the default Type A classification occurs when a 
Type B class change is detected. To determine if a class change 
has occurred, TCS performs a forward TrackTree search in the 
subsequent nine frames for the Type B classification. When the 
number of nodes of Type B classifications exceeds the probability 
threshold of 60%, the new default Type B classification is adopted. 
This process can be repeated to multiple cell classifications. 

Calculating similarity index when connecting 
segmented cells between frames 
When there is more than one segmented cell overlapping with 
the previous frame, SC-Track will select the segmented cell with 
the highest similarity value with the segmented cell in the previ-
ous frame. SC-Track will employ the following formula to deter-
mine the similarity value of the possible candidate pairs between 
frames: 

Si = {P1, P2, . . . Pn} , where Pn =
(
xn, yn

)
smi,j = IoU

(
Si, Sj

) + Dis
(
Si, Sj

) + Sps
(
Si, Sj

) + Sas
(
Si, Sj

) + Δ
(
Si, Sj

)

Si represents the set of contour points in a 2D space defined 
by xn, yn for points P1→n of a cell. smi,j represents the similarity 
index between the segmented cell i in the previous frame and the 
segmented cell j in the subsequent frame. Dis is the calculated 
distance between the centroid of the segmented cell i in the 
previous frame and the centroid of the segmented cell j in the 
current frame. IoU represents the intersection over union of the 
contours of cells i and j. Spsrepresents the shape similarity value 
[22], and Sas represents the area similarity of the two cells.Δ

(
Si, Sj

)
represents additional supplementary features, such as the sim-
ilarity in the variance or total intensity of fluorescent signals 
from segmented cells. To calculate IoU

(
Si, Sj

)
, Dis

(
Si, Sj

)
, Sps

(
Si, Sj

)
, 

Sas
(
Si, Sj

)
and Δ

(
Si, Sj

)
, the following formula was employed: 

IoU
(
Si, Sj

) = 
intersection

(
Si, Sj

)
union

(
Si, Sj

)
Dis

(
Si, Sj

) = 1 

10−5 +
√(

six − sjx
)2 + (

siy − sjy
)2 

Sps
(
Si, Sj

) =
∑

n=1...7

∣∣∣∣∣ 1 
mSi 

n 
− 

1 

m Sj 
n

∣∣∣∣∣ , 

where mSi 
n represents the seven Hu Moments. 

Sas
(
Si, Sj

) = min
(
SiArea , SjArea

)
max

(
SiArea , SjArea

) , 

where SnArea = 
1 
2

∣∣∣∣∣
n∑

i=1

(
xi· yi+1 − yi· xi+1

)∣∣∣∣∣

Δ
(
Si, Sj

) =
{

mean (si) 
mean

(
sj

) , 
var (si) 
var

(
sj

)
}

, 

where mean (si) < mean
(
sj

)
and var (si) < var

(
sj

)
. 

Bounding box search area expansion 
When no segmented cell in the preceding frame is detected in 
the segmented area of a cell in the current frame, SC-Track will 
expand its search area to search for potential candidates. The 
expansion of the search area utilizes the bounding box of the 
segmented cell, which is expanded with the following formula: 

Bc = Pos
(
x1, x2, y1, y2

)
, where x1 < x2 and y1 < y2 

Ec = α · Bc 

= Pos(x1 − α · (x2 − x1), x2 + α · (x2 − x1), y1 − α · y2 − y1), 
y2 + α · (y2 − y1)) 

Bc represents the bounding box of a cell. Pos represents the posi-
tion of the bounding box with the minimum value of the seg-
mented cell in the x-axis and y-axis represented by x1 and y1 while 
the maximum value as x2 and y2, respectively. Ecrepresents the 
expanded bounding box where potential cell candidates located 
in the current frame can be matched to the previous frame; α 
represents the coefficient for expanding the bounding box. By 
default, α is set to 1.5 (Supplementary Figure S2 shows the effect 
of varying this adjustable parameter). 

Evaluation of cell-tracking performance using 
MOTA and IDF1 
To evaluate the performance of cell trackers in accurately tracking 
segmented cells, we used performance measures established in 
the Multiple Object Tracking (MOT) framework, which includes 
IDF1 [23] and  MOTA  [24, 25]. IDF1 measures how long a tracker 
accurately assigns segmented cells to the correct single-cell lin-
eage over time. It represents the ratio of correctly identified detec-
tions over the average ground-truth and computed detections [23]. 
IDF1 is calculated from the following formula: 

IDF1 = 2IDTP 
2IDTP + IDFP + IDFN 

, where  IDP = IDTP 
IDTP + IDFP 

and IDR = IDTP 
IDTP + IDFN 

IDP represents the cell-tracking identification precision. It is com-
puted as the average ratio of accurately identified true positives 
divided by the sum of accurately identified true positives and 
inaccurately classified false positives. IDR represents the identi-
fication recall computed as the average ratio of accurately identi-
fied true positives divided by the sum of accurately identified true 
positives and failed detections of each single cell track. 

The multiple objects tracking accuracy (MOTA) measures the 
overall accuracy of the tracker performance by measuring how 
often a mismatch occurs between the tracking results and the
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ground truth [24, 25]. The MOTA score is determined from the 
total number of errors for false positives (FP), missed targets (FN) 
and identity switches (IDsw) normalized over the total number 
of ground-truth (GT) tracks. This measure is computed using the 
following formula: 

MOTA = 1 −
∑

t (FNt + FPt + IDswt)∑
t GTt 

The cell-tracking outputs used to calculate the IDF1 and MOTA 
values are available from Zenodo: https://zenodo.org/doi/10.5281/ 
zenodo.8284986. The Python scripts used to analyse the cell-
tracking results can be found on GitHub: https://github.com/ 
chan-labsite/SC-Track-evaluation. 

Evaluating cell division detection events using 
the CDF1 score 
Generating single-cell lineages over multiple cell division events 
requires the reliable detection of cell division events and the accu-
rate assignment of mother–daughter relationships. We estab-
lished the Cell Division F1 score (CDF1) as IDF1 and MOTA do 
not measure cell division events reliably. This metric is based on 
the principles of the widely used F1 score and is defined by the 
formula: 

CDF1 = 2CDTP 
2CDTP + CDFP + CDFN 

CDTP indicates an actual positive cell division event, where 
both daughter cells of a cell division event are accurately 
identified and assigned to the correct TrackTree. CDFP indicates 
a false-positive cell division event, where daughter cells are 
incorrectly assigned to a TrackTree and classified as a cell 
division event. CDFN indicates a false-negative cell division 
event, where a cell division event occurred but is not detected 
or the mother–daughter cells were inaccurately assigned to the 
wrong TrackTree. The cell-tracking outputs used to benchmark 
the CDF1 results are available from Zenodo: https://zenodo.org/ 
doi/10.5281/zenodo.8284986. The Python scripts used to analyse 
the cell-tracking results can be found on GitHub: https://github. 
com/chan-labsite/SC-Track-evaluation. 

Generation of datasets for cell tracking 
Two cell lines with distinct morphological appearances were used 
to generate the imaging data to develop and test SC-Track. hTERT-
RPE1 cells endogenously tagged with fluorescent mScarlet-PCNA 
were grown in DMEM/F-12 (Sigma, D6421) supplemented with 
10% FBS (ExCell Bio, FSP500), 1× GlutaMAX (Gibco, 35050-061), 
7.5% sodium bicarbonate (Sigma). MCF10A cells endogenously 
tagged with fluorescent mScarlet-PCNA were grown in DMEM/F-
12 (Sigma, D6421) supplemented with 5% heat-inactivated horse 
serum (Biological Industries, 04-124-1A), 1× GlutaMAX (Gibco, 
35050-061), 10 μg/ml insulin (Biological Industries, 41-975-100), 
10 ng/ml cholera toxin (Sigma-Aldrich, #C-8052), 20 ng/ml EGF-
β (Thermo Fisher, PHG0311), 0.5 mg/ml Hydrocortisone (MCE, 
HY-N0583). These cells were seeded in 8-Well chambered glass 
bottom slides (Cellvis, C8-1.5H-N) for 2 days before being imaged 
under a Nikon Ti2 inverted widefield fluorescence microscope 
equipped with a Lumencor Sola SE 365 as a light source. The 
cells were placed in an Okolab stage incubator (OKO) at 37◦C 
with 5% CO2 and 80% humidity. The cells were observed under 
a 20× plan apo objective (NA 0.75), and images were captured 
using a Photometrics Prime BSI camera with a pixel resolution 
of 2048 × 2048. The following filter sets were used (mCherry: 

560/40 nm EX, 630/75 nm EM). A single widefield image was taken 
in the mCherry channel (1% power, 200 ms) at each stage at 5-min 
intervals for up to 48 h. A DIC image was captured at each time 
point (5% power, 100 ms). 

The timelapse microscopy images used to develop SC-
Track were generated from cells cultured under the conditions 
described above. The images were saved as individual multi-
channel TIFF files. Four time-lapse movies with varying cell 
densities were generated (Supplementary Table S1). These 
datasets were automatically segmented using a custom pre-
trained StarDist model [12] and manually corrected using the 
VGG Image Annotator (VIA) [26] to remove false and inaccurate 
classifications. The annotated files contain the cell contour and 
‘cell cycle phase’ class information. The contour information was 
converted into a mask with values ranging from 1 to 255. The 
uncorrected and corrected mask images, along with the original 
mCherry channel image, constitute the datasets used to finetune 
the tracking parameters of SC-Track. 

For the testing datasets, three RPE1 microscopy timelapse 
image series and two MCF10A microscopy timelapse image series 
were automatically segmented using our custom-trained StarDist 
model and manually corrected to ensure accuracy of the instance 
segmentations, cell classifications and identity of single-cell 
lineages (Supplementary Table S2). The imaging conditions were 
described above with a sampling frequency of 5 min. To test the 
reliability of SC-Track to track segmented cells with missing or 
false-positive instances accurately, we utilized the uncorrected 
segmentations of the testing dataset (Supplementary Table S3). 
In addition, to assess how SC-Track can cope with varying levels 
of missing cell segmentations, we randomly deleted additional 
segmented cells from each frame to varying degrees to simulate 
higher levels of missed segmentations (Supplementary Table S4). 
The in-house generated segmentation masks, custom-trained 
StarDist model and ground truth–tracking results used in testing 
SC-Track can be obtained from Zenodo: https://zenodo.org/ 
doi/10.5281/zenodo.8284986. 

Cell-tracking challenge dataset 
We used the silver reference segmentation results from the 
Cell Tracking Challenge (CTC) to test the SC-Track performance 
with various cell types and segmentation modes [27]. The silver 
reference datasets are derived from the uncorrected segmen-
tation results obtained from various custom-trained CNNs 
applied on mammalian cell lines with different morphological 
appearances and imaging conditions (Supplementary Table S5). 
The silver reference masks and ground truth–tracking results 
were obtained from the CTC website (http://celltrackingchallenge. 
net/2d-datasets/). 

Generation of single-cell lineages from 
segmentation masks 
The segmentation results from the various evaluation datasets 
were used to measure the cell-tracking performance of SC-Track 
and three other trackers: pcnaDeep [28], Deepcell-tracking [29] 
and TrackMate [30, 31]. For cell-tracking experiments involving 
in-house generated testing datasets, the segmentation results in 
the form of a VGG image annotator (VIA2) compatible JSON file 
containing cell cycle class information of each segmented cell 
was used [26]. The data in the JSON files were read directly by SC-
Track and pcnaDeep to generate the cell lineage tables. The cell 
segmentation data in the JSON files were converted into greyscale 
multi-TIFF image files before being read by TrackMate and
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Table 1: A summary table detailing the key information of each cell-tracking software used in this publication 

Tracker SC-Track pcnaDeep TrackMate Deepcell-tracking 

Platform Windows/Linux/macOS Windows/Linux/macOS Windows/Linux/macOS Windows/Linux/macOS 
Tracking approach Tracking by detection Tracking by detection Tracking by detection Tracking by detection 
Adjustable parameters 
used for cell tracking 
(Parameter = default 
values) 

avail-
able_range_coefficient = 1.5 
gap_window_len = 10 
enter_division_threshold = 50 

displace = 60 
gap_fill = 5 
size_min = 100 
mode = ‘TRH’ 
search_range = 10 
minM = 1 
maxBG = 1 
sample_freq = 1/5 
threshold_mt_F = 100 
threshold_mt_T = 20 

detector = ‘Mask detector’ 
Mask detector = ‘Simplify 
contours’ 
Tracker = 
‘Overlap tracker’ 
Iou tracker = ‘precise’ 
Min iou = 0.3 
Scale factor = 1 

model = ‘NuclearTrackingInf’ 
encoder = ‘NuclearTrackingNE’ 
distance_threshold = 64 
appearance_dim = 32 
crop_mode = ‘resize’ 
norm = True 
birth = 0.99 
death = 0.99 
division = 0.01 
track_length = 8 
embedding_axis = 0 
model_mpp = 0.65 

Segmentation type used Nucleus or whole cell Nucleus Nucleus or whole cell Nucleus or whole cell 
Requirement for cell cycle 
classification data 

Optional Required No No 

Summary of cell-tracking 
algorithm applied 

Hierarchical probabilistic 
cache-cascade model based 
on biological principles of 
cell movement and division. 

Trackpy implementation 
of the Crocker–Grier 
algorithm to link detected 
cells between consecutive 
frames before assigning 
mother–daughter 
relationships using a cell 
cycle classification–based 
Hungarian algorithm. 

A tracker  based on  
overlapping object 
contours. 

Deep learning-based tracking 
inference model with Hungarian 
algorithm used for calculating 
optimal cost function to link 
detected cells. 

Cell tracking over cell 
division events 

Yes Yes Yes Yes 

Reference This publication https://doi.org/10.1093/ 
bioinformatics/btac602 

https://doi.org/10.1038/ 
nmeth.1237 

https://doi.org/10.1101/803205v2 

Version used SC-Track v0.0.9 pcnaDeep v1.0 TrackMate v7.11.1 DeepCell-Tracking v0.6.4 

Deepcell-tracking, as both software packages lack the function 
to read JSON files directly. 

Default tracking settings were applied to SC-Track, pcnaDeep 
and Deepcell-tracking. The overlap tracker algorithm was used 
with default tracking settings with TrackMate. Details summariz-
ing the default settings used by all trackers are detailed in Table 1. 
We could not perform the cell-tracking experiments with the CTC 
dataset on pcnaDeep as it requires cell cycle class information to 
function [28]. The scripts used to generate the cell-tracking results 
are available from GitHub: https://github.com/chan-labsite/SC-
Track-evaluation. 

Evaluating automated cell cycle class correction 
To evaluate the cell cycle class accuracy from the TCS function 
of SC-Track, we computed the F1 score of uncorrected raw cell 
classifications obtained from our custom pre-trained StarDist 
model and compared it with the cell cycle–corrected F1 score of 
SC-Track (Supplementary Table S3). The F1 score is calculated 
with the following formula: 

F1 = 2 · Precision · Recall 
Precision + Recall 

where Precision = 
TP 

TP + FP 

and Recall = 
TP 

TP + FN 

The ground-truth cell cycle classification used to compute 
the F1 score was obtained by manually correcting the 
automated cell cycle classifications from our custom StarDist 

model. The JSON file containing the raw uncorrected cell 
segmentations and the cell cycle classification data used to 
compute the F1 results is available on Zenodo: https://zenodo. 
org/doi/10.5281/zenodo.8284986. The scripts used to compute the 
F1 scores of individual cell cycle phases are available on GitHub: 
https://github.com/chan-labsite/SC-Track-evaluation. 

Runtime and multi-platform compatibility 
testing 
We conducted runtime efficiency tests on Windows, Linux and 
macOS platforms. All tests were performed using the same 
dataset and repeated three times. The Windows platform was 
equipped with an AMD R7 3700X CPU, RTX 2080 GPU and 16GB of 
RAM. The Linux platform was equipped with an Intel i7 11800H 
CPU, RTX 3050Ti GPU and 16GB of RAM. The macOS platform is a 
2021 MacBook Pro with an M1 processor and 8GB of RAM. 

RESULTS 
Evaluation of SC-Track cell-tracking performance 
The overall performance of SC-Track in cell tracking was 
measured using two metrics: the MOTA [24, 25] and the harmonic 
mean of Identification Precision and Recall (IDF1) [23]. We 
employed two cell-tracking metrics because IDF1 is more sensitive 
to the total duration of incorrect track assignments, while MOTA 
is more sensitive to the total number of track switches [23]. We 
also introduced a new metric, the Cell Division F1 score (CDF1), 
to measure the cell tracker’s ability to reliably detect cell division
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Table 2: IDF1, MOTA and CDF1 test results based on ground truth segmentation masks 

Dataset SC-Track pcnaDeep TrackMate Deepcell-tracking 

IDF1 MOTA CDF1 IDF1 MOTA CDF1 IDF1 MOTA CDF1 IDF1 MOTA CDF1 

RPE1-01 0.994 1.000 0.965 0.950 0.957 0.638 0.902 0.955 0.308 0.916 0.983 – 
RPE1-02 0.997 1.000 0.959 0.957 0.998 0.533 0.927 0.975 0.229 0.935 0.990 – 
MCF10A-01 0.997 0.997 0.906 0.973 0.992 0.496 0.943 0.874 0.022 0.962 0.981 – 
MCF10A-02 0.982 0.998 0.971 0.982 0.978 0.657 0.945 0.885 0.000 0.952 0.967 – 
RPE1-03 0.989 0.994 0.957 0.975 0.995 0.308 0.856 0.923 0.024 0.931 0.976 – 

Average 0.992 0.998 0.952 0.967 0.984 0.526 0.915 0.922 0.116 0.939 0.979 – 

Note: The best scores for each respective dataset and the best average score are highlighted in bold. The results for Deepcell-tracking CDF1 scores were not 
included as the tracker failed to detect any cell division instances in all the datasets tested. 

events and accurately assign mother–daughter cell relationships. 
The CDF1 score is essential for measuring single-cell lineage 
reconstructions over multiple cell division events, which the IDF1 
and MOTA scores cannot reliably capture. For comparison, we 
benchmarked SC-Track against three other freely available cell-
tracking algorithms that provide similar functionalities ( Table 1): 
TrackMate [30, 31], Deepcell-tracking [29] and pcnaDeep [28]. 
The initial tests focused on generating single-cell tracks from 
nuclear masks obtained under ideal conditions, using manually 
corrected nuclear segmentation masks with accompanying cell 
cycle classifications with a 5-min temporal resolution (Table 2). 
The results show that with ideal segmentation results, SC-Track 
performed best in all three measured metrics, obtaining an 
average value of 0.992 for IDF1, 0.998 for MOTA and 0.952 for CDF1. 
These results were comparatively higher than the second-best-
performing cell-tracking algorithm pcnaDeep, which obtained an 
average value of 0.967 for IDF1, 0.984 for MOTA and 0.526 for 
CDF1, respectively. 

To further test SC-Track in generating accurate single-cell lin-
eages, we resampled our original test dataset to mimic imaging 
time intervals of 10, 15 and 20 min. The increase in time inter-
vals poses a more challenging cell-tracking problem as each cell 
has more time to migrate and change morphologically between 
successive frames. Our results show that SC-Track gives the best 
overall IDF1, MOTA and CDF1 scores in the 5-min interval, but as 
expected, its performance is reduced at longer intervals (Figure 4). 
Despite the reduced performance, SC-Track maintained the best 
overall performance in all three metrics across all time intervals 
tested. These results indicate that SC-Track works well with dif-
ferent temporal resolutions (Figure 4). 

CNN instance segmentations generally display errors ranging 
from missing to inaccurate segmentations [12, 13, 17, 18]. To 
assess the various tracker’s ability to generate reliable single-
cell lineages from noisy CNN-based cell segmentations, we 
repeated the tests with uncorrected image segmentations from 
our custom-trained StarDist models (Supplementary Table S3). 
Our results show decreased tracking accuracy for all tested 
trackers, while SC-Track again gave the best overall performance, 
maintaining the highest average MOTA, IDF1 and CDF1 scores 
throughout, obtaining an average value of 0.955 for IDF1, 
0.988 for MOTA and 0.889 for CDF1 (Table 3). The results were 
comparatively higher than the second-best tracker, pcnaDeep, 
which obtained an average value of 0.944 for IDF1, 0.973 for MOTA 
and 0.362 for CDF1, respectively. To further examine SC-Track’s 
ability to overcome missing instances of cell segmentations, we 
generated a synthetic test dataset where cell instances were 
randomly removed at varying degrees (Supplementary Table S4). 
Our results show that SC-Track’s cache matching algorithm can 

compensate for the loss of instance detections while maintaining 
a high IDF1 and MOTA score throughout all tested conditions 
(Figure 5A and B). Furthermore, despite increasing missing 
instance detections, SC-Track remains reliable in detecting cell 
division events (Figure 5C). 

To examine the generalizability of SC-Track, we used several 
publicly available microscopy datasets containing diverse cell seg-
mentations extracted from different cell types and imaging con-
ditions (Supplementary Table S5). We decided to use the silver ref-
erence segmentation results from the CTC, as they were derived 
from the segmentation results of CNN models [27]. These cell 
segmentations are based on a collection of timelapse microscopy 
images taken with various imaging settings, cell morphologies 
and a mixture of nuclear to whole-cell segmentations [27]. Fur-
thermore, the silver reference segmentations are accompanied by 
ground truth–tracking results, making these datasets an impartial 
real-life test for SC-Track. Our results show that SC-Track consis-
tently displayed the best cell-tracking performance measured by 
MOTA and IDF1 scores for all the CTC datasets tested, obtaining 
an average IDF1 score of 0.988 and an average MOTA score of 
0.997 (Table 4). These scores were significantly higher than the 
results obtained from TrackMate and Deepcell-tracking, which 
obtained average scores of 0.665 and 0.689 for IDF1 and 0.664 
and 0.627 for MOTA, respectively. Using only the silver reference 
segmentation results, SC-Track can reliably detect cell division 
events on most CTC datasets, obtaining an average score of 0.955 
(Table 4). These results suggest that SC-Track is a robust general-
ized cell-tracking algorithm that performs equally well on various 
cell segmentation types and can be used under challenging con-
ditions where the cell segmentation dataset exhibits high levels 
of detection loss. 

Instance classification smoothing of single-cell 
tracks and runtime evaluations 
It is well established that CNNs occasionally misclassify mul-
ticlass instance segmentations. Instance misclassifications are 
caused by objects that partially fit into a particular class or 
suboptimal imaging conditions. The inherent noise in the cell 
classifications can pose a problem if accurate classifications of 
cellular states are essential, such as in the quantification of 
cell cycle phases in an image time series [28]. To overcome this 
problem in SC-Track, we developed a TCS algorithm that employs 
a probabilistic cached class smoothing approach to identify cell 
phase transition points accurately. To evaluate the utility of TCS, 
we measured the F1 scores of our custom-trained StarDist model 
to classify the cells in our test dataset using the fluorescent PCNA 
cell cycle reporter signal (Table 5). The results indicate that TCS 
can improve the F1 classification scores of all cell cycle classes.
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Figure 4. Evaluation metrics of the cell-tracking accuracy based on ground truth segmentations. Box plots of (A) IDF1, (B) MOTA and (C) CDF1 scores for  
all four cell trackers in varying imaging time intervals. Each point displayed on the boxplots represents the respective scores of the five test datasets. 
The line in the boxplot represents the median. The results for Deepcell-tracking CDF1 scores were not included in (C) as the tracker failed to detect any 
cell division instances in all the datasets tested. 

Table 3: IDF1, MOTA and CDF1 test results based on uncorrected segmentation masks 

Dataset SC-Track pcnaDeep TrackMate Deepcell-tracking 

IDF1 MOTA CDF1 IDF1 MOTA CDF1 IDF1 MOTA CDF1 IDF1 MOTA CDF1 

RPE1-01 0.959 0.996 0.917 0.953 0.982 0.391 0.754 0.876 0.193 0.929 0.974 – 
RPE1-02 0.939 0.997 0.768 0.914 0.980 0.480 0.746 0.948 0.088 0.919 0.971 – 
MCF10A-01 0.954 0.971 0.841 0.942 0.957 0.346 0.755 0.829 0.108 0.942 0.955 – 
MCF10A-02 0.959 0.978 0.968 0.944 0.953 0.286 0.787 0.874 0.091 0.948 0.950 – 
RPE1-03 0.964 0.998 0.952 0.967 0.995 0.308 0.771 0.963 0.081 0.890 0.958 – 

Average 0.955 0.988 0.889 0.944 0.973 0.362 0.763 0.898 0.112 0.926 0.962 – 

Note: The best scores for each respective dataset and the best average score are highlighted in bold. The results for Deepcell-tracking CDF1 scores were not 
included as the tracker failed to detect any cell division instances in all the datasets tested. 

Finally, we conducted runtime tests for SC-Track to determine 
how long SC-Track takes to generate single-cell tracks from 
cell segmentations. We measured the time taken to analyse 
cell segmentations from microscopy timelapse series of varying 
lengths (50–500 frames) and compared it with TrackMate, 
Deepcell-tracking and pcnaDeep. Our results show that when 
working with small to moderate imaging datasets (50 frames 
to 200 frames), SC-Track had the best performance ( Figure 6). 
However, we noticed that increasing the number of analysed 
frames decreases the processing speed of SC-Track (Figure 6). 
This was mainly caused by the time spent loading the time-
lapse microscopy images before generating the single-cell 

lineages by SC-Track. In contrast, TrackMate processing speed 
increased with larger imaging datasets, exhibiting a superior 
performance compared to SC-Track when processing imaging 
datasets containing more than 200 frames. 

DISCUSSION 
Generating accurate single-cell lineages from timelapse 
microscopy images is critical to obtaining reliable cellular 
dynamics for quantitative analysis. Due to the immense diversity 
in cell morphology, movement dynamics and imaging conditions,
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Figure 5. Evaluation metrics of the cell-tracking accuracy based on varying cell segmentation loss. Box plots of (A) IDF1, (B) MOTA and (C) CDF1 scores  
for all four cell trackers challenged with the ground truth segmentation dataset with randomly deleted segmentations to mimic varying levels of cell 
segmentation loss. Each point displayed on the boxplots represents the respective scores of the five test datasets. The line in the boxplot represents 
the median. The results for Deepcell-tracking CDF1 scores were not included in (C) as the tracker failed to detect any cell division instances in all the 
datasets tested. 

Table 4: CTC imaging dataset test results for SC-Track, TrackMate and Deepcell-tracking 

Dataset Temporal 
res (min) 

Image Mask Division 
events 

SC-Track TrackMate Deepcell-tracking 

IDF1 MOTA CDF1 IDF1 MOTA CDF1 IDF1 MOTA CDF1 

DIC-C2DH-HeLa 10 DIC Cell 2 0.992 0.992 – 0.568 0.639 – 0.206 −0.020 – 
PhC-C2DH-U373 15 Phase Cell 0 1.000 1.000 – 0.719 0.954 – 0.761 0.604 – 
Fluo-C2DL-MSC 20 Fluor Cell 1 0.979 0.993 – 0.445 0.685 – 0.588 0.599 – 
Fluo-N2DH-GOWT1 5 Fluor Nuclear 1 0.991 0.999 – 0.971 0.948 – 0.902 0.855 – 
Fluo-N2DH-SIM+ 29 Fluor Nuclear 16 0.963 0.991 0.896 0.690 0.634 0.151 0.747 0.925 – 
PhC-C2DL-PSC 10 Phase Cell 44 0.989 1.000 0.977 0.903 0.945 0.301 0.879 0.991 – 
Fluo-N2DL-HeLa 30 Fluor Nuclear 56 0.992 0.998 0.991 0.881 0.855 0.061 0.890 0.968 – 
BF-C2DL-MuSC 5 BF Cell 5 1.000 1.000 – 0.143 −0.348 – 0.540 0.096 – 

Average 0.988 0.997 0.955 0.665 0.664 0.171 0.689 0.627 – 

Note: We were unable to evaluate pcnaDeep’s cell-tracking performance on the CTC dataset because pcnaDeep requires cell cycle data encoded in the cell 
segmentations to generate single cell tracks. The results for Deepcell-tracking CDF1 scores were not included as the tracker failed to detect any cell division 
instances in all the datasets tested. Only timelapse movies containing more than 10 cell division events are included in the analysis of CDF1 scores to ensure a 
reliable measure of cell division–tracking performance. 

it is assumed that no single cell-tracking algorithm could perform 
universally well. This necessitates testing several tracking 
algorithms and extensive parameter tuning before obtaining an 
optimal cell-tracking solution. One major challenge in developing 
a generalizable cell-tracking algorithm is the inherent fixed 
assumptions hard-coded into the computational algorithm that 
links segmented cells. When these assumptions are incorrect, the 

linking process could fail, leading to the generation of incorrect 
single-cell lineages. 

A popular method used in cell tracking is a multi-stage 
approach where different algorithms are applied to different 
aspects of the cell-tracking problem [32]. SC-Track’s hierarchical 
probabilistic cache-cascade model is inspired by this multi-
stage approach and is designed to mimic how humans identify
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Table 5: F1 cell cycle classification test results obtained from raw StarDist cell classification predictions compared with TCS-corrected 
cell classifications 

Dataset Raw F1 values TCS-corrected F1 values 

G1/G2 S M G1/G2 S M 

RPE1-01 0.956 0.775 0.659 0.995 0.981 0.867 
RPE1-02 0.949 0.809 0.748 0.982 0.922 0.691 
MCF10A-01 0.931 0.690 0.469 0.982 0.923 0.580 
MCF10A-02 0.881 0.660 0.479 0.963 0.848 0.768 
RPE1-03 0.965 0.795 0.236 0.999 0.969 0.719 

Average 0.936 0.746 0.518 0.984 0.929 0.725 

Note: TCS-corrected F1 values that show an improvement over the Raw F1 values are highlighted in bold in each category. 

Figure 6. Runtime evaluation comparisons. The number of frames each 
tracker can process in one second is displayed on the y-axis, while the x-
axis represents the varying number of processed image frames. The solid 
line represents the average performance, with the shaded area represent-
ing the 95% confidence interval for each cell tracker on three different 
computer systems running Windows, Linux or macOS, respectively. 

linked cells between frames. SC-Track prioritizes linking cells 
between frames that are most likely correct first and removes 
these linked cells from consideration before applying subsequent 
linking methods. By employing this approach, the computational 
problem of linking more challenging cells (for example, cells that 
exhibited significant morphological changes between frames) 
can be simplified, making it easier to link these cells between 
frames accurately. To improve SC-Track’s generalizability, the cell 
dimensions from segmented cells were used to decide suitable 
distance parameters. For example, by setting the expanded search 
area relative to the size of the segmented cell, SC-Track bypasses 
the requirement for the user to decide on an appropriate distance 
search parameter. This approach, combined with the primary 
overlap-based cell-tracking method, makes SC-Track insensitive 
to cell morphology and size changes caused by different cell 
types or objective magnifications used during imaging. Consistent 
with the view, we find SC-Track to perform equally well with 
all CTC datasets, which contain various cell types, nuclear 
or whole cell segmentations, imaged with various objective 
lenses (ranging from 4× to 63×), with variable image pixel sizes 
(varying from 512 × 512 to 2048 × 2948) and variable temporal 
resolutions (from 5 to 29 min) (  Table 4, Supplementary Table S5). 
In contrast, TrackMate and Deepcell-tracking produced mixed 
results, producing relatively accurate tracks in a subset of the 

CTC datasets, indicating a need for parameter adjustments to 
improve tracking performance (Table 4). 

Furthermore, SC-Track’s hierarchical probabilistic cache-
cascade model tolerates false or missing cell segmentations 
caused by the stochastic nature of CNNs, reducing the need 
for extensive and time-consuming manual corrections of image 
segmentations. We further implemented a cache smoothing algo-
rithm to reduce the stochastic noise in cell classifications from 
CNNs while increasing the accuracy of the cell classifications in 
time series. These functionalities are computationally efficient, 
allowing SC-Track to be run locally without requiring access to 
high-performance computing clusters. 

Despite SC-Track advantages in cell tracking, there are some 
limitations. Firstly, SC-Track experiences a reduction in compu-
tational efficiency as the number of frames increases. While SC-
Track’s primary overlap-based cell-tracking method is computa-
tionally efficient, the cache searching, gap filling and TrackTree 
linking functions (essential features to overcome false and miss-
ing cell segmentations from CNN-based segmentation results) are 
performed after the initial cell-tracking process. This necessitates 
the storage of all TrackTrees in memory, and the computational 
cost of performing these post-tracking functions decreases com-
putational efficiency and is proportional to the number of frames 
in the imaging dataset. We do not imagine this limitation to be a 
barrier to most users since our Windows test system, equipped 
with an AMD R7 3700X CPU, RTX 2080 GPU and 16GB of RAM, 
regularly takes less than 10 min to process timelapse microscopy 
images with 1000 frames. Secondly, SC-Track currently supports 
only 2D image analysis. No immediate plans exist to upgrade 
SC-Track to include support for 3D image analysis. However, we 
imagine the cell-tracking approach employed by SC-Track can 
be applied effectively in 3D space with additional computational 
overheads due to incorporating an additional dimension in the 
linking cells in a TrackTree. Thirdly, the SC-Track class smoothing 
algorithm makes generalized assumptions that the degree of 
cell classification errors is equal across all classes and that the 
frequency for each cell class appearing in a timelapse series is 
similar. These assumptions, while reasonable, may not be valid 
under all biological conditions. From our observations, optimal 
TCS results can be achieved by determining the likelihood of clas-
sification errors for each cell class before applying an appropriate 
class smoothing weight to each class separately. 

In summary, SC-Track solves a longstanding problem involving 
the use of CNNs in automated segmentation and classification 
of cells from time-lapse microscopy images. By encoding biolog-
ical intuition in SC-Track’s cell-tracking algorithm, SC-Track per-
forms well in diverse segmentation qualities without finetuning 
parameters. A Python implementation of SC-Track is available,
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requiring only cell segmentation data and microscopy images 
to function, making it easy to integrate into existing analytical 
pipelines. These features together make SC-Track a valuable tool 
for biologists to help generate robust single-cell lineages and cell 
classifications from their timelapse microscopy images. 

Key Points 
• Deep learning–based convolution neural networks pro-

duce image segmentation errors that often confound 
well-established cell-tracking algorithms. 

• SC-Track is a hierarchical cache-matching algorithm 
inspired by biological observations of cell division and 
movement dynamics. 

• SC-Track generates accurate single-cell lineages without 
parameter tuning from cell segmentations of varying 
qualities, morphological appearances and imaging con-
ditions. 

• SC-Track works with features extracted from cell seg-
mentation masks, making it easy to integrate into exist-
ing image analysis pipelines. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxford 
journals.org/. 
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