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A B S T R A C T

In a disaster scenario, relief items distribution is required as early as possible for the disaster victims to reduce
the associated risks. For the distribution tasks, an effective and efficient relief items distribution model is
essential to generate relief items distribution schedules to minimise the impact of disaster to the disaster
victims. However, developing efficient distribution schedules is challenging as the relief items distribution
problem has multiple objectives to look after where the objectives are mostly contradictorily creating a barrier
to simultaneous optimisation of each objective. Also, the relief items distribution model has added complexity
with the consideration of multiple supply points having heterogeneous and limited vehicles with varying
capacity, cost and time. In this paper, multi-objective evolutionary optimisation with the greedy heuristic
search has been applied for the generation of relief items distribution schedules under heterogeneous vehicles
condition at supply points. The evolutionary algorithm generates the disaster region distribution sequence
by applying a global greedy heuristic search along with a local search that finds the efficient assignment
of heterogeneous vehicles for the distribution. This multi-objective evolutionary approach provides Pareto
optimal solutions that decision-makers can apply to generate effective distribution schedules to optimise the
distribution time and vehicles’ operational cost. In addition, this optimisation process also incorporated the
minimisation of unmet relief items demand at the disaster regions. The optimised distribution schedules
with the proposed approach are compared with the single-objective optimisation, weighted single-objective
optimisation and greedy multi-objective optimisation approaches. The comparative results showed that the
proposed multi-objective evolutionary approach is an efficient alternative for finding the distribution schedules
with optimisation of distribution time and operational cost for the relief items distribution with heterogeneous
vehicles in humanitarian crisis.
. Introduction

Relief items distribution is a type of resource constraint scheduling
roblem which is similar to many other resource constraints schedul-
ng problems such as workforce scheduling and job scheduling [1].
owever, in a disaster scenario, relief items supply is one of the
rucial decision-making problems where relief items are supplied from
ultiple supply points to affected disaster regions. In the relief process,

he distribution schedules are aimed to plan relief items supply as early
s possible to minimise the disaster impact on the victims, save lives
nd improve the victim’s lifestyle [2,3]. At large, relief items distribu-
ion scheduling requires identifying optimal distribution strategies that
re mainly intended to minimise disaster victims’ suffering [4,5]. In
eneral, under disaster scenarios, the decision-making strategy defines
he effectiveness of the relief items distribution [6,7].
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In a disaster scenario with multiple supply points and disaster
regions, two aspects: deciding the effective sequences of relief items
distribution schedules from supply points to the disaster regions and
selection of vehicles, are among the key challenges. The distribu-
tion schedules directly affect the distribution time and operational
cost [8,9], however, the appropriate vehicle selection is crucial too
in optimising the distribution task. Considering the vehicle selection,
some of the distribution approaches are designed with single-type
vehicles for transportation [8,10]. Though, in most disaster scenarios,
there appears a heterogeneous vehicle fleet. Therefore, the vehicle
selection strategy needs to be based on heterogeneous vehicles where
the heterogeneous vehicles have their constraints regarding capacity,
cost and speed, which make the vehicle selection task complex. Taking
account of these complexities, the appropriate selection of vehicle type
is crucial for the optimisation of the distribution tasks [11,12]. The
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vehicle selection becomes even more challenging when the supply
points have a limited number of each kind of heterogeneous fleet
vehicle. Furthermore, effective path selection from supply points to the
disaster regions with feasible shortest path has been another challenge
for the distribution schedule as in a disaster scenario, more often, many
connecting roads get obstructed or permanently damaged [13,14].
These multiple aspects bring the scope of use of multi-criteria decision
making as the integrated multi-criteria increase the effectiveness for
the decision making process when there appears multi-objective sce-
nario [15]. For the effective humanitarian crisis management, multiple
objectives need to be considered together due to the nature of un-
certainty and complexity associated with multi-criteria problems [16].
In other words, the decision-makers need to consider multiple criteria
while planning effective distribution schedules with a heterogeneous
vehicle for relief items distribution in humanitarian crisis [17,18]. With
the integrated multi-criteria, decision-makers can plan the effective
relief items distribution schedule to minimise the disaster impact.

The scheduling problem that has been considered in this paper is
the Relief Items Scheduling Problem (RISP) in disaster scenarios.
The RISP is a complex problem where the resource is constrained with
the distribution of relief items from multiple supply points to multiple
disaster regions satisfying the relief demands and available resources.
In general, key challenges for RISP are uncertainties on information,
limited vehicle availability, efficient resource utilisation and efficient
distribution schedule [19,20]. The RISP model presented in this paper
is a multi-objective problem in terms of minimisation of distribution
time and operational cost on generating relief items distribution sched-
ule from multi-supply points to the multi-demand regions under the
heterogeneous vehicles’ scenario. The RISP has been broken down into
sub-problems in terms of distribution sequence selection, vehicle selec-
tion, transportation path selection, and minimisation of unmet relief
item demand as shown in Fig. 1. The distribution sequence selection
sub-problem covers the selection of optimised disaster regions sequence
for the relief items distribution. For this, finding the right sequence is
set as the main objective for this sub-problem so that this sub-problem
congregates towards minimisation in the travel distance and hence
optimising the travel time and vehicles’ operational cost. The vehicle
selection sub-problem set to optimise the selection of correct vehicles
based on the vehicles’ capacity and relief demands. The transportation
path selection sub-problem covers the selection of shortest travel path
from the supply points to the disaster regions whereas the minimisation
of the unmet demand subproblem is set to cover the objective that
minimises the gap between supplied and need of relief items at all the
disaster regions. These sub-problems need to be solved individually as
each of these sub-problems has its objectives and constraints.

In this RISP distribution model, the generalised evolutionary algo-
rithm framework is used for the generation of distribution sequences
that evolved over generations. For a given distribution sequence, a
greedy heuristic search is used to find the best possible choice of selec-
tion of supply point for the selected disaster region in the sequence as
the heuristic algorithms minimise the time, effort, and errors in compar-
ison to the conventional searching approaches [21]. As a sub-problem,
the best fit vehicle selection approach has been applied depending
upon the demand request from a disaster region. The best fit selection
optimises the vehicles’ constraints in terms of capacity, cost and speed.
Besides, for effective transportation path selection, a competent search
strategy has been applied that covers the global search domain as well
as the local search domain to find the best feasible shortest path. The
global search explored to obtain the optimum distribution sequence
among the number of disaster regions whereas the local search domain
selects the nearest supply point for relief items distribution to the
particular disaster region in the sequence. All these sub-problems are
optimised individually and hence, in the combination, the solution
gives the optimised relief items distribution schedules.

The major contributions of the paper are summarised as (i) opti-
misation of multi-objective distribution in terms of distribution time
2

and operational cost with heterogeneous vehicles (ii) A generalised
evolutionary framework with greedy search, in the combination of
both global and local search domain, to obtain the distribution se-
quences and (iii) a best fit based approach for the appropriate vehicle
selections that maximises the vehicle selection constraints. For the eval-
uation of the presented model, single-objective distribution, weighted
single-objective distribution and greedy-based evolutionary distribu-
tion approaches are compared with simulated results. The comparative
study showed that the presented approach has improved results in
terms of distribution time and operational cost in comparison to other
presented approaches.

The rest of the paper is structured as follows: in Section 2, lit-
erature related to the RISP problem is presented. In Section 3, the
problem model with the solution method is presented. The subsequent
sections present computational experiments and compared findings of
the performance of the presented approach and compared it with other
approaches. Finally, conclusions and directions are presented for future
work.

2. Related work

Over the years, different distribution strategies have been imple-
mented where the objective functions play a crucial part in comparing
the results of distribution schedules. In doing so, some of the distri-
bution models only considered one objective at a time, mostly either
minimisation of travel time or minimisation of cost, as can be seen in
the distribution model used by Safaei et al. [22]. However, optimisation
of one objective does not give effective distribution; therefore, multi-
objective models are defined for the distribution task [23–26]. In
the multi-objective models, objective functions are often optimised by
guiding the search technique in its exploration of the search space.
Studies on disaster relief items distribution showed that traditional
cost optimisation is not the central focus in disaster scenarios. Other
parameters such as response time and effective vehicle routes are
also among the objective functions [27]. In a multi-objective problem,
generally, the objectives are conflicting in nature which prevents
simultaneous optimisation of each objective at the same time. Our
previous study [28] shows that different methods have been used
to resolve multi-objective scheduling problems. Studies around relief
items distribution have shown that multi-objective models are mostly
categorised as either generalised mathematical approaches or soft
computing approaches [29–34].

In the mathematical approach, one of the common approaches is
to convert the multi-objective problem into a single objective prob-
lem using weighting coefficients [35]. The weighted-sum aggregation
approach has been a representative instance of the utility function ap-
proach that changes the multi-objective problem into a single-objective
problem by assigning weight factor to the objectives [35]. Setting the
numerical weights to the objectives as of their relative importance
mostly relies upon the decision maker’s knowledge. The conventional
weighted aggregation-based approach has main weakness in terms of
applying only one Pareto solution from one run of optimisation. Kima
and Weck [36] proposed an adaptive weighted sum method to solve
multi-objective optimisation problems that emphasised unvisited sec-
tions by altering the weights rather than applying a predefined weight
choice and also specified added inequality constraints. The adaptive
weighted sum method produced Pareto optimal solutions within non-
convex regions and rejected non-Pareto optimal solutions. The adaptive
weighted-sum method approximated a Pareto front by regularly in-
creasing feasible solutions on the front. Defining appropriate weight
is always challenging since there is not a fixed rule for the selection of
weight factor. Evolutionary dynamic weighted aggregation used [37]
to deal with the multi-objective optimisation problem with a concave
Pareto front in one run. The optimiser moved from one stable optimum
point to another optimum point covering the whole Pareto front. The
varying weights force the optimiser to move on the Pareto fronts for
the convex points
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Fig. 1. Relief Items Scheduling Problem and its associated sub-problems.
In soft computing, the general strategy is to identify a complete
Pareto optimal solution set or a descriptive subset [23,38–40]. A Pareto
optimal set gives a set of solutions that are non-dominated to each
other. Selecting one Pareto solution over another Pareto solution, there
is always some amount of trade-off among objectives. Pareto optimal
solution sets are often chosen over single optimised solutions because
they reflect the real-scenario with multi-objectives optimisation. Soft
computational techniques have been used to find the direct optimum
solution set using a population-based problem-solving metaheuristic al-
gorithm. Pareto approaches [41–44] have been used for multi-objective
optimisation under soft computational techniques. Also, identifying the
feasible Pareto frontier with the optimisation of all the objectives indi-
vidually is among one of the approaches for solving the multi-objective
problem by applying Pareto ranking [45,46]. These methods are useful
for complex problems, mainly those that required scheduling. Chiang
and Lin [47] applied an evolutionary algorithm for multi-objective
flexible scheduling to get a set of Pareto optimal solutions with diverse
populations. Deliktaş et al. [48] applied evolutionary algorithm along
with hill climbing approach for job scheduling. In their model, the
objective function was guided weighted sum while searching for the
optimum solution. Abbas et al. [43] applied Pareto-frontier Differential
Evolution (PDE) algorithm to solve multi-objective optimisation with
step by step mutation. Those steps were randomly generated from
Gaussian distribution. Deb et al. [49] suggested non-dominated sort-
ing based multi-objective evolutionary algorithm called non-dominated
sorting genetic algorithm II (NSGA-II), with a fast non-dominated sort-
ing approach. The algorithm used a selection operator that produced a
mating pool by combining the parent and offspring populations and
selecting the best solutions based on fitness. The modified method
found a Pareto-optimal solution set near a reference set points in
the neighbourhood of the corresponding Pareto-optimal solution [50].
Solutions close to the reference point helped the decision-maker to get
solution close to the preferred region of their priority.

In disaster scenarios, it is often required to determine the op-
timal combination of vehicles that will generate efficient ways to
distribute relief items. Simultaneous optimisation with the vehicle com-
position and routing is required in heterogeneous vehicle routing (HVR)
[51,52]. Choi and Tcha [53] used a column generation based ap-
proach for HVR to optimise the routing under given objectives and
constraints. The model selected vehicles from different supply points
by optimising the travel time and cost. Dondo and Cerda [54] applied
a cluster-based optimised for HVR. The model first generated cost-
effective feasible clusters and assigned vehicles for distribution within
the cluster. The distribution had been based on the ‘‘cluster first-
route second’’ principle. The principle applied in such a way that the
demand points were clustered considering the given clustering criteria
and then vehicle routing had been applied for the distribution within
the cluster of demand regions. A constructive heuristic approach with
local search [55] was applied for HVR where a demand sequence was

generated by constructing a distribution schedule one by one such that
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the highest priority demand appears first. A scenario-based method has
been applied that look after the road condition with heterogeneous
vehicles fleet [56]. However, this model did not address the vehicle
selection criteria, which is an important aspect of efficient distribution
scheduling. Zarouk et al. [57] applied heterogeneous network with
variable demand and supply with maximum allowed driving time to
generate optimised schedules. A scenario-based results are analysed for
investigating the effectiveness of the transportation network. In these
all studies, heterogeneous vehicles are considered for the enhancement
in the effectiveness in the scheduling task. However, the selection of
the vehicles remain challenging in any scenarios.

Over the years, the greedy heuristic search has been among the
many approaches that have been used in scheduling problem solv-
ing [8,58–60]. Greedy heuristic search generates good-quality, approx-
imate solutions quickly. It applies the heuristic search locally to obtain
optimal choice at each stage with the scope of finding a globally opti-
mum solution. Greedy heuristic search is modified in the appropriate
ways to address the problem’s objectives and constraints that lead
to developing a relatively simple system to develop and implement.
The RISP also contains vehicle routing problem (VRP) with their con-
straints as sub-problem. The relief items distribution tasks occur in
many geographically dispersed locations, and resources have to travel
between supply points and disaster regions [61]. Shadlou et al. [33]
applied greedy heuristic search for integrated crew routing and drone
scheduling for relief items distribution to the disaster regions. Similarly,
Mehtab et al. [32] also applied greedy heuristic approach for the
relief items distribution with the multi-objectives. In their work, they
consider the uncertainty related with demand and disaster regions’
reachability. The greedy search finds the optimum schedule for the
relief items distribution under the given scenarios.

Analysing different models for distribution task in the disaster sce-
narios reveals that most of these optimisation approaches are concen-
trated on minimisation of time and cost under one kind of vehicle
assumptions. However, more often supply points have heterogeneous
vehicles. Therefore, effective vehicle routing for the heterogeneous fleet
of vehicles is crucial for relief items distribution schedule to operate
with flexible demand and transportation circumstances. Considering
this, an optimum model is essential to generate the relief items distri-
bution schedules under heterogeneous vehicle scenario to support the
victims in any humanitarian crisis.

3. Problem model

The RISP problem can be solved in different ways. One of the
approaches can be a weighted single-objective approach which requires
some assumptions and prior information from the decision-makers.
Different weight ranges are applied to generate a distribution schedule.
Because of the assumptions and the priority setting among the objec-
tives, there is a trade-off in the solutions. One way to overcome the
problem of defining weights is to use multi-objective optimisation that



B.K. Mishra, K. Dahal, Z. Pervez et al. Decision Analytics Journal 5 (2022) 100128

O
R
h
t
t
c
t

Table 1
Variables and description used in the model.

Variables Description

DR Disaster Region.
SP Supply Point.
Dc Total demand for relief items at disaster regions.
𝑉𝑡 Vehicle journey from a supply point to multiple demand regions.
𝑟𝑖𝑗 Assigned DRs for 𝑉𝑡 with the 𝑗th journey of to the 𝑖th vehicle.
f𝛿d(r 𝑖𝑗) A function that gives the partial relief items at 𝑟𝑖𝑗 demand regions.
fdx, dy(r 𝑖𝑗) A function that returns the location of 𝑟𝑖𝑗 demand region.
𝑁𝑣 Number vehicles assigned in relief items scheduling.
kmax Maximum number of vehicles journey planned in resource scheduling.
jxi Executable missions of the assigned 𝑖th vehicle.
𝛷𝑖 The velocity of the 𝑖th vehicle.
𝛹𝑖 Cost of the 𝑖th vehicle.
𝑇𝑖𝑗 Time spent between demand regions 𝑟ij−1 and 𝑟ij of the 𝑖th vehicle.
𝑇𝑜𝑓𝑓𝑠𝑒𝑡 Offset time for the vehicle before starting the next journey.
DS Distribution Schedule.
RI Relief Items.
o
e
s

M

does not rely on a single weighted sum value rather compare all the
individual objective values against those of other solutions. The multi-
objective approach is capable of generating a solution close to the best
possible solution without having information on user description and
priorities [25]. In this paper, the RISP is modelled as a multi-objective
problem covering its sub-problem’s issues as discussed earlier. Gener-
ation of Pareto fronts with a multi-objective evolutionary algorithm
with the greedy heuristic search is considered as a solution approach
to find the optimised distribution schedule under the availability of the
heterogeneous vehicle at supply points.

3.1. Objective function

Two objective functions and subjected constraints are set for the
dynamic relief item distribution (RID) model. The minimisation of total
distribution time and minimisation of the total vehicle’s operational
cost, are the objectives defined for this model incorporating minimi-
sation of unmet demand for relief items at all demand regions. The
delay factor (service time) is also applied in cases when any vehicle
distributes relief items to more than one demand regions. In this model,
a duration of 30 min is applied as delay time at each intermediate
demand region in the distribution schedule route. A set of variables, as
listed in Table 1, are formulated to define the RISP problem as follows:

i. Minimisation of distribution time (f1)

Min 𝑓1 (𝐷𝑆) =
Nv
∑

i=1

jxi
∑

j=1
Tij+30∗nVt+Toffset, 1 ≤ jxi ≤ kmax (1)

Where n is the total number of vehicle tours with multiple
demand regions.
Subject to:

f (x) =

⎧

⎪

⎨

⎪

⎩

∑j
𝛼=1 D(fdx,dy(ri,j−1),fdx,dy(rij))

𝛷i ,
0, Others

if 𝑟i,j−1 and 𝑟i,j ∉ 𝛷 (2)

ii. Minimisation of total vehicles’ operational cost (f2)

𝑀𝑖𝑛 𝑓2 (𝐷𝑆) =
𝑁𝑣
∑

𝑖=1
𝛹𝑖 (3)

bjective 1 and objective 2 are contradictory to each other in the
ISP as minimisation of distribution time required the vehicles with
igher speed leading to higher cost and vice-versa. In this model,
he distribution time is calculated based on the distance travel by
he vehicles from a supply point to the disaster regions with their
orresponding speed whereas operational cost is calculated based on
he vehicles operational cost per hour as listed in Table 3. These two
4

bjectives are primarily focused to satisfy unmet relief items demand at
ach disaster region by minimising the demand with each distribution
chedule, mathematically represented as:

in(𝐷𝑆) = 𝐷𝑐−

(𝑁𝑣
∑

𝑖=1

𝑗𝑥𝑖
∑

𝑗=1
𝑓𝛿𝑑(𝑟𝑖𝑗 )

)

, 1 ≤ 𝑗𝑥𝑖 ≤ 𝑘𝑚𝑎𝑥 (4)

Defining these objectives, five main constraints have been applied:
Supply point constraints: A 𝑆𝑃 𝑖 can supply relief items to one or more
𝐷𝑅𝑖 only if RI and 𝑉𝐼 is available at that 𝑆𝑃 𝑖. Also, SP𝑖 can supply RI to
one or more 𝐷𝑅𝑖. Demand regions constraint: A 𝐷𝑅𝑖 can receive RI only
if it has RI demand and can receive RI from one or more 𝑆𝑃 𝑖. Relief
items constraints: RI are supplied from 𝑆𝑃 𝑖 to 𝐷𝑅𝑖 using assigned 𝑉𝐼.,
Vehicle constraints: The vehicle must start its travel route from an 𝑆𝑃 𝑖
and ends to assigned 𝐷𝑅𝑖 and can carry RI up to its maximum capacity.
Location and transportation constraints: 𝐷𝑅𝑖 must be connected with one
or more 𝑆𝑃 𝑖 by available transportation routes directly or indirectly.
Apart from these constraints, the following five assumptions are also
postulated in this model.

1. The geographical location of supply points and disaster regions
are known.

2. The total disaster victims’ population of the disaster regions are
known.

3. Relief items demand at any disaster regions is proportional to
the victims’ population at the corresponding disaster regions.

4. Relief items are bounded in a single bundle and can be loaded
into any vehicle.

5. Transportation routes between disaster regions and supply points
along with corresponding distance are known.

4. Multi-objective optimisation: Solution approaches

In this section, two approaches: Aggregated weight single objec-
tive optimisation and Multi-objective evolutionary optimisation are
presented.

4.1. Aggregated weight single objective optimisation

Combining different objectives into a single objective is one of
the approach for the aggregate multiple objectives into a single ob-
jective [62]. Two objectives, minimisation of distribution time and
minimisation of vehicle’s operational cost, of the RISP, are combined to
form a single objective problem with weight factor. In this aggregated
weight single objective optimisation, individual objective functions
are normalised in their respective objective space then multi-objective
optimisation is performed applying the usual weighted-sum approach.
Selection of the right weight for individual objectives is always chal-
lenging as it depends on the decision makers’ priority [63]. Finding
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Table 2
A sample chromosome.
D1 D6 D3 D8 D2 D5 D7 D4 D9 D10

the right weight and hence the corresponding single objective function
is challenging as there has been no standard guidelines for the weight
selection. To overcome this limitation, different weights values are as
used in functions w1 to w9 in the range 0.30 to 0.70. An interval of
0.05 is set to increase or decrease of the weight factor in the function
w1 to w9. With these different weights, the optimised results are used
to check the response of the weight factors to the single-objective
optimisation. The use of different weight values gives a wider sense
of comparative results so that the optimum result can be chosen. For
the aggregation, the time and cost value are used as a normalised value
since they have different unit. In normalisation, the maximum value is
set to one and all other values are divided by the maximum value hence
the normalisation process set the values in the interval [0,1].

w1 = 0.30 * time (f1) + 0.70 * cost (f2)
w2 = 0.35 * time (f1) + 0.65 * cost (f2)
w3 = 0.40 * time (f1) + 0.60 * cost (f2)
w4 = 0.45 * time (f1) + 0.55 * cost (f2)
w5 = 0.50 * time (f1) + 0.50 * cost (f2)
w6 = 0.55 * time (f1) + 0.45 * cost (f2)
w7 = 0.60 * time (f1) + 0.40 * cost (f2)
w8 = 0.65 * time (f1) + 0.35 * cost (f2)
w9 = 0.70 * time (f1) + 0.30 * cost (f2)

4.2. Multi-objective evolutionary optimisation

The multi-objective evolutionary approach has been applied as
another solution strategy for RISP. A multi-objective approach can
generate solutions without knowing the decision maker’s preferences.
The major concern of the multi-objective optimisation evolutionary
optimisation is to explore a set of acceptable relief items distribution
schedule as solutions that can be used by the decision makers. The
decision-makers can choose the feasible distribution schedules from the
population of solutions.

4.2.1. Evolutionary algorithm design
i. Coding and Decoding
In this work, a disaster region-based sequence coding–decoding

has been applied to represent a chromosome. In the coding–decoding
process, each disaster region is considered as a unique gene in the
chromosome structure. The genes of the chromosomes, as shown in
Table 2, is a sample example of the disaster regions sequence that
needs relief item from the supply points. In this table, the symbol
D1 to D10 represents demand regions in the form of a gene of the
coded chromosome. Random order of all demand regions is used for
chromosome coding while generating the initial population. In the
population set, each chromosome represents a solution to derive dis-
tribution schedules from the supply points using a greedy-search-based
strategy. The greedy search applies to find the supply points for the
relief items distribution to the corresponding disaster region, encoded
as a gene. This greedy search strategy starts from the first gene of
the chromosome and then second and so on till the searching strategy
finds the supply points for all the genes of the chromosome. The search
strategy considers the demand for relief items of the corresponding
disaster region and finds the nearest supply point for the supply relief
items. When any vehicle tour is planned with extra relief items, the
demand of the individual demand region is updated accordingly in the
sequence.

ii. Selection Operator
The selection operation chooses the individuals based on their
fitness for reproduction considering both the objectives of the RISP

5

problem. For the population diversity at each generation, mixed popu-
lations with ranking and tournament selections approach are applied.
Elitism is applied to increase the performance of the evolutionary
algorithm. Solutions based on minimisation of distribution time and
minimisations of operational cost are sorted as of their objective func-
tion individually. Best 10% individuals of objectives: minimisation
of distribution time, minimisation of operational cost and 10% of
non-domination ranks Pareto front solutions are preserved at each
generation. The remaining population domain is selected based on
tournament selection. For the tournament selection, 30 tournaments
are run among randomly selected individuals from the population. The
winner of each tournament is selected as a representative population.
Altogether, 60 individuals are chosen as population density at each
generation.

iii. Crossover Operator
Crossover expects to carry the features of two selected parent so-

lutions to next-generation offspring solutions. Two cut points are ran-
domly selected and the swapping of genes between the cut points of the
chromosomes is applied in the crossover process. After the crossover,
the offspring may have contradictory genes because of the gene swap-
ping. To avoid such cases, a repair process has been applied to avoid
contradictions in the proposed algorithm. In the repairing process,
any duplicated gene occurring in the gene sequence is replaced with
the missing gene (disaster region). While repairing the chromosome,
all the disaster regions representation in the chromosome sequence is
guaranteed.

iv. Mutation Operators
The mutation is applied to execute the swapping of genes. Two

random numbers are generated to find mutation genes and hence
swapping of genes is applied as mutation function. The process is con-
tinuously applied for many iterations. 0.05 mutation rate is fixed in this
evolutionary approach after several experimentations with different
mutation rate ranging from 0.01–0.5 with a gap of 0.05. With each
mutation rate, the corresponding model has been evaluated. With this
evaluation, the mutation rate 0.15 has found to be the best among the
other mutation rates.

4.2.2. Distribution model: The proposed approach
The process for the evolutionary algorithm is applied as shown in

Fig. 2. First of all, evaluation is applied to the solutions of the first-
generation population according to the non-dominated method, and
hence, Pareto level sorting is generated. At first, all the information,
related to a disaster such as disaster regions, supply point, available
vehicles and their types, connecting travel routes and available relief
items are gathered. Based on this information, the initial population is
developed with a set of randomly generated chromosomes representing
the sequence of demand regions being served. A greedy heuristic search
is applied to find the nearest supply point for each disaster region in the
sequence. The greedy algorithm also includes a local search to assign
the vehicles from the heterogeneous vehicles fleet for the relief items
distribution. The distance matrix is used for the nearest supply point
finding.

Greedy heuristic search is applied to each gene of the chromo-
some where the demand regions search for the nearest supply point
first for the relief items. The greedy search finds the nearest supply
point based on the shortest distance between the supply point and the
corresponding demand region and resource availability at the supply
point. The search look to assign the nearest supply point to allocate
relief item distribution with the selection of appropriate vehicles to
the corresponding demand region. If the nearest supply point does not
have the required relief items or the vehicles availability, the greedy-
search looks for the next nearest supply point that have enough relief
items and vehicles. With the greedy-search, each demand region gets
its corresponding supply points based on the relief items and vehicles
availability. The greedy search also implements the vehicle’s free space
check to each assigned vehicle for each transportation tour. If the
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Fig. 2. General flow of RISP solving using evolutionary approach.
relief load of the assigned vehicle is more than 90% of the loading
capacity, the vehicle carries relief items to the assigned demand regions
only. In case if the assigned vehicle has more than 10% space to carry
extra relief logistic then a greedy heuristic search is applied to explore
the best nearest feasible demand regions from the currently assigned
demand regions to deliver the extra relief items. The additional vehicle
is assigned as per the demand need with the free space check on
each vehicle trip. Once the demand of the nearest demand regions is
met, the algorithm generates a transportation tour for the next nearest
neighbour in the chromosome gene sequence. The genetic algorithm
(GA) is applied to optimise the sequence of disaster regions being
served such that it optimises relief items distribution schedule.

The distribution schedule is planned for all the disaster region of
the chromosome and hence evaluated the solution strength of each
solution in the set. An evolutionary algorithm is used to find the Pareto
fronts of the solution set. GA is applied to generate a new set of
chromosomes with 100 iterations. 100 iterations have been applied as
a limiting number to get the optimum solution as the simulation with
higher number of iterations has not shown any further convergence.
Elitist non-dominated sorting GA (NSGA-II) applied where Parent and
offspring populations are selected together and hence, non-dominated
sorting is applied to generate the combined population into multi-
ple levels of non-domination. Solutions from the best non-domination
levels are selected front-wise as a subset of solutions.

5. Computational experiment and result analysis

The performance measure is applied to analyse the effectiveness
of the proposed multi-objective RISP model with a heterogeneous
vehicle fleet with the case study formulated analogously of the Chi-
Chi earthquake in Taiwan [8]. In this case study, disaster information
in terms of the suffered population had been collected from the disas-
ter regions. Relief items had been distributed to twenty-nine disaster
regions from four supply points. The simulation had been performed
with R-programming.
6

Table 3
Vehicle parameters of each type at supply points.

Parameter Type-1 Type-2 Type-3 Type-4

Cost/Hour (£) 1000 1500 2200 3500
Capacity (kg) 4000 3000 2500 2000
Speed (kmph) 40 50 60 80

Table 4
Vehicle count of each type at supply points (S1: S4).

Supply point Vehicle-type 1 Vehicle-type 2 Vehicle-type 3 Vehicle-type 4

S1 4 2 3 3
S2 3 4 5 3
S3 4 6 2 5
S4 5 5 7 5

5.1. Heterogeneous vehicles routing (HVR)

The objective of HVR is to select the vehicle sets and routes from
the supply points by optimising the selection criteria. For the HVRP
in this model, vehicles are considered from four categories based on
their cost, capacity and speed. A fixed synthesised value on vehicle cost,
capacity and speed are considered for each vehicle types as presented
in Table 3. The number of vehicles available of each type at each supply
point assumed in this work is listed in Table 4.

The best-fit algorithm is applied as a sub-problem domain for the
selection of vehicle at any supply point for the transportation of relief
items from that supply point to the assigned disaster region. In this
algorithm, best fit vehicles in terms of vehicle capacity are compared
with the relief items demand of the disaster regions. The optimisa-
tion is applied based on the best-matched vehicle in term of demand
and capacity. The sub-problem optimises and generate different ve-
hicle selection which directly affects the global distribution sequence
optimisation and disaster region demand minimisation.
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Fig. 3. Generation of Pareto fronts with intermediate stages.
.2. Evolutionary algorithm design analysis

To optimise the multi-objective using an evolutionary approach
NSGA-II), Pareto fronts are generated to find the best distribution
chedule. At first, the evolutionary algorithm design is evaluated re-
arding selection, cross-over and mutation rate responses on Pareto
ronts convergence. Simulations results have been conducted to identify
he suitable operators and parameters of the evolutionary algorithm.
n the evolutionay process, an individual chromosome has been gen-
rated by randomly assigning each disaster regions as a gene in the
hromosome structure. The population size is set as 60 with random
hromosomes generation. A combination of rank and tournament se-
ection methods has been applied to form the mating pool. Elitism is
sed by selecting the best 30% solutions based on ranking (minimum
istribution time, minimum cost and Pareto fronts) from the current
eneration to the next generation. The remaining individuals are de-
ided based on tournament selection. Two-point crossover with the
epair is applied to avoid any possible conflict in genes exchange during
he crossover. This allows removing chromosomes with the faulty gene
n terms of repetition of the same gene or missing any gene in the
hromosome.

Fig. 3 shows the generation of the Pareto fronts with intermediate
tages in an evolutionary approach. Four plots show how the evolution
lgorithms converge into Pareto fronts with each generation. It also
hows how the solutions with the assigned selection, cross-over and
utation parameters values converged into better Pareto fronts at a

aster rate.

.3. Performance analysis

In the computation experiment, the RISP has been solved with three
ifferent approaches and results are compared to validate the efficiency
f the proposed scheduling approach for relief items distribution. In
he first approach, the problem is evaluated independently based on
ndividual objective functions: minimisation of distribution time and
inimisation of operational cost. In the second approach, these two

bjectives are evaluated as a single objective function by applying
ifferent weight functions (w1–w9) to the objectives. Since the out-
uts range of these objectives is different, so normalisation has been
pplied to both objective values. In the third approach, the problem
s solved using the evolutionary approach NSGA-II. The distribution
ime and operational cost for each solution are compared with single-
bjective methods, weighted single objective method and GSMOGA
Greedy-Search-based Multi-Objective Genetic Algorithm) to compare
he effectiveness of our approach for RISP distribution schedules in a
isaster scenario.

In the first approach (single-objective optimisation), for the analysis,

5 simulation runs have been applied and the average values of these

7

best solution of the 15 runs are set for result analysis. The performance
measure showed that applying the minimisation of time can achieve
lower distribution time but it also has been noticed that there has been
a higher range of operational cost as minimisation of distribution time
selected the vehicles with higher speed requiring higher operational
cost and vice-versa for the minimisation of cost the first and the second
bar in Figs. 4 and 5. This shows that individual objective optimisation is
not a feasible option as it leads to giving a contradictory higher value of
other objective function. In the second approach, aggregated weighted
single objective has been applied. In this second approach, defining the
appropriate weight is challenging to combine two objective functions
into a weighted single objective. To overcome this, a different range of
weight factors (w1–w9), as described in Section 4.1, have been applied
to combine two objectives. With the normalised values distribution
time and operation cost of the best solution is noted for each weight
combination. From the plot, as shown in Figs. 4 and 5, it has been ob-
served that with higher the weight factor of distribution time the better
is the solution and vice-versa for the operational cost. This signifies
that there is a trade-off between distribution time and operational cost
while applying the right weight factor. Defining the right weight factor
is a challenge for the decision-makers to find an efficient distribution
schedule. Analysis of the results from these two approaches justifies
that there is the need for multi-objective optimisation that can give a
solution with minimisation of both distribution time and operational
cost simultaneously.

With the defined set-up, the evolutionary algorithm (NSGA-II), has
been applied for multi-objective optimisation. The evolutionary al-
gorithm optimises both the objective simultaneously. After all these
experimental results, the performance plots of the best solutions regard-
ing the best minimum distribution time and operational cost among the
solution approach four approaches have been compared as presented
in Figs. 4 and 5. Comparing the results, it has been observed that
the evolutionary algorithm has a better result in comparison to the
other three approaches as it gives a simultaneously optimised solution
with two objectives. While comparing the best result from the NSGA-
II, it has been noted that the NSGA-II solution takes 0.1 more hours
as distribution time than the best solution when the only minimisation
of time has been optimised but that has the highest operational cost
among all the plotted solutions. In terms of operational cost, NSGA-II
has as best as the solution found by minimisation of operational cost
only. Analysing all the results, it can be observed that the NSGA-II
approach for relief items distribution schedule with the heterogeneous
vehicle also shows efficient results in terms of both distribution time

and operational cost than other presented methods.
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Fig. 4. Comparison plot of delivery time (f1) taken by the best solutions for different approaches.
Fig. 5. Comparison plot of delivery cost (f2) taken by the best solutions for different approaches.
6. Conclusion

An effective relief items distribution schedule is the main concern
for any post-disaster relief management in humanitarian crisis. Min-
imisation of distribution time and operational cost are the two major
objectives for RISP. In this paper, RISP with heterogeneous vehicles
with varied speed, cost and capacity has been considered. A greedy
heuristic search is applied to find a suitable assignment of vehicles
for relief items distribution from a supply point to disaster regions.
Finding the effective relief items distribution strategy is the key priority
to the decision-makers after any disaster. The effective relief items
distribution helps to minimise the disaster impact and help in early
recovery. Considering this, four different approaches have been applied
to find a solution with a comparative analysis to generate the optimum
distribution schedule using a case study of the Chi-Chi earthquake
scenario. In the first two approaches, minimisation of distribution time
and operational cost is generated with corresponding vehicles’ cost and
travel time respectively. It is found that minimising one objective gives
a higher value of another objective. In the third approach, weighted
single-objective optimisation is applied to find the feasible optimum
8

solution in terms of both time and cost. Multiple weight ranges have
been used to realise the impact of weight factors in the selection of
the optimum solution set. Because of the different scale normalisation
is required to apply weighted single-objective optimisation. The evolu-
tion algorithm is applied as a fourth approach for the multi-objective
optimisation that generated Pareto fronts. These Pareto fronts defined a
set of feasible solution that can be used by decision-makers for efficient
schedule generations. Having a set of alternatives gives a wider range
of operational flexibility while implementing the distribution task.
This evolutionary approach is also compared with the GSMOGA. The
presented evolutionary approach has been the better option for RISP
with the multi-objective optimisation under heterogeneous vehicles to
generate distribution schedules in disaster scenarios. In the presented
work, in the absence of real data availability, simulated data for hetero-
geneous vehicles are used to generate distribution schedules, which ap-
pears as the limitation of this presented work. This presented approach
can be further enhanced with the use of other factors such as priority,
response time, GIS mapping. Inclusion of these additional components
can further enhance the effectiveness of the distribution task.
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