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Abstract

The thermal infrared portion of the electromagnetic spectrum has considerable poten-

tial for mineral and lithological mapping of the most abundant rock-forming silicates

that do not display diagnostic features at visible and shortwave infrared wavelengths.

Lithological mapping using visible and shortwave infrared hyperspectral data is well

developed and established processing chains are available, however there is a paucity

of such methodologies for hyperspectral thermal infrared data. Here we present a new

fully automated processing chain for deriving lithological maps from hyperspectral

thermal infrared data and test its applicability using the first ever airborne hyperspec-

tral thermal data collected in the Antarctic. A combined airborne hyperspectral survey,

targeted geological field mapping campaign and detailed mineralogical and geochemi-

cal datasets are applied to small test site in West Antarctica where the geological rela-

tionships are representative of continental margin arcs. The challenging environmental

conditions and cold temperatures in the Antarctic meant that the data have a signifi-

cantly lower signal to noise ratio than is usually attained from airborne hyperspectral

sensors. We applied preprocessing techniques to improve the signal to noise ratio and

convert the radiance images to ground leaving emissivity. Following preprocessing we

developed and applied a fully automated processing chain to the hyperspectral imagery,

which consists of the following six steps: (1) superpixel segmentation, (2) determine

the number of endmembers, (3) extract endmembers from superpixels, (4) apply fully

constrained linear unmixing, (5) generate a predictive classification map, and (6) auto-

Email address: martin.black@bas.ac.uk (Martin Black)

Preprint submitted to Remote Sensing of Environment January 20, 2016

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



matically label the predictive classes to generate a lithological map. The results show

that the image processing chain was successful, despite the low signal to noise ratio

of the imagery; reconstruction of the hyperspectral image from the endmembers and

their fractional abundances yielded a root mean square error of 0.58%. The results

are encouraging with the thermal imagery allowing clear distinction between granitoid

types. However, the distinction of fine grained, intermediate composition dykes is not

possible due to the close geochemical similarity with the country rock.
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1. Introduction1

Remote sensing in the solar reflective spectral range has been widely demonstrated2

to be an invaluable methodology to assist geological analysis (van der Meer et al.,3

2012). Hyperspectral data collected at visible and near infrared (VNIR; 0.4–1 µm) and4

shortwave infrared (SWIR; 1–2.5 µm) wavelengths have been widely reported in the5

literature for mapping mineral absorption features occurring within transition metals6

(i.e. Fe, Mn, Cu, Ni, Cr etc.) and alteration minerals that display absorption features7

associated with Mg-OH and Al-OH bonds (e.g. Abrams et al., 1977; Kruse et al., 1990;8

Hook and Rast, 1990; Hook et al., 1991; Clark et al., 1993; Kruse et al., 1993b; Abrams9

and Hook, 1995; Clark and Swayze, 1996; Resmini et al., 1997; Rowan et al., 2003).10

Although these reflectance-based datasets have been successful for mapping of11

minerals associated with alteration, from a geological mapping perspective, mapping12

of rock-forming silicates is critical. When considering only VNIR/SWIR data there13

are significant limitations in the range and quality of the geological parameters that can14

be retrieved, as many important rock-forming minerals do not display diagnostic ab-15

sorption features at VNIR/SWIR wavelengths (e.g. Drury, 2001; Gupta, 2003; van der16

Meer et al., 2012).17

The longwave or thermal infrared (TIR; 8–14 µm) wavelength range has the capa-18

bility of retrieving additional physical parameters and more accurately resolving the19

composition and physical condition of a material than solar reflected radiation (Hook20

et al., 1998, 2005; Hecker et al., 2012). Many common rock-forming minerals such as21

quartz, feldspars, olivines, pyroxenes, micas and clay minerals have spectral features in22

the 8-14 µm wavelength region (van der Meer et al., 2012). For silicate minerals, a pro-23

nounced emittance minimum caused by fundamental Si-O stretching vibrations occurs24
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near 10 µm (Hunt and Salisbury, 1975; Salisbury, 1991). The vibrational frequency, and25

thus the wavelength of the minimum, depends on the degree of coordination among the26

silicon-oxygen tetrahedra in the crystal lattice. Framework silicates, such as quartz27

and feldspar, have emittance minima at shorter wavelengths (9.3 and 10 µm, respec-28

tively) than do sheet silicates such as muscovite (10.3 µm) and chain silicates such29

as the amphibole minerals (10.7 µm) (Hunt, 1980). Emission Fourier transform in-30

frared (FTIR) spectroscopy has been successfully used to predict modal mineralogy of31

rock-forming minerals such as feldspars, pyroxene, and quartz and their composition32

in igneous and metemorphic rocks (e.g. Feely and Christensen, 1999; Hamilton and33

Christensen, 2000; Milam et al., 2004; Hecker et al., 2010). Carbonates have features34

associated with CO3 internal vibrations both in the 6-8 µm region (Adler and Kerr,35

1963; Hunt and Salisbury, 1975) and also at 11.4 and 14.3 µm due to C-O bending36

modes. Sulphate minerals have an intense feature near 8.7 µm caused by fundamental37

stretching motions (van der Meer, 1995; Lane and Christensen, 1997).38

The majority of geological mapping studies using thermal infrared remote sensing39

data have utilised multispectral data; multispectral sensors measure a small number of40

(< 20) broadly spaced, often non-contiguous bands (Kramer, 2002). The Advanced41

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Thermal42

Infrared Multispectral Scanner (TIMS) sensors have demonstrated the utility of TIR43

data to discriminate a wide range of minerals, especially silicates, as well as proving44

useful for lithological mapping (e.g. Rowan and Mars, 2003; Chen et al., 2007; Rogge45

et al., 2009; Haselwimmer et al., 2010, 2011; Salvatore et al., 2014); however, these46

satellite platforms are limited by their coarse spatial and spectral resolution.47

The development of airborne hyperspectral TIR sensors producing images with tens48

to hundreds of contiguous spectral channels provided the potential for a step-change in49

the range of mineralogical information and accuracy of surface composition retrievable50

remotely. Currently, there are a number of operational airborne hyperspectral TIR51

instruments, including the Spatially Enhanced Broadband Array Spectrograph System52

(SEBASS), the Airborne Hyperspectral Scanner (AHS), the ITRES Thermal Airborne53

Spectrographic Imagery (TASI), and the Specim AisaOWL (van der Meer et al., 2012).54

Previous studies using airborne hyperspectral TIR data have illustrated the exceptional55

potential of these types of sensors for mapping silicates, carbonates, sulphates, and56

clays (e.g. Hewson et al., 2000; Cudahy et al., 2001; Calvin et al., 2001; Vaughan57
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et al., 2003, 2005; Aslett et al., 2008; Riley and Hecker, 2013; Kruse and McDowell,58

2015).59

However, a number of issues relating to processing of the imagery remain, which60

significantly affects the accuracy of the temperature-emissivity separation and subse-61

quently the quality of the interpretation of the generated mineralogical and lithological62

maps. These issues include the coarser spectral resolution and poorer spectral cali-63

bration of currently available instruments (compared to VNIR/SWIR instruments), in-64

accurate correction of the effects of the atmosphere, low signal-to-noise ratios and a65

lack of understanding of the influence of a wide range of compositional, morphologi-66

cal, topographical and environmental factors on the spectral emissivity signal received67

at-sensor (Salvaggio and Miller, 2001; Shimoni et al., 2007; Feng et al., 2012). The68

complexity of the processing chain (atmospheric correction and the underdetermined69

nature of temperature emissivity separation; Gillespie et al., 1998) and lack of defined70

methodologies for processing of hyperspectral airborne TIR datasets relative to the pro-71

cessing of VNIR and SWIR hyperspectral datasets is an additional factor in limiting the72

usefulness of the data and the quality of geological interpretation (van der Meer et al.,73

2012).74

A key objective of this study was to develop a fully automated processing chain,75

robust to noise, in order to produce a lithological map from airborne hyperspectral76

TIR data. The processing chain, with minimal inputs and parameters, is designed to77

assist geologists in processing, analysing and interpreting hyperspectral TIR datasets;78

we use established techniques which are routinely applied to VNIR/SWIR datasets and79

integrate them into a fully automated processing chain applied to hyperspectral TIR80

data.81

Additionally, this paper also presents the first known analysis of airborne hyper-82

spectral TIR data from the Antarctic.We tackle the significant challenges presented83

by the extreme environment in the Antarctic, which produced a dataset with a very84

low signal to noise ratio. The results are validated and interpreted in the context of85

the study area in conjunction with a full suite of ancillary data: detailed high qual-86

ity ground reference spectral data collected using a new, high resolution field portable87

FTIR spectrometer, thin section and scanning electron microscope analysis, electron88

microprobe analysis, whole rock geochemical data and mineral modal analysis.89
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2. Study area and datasets90

2.1. Study area and geological context91

The Antarctic Peninsula is part of the proto-Pacific continental margin arc that was92

magmatically active at least from the Permain through to ∼ 20 Ma. The range of93

igneous rocks emplaced in continental margin arcs informs us about the tectonic his-94

tory of the margin, and even relatively subtle difference between granitoid types (e.g.95

tonalite, diorite, granodiorite, granite) are significant as they record variations in melt-96

ing depths and the stress regime in the lithosphere.97

Anchorage Island is located in Ryder Bay to the south of the larger Adelaide Island,98

on the Antarctic Peninsula. The British Antarctic Survey (BAS) main research station99

is located close by on Rothera Point, Adelaide Island (Figure 1C). Anchorage Island100

was surveyed as part of a hyperspectral airborne campaign in February 2011 and visited101

for follow-up ground truth fieldwork in January/February 2014 (Figure 1D).102

A local-scale geological map of the study area, based on previous geological map-103

ping updated with recent field observations, is shown in Figure 2. The main geologic104

unit on Anchorage Island is the Adelaide Island Intrusive Suite (AIIS). The AIIS is105

dominated by granodiorites, tonalites and gabbroic rocks; granodiorite and hybrid gab-106

bro/granodiorite plutons are the most abundant. The granodiorite is leucocratic and107

is dominated by plagioclase (∼50–60 %), which often weathers orange/brown; quartz108

typically accounts for ∼10 % of the rock and K–feldspar ∼5 %. Mafic minerals are109

common (25 %), with green/brown amphibole abundant, along with minor amounts of110

biotite and epidote. The plutonic rocks are cut by dolerite and intermediate-felsic com-111

position dykes, which are typically < 1 m thick, dip steeply (> 75◦ to the southeast)112

and strike in the range 210–230◦.113

2.2. Airborne hyperspectral data114

Airborne hyperspectral TIR imagery was acquired on the 3rd February 2011 by115

the ITRES TASI sensor with 32 spectral bands from 8–11.4 µm at a full-width half-116

maximum (FWHM) of 109.5 nm. The acquisition system hardware and other equip-117

ment (inertial measurement unit and instrument control units) were installed into a De118

Havilland Twin Otter aircraft and flown unpressurised. Radiometric correction and ge-119

ometric correction were carried out by ITRES Research Ltd., where a total of 17 flight120

lines were orthorectified and a mosaicked image in calibrated at-sensor radiance units121
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(Level 1B) at a ground spatial resolution of 1 m was delivered. The full preprocessing122

of the hyperspectral imagery is described in Section 3.3 and the automated lithological123

mapping in Section 3.4.124

2.3. Field reflectance and emission spectral survey125

Ground TIR emissivity spectra were acquired from the survey region during a field126

campaign in February 2014. A total of eight field localities were surveyed (Figure 1D)127

encompassing a northeast-southwest transect across Anchorage Island, though specific128

localities were selected due to their accessibility. At each locality, between 3 and 5129

hand specimens were collected from representative lithological units, mafic enclaves130

and mineral viens (e.g. quartz) within close proximity (<10 m) of each field locality.131

Hand specimens were collected from weathered, nadir facing rock surfaces. Although132

varying levels of lichen cover were present, samples were measured from lichen-free133

(or minimal lichen covered) areas on each sample. Hand specimens were measured134

using an ABB full spectrum reflectometer (FSR) to gather measurements of spectral135

reflectivity and emissivity.136

The FSR is a FTIR spectrometer which uses a Michelson interferometer (MB-3000)137

with mercury cadmium telluride (MCT) and indium arsenide (InAs) detectors. It has138

a wavelength range from 0.7–14 µm, a spectral resolution of <1 nm and a spot size of139

∼4 mm. The FSR was developed by ABB for the Canadian Department for Research140

and Defence (DRDC). It represents a significant improvement over existing field FTIR141

spectrometers; it is compact and portable, has a high signal to noise ratio due do its142

cooled MCT and InAs detectors, as well as covering a large spectral range from the143

VNIR to TIR. The FSR is also a contact probe instrument, similar to spectral radiome-144

ters conventionally used for VNIR/SWIR spectroscopy. The spectral resolution was set145

to 0.1 nm and the instrument was set up such that each spectrum represented the aver-146

age of 128 individual spectral measurements. A calibrated gold panel is built into the147

FSR allowing for the calculation of emissivity; the gold panel was used to recalibrate148

the instrument at the start of each batch of measurements at each field locality. Figure149

3 shows 18 spectra collected from exposed nadir facing samples (excluding samples150

from enclaves or vein material).151
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3. Methodology152

The processing of the airborne hyperspectral TIR imagery was split into two main153

phases; (1) data preprocessing and (2) fully automated image processing and litholog-154

ical mapping. To assist in the analysis of the results from the airborne remote sensing155

study a comprehensive field mapping survey was carried out supported by field re-156

flectance and emission spectroscopy (Section 2.3). The field spectral data underwent157

spectral resampling (Section 3.1). Laboratory geochemical and petrographic analyses158

were carried out to determine mineralogical information and aid in interpretation of159

field spectral data (Section 3.2).160

3.1. Spectral resampling161

All of the emissivity spectra collected in the field (Figure 3) using FSR were con-162

volved to the spectral response functions of the TASI sensor through163

εi =

∫
εs(λ )ri(λ )δλ∫

ri(λ )δλ
(1)

where εi is convolved emissivity, εs(λ ) is the sample’s emissivity at band i and wave-164

length λ , ri(λ ) is the spectral response function of band i at wavelength λ j, over the165

wavelength interval of the sample δλ .166

3.2. Geochemical and petrographic analyses167

Four samples representative of the main lithological units (granite, granodiorite168

and dolerite) were further investigated to understand their geochemistry; two gran-169

odiorite samples (J13.19.10 and J13.22.5), one granite (J13.21.10) and one dolerite170

sample (J13.22.10) were chosen. These samples were selected to ensure that each of171

the geological units on Anchorage Island were investigated; as weathered granodiorite172

represents the major lithological unit on Anchorage Island, two weathered granodiorite173

samples were chosen to determine their homogeneity. Thin sections were examined174

using a petrological microscope, a FEI Quanta 650F QEMSCAN scanning electron175

microscope and a Cameca SX-100 electron microprobe. Backscattered electron (BSE)176

images were collected on the QEMSCAN using an accelerating voltage of 20 kV and177

a working distance of ∼ 13 mm. Major element geochemistry and the identification178

of minerals and mineral phases was carried out through electron microprobe anaysis179
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(EPMA) of points (∼ 5 µm) from grains within thin sections. Point counting (Gale-180

house, 1971) was used to determine mineral composition; 500 points were counted in181

thin section on each of the four samples.182

The samples were also analysed by X-ray fluorescence spectrometry (XRF) to de-183

termine whole-rock major and trace elements using a PANalytical Axios-Advanced184

XRF spectrometer at the University of Leicester. Powders from whole-rock samples185

were obtained through crushing in a steel jaw crusher and powdering in an agate ball186

mill. Major elements were determined from fused glass discs and trace elements from187

powder pellets. Loss on ignition (LOI) values were calculated by igniting∼3 g of each188

sample in ceramic crucibles at 950 ◦C. Glass discs were prepared from 0.6 g of non-189

ignited powder and 3 g of lithium metaborate flux, melted in a Pt-Au crucible over a190

Spartan burner then cast into a Pt-Au mould. Powder pellets of 32 mm diameter were191

produced from mixing 7 g of fine ground sample powder with 12-15 drops of a 7%192

polyvinyl alcohol (PVA) solution (Moviol 8-88) and pressed at 10 tons per square inch.193

3.3. Hyperspectral data preprocessing194

Figure 4 shows a flowchart of the preprocessing steps. Radiometric correction and195

geometric correction were carried out by ITRES Research Ltd. using their proprietary196

tools. In the first step, radiometric and spectral calibration coefficients were applied197

to convert the raw digital numbers into spectral radiance values. In the second step,198

the ITRES proprietary geometric correction software utilised the navigation solution,199

bundle adjustment parameters, and digital elevation models (DEMs) to produce georef-200

erenced radiance image files for each flight line. In addition, flight lines were combined201

into an image mosaic of the area. The nearest neighbour algorithm was used to populate202

the image pixels so that radiometric integrity of the pixels could be preserved. Where203

the pixels of adjacent flight lines overlapped the pixel with the smallest off-nadir angle204

was written to the final mosaic image.205

Whilst the TIR domain is an atmospheric window, there is atmospheric influence206

which needs to be compensated for, especially for quantitative applications (Liang207

et al., 2002). Here we performed atmospheric correction through the inversion of radia-208

tive transfer modelling, following a similar approach to our corrections of VNIR/SWIR209

Antarctic hyperspectral data (Black et al., 2014).210

The basic radiative transfer equation in the TIR domain as given by Dash et al.211

(2002) is (where each term is a function of wavelength, λ , omitted for clarity)212
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Ls = Lp + τ ·Lg + τ · [1− ε] · F
π

(2)

where Ls is the total thermal radiance received at-sensor, Lp the thermal path radi-213

ance emitted by the atmosphere between the ground and the sensor, τ the ground-to-214

sensor transmittance, Lg the ground emitted radiance, ε the ground surface emissivity215

and F the downwelling thermal sky flux at the ground (Richter and Coll, 2002). We216

utilised ATCOR-4 (Richter and Schläpfer, 2002, 2014) to perform atmospheric cor-217

rection; ATCOR-4 applies equation 2 by interpolating the required atmospheric pa-218

rameters for each pixel based on their individual viewing geometry where the radia-219

tive transfer parameters are selected from a database of MODTRAN-5 (Berk et al.,220

2005) simulations. The two inputs required by ATCOR-4 to approximate the atmo-221

spheric conditions are the visibility and column water vapour amount. Visibility data222

is continually measured at the nearby Rothera research station using an automated BI-223

RAL HSS VPF-730 Combined Visibility & Present Weather Sensor. The water vapour224

value was derived using an assumed value of 2.0 gcm−3 by comparison to radiosonde225

data. The mosaicked image was processed one flight line at a time to convert the at-226

sensor non-atmospherically corrected radiance into ground-leaving radiance. Temper-227

ature and emissivity separation (TES) was performed following atmospheric correction228

using the maximum-minimum difference of emissivity technique, which is commonly229

applied to ASTER TIR data (Gillespie et al., 1998).230

Investigation of the emissivity imagery following atmospheric correction and TES231

showed lower than expected emissivity values, along with residual atmospheric absorp-232

tions. This was likely due to the challenging acquisition conditions and calibration con-233

ditions of the instrument, along with inadequate representation of the atmosphere due234

to the approximations in the atmospheric correction process (Black et al., 2014). An235

empirical correction, through the Emissive Empirical Line Method (EELM; Distasio236

Jr. and Resmini, 2010) was applied. The EELM generates scalar multiplicative values237

for each band of the image through regression of image pixel spectra to the assumed238

“target” spectra - this approach is comparable to the use of pseudo invariant features239

(PIFs; Freemantle et al., 1992; Philpot and Ansty, 2011) and the empirical line method240

(ELM; Smith and Milton, 1999) which is commonly applied to VNIR/SWIR data (e.g.241

Tuominen and Lipping, 2011). Here we applied EELM utilising pixels selected from242

homogeneous regions of granite, dolerite, snow and sea water.243
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High levels of salt and pepper noise along with within-in track striping and flight244

line illumination differences were still apparent in emissivity imagery so an additional245

processing step was applied to improve the signal-to-noise ratio (SNR). The minimum246

noise fraction (MNF; Boardman and Kruse, 1994; Green et al., 1998) was applied. The247

MNF involves two cascaded principal component (PC) transformations; the first trans-248

formation, based on an estimated noise covariance matrix, decorrelates and rescales the249

noise in the data. The second step is a standard PC transformation of the noise-reduced250

data. The MNF is an effective technique for reducing a large hyperspectral dataset into251

fewer components which contain the majority of information (spectral variance) in a252

small number of components. Unlike a PC transform, the resulting axes (components)253

from MNF are not orthogonal (as in PC analysis) but are ordered by decreasing signal254

to noise ratio (Keshava and Mustard, 2002). After the MNF was applied, the first four255

MNF bands were then used in the inverse MNF to produce the noise-reduced emissiv-256

ity image. Additionally a median filter with a radius of 2 was applied in the spectral257

domain to remove shot noise which was not addressed by the MNF noise reduction258

step (e.g. Gilmore et al., 2011).259

We investigated the SNR of the image before and after preprocessing by utilising260

an area of sea water in the image and calculating the SNR through261

SNR =
µi j

σi j
(3)

where i and j are the rows and columns of the image, µi j is the mean of the pixels and262

σi j is the standard deviation of the pixels. The signal to noise ratio is often reported263

using the logarithmic decibel (dB) scale; we can express the SNR in dB through264

SNRdB = 20log10(SNR) (4)

Finally, prior to processing, the image was masked to remove snow/ice and sea265

water. The mask was generated from the temperature image where pixels < 5 ◦C were266

removed.267

3.4. Image processing and lithological mapping268

In order to produce a lithological map, we applied a six step processing chain,269

shown in Figure 5. The processing chain is fully automated, with only a small num-270
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ber of inputs/parameters; algorithms were selected from the existing literature based on271

their ability to cope with low SNR datasets. The six steps are: (1) superpixel segmenta-272

tion; (2) identify the number of endmembers to extract from the superpixels; (3) extract273

endmembers from the image using an endmember extraction algorithm (EEA); (4) per-274

form spectral mixture analysis (SMA; also known as spectral unmixing) to determine275

the fractional abundances each endmember; (5) produce a predictive classification map276

from endmember fractional abundances; (6) identify endmembers and label the predic-277

tive map classes to produce a lithological map.278

Here we consider an endmember to be a unique spectrum derived from the hy-279

perspectral scene itself. Endmembers are found directly from the image, regardless280

of the composition of materials (within individual pixels or within the scene itself) or281

any imperfections in the dataset (e.g. sensor noise, atmospheric influence and so on)282

(Winter, 1999). Through the careful interpretation of endmembers in reference to the283

local geological context, ancillary data (e.g. geochemical analysis) and knowledge of284

the imperfections within the data, endmembers which are recognisable are determined285

and interpreted in a geological context (Winter, 1999; Rogge et al., 2009).286

These steps are fully automated in a MATLAB environment (MathWorks, 2011)287

and do not require any user interaction. Steps 1 to 5 require the hyperspectral scene288

and few parameters as input. In this study, we also perform step 6 automatically with289

the additional input of the field spectral data (convolved to TASI spectral response func-290

tions; Equation 1), which are used to automatically label the predictive map classes. In291

the absence of field spectral data, step 6 could be performed through manual inter-292

pretation of endmembers and subsequent labelling of the predictive map classes by an293

expert user. Due to the automated nature of the processing chain, the results are also294

completely repeatable unlike approaches which rely on manual endmember identifica-295

tion. The following sections describe each step of the processing chain.296

3.4.1. Step 1: Superpixel segmentation297

Firstly, we apply superpixel segmentation, which adds a spatial component to end-298

member extraction. Superpixels are homogeneous image regions comprised of sev-299

eral pixels having similar values and are generated by intentional over-segmentation of300

the emissivity image which aggregates scene features into segments (Thompson et al.,301

2010; Gilmore et al., 2011); the spectra of each of the original image pixels within a302

superpixel segment are averaged to produce the superpixel’s spectrum.303
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Briefly, the superpixel segmentation uses graph-based image segmentation (Felzen-304

szwalb and Huttenlocher, 2004), where the pixel grid is shattered into an 8-connected305

graph with nodes connected by arcs representing the Euclidean spectral distance and306

the nodes are then iteratively joined using an agglomerative clustering algorithm (Felzen-307

szwalb and Huttenlocher, 2004; Thompson et al., 2010, 2013). A stable bias parameter,308

k controls the size of the superpixels, a minimum superpixel size is enforced, and in a309

final step smaller regions are merged to their nearest adjacent clusters (Felzenszwalb310

and Huttenlocher, 2004; Thompson et al., 2010). The superpixel approach has been311

shown to be beneficial on low SNR datasets and can aid in deriving endmembers that312

more closely resemble manually derived endmembers (Thompson et al., 2010). This313

is due to averaging several pixel spectra within a single superpixel and thus the tech-314

nique reduces the noise variance proportionally to the superpixel area. However the315

technique can act to degrade spectral purity by aggregating multiple pixels and can316

suppress subtle spectral features (Thompson et al., 2010).317

For the superpixel segmentation we set the bias parameter k to 0.1 and the mini-318

mum superpixel region size to 30 pixels using the Euclidean spectral distance as the319

divergence measure. These parameters were determined quantitatively by investigating320

the sensitivity of the segmentation to small features, such as the stoped granite block in321

the northeast of Anchorage Island (Figure 2). These parameters are determined based322

on the scale of features present in the scene and the spatial resolution of the imagery,323

thus may require local tuning on other imagery collected at different resolutions or324

where geological features occur at different scales. The superpixel segmentation step325

also serves as an image reduction step, thereby speeding up processing times; the raw326

image contains over 7.6 million pixels (3062 × 2489) and the superpixel segmentation327

reduces this to 9810 superpixels.328

3.4.2. Step 2: Estimating the number of endmembers329

Following the generation of superpixels, Virtual Dimensionality (VD; Chang and330

Du, 2004) was used to determine the number of endmembers (n). The number of end-331

members, or the intrinsic dimensionality (ID) of a hyperspectral image is considerably332

smaller than the component dimensionality (number of bands), and accurately deter-333

mining the ID is crucial for the success of endmember extraction and spectral mixture334

analysis (Chang and Du, 2004). The high spatial and spectral resolution of hyperspec-335

tral imagery means that the sensor is capable of uncovering many unknown endmem-336
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bers, which cannot be identified by visual inspection or known a priori (Chang and337

Du, 2004). In order to determine the number of endmembers (or signal sources, i.e. the338

intrinsic dimensionality) we applied the VD algorithm, prior to endmember extraction.339

The VD concept formulates the issue of whether a distinct signature is present or not340

in each of the spectral bands as a binary hypothesis testing problem, where a Newman-341

Pearson detector is generated to serve as a decision-maker based on a prescribed false342

alarm probability Pfa (Chang and Du, 2004; Plaza et al., 2011). In our preliminary343

investigations, we varied the Pfa from 10−3 to 10−6, however, the estimated number344

of endmembers did not change; we therefore fixed the Pfa value to 10−4 in line with345

previous studies (Chang and Du, 2004; Plaza et al., 2011).346

3.4.3. Step 3: Endmember extraction347

In step (3) we applied Vertex Component Analysis (VCA; Nascimento and Bioucas-348

Dias, 2005), to extract n endmembers from the superpixels. Vertex component analysis349

exploits the fact that endmembers occupy the vertices of a simplex and assumes the350

presence of pure pixels in the data. The algorithm iteratively projects data onto a direc-351

tion orthogonal to the subspace spanned by the endmembers already determined and the352

new endmember signature corresponds to the extreme of the projection; iteration con-353

tinues until the number of endmembers is exhausted. The algorithm has been shown to354

be comparable to state of the art endmember extraction algorithms, such as N-FINDR355

(Winter, 1999) and outperforms manual techniques such as the Pixel Purity Index (PPI;356

Boardman, 1993). It is an order of magnitude less computationally complex than other357

state of the art endmember extraction algorithms which yields significantly faster pro-358

cessing times for large datasets (Nascimento and Bioucas-Dias, 2005).359

3.4.4. Step 4: Spectral mixture analysis360

The endmembers derived from the VCA algorithm were used as input to step (4)361

where linear SMA is used to produce fractional abundances of the n endmembers using362

the original image (without superpixel segmentation). Due to its ease of implementa-363

tion, we applied fully constrained linear spectral unmixing (FCLSU; Heinz and Chang,364

2001) to derive fractional abundances of each endmember, given as365

Rb =
n

∑
i=1

FiSib (5)
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where Rb is the fractional abundance of the pixel at band b, Fi is the fractional abun-366

dance of endmember i, Sib describes the emissivity of endmember i at band b, and n is367

the number of endmembers. Equation 5 was solved subject to the constraints that frac-368

tional abundances sum-to-one (ASC; abundances sum-to-one constraint) and fractional369

abundances are non-negative (ANC; abundance non-negative constraint) (e.g. Rogge370

et al., 2009). This step results in fractional abundance images, where, for each pixel371

in the image, the abundance of each endmember is determined. The algorithms used372

at this and the preceding processing steps were selected due to their availability and373

implementation in the MATLAB environment (MathWorks, 2011), along with their374

relatively quick processing times and proven success at extracting endmembers under375

moderate to high noise conditions (Nascimento and Bioucas-Dias, 2005; Chang and376

Plaza, 2006; Plaza et al., 2012).377

3.4.5. Step 5: Predictive map classification378

Utilising the abundance images a predictive classification map was generated fol-379

lowing a similar approach to Rogge et al. (2009). The map was generated by de-380

termining the endmember with the maximum fractional abundance for each pixel and381

assigning that pixel to the given endmember class. For a pixel to be assigned to a partic-382

ular class, the endmember abundance must be above a minimum fractional abundance383

threshold (or confidence level), otherwise a null class was assigned. The minimum384

fractional abundance was set to the intermediate value of 0.5 for practical purposes,385

however this value could be increased to identify spectrally purer regions (Rogge et al.,386

2009).387

3.4.6. Step 6: Class labelling388

The interpretation step was carried out to produce geological labels which were389

automatically applied to the classification map generated from step (5). The image390

derived endmember spectra were compared to field emissivity spectra (e.g. Harris et al.,391

2005; Rogge et al., 2009) through calculation of spectral angle (SA), also known as392

Spectral Angle Mapper (SAM; Kruse et al., 1993a) through the application of393

SA = cos−1
(

~t ·~r
‖~t ‖ · ‖~r ‖

)
(6)

where t represents the spectrum of the target (endmember), r represents the spectrum394

of the reference (field spectra) and SA is the spectral angle (in radians; 0 to 2π). This395
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technique to determine similarity is insensitive to gain factors as the angle between two396

vectors is invariant with respect to the lengths of the vectors, and allows for laboratory397

spectra to be directly compared to remotely sensed spectra (Kruse et al., 1993a). Pre-398

dictive map classes were automatically labelled by their closest match from the field399

spectral data (e.g. Rivard et al., 2009).400

3.5. Image processing validation401

In order to validate our findings, we use the root mean square error metric (RMSE)402

for assessment (e.g. Plaza et al., 2012). We define ŷi j as the reconstructed hyperspectral403

image, following404

ŷi j =
n

∑
n=1

(Mn×Sn) (7)

where i and j are the rows and columns of the image, n is the number of endmembers,405

Mn denotes the endmember spectrum of n and Sn denotes the fractional abundance406

of endmember n. Following this reconstruction we calculate the RMSE between the407

original hyperspectral image, y and the reconstructed hyperspectral image, ŷ as408

RMSE(y, ŷ) =

(
1
B

B

∑
j=1

[yi j− ŷi j]
2

) 1
2

(8)

where B is the number of spectral bands and ŷi j and yi j are pixels of the original hy-409

perspectral image and the pixels of the reconstructed hyperspectral image respectively.410

Summary statistics were calculated from the RMSE of the pixels of each endmember411

class as well as the whole RMSE image.412

Additionally, we also extract the original image spectra and the reconstructed image413

spectra (calculated from the endmembers and their fractional abundances). Using areas414

of granite and granodiorite we extract spectra from pixels of high purity (0.9 fractional415

abundance), medium purity (0.75 fractional abundance) and low purity (0.5 fractional416

abundance) and compare the spectra, their fractional abundances, and the RMSE values417

to validate the findings in a spectral context.418

4. Results and Discussion419

4.1. Field data420

Table 1 shows whole-rock major and trace element data from XRF spectroscopy.421

Table 2 shows the abundances of minerals as determined from point counting. Spectral422
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data collected from in situ samples is displayed in Figure 3. The majority of Anchorage423

Island is composed of weathered granodiorite, however some areas contain amphibole424

rich granodiorites (J13.24, J13.25 and J13.26), and areas in the southwest of the island425

display strongly weathered and altered granodiorites (J13.19 and J13.20).426

The spectral variability of the granidiorites is shown in Figure 3A. Numerous do-427

lorite dykes cut the granodiorite unit; a spectral measurement from a dolerite dyke in428

the northwest of Anchorage Island is shown in Figure 3B. The field spectra for dolerite429

and granodiorite show similar spectral features; a small relative increase in emissivity430

at 8.6 µm and 9.5 µm, and two broad flat absorption features centred around 9 µm and431

10 µm. The whole-rock XRF data shown in Table 1 support the spectral similarity of432

the dolerite and granodiorite samples - there is very little difference in the chemical433

composition of these samples, hence the similar spectra of the samples. The amphi-434

bole rich granodiorite spectra display an additional weak feature at 10 µm with reduced435

magnitude of the emissivity maximum at 8.6 µm. The strongly weathered (and altered)436

granodiorite spectra are significantly different to weathered/amphibole rich granodior-437

ite spectra, displaying a broad deep feature at 9 µm and a smooth spectrum above 9.8438

µm. We attribute the broad deep absorption centred around 9 µm to high temperature439

feldspar alteration into clay minerals (e.g. sericite).440

The spectrum of granite is dominated by a quartz signal which leads to an emis-441

sivity maximum at 8.7 µm and a deep feature with an emissivity minimum at 9.4 µm442

(Figure 3B). Although similar spectral features to granodiorite are present in the gran-443

ites, the overall magnitude of the absorption features in much larger in the granite than444

in any of the granodiorite or dolerite spectra.445

4.2. TIR data preprocessing results446

Figure 6 shows the first 10 bands of the MNF transform. As higher MNF compo-447

nents are considered, the levels of noise dramatically increase (Figure 6G-J). The MNF448

images also clearly highlight the differences between flight lines which cause ‘striping‘449

in the images (e.g. Figure 6E and F). The first four of these MNF components (Figure450

6A-D) were retained and processed through an inverse MNF transform prior to input451

in the superpixel and endmember extraction algorithms.452

Figure 7 shows the SNR for the image after atmospheric correction and TES com-453

pared to the SNR for the final image after all preprocessing (atmospheric correction,454

TES, EELM and MNF noise reduction). Overall the SNR is increased from a mean455

16

 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



value of 60:1 (35.6 dB) to 92:1 (39.3 dB) after preprocessing. With the exception of456

one band at ∼ 9 µm, the SNR increased for all wavelengths, with significant increases457

seen at the higher wavelengths (> 10.5 µm). Whilst increases in SNR are seen after458

preprocessing, on whole SNR values are relatively low and far lower than that which459

are regularly reported by others using airborne hyperspectral TIR sensors such as SE-460

BASS; for example Vaughan et al. (2003) report SNR values of 2000:1 (66 dB) using461

SEBASS data in Nevada.462

The low SNR values reported here are likely a direct result of the challenging op-463

erating conditions in the Antarctic; the instruments were flown in an unpressurised464

aircraft, operating at extreme temperatures which were up to 20 ◦C (68 ◦F) outside of465

the instrument’s normal operating range, as well as being subject to repeated heating466

and cooling cycles during storage and operation (Black et al., 2014).467

4.3. Predictive map generation and geological interpretations468

A total of 9810 superpixels were input into the VD algorithm which determined469

there were 5 endmembers. The endmembers were extracted using the VCA algorithm470

and are shown in Figure 8. Endmember abundances were determined using FCLSU;471

the abundances images were utilised to generate a classified map, where classes were472

assigned to the predominant endmember if the abundance was greater than 0.5.473

The classes were subsequently labelled by automatic matching to the field spectral474

data; the closest match (in terms of spectral angle; Equation 6) was applied to label the475

endmembers (Figure 8) and their respective class in the predictive classification map476

(Figure 9). The results were validated through visual inspection of the classification477

map with respect to the local geological map (Figure 2), comparison of the endmember478

spectra and the ancillary data (Sections 2.3 and 3.2), as well as using the RMSE metric479

(Section 3.5 and Section 4.4). Endmember-4 was excluded as it represented sea water480

from pixels which were not captured at the masking step and is not discussed further.481

The resulting lithological map is shown in Figure 9.482

For each endmember, a match was determined from the field spectra where the483

SA was 6 0.03 radians; we found confident matches for granite, two types of weath-484

ered granodiorite and altered granodiorite. The endmember spectra display absorption485

features consistent with the field measured spectra (Figure 3) and their mapped distri-486

butions (Figure 9) are largely in agreement with the generalised geological map (Figure487

2).488
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The granite endmember (Endmember-1; Figure 8A) displays good agreement with489

the field spectral data and its distribution on the predictive map (Figure 9A and B).490

We accurately delineate the stoped granite block in the northeast of Anchorage Island,491

along with the larger outcrops south of the granite block and along the northeast coast.492

The predictive map indicates the likelihood of additional outcrops of granite occurring493

predominantly in the northeast of Anchorage Island (Figure 9B).494

The occurrence of granite senso stricto in continental margin arcs is rare, typically495

accounting for 1-2% of the total volume of granitoid rocks exposed at the surface.496

Granites exposed at the surface on the western margin of the Antarctic Peninsula are497

rare and not previously identified at all from Adelaide Island (or the Ryder Bay islands,498

including Anchorage Island, prior to mapping carried out in this study). The identifi-499

cation of stoped blocks of granite within a granodiorite pluton indicates the presence500

of granite at relatively shallow depths.501

Two of the endmembers (Endmember-2 and Endmember-3; Figure 8B and C) show502

good matches to granodiorite spectra measured in the field; both are measured from503

weathered granodiorite, however Endmember-3 is from yellow/orange weathered gra-504

nodiorite. The spatial distribution of this endmember is largely limited to low lying505

coastal regions, perhaps indicating recent weathering due to coastal processes, which506

distinguishes it from the remaining granodiorite (Endmember-2). Endmember-3 also507

shows a higher abundance in the extreme southwest of Anchorage Island, correspond-508

ing to the diorite outcrop (c.f. Figure 2), though does not allow for distinguishing the509

diorite as a separate unit; this is likely as the diorite and granodiorite units would have510

a similar chemical composition and thus would be difficult to differentiate spectrally.511

Endmember-5 shows a good agreement with a measured spectrum from the strongly512

altered granodiorite (Figure 8D), with a deep emissivity feature centred at 9 µm, how-513

ever there are additional features located at 10 and 11 µm which are not seen in the field514

spectrum. Endmember-5 is largely distributed proximal to, or within the larger spatial515

lithological unit of the granodiorite (Endmember-2) and is distinct from the granite unit516

(Endmember-1). The yellow/orange weathered and altered grandiorites (Endmember-3517

and Endmember-5 respectively) have their greatest abundance in the central southwest518

region of the Island (concurring with the field observations; Section 4.1).519

None of the endmembers correspond to the dolerite, most likely due to the chemical520

and spectral similarity to the granodiorite unit (Table 1; Figure 3). The granodiorite521
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and dolerite were distinguished in the field due to the differences in their grain size;522

however, the spectral features present in the imagery do not allow for a distinction to523

be made. Even in the field spectra, there is little difference between the granodiorite524

and dolerite (Figure 3), hence there are no endmembers extracted that match dolerite.525

At the wavelengths considered by the TASI sensor (8 to 11.5 µm), we have been526

able to differentiate granite and granodiorite, whilst struggled to find a clear distinction527

between the relatively similar chemical composition of the country rock (granodiorite)528

and the dolerite dykes on Anchorage Island. The ability to more accurately discrimi-529

nate potassium and plagioclase feldspar(s) could be possible if data were available at530

wavelengths where additional features could aid in feldspar discrimination (e.g. 12-14531

µm; Hecker et al., 2012).532

4.4. Validation of image processing533

Figure 10 shows the RMSE histogram and image calculated through Equation 8.534

Summary statistics calculated for each of the predicated class pixels (Figure 9) within535

the RMSE image are shown in Table 3.536

Endmembers 1, 2 and 5 produce RMSE values of <0.5%, with standard deviations537

of ∼ 0.45% and a maximum RMSE of 7.83% (Endmember-1). These values indicate538

that the unmixing procedure with just 5 endmember spectra yielded a high quality539

reconstruction of the original image spectra for these classes. Endmember-3 has a mean540

RMSE which is significantly higher at 0.94% with an increased standard deviation541

of 1.25% and a maximum error of 23%; this indicates pixels which are classed as542

Endmember-3 have higher overall and specific reconstruction errors, likely a result of543

incorrect or inadequate endmember spectra for these pixels and hence higher errors.544

On the whole, the average RMSE for the image is 0.58%; this figure is significantly545

higher than the RMSE values that are routinely achieved using VCA (e.g. RMSE of546

0.1% in Plaza et al., 2012), however this is likely a direct result of the low SNR of547

the imagery (Figure 7). As the SNR is reduced (below 1000:1, 60 dB) the perfor-548

mance of endmember extraction algorithms begins to degrade significantly and RMSE549

values increase (Plaza et al., 2012). Conversely, with larger SNRs, the RMSE error550

will decrease and the performance of endmember extraction algorithms will improve551

(Nascimento and Bioucas-Dias, 2005; Plaza et al., 2012). Other factors may also affect552

the RMSE values, including the pure pixel assumption and spectral mixture analysis553
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techniques, as discussed in Section 4.5. However, these errors did not inhibit the suc-554

cess of the processing chain.555

Figure 11 shows the spectra of pixels from high, medium and low purity pixels,556

comparing the original image spectra with the reconstructed image spectra (from end-557

members and their fractional abundances), for granite, granodiorite and altered gran-558

odiorite. In all cases the RMSE is 6 2 %, indicating a good fit between the original559

and reconstructed spectra. The high purity pixels (Figure 11A) more closely resemble560

the original endmembers and their equivalent field spectra (c.f. Figure 8), indicating a561

good degree of reconstruction of the original spectra and that endmember lithologies562

are accurately represented. When considering the medium and low purity spectra (Fig-563

ure 11B and C), the RMSE values are still low, indicating a high degree of fit between564

the original and reconstructed spectra; however, as the mixing of endmembers is in-565

creased, the pixel spectra begin converge and become increasingly similar (especially566

at low purities, Figure 11C). This indicates that as pixels become increasingly mixed567

(lower fractional abundances) the pixel spectra are similar yielding lower confidence in568

assigning a distinct lithology for low purity pixels. In this study we defined our abun-569

dance threshold at 0.5, however with careful examination of reconstructed and original570

image spectra, this threshold value could be increased to yield greater confidence in571

lithological units (as pixel spectra would more closely resemble endmember spectra).572

4.5. Processing chain and algorithm considerations573

Here we considered a pure pixel scenario, the assumption that at least one ‘pixel’574

contains a pure endmember spectrum. We note that a pure endmember spectrum rep-575

resents an independent signal source in the image and in some cases is not necessarily576

a geologically meaningful (or interpretable) spectrum; for example some endmember577

spectra could be related to image noise or atmospheric effects (Winter, 1999). How-578

ever, processing hyperspectral imagery assuming a pure pixel scenario has been widely579

researched, with a variety of pure pixel techniques for each step of the processing chain580

along with the optimised implementation and proven success of published algorithms.581

The pure pixel approach has been successful when images contain pure pixels (Plaza582

et al., 2012); however, given the presence of the mixing at different scales (even at583

microscopic levels), the pure pixel assumption is not always true, as some images may584

only contain pixels which are completely mixed (Plaza et al., 2012).585
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The complexity of endmember extraction from hyperspectral imagery is increased586

in a mixed pixel scenario, since the endmembers, or at least some of them, are not587

in the image (Bioucas-Dias, 2009). We note a point for future research into mixed588

pixel endmember extraction techniques which follow from the seminal ideas of Craig589

(1994), based on the minimum volume transform, with a number of recently pub-590

lished algorithms building from this work (Berman et al., 2004; Miao and Qi, 2007;591

Li and Bioucas-Dias, 2008; Chan et al., 2009; Bioucas-Dias, 2009). Currently, the592

major shortcoming of mixed-pixel techniques is long processing times due to their593

computational complexity (Bioucas-Dias, 2009). However mixed pixel techniques are594

an active area of research and as the algorithms mature they should be integrated into595

future studies. Additionally, the long established pure pixel methods should not yet be596

discounted; technological advances such as miniaturisation of sensors will inevitably597

lead to very high spatial resolution as sensors are deployed from platforms such as598

Unmanned Aerial Vehicles (UAVs).599

For SMA, also known as spectral unmixing, we considered the fully constrained600

linear model due to its ease of implementation and flexibility in different applications601

(Chang, 2003). We have not considered linear unmixing using iterative spectral mix-602

ture analysis (ISMA; Rogge and Rivard, 2006), which seeks to minimise the error by603

unmixing on a per pixel basis using optimised endmember sets. Alternatively, non-604

linear SMA may best characterize the resultant mixed spectra for certain endmember605

distributions, such as those in which the endmember components are intimately mixed606

(Guilfoyle et al., 2001; Plaza et al., 2009). In those cases, the mixed spectra collected607

at the imaging instrument are better described by assuming that part of the source radi-608

ation has undergone multiple scattering prior to being measured at the sensor.609

In a non-linear model, the interaction between the endmembers and their fractional610

abundance is given by a non-linear function, which is not known a priori. Various611

techniques have been proposed in the field of machine learning, with neural networks612

some of first non-linear SMA approaches proposed (Benediktsson et al., 1990). The613

performance of non-linear SMA algorithms on large, real-world hyperspectral data is614

currently limited by the computational complexity of the techniques; however, recent615

advances have aimed to take advantage of parallel processing techniques to reduce616

computational time (e.g. Plaza et al., 2008) and such algorithms remain an area for617

future research as their implementations become publicly available.618
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4.6. Future applicability of the processing chain619

The processing chain presented here is fully automated and repeatable; after pre-620

processing, the six step processing chain is fully automated, using few inputs and pa-621

rameters, followed by predictive map generation and automatic class labelling using the622

field spectral data. This is a direct attempt to address the current paucity of such au-623

tomated approaches in the geological remote sensing community (van der Meer et al.,624

2012). We anticipate the technique could be applied by geologists without the need for625

‘expert’ remote sensing knowledge or complicated image processing techniques / soft-626

ware packages, and the processing chain is more automated and less manually involved627

than traditional techniques. Indeed, this processing chain is particularly advantageous628

in the polar regions where higher detail lithological mapping can be obtained using629

remote sensing than compared with traditional field mapping.630

The main parameters which affect the lithological mapping processing chain are631

the superpixel bias parameter and minimum size segment size. The parameters are632

discussed and explained in detail by Thompson et al. (2010). The bias and minimum633

size segment size parameters control the size of the superpixels and should be scaled634

appropriately depending on the features of interest in each particular scene. The pa-635

rameters used in this study were quantitatively determined by inspecting the superpixel636

segmentation image and considering the scale of the geological areas of interest (e.g.637

dykes), however these parameters would require local tuning for other study areas, and638

particularly for other scales and image resolution (such as coarser resolution satellite639

imagery). The abundance threshold can be tuned to extract purer regions, however we640

demonstrate the results here using a moderate threshold of 0.5; higher values would641

yield spectrally purer regions (e.g. Rogge et al., 2009).642

We have achieved the results presented here in spite of what might be described643

as ‘extremely high noise conditions’ (SNR 6 40 dB; Plaza et al., 2012), thereby serv-644

ing as a validation of the processing chain and its ability to operate effectively at low645

SNR values. We confirm the findings of the Thompson et al. (2010) and Gilmore et al.646

(2011), such that superpixel segmentation aids in the determination of recognisable647

endmembers which are interpretable in a geological context despite low SNR values.648

Such a finding is crucial for future studies in the Antarctic where the environmental649

conditions mean that achieving high SNR values is much more challenging compared650

with temperate parts of the world. Indeed, this finding is also advantageous for many651
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studies, not just the Antarctic, where challenging conditions can yield lower than ex-652

pected SNRs; hence, it is advantageous that the processing chain can yield successful653

results even at low SNRs.654

It is an important point to note for future applications that prior knowledge of the655

local geology (and/or vegetation) is required for the successful application of the pro-656

cessing chain. The identification of the image derived endmembers (step 6) was suc-657

cessful here, in large part due to availability of high quality field spectral measurements658

to allow for comparison along with ancillary data (geochemical analysis). However, in659

lieu of field spectral measurements, a user could produce geological interpretations660

with knowledge of the local geological context, an understanding of the imperfections661

in the hyperspectral imagery (e.g. residual noise due to inadequate atmospheric com-662

pensation) and the identification of endmembers could be aided through comparison to663

spectral libraries (e.g. Christensen et al., 2000).664

The techniques presented here could be easily transferred to other TIR data (or even665

VNIR/SWIR data), including currently available satellite data, such as ASTER, or even666

planned future satellite TIR data; for example, the HyspIRI satellite has a planned TIR667

instrument which includes 7 bands in the 7-13 µm spectral range (Hulley et al., 2012).668

The coarser spatial and spectral resolution of this data would yield difficulties in the669

exact identification of minerals, though previous TIR data, such as ASTER, has been670

used to reliably discriminate a wide range of minerals, especially silicates, as well as671

proving useful for lithological mapping (e.g. Rowan and Mars, 2003; Chen et al., 2007;672

Rogge et al., 2009; Haselwimmer et al., 2010, 2011; Salvatore et al., 2014). Addition-673

ally, technological advances and increasing miniaturisation will eventually lead to the674

availability of UAV-deployable research grade hyperspectral sensors which could be675

used operationally by field geologists as a tool to compliment traditional field mapping676

techniques. The use of an automated processing chain in such a situation would be677

highly advantageous in delivering fast, automated and repeatable lithological mapping678

results which could aid and inform traditional mapping approaches operationally in the679

field.680

5. Conclusion681

We have presented a fully automated processing chain to produce lithological maps682

using airborne hyperspectral thermal infrared data in spite of low signal to noise ratios.683
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We utilised an airborne hyperspectral TIR dataset, collected for the first time from684

Antarctica, to accurately discriminate grantoids. The challenging conditions and cold685

temperatures in the Antarctic yielded data with a significantly lower SNR compared686

with data collected in more temperate environments. As a result, several preprocessing687

steps were employed to refine the imagery prior to analysis; atmospheric correction688

and temperature emissivity separation were applied, followed by further empirical cor-689

rections and noise removal through the minimum noise fraction technique. Areas of690

snow and sea water were subsequently masked using the temperature image.691

The processing chain was established and applied to the preprocessed imagery.692

Firstly, superpixel segmentation was applied to aggregate homogeneous image regions693

comprised of several pixels having similar values into larger segments (superpixels).694

The superpixels were input into the VD algorithm to determine the number of end-695

members, which were subsequently extracted using VCA and unmixed using FCLSU696

to generate abundances of each endmember. A predictive classification map was cre-697

ated where endmember fractions were thresholded (> 0.5). The endmembers extracted698

were automatically matched to their closest spectrum from the field spectral data, and699

the observations made in the field from these measurements were used to label the700

predictive map classes and generate a lithological map.701

The fully automated processing chain was successful in identifying 4 geologically702

interpretable endmembers from the study area. Reconstruction of the hyperspectral im-703

age from the endmembers and their fractional abundances yielded a root mean square704

error (RMSE) of 0.58%. The RMSE value, almost twice as large as previous studies, is705

likely a result of the low SNR of the Antarctica data; nonetheless the processing chain706

was still able to accurately discriminate the majority of lithological units with strong707

agreement to existing geological maps.708

The results were validated and interpreted in the context of the study area in con-709

junction with a full suite of ancillary data: detailed high quality ground reference710

spectral data collected using a field portable Fourier transform infrared spectrometer,711

thin section and scanning electron microscope analysis, electron microprobe analysis,712

whole rock geochemical data and mineral modal analysis. The results are promising,713

with the thermal imagery allowing clear distinction between granitoid types. However,714

the distinction of fine grained, intermediate composition dykes is not possible due to715

the close spectral similarity with the country rock (granodiorite).716
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Table 1: Geochemical analyses of Anchorage Island samples from XRF spectroscopy.
† total iron (FeO and Fe2O3).

Sample J13.22.10 J13.19.10 J13.22.5 J13.21.10
Unit Dolerite Granodiorite Granite

Major elements (%)
SiO2 54.40 55.19 59.59 78.29
TiO2 1.02 0.94 0.87 0.20

Al2O3 16.62 18.18 16.35 11.64
Fe2O3† 8.66 8.55 6.67 0.86

MnO 0.124 0.112 0.147 0.013
MgO 3.96 3.29 3.52 0.16
CaO 8.57 7.49 6.16 0.53

Na2O 3.14 4.04 3.51 2.74
K2O 0.958 1.066 2.115 5.610

P2O5 0.241 0.176 0.185 0.018
SO3 0.170 0.009 < 0.003 < 0.003
LOI 2.05 0.88 0.97 0.31

Total 99.92 99.93 100.09 100.38

Trace elements (ppm)
As 6.7 8.4 5.1 4.4
Ba 365.0 432.2 698.4 475.5
Ce 44.2 27.9 48.4 11.4
Co 25.7 18.3 21.6 < 1.1
Cr 112.0 6.4 37.0 < 0.6
Cu 110.8 19.9 32.8 3.5
Ga 18.2 21.2 17.8 9.9
La 20.0 13.7 21.3 7.9

Mo 3.9 2.3 3.3 0.9
Nb 4.8 4.4 6.8 4.7
Nd 23.6 16.7 25.2 7.7
Ni 12.8 < 0.7 18.7 < 0.5
Pb 8.2 9.7 7.5 9.7
Rb 15.6 36.7 55.6 140.3
Sc 30.6 34.1 23.1 3.3
Sr 458.2 481.4 415.7 111.2
Th 6.9 3.5 10.2 17.3
U 2.6 1.3 1.4 2.5
V 229.0 267.8 159.2 10.9
Y 30.8 27.1 29.6 20.7

Zn 48.8 71.2 72.4 14.8
Zr 179.1 43.3 230.9 98.2
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Table 2: Results from point counting, where mineral counts are given as percentages. A total of 500 points
were counted on each sample (n=500).

Sample J13.22.5 J13.22.10 J13.21.10
Unit Granodiorite Dolerite Granite

Point Count (%)
Biotite 1.2
Chlorite 8.8
Clinopyroxene 33
Hornblende 12.6
K-Feldspar 27.8
Muscovite 1.4
Opaques 1 4.6 1
Plagioclase 44.8 61 35
Quartz 32.8 35
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Table 3: Root Mean Square Error statistics.

RMSE (%) Mean Max StDev

Endmember-1 0.498 7.830 0.464
Endmember-2 0.473 3.447 0.439
Endmember-3 0.939 23.223 1.246
Endmember-5 0.425 5.952 0.451

All Endmembers 0.584 23.223 0.650
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Figure 1: Location maps showing the context of the study area within Antarctica (A), the location of Adelaide
Island within the Antarctic Peninsula (B) and the location of Anchorage Island in the context of Ryder Bay
(C; labelled). (D) shows a true colour composite of Anchorage Island with field localities (labelled red
circles).
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Typically granodiorite – gabbro hybrid plutons which outcrop widely on the Wright Peninsula.
Increasingly silicic further north with quartz monzonite and tonalite more abundant.
An emplacement age of 45 – 52 Ma (U-Pb, fission track). 
Associated with relatively minor dolerite dyke intrusion.
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Figure 2: Local scale geological map of Anchorage Island.
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Figure 4: Flow chart summarising the preprocessing of the hyperspectral imagery. Inputs and parameters are
shown in the left column (light grey boxes). Abbreviated processing steps are as follows: MNF, minimum
noise fraction.
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lows: VD, virtual dimensionality; EEA, endmember extraction algorithm; VCA, vertex component analysis;
FCLSU, fully constrained linear spectral unmixing.
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Figure 6: Images for the first 10 components of the Minimum Noise Fraction (MNF) transform (A-J). Com-
ponents 1 to 4 (A to D) were utilised in the inverse MNF procedure.
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Figure 11: Original image spectra (bold line) and their reconstructed spectra (thin line; calculated using the
endmember spectra and the fractional abundances). Figure annotations are as follows: RMSE; root mean
square error, %; E1 to E5; fractional abundances of endmember-1 to endmember-5. (A) high purity (0.9
fractional abundance) spectra, (B) medium purity (0.75 fractional abundance) spectra and (C) low purity
(0.5 fractional abundance) spectra.
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