
Hybrid Bridge-Based Memetic Algorithms for Finding

Bottlenecks in Complex Networks

David Chalupaa,b, Ken A. Hawickb, James A. Walkerb

aOperations Research Group
Department of Materials and Production

Aalborg University
Fibigerstræde 16, Aalborg 9220, Denmark

Email: dc@m-tech.aau.dk
bSchool of Engineering and Computer Science

University of Hull
Cottingham Road, Hull HU6 7RX, UK.

Email: {k.a.hawick,j.a.walker}@hull.ac.uk

Abstract

We propose a memetic approach to find bottlenecks in complex networks
based on searching for a graph partitioning with minimum conductance.
Finding the optimum of this problem, also known in statistical mechanics
as the Cheeger constant, is one of the most interesting NP-hard network
optimisation problems. The existence of low conductance minima indicates
bottlenecks in complex networks. However, the problem has not yet been
explored in depth in the context of applied discrete optimisation and evolu-
tionary approaches to solve it. In this paper, the use of a memetic frame-
work is explored to solve the minimum condutance problem. The approach
combines a hybrid method of initial population generation based on bridge
identification and local optima sampling with a steady-state evolutionary
process with two local search subroutines. These two local search subrou-
tines have complementary qualities. Efficiency of three crossover operators
is explored, namely one-point crossover, uniform crossover, and our own par-
tition crossover. Experimental results are presented for both artificial and
real-world complex networks. Results for Barabási-Albert model of scale-free
networks are presented, as well as results for samples of social networks and
protein-protein interaction networks. These indicate that both well-informed
initial population generation and the use of a crossover seem beneficial in
solving the problem in large-scale.
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1. Introduction

Analysis of complex networks has motivated the study of a variety of hard
computational problems. The search for bottlenecks has become one of the
wider computational problems in complex networks, motivated by a number
of applications in social networks [1, 2, 3], biological networks [4, 5], power
grids [6, 7] or water distribution networks [8]. While these problems are
diverse in their applications, many of them can be transformed to a number
of metrics [9] and algorithmic tools to explore local and global robustness of
network structure.

One of the most popular metrics indicating the existence of a bottleneck in
a complex network is its conductance [10]. Informally, minimum conductance
of a network is the minimum ratio of the number of edges connecting two
disjoint partitions of its vertices, and the minimum number of edges incident
to vertices of one of these partitions. Conductance is a value between 0 and
1, with 0 indicating that the network is disconnected, while 1 indicates that
the network is fully connected. Usually, a complex network has a bottleneck
if its minimum conductance is a small value close to 0.

The application areas for bottleneck identification and conductance opti-
misation are wide and include algorithms for exploration of protein-protein
interactions [11], community detection [2, 12, 13, 14], understanding of group
formation [15], data mining in social media [16], cyberattack detection [17],
or congestion reduction in transportation networks [18].

In the literature, the minimum conductance problem has also been called
the sparsest cut problem [19]. In statistical mechanics and mathematics, the
minimum value of conductance in a complex network is often referred to as
its Cheeger constant [20]. The minimum conductance problem is known to
be NP-hard for over a decade [21]. It has also been shown that for general
graphs, it is intractable to approximate the minimum conductance within
any constant factor [22].

Contributions. In the present paper we propose a new bridge-based
memetic approach to finding low-conductance partitions of complex net-
works, representing their bottlenecks.
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A framework of a specialised steady-state adaptive memetic algorithm
(StS AMA) is presented to solve the problem. Several of its variants are ex-
plored, including variants with three different crossover operators, as well as
a crossover-free variant of population-based local search (PBLS). The algo-
rithms start with an initial population generated with an adaptive probability
of 1-bits in the initial solution. This allows the approach to explore regions
of the search space with highly imbalanced partitions. Our preliminary in-
vestigations uncovered that these are difficult to reach by more conventional
evolutionary approaches, especially if there are relatively balanced partitions
that serve as strong search space attractors [23].

Several evolutionary approaches are explored, including PBLS, StS AMA
with one-point crossover (1PX), uniform crossover (UX) and our own parti-
tion crossover (PartX). Each of these is applied both in its plain variant and
a bridge-based variant (PBLS-B and StS AMA-B). The bridge-based vari-
ants use Tarjan’s bridge identification algorithm [24] to generate a promising
partitioning that is put into the initial population. All of the algorithms use
two local search subroutines. Randomised local search RLS1,2 allows moves
of single vertices between partitions, as well as swaps. Local search LS1 is
a best improvement algorithm only allowing moves of single vertices, always
leading to a local optimum. This ensures that PBLS and StS AMA oper-
ate with a population of local optima at all times during the evolutionary
process.

The experimental results are presented for a selection of social network
samples, protein-protein interaction networks, as well as several graphs from
network science literature. Confronting PBLS and StS AMA, we found
that crossover operators seem beneficial in solving the minimum conduc-
tance problem. However, our results also show that different crossover op-
erators tend to work for different problem instances. For some networks,
the bridge-based approach has also been highly successful, while it had little
effect for other networks. The bottlenecks found are also very interesting
from the application perspective. While for some instances, the bottlenecks
were identified in the form of a relatively small cluster that is sparsely con-
nected to the rest of the network, some high-quality solutions found are quite
balanced.
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2. Background and Related Work

Let G = [V,E] be an undirected graph and let S ⊆ V . Then, conductance
of the partitioning of V into sets S and V \S is defined by:

Φ(S) =
cG(S)

min{V ol(S), V ol(V \S)}
, (1)

where cG(S) = {{v, w} : v ∈ S ∧ w ∈ V \S} is the number of edges
connecting the two sets S and V \S and

V ol(S) =
∑
v∈S

deg(v) (2)

is the volume of subset S. In other words, conductance determines the ratio
of the number of edges connecting the sets S and V \S to the total number
of edges incident to the partition with lower volume. We will refer to the
problem of finding S ⊆ V such that Φ(S) is minimised as the minimum
conductance problem.

To be more specific, this conductance will be referred to as the symmetric
conductance. One can see that Φ(S) = Φ(V \S), i.e. reversing S and V \S
does not have an impact on conductance. This is also the optimisation
problem, for which the optimum is called Cheeger constant of the network
[20]. NP-hardness has been proven for the symmetric variant of minimum
conductance problem [21].

It is worth noting that in a number of studies, an alternative definition
of asymmetric conductance is also used [25]:

Φa(S) =
cG(S)

V ol(S)
. (3)

This alternative definition of conductance leads to the same value as the
symmetric one if V ol(S) ≤ V ol(V \S). For its simplicity, it is often used as
a metric for evaluation of community detection algorithms [2, 12]. However,
it can have a different optimum than the symmetric variant that does not
have to be equal to the Cheeger constant.

As indicated above, conductance has been widely used as a metric for eval-
uation of community detection algorithms. The vast amounts of large-scale
real-world complex network data have motivated development of a variety
of algorithmic approaches to community detection [3, 26, 27]. Leskovec et
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al. have developed the network community profile concept [2, 12] that repre-
sents a function mapping the community size value to the conductance of the
best community found by a community detection algorithm. This represents
a size-dependent view on the minimum conductance problem, in which the
value of conductance for a particular partitioning is measured as a function
of community size.

Van Laarhoven and Marchiori have explored a continuous generalisation
of the asymmetric conductance variant for local community detection and its
optimisation using gradient descent and expectation minimisation algorithms
[25]. Their approach has been shown to be highly scalable, providing solu-
tions with very good conductance compared to more conventional community
detection algorithms. To the best of our knowledge, this is the first study
tackling a variant of a conductance problem empirically as an optimisation
problem. This study was focused on the asymmetric variant of the prob-
lem and used a transformation of the problem to the continuous domain.
However, it seems that neither the symmetric variant has been studied in
experimental literature, nor it has been tackled using discrete optimisation
techniques. Such studies seem to be of a high interest, since the symmetric
variant is known to be NP-hard [21].

As a typical 0-1 optimisation problem, the minimum conductance prob-
lem can be formulated as a pseudo-Boolean function. For some pseudo-
Boolean optimisation problems such as max-SAT or NK landscapes [28], it
is possible to use efficient partition crossover operators [29] and very efficient
local search strategies [30] using constant-time steepest descent [31]. How-
ever, it remains open whether this is possible for the minimum conductance
problem and it can also be influenced by whether symmetric or asymmetric
variant of the problem is studied. Preliminary empirical evidence suggests
that randomised population-based search and adaptive strategies work much
better than simple steepest descent for the symmetric variant [23].

3. Bridge-based Memetic Algorithms for Finding Bottlenecks in
Complex Networks

In this section our memetic approach is introduced to solve the minimum
conductance problem, identifying bottlenecks in complex networks. Memetic
algorithms have been successfully applied to a number of community detec-
tion [32] and graph partitioning problems [33]. One can therefore expect this
approach to be promising also for minimisation of conductance.
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Algorithm 1: Steady-state Adaptive Memetic Algorithm (StS AMA) for the
Minimum Conductance Problem

Input: population size p, tournament size t,
local search length l, crossover type Xt ∈ {1PX,UX,PartX}
Output: best configuration Pbest found

1 initialise population P with p individuals
2 while stopping criteria are not met
3 pick parents Pp1 and Pp2 such that p1 6= p2 using

a tournament of size t
4 create the offspring O using crossover of type Xt

5 improve the offspring O using RLS1,2 for l iterations
6 improve the offspring O using LS1 until the local optimum is reached
7 if O /∈ P then replace the worst individual in P with O
8 return the best individual Pbest in P

The general framework of the algorithms is described first. Next, we focus
on the initial population generation and the bridge-based component of our
approach. This is then followed by a description of the crossover operators
used, as well as the two local search subroutines of the memetic approach.

3.1. General Framework

The general idea of our approach is based on a steady-state evolutionary
algorithm framework [34]. In the following, the main focus will be on the
design of StS AMA, as our core algorithmic approach to solve the problem.
StS AMA-B differs from StS AMA only in the use of bridge-based component
in the initial solution generation. PBLS is also very similar to StS AMA and
differs only by in use of cloning of a single parent, rather than a crossover of
two parents. Otherwise, all algorithms studied are based on the same general
framework.

The pseudocode of StS AMA is presented in Algorithm 1. In step 1,
the initial population is generated. The details of this process will be given
in Algorithm 2. This is followed by an evolutionary process. In steps 3-4,
parents Pp1 and Pp2 are chosen and a single offspring O is created from them
by the use of crossover operator of type Xt. Note that Xt is an input of
the algorithm, leading to several of its variants studied. In steps 5-6, O is
first improved by randomised local search algorithm RLS1,2 for a predefined
number of iterations. O is then improved using local search algorithm LS1
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Algorithm 2: Initial population generation for StS AMA-B

Input: population size p
Output: initial population P

1 find the set of all bridges B using Tarjan’s algorithm
2 let P1 be a partitioning such that each bit of P1 is 0
3 for b ∈ B
4 construct candidate partitioning Pc of the network around b

as shown in Figure 1
5 if Φ(P1) ≥ Φ(Pc)
6 P1 = Pc

7 for i = 2...p
8 ps = 1/2
9 do
10 set each bit of a candidate for individual Pi to 1 with probability ps
11 improve the candidate for individual Pi using LS1

until the local optimum is reached
12 ps = ps/2
13 while the current candidate for Pi is at least as good

as the best of the previous candidates
14 set the best candidate sampled in steps 9-13 as the individual Pi

15 return P = {P1, P2, ..., Pp}

until the algorithm makes sure that O is a local optimum. In step 7, the
worst individual in the population is simply replaced with O.

3.2. Initial Population Generation and Bridge Identification

The exact details of initial population generation depend on whether StS
AMA or StS AMA-B is used. For StS AMA-B, this procedure combines
the idea of an adaptive probability of 1-bit generation, as well as bridge
identification to construct a potentially promising partitioning that is put
into the initial population. Note that in the bit-based representation, a 1-bit
represents that a vertex is in S and a 0-bit represents that it is in V \S (or
vice versa, as the problem is symmetric). These ideas are used to ensure that
the initial solutions are of a good quality and take the specific properties of
our problem into account.

Algorithm 2 presents the pseudocode of initial population generation for
StS AMA-B. For StS AMA, this procedure differs by not using the bridge
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Figure 1: An illustration of a bridge (depicted by a dashed line) as a bottleneck in a
graph with a pronounced clustered structure. The bridge can be identified in polynomial
time, followed by labelling of the two partitions, establishing a potentially promising initial
solution for the evolutionary process.

identification. Steps 1-6 are skipped in StS AMA and all p initial solutions
are generated using steps 7-13.

In step 1, Tarjan’s algorithm for finding all bridges in the graph is used
[24], based on the framework of depth-first search. In steps 2-6, individual
P1 is generated. Step 2 simply initialises P1 with a solution with an infinitely
high conductance. In steps 3-6, the algorithm scans all partitions induced by
all bridges identified. For a bridge b, S and V \S represent partitions that
are connected by b only, as shown in Figure 1. Individual P1 will then simply
be the partition with minimum conductance.

In steps 7-13, the rest of the population is generated. This process fa-
cilitates variable ps, which denotes the probability that a 1-bit is generated.
With this probability, a candidate solution is generated. In the beginning, a
1-bit is generated with the same probability as a 0-bit, leading to balanced
partitions. Such a candidate solution is improved to a local optimum using
local search algorithm LS1 described below. The value of ps is then halved
and the process is repeated. If the next solution generated is of a better qual-
ity, then ps is halved again. This is iterated until a worsening in the quality
of the solution sampled is obtained. This ensures that highly imbalanced
partitions are also explored.

It is worth noting that although it is possible to find all bridges in poly-
nomial time, not every graph however has bridges that would make “good”
bottlenecks. A typical case of such bottlenecks is represented by edges adja-
cent to leaves. This is why StS AMA uses the hybrid initialisation procedure
above to sample an initial population of potentially imbalanced promising
bottlenecks. In the experimental results below, it will be demonstrated that
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the qualities of bottlenecks identified heavily depend on structural and quan-
titative properties of the network analysed.

To summarise the general framework, as well as the initial solution gen-
eration procedure, the flowchart representing StS AMA is given in Figure
2.

3.3. Crossover Operators

Three variants of StS AMA will be studied, that utilise three different
crossover operators. Each of the variants will be studied separately, to deter-
mine which crossover operators work for the problem and what is the impact
of crossover on the efficiency of StS AMA in general.

One-point crossover (1PX). This operator simply takes two parents P1

and P2 and chooses the crossover point t uniformly at random. Bits with
indices 1, 2, ..., t − 1 are then taken from P1 and the rest of the bits are
taken from P2. Only one offspring O is created this way, to easily compare
this strategy to the other two crossover operators, which produce only one
offspring.

Uniform crossover (UX). The uniform crossover treats each bit separately
and takes it from parent P1 with probability 1/2 and from parent P2 other-
wise.

Partition crossover (PartX). We have also designed and experimented
with a simple partition crossover for the problem. Let parent P1 consist
of partitions S1 and V \S1 and P2 consist of partitions S2 and V \S2. Let
s(A,B) = |A ∩B| be the similarity of sets A and B. The partition crossover
computes similarities s(S1, S2), s(S1, V \S2), s(S2, V \S1) and s(V \S1, V \S2).
The highest similarity is then taken and the intersection of the two corre-
sponding sets is put into the partition S of the offspring O. The vertices
of this partition are then excluded and similarities are recalculated. The in-
tersection with the highest similarity after this update is then put into the
partition V \S of the offspring O. The remaining vertices are assigned into
S or V \S uniformly at random.

3.4. Local Search Strategies

Our approach uses two local search strategies to improve candidate solu-
tions and ensure that all members of the population represent local optima at
all times. Both of these local search subroutines can implemented efficiently
if the objective function is recalculated after a single bit flip in O(1) time
using auxiliary data [23].
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Find all bridges using Tarjan's algorithm

Construct the bridge-based partition with the lowest conductance

Set this partition as the first population member

Is the initial population full?

Generate a candidate population member using probability ps

Improve the candidate population member using LS1

Is the new candidate better than the previous candidate?

Accept the best candidate population member sampled

Are the stopping criteria met?

Pick the parents using a tournament of size t

Create an offspring O from the parents using the respective crossover

Improve offspring O using RLS1,2 for l iterations

Improve offspring O using LS1 until the local optimum is reached

Replace the worst population member with O, if O is not its member already

Return the best solution found

No

Yes

No

Yes

No Yes

Figure 2: A flowchart representing the workings of StS AMA-B, including the bridge-based
component, the initial population generation, as well as the evolutionary process.
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Let S ⊆ V represent the current solution and let S ′ = S ∪ {v}, i.e. S ′

will be the solution obtained by moving v from partition V \S into partition
S. We will then have that:

cG(S ′) = cG(S)− degS(v) + degV \S(v), (4)

where degS(v) is the number of neighbours of v that are in partition S. The
volumes of new partitions can also be recalculated as follows:

V ol(S ′) = V ol(S) + deg(v), (5)

V ol(V \S ′) = V ol(V \S)− deg(v). (6)

This implies that Φ(S ′) can be recalculated from Φ(S) in O(1) time if the
current values of degS(v) and degV \S(v) are stored in auxiliary arrays for
each vertex v.

After a move modifying S to S ′ is accepted, values of degS(w) and
degV \S(w) can be updated using the following rules, for all neighbours w
of v, i.e. w ∈ V such that {v, w} ∈ E:

degS′(w) = degS(w) + 1, (7)

degV \S′(w) = degV \S(w)− 1. (8)

Randomised local search RLS1,2. At each time step, randomised local
search attempts to flip either one or two bits. One bit is flipped with proba-
bility 1/2, two bits are flipped otherwise. A flip of a single randomly chosen
bit effectively represents a move of the corresponding vertex from S into V \S
or vice versa. A flip of two bits also allows the algorithms to potentially per-
form two moves at once, including swaps. A subroutine of RLS1,2 is stopped
after l iterations.

Local search LS1. This algorithm attempts to flip each bit separately
and chooses the best of these moves. If none of these moves lead to an
improvement, then the current solution S represents a local optimum. A
subroutine of LS1 stops whenever such a local optimum is reached.
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Table 1: An overview of the identifiers used for the eight algorithms studied.

without bridge with bridge
identification identification

no crossover PBLS PBLS-B
one-point StS AMA 1PX StS AMA 1PX-B
crossover
uniform StS AMA UX StS AMA UX-B
crossover
partition StS AMA PartX StS AMA PartX-B
crossover

Table 2: An overview of the parameter values used in our experiments.

parameter value

population size |P | = 100
tournament size t = 2
local search length l for RLS1,2 l = 106

maximum number short runs 500
of generations long runs 10000

4. Experimental Results

In this section, the experimental results of StS AMA and its variants
are presented. We will first discuss the experimental design and problem
instances used. Next, the results obtained for synthetic scale-free networks of
different sizes will be presented. This will be followed by the results obtained
for real-world network data. Last but not least, we provide a brief discussion
of our findings and implications for future research.

4.1. Experimental Design

Eight algorithm variants have been computationally studied. All algo-
rithms follow the general framework of StS AMA specified above. The iden-
tifiers of all eight algorithms studied are given in Table 1. PBLS represents
the population-based local search variant without crossover, using only so-
lution cloning and local search. PBLS is included to provide a comparison
of StS AMA to an equivalent crossover-free algorithm, investigating the use-
fulness and efficiency of crossover operators. StS AMA 1PX uses one-point
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crossover, StS AMA UX uses uniform crossover and StS AMA PartX uses
the partition crossover. PBLS-B, StS AMA-B 1PX, StS AMA-B UX and StS
AMA-B PartX represent the bridge-based variants of the algorithms, i.e. the
variants where one of solutions in the initial population is generated using a
bridge-based partitioning.

Parameter values used in our experiments are summarised in Table 2.
All algorithms were used with a population of 100 individuals, tournament
size t = 2 and RLS1,2 with local search length l = 106. Each experiment
was terminated if a maximum number of generations was reached, aiming
for a platform-independent study of the techniques. For synthetic networks,
we ran each of the algorithms on 100 independently generated networks for
a maximum of 500 generations. The average performance was then com-
pared. For real-world networks, short-running experiments using 100 runs
were first performed with a maximum of 500 generations. A subset of the
most promising algorithms was then selected also to perform 30 long runs
with a maximum of 10000 generations.

The algorithms were run on real-world network data from several sources,
mainly focused on social and biological networks. Social network data used
includes samples of different sizes from Google+, as well as social network
Pokec that has been previously studied in its entirety [35] and its large snap-
shot is a part of the SNAP network data repository [36]. We also present
the results obtained for protein-protein interaction network from the UCLA
database of interacting proteins [37, 38, 39, 40]. Results for instances from
Newman’s network repository have also been used [4, 41, 42, 43, 44]. A large
group of the instances used in this study have also been previously used in
studies of long cycles [45] and k-reachability in complex networks [46].

Interested reader can also refer to the preliminary work [23], which inves-
tigated the performance of RLS1,2, LS1, their adaptive versions, as well as
simple genetic algorithms in solving this problem. In the following, the focus
will be on the results obtained by the advanced forms of StS AMA.

4.2. Results for Synthetic Complex Networks

Before embarking on an evaluation of the approaches for real-world data,
it was decided to study the algorithms in solving the problem for synthetic
networks with variable sizes and properties. We have used the Barabási-
Albert model of preferential attachment to generate a sequence of scale-free
networks [47, 48]. These networks are characterised by the number of vertices
n and the number of incoming edges per vertex w. Their degree distribution
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Figure 3: The plots representing the average conductance found by each algorithm for
scale-free networks generated by Barabási-Albert model. The networks studied have from
100 to 500 vertices and were generated with w = 1, 2 and 3 incoming edges per vertex.
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follows a power law, similarly to many social and biological networks. The
algorithms were then applied to networks generated with different values of
n and w and the performance of the algorithms has been studied.

It is worth noting that in our preliminary experiments, it was possible
to use simple exhaustive search to find a proven optimum for the problem
in networks with up to between 30-40 vertices. For networks with up to 20
vertices, it is also possible to generate thousands of networks and solve the
problem using exhaustive search, estimating a “typical” minimum conduc-
tance of small scale-free networks. The largest network for which the problem
was solved exactly was generated for n = 38 and w = 2 and the process took
several hours on a standard desktop machine. For the small networks we
generated, StS AMA was generally able to find solutions with the same con-
ductance as the exhaustive search. This confirmed that the approach works
well for small instances.

To provide a better insight into the performance, the problem was then
solved for larger synthetic networks using all eight algorithms described
above. We used networks with n = 100, 150, ..., 500 vertices and with w = 1, 2
and 3 incoming edges per vertex. The results obtained are depicted in Figure
3. One can observe that all variants of StS AMA perform better than PBLS.
This indicates that the use of a crossover indeed helps in improving the
performance of an evolutionary algorithm, compared to a population-based
algorithm based purely on local search. However, these results also do not
clearly indicate which of the crossover operators works best. All algorithms
with a crossover seem to lead a relatively similar profile of the conductance
sampled, with only minor fluctuations. This suggests that crossover plays a
role as a diversification operator, rather than an intensification operator. The
impact of the bridge-based component of the algorithm also does not seem
to be entirely clear. However, this will partially contrast with the results ob-
tained for some real-world networks, for which the bridge-based component
played a significant role.

4.3. Results for Real-world Networks

This section presents the results obtained for real-world network data.
We first focus on the results obtained mainly for social and protein-protein
interaction networks with a maximum of 500 generations. Next, we will
present the results of bridge-based algorithms with crossover also in long
runs with a maximum of 10000 generations.
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Table 3: Experimental results comparing the population-based local search (PBLS) with
variants of the steady-state memetic algorithm (StS AMA) with one-point (1PX), uniform
(UX) and partition crossovers (PartX) in short runs within a maximum of 500 generations
for social networks and adjective-noun adjacency network. Bridge-based variants (-B) of
the algorithms are also included in the comparison.

G algorithm min Φ(S) E[Φ(S)] success rate

gplus 500 PBLS 0.02040816 0.04384623 9 / 100
StS AMA 1PX 0.02040816 0.0333401 11 / 100
StS AMA UX 0.02040816 0.03319711 6 / 100
StS AMA PartX 0.02040816 0.03307758 8 / 100
PBLS-B 0.02040816 0.02040816 100 / 100
StS AMA-B 1PX 0.02040816 0.02040816 100 / 100
StS AMA-B UX 0.02040816 0.02040816 100 / 100
StS AMA-B PartX 0.02040816 0.02040816 100 / 100

gplus 2000 PBLS 0.05278922 0.06109376 1 / 100
StS AMA 1PX 0.04941531 0.05040731 3 / 100
StS AMA UX 0.0493756 0.04962178 2 / 100
StS AMA PartX 0.0493756 0.04966333 2 / 100
PBLS-B 0.05408946 0.06131752 1 / 100
StS AMA-B 1PX 0.04941531 0.05044017 3 / 100
StS AMA-B UX 0.04931558 0.04960255 1 / 100
StS AMA-B PartX 0.04937113 0.04957637 1 / 100

pokec 2000 PBLS 0.02517306 0.03268988 2 / 100
StS AMA 1PX 0.02360775 0.0251969 8 / 100
StS AMA UX 0.02470694 0.02490648 7 / 100
StS AMA PartX 0.02433015 0.02476391 1 / 100
PBLS-B 0.02643456 0.03242954 1 / 100
StS AMA-B 1PX 0.02360775 0.02523519 3 / 100
StS AMA-B UX 0.02389706 0.02482624 1 / 100
StS AMA-B PartX 0.02470694 0.02475772 22 / 100

gplus 10000 PBLS 0.0706565 0.07257838 1 / 100
StS AMA 1PX 0.06729367 0.06803327 1 / 100
StS AMA UX 0.06602772 0.06672153 1 / 100
StS AMA PartX 0.06607105 0.06680015 1 / 100
PBLS-B 0.04347826 0.04347826 100 / 100
StS AMA-B 1PX 0.04347826 0.04347826 100 / 100
StS AMA-B UX 0.04347826 0.04347826 100 / 100
StS AMA-B PartX 0.04347826 0.04347826 100 / 100

pokec 10000 PBLS 0.03030303 0.05041547 3 / 100
StS AMA 1PX 0.03030303 0.04693046 1 / 100
StS AMA UX 0.04245283 0.05102121 1 / 100
StS AMA PartX 0.04500978 0.05075255 1 / 100
PBLS-B 0.02428256 0.05113928 1 / 100
StS AMA-B 1PX 0.03030303 0.04714125 2 / 100
StS AMA-B UX 0.04698492 0.05074653 1 / 100
StS AMA-B PartX 0.02083333 0.05034511 1 / 100

adjnoun [41] PBLS 0.27830179 0.2818578 21 / 100
StS AMA 1PX 0.27830179 0.27856984 85 / 100
StS AMA UX 0.27830179 0.27870569 77 / 100
StS AMA PartX 0.27830179 0.27851513 90 / 100
PBLS-B 0.27830179 0.28255219 11 / 100
StS AMA-B 1PX 0.27830179 0.27868494 80 / 100
StS AMA-B UX 0.27830179 0.27871893 77 / 100
StS AMA-B PartX 0.27830179 0.27843396 94 / 100
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Table 4: Experimental results comparing the population-based local search (PBLS) with
variants of the steady-state memetic algorithm (StS AMA) with one-point (1PX), uniform
(UX) and partition crossovers (PartX) in short runs within a maximum of 500 generations
for protein-protein interaction networks. Bridge-based variants (-B) of the algorithms are
also included in the comparison.

G algorithm min Φ(S) E[Φ(S)] success rate

Celeg20160114 PBLS 0.01226994 0.02426582 31 / 100
StS AMA 1PX 0.01226994 0.02656605 26 / 100
StS AMA UX 0.01226994 0.0309486 29 / 100
StS AMA PartX 0.01226994 0.03162063 34 / 100
PBLS-B 0.01226994 0.02233454 34 / 100
StS AMA-B 1PX 0.01226994 0.02166496 38 / 100
StS AMA-B UX 0.01226994 0.02258327 37 / 100
StS AMA-B PartX 0.01226994 0.02799719 28 / 100

Dmela20160114 PBLS 0.15517241 0.18857478 1 / 100
StS AMA 1PX 0.15447154 0.18627825 1 / 100
StS AMA UX 0.17592593 0.18721519 1 / 100
StS AMA PartX 0.14685315 0.18738843 1 / 100
PBLS-B 0.03030303 0.03030303 100 / 100
StS AMA-B 1PX 0.03030303 0.03030303 100 / 100
StS AMA-B UX 0.03030303 0.03030303 100 / 100
StS AMA-B PartX 0.03030303 0.03030303 100 / 100

Ecoli20160114 PBLS 0.03333333 0.30560565 3 / 100
StS AMA 1PX 0.03333333 0.30487322 1 / 100
StS AMA UX 0.03333333 0.30546100 1 / 100
StS AMA PartX 0.03333333 0.29887465 2 / 100
PBLS-B 0.03333333 0.06612821 1 / 100
StS AMA-B 1PX 0.06024096 0.06660241 1 / 100
StS AMA-B UX 0.06666667 0.06666667 100 / 100
StS AMA-B PartX 0.03333333 0.06600000 2 / 100

Hpylo20160114 PBLS 0.15594974 0.16692206 1 / 100
StS AMA 1PX 0.14855876 0.15361087 1 / 100
StS AMA UX 0.14855876 0.15290175 1 / 100
StS AMA PartX 0.14899926 0.1512717 1 / 100
PBLS-B 0.15447154 0.16555901 1 / 100
StS AMA-B 1PX 0.14962963 0.15426639 1 / 100
StS AMA-B UX 0.14918759 0.15328013 5 / 100
StS AMA-B PartX 0.14855876 0.15140646 2 / 100

Hsapi20160114 PBLS 0.05758139 0.06415486 1 / 100
StS AMA 1PX 0.04545899 0.04880509 1 / 100
StS AMA UX 0.03705152 0.04247478 1 / 100
StS AMA PartX 0.03792766 0.04236963 1 / 100
PBLS-B 0.00729927 0.00729927 100 / 100
StS AMA-B 1PX 0.00729927 0.00729927 100 / 100
StS AMA-B UX 0.00729927 0.00729927 100 / 100
StS AMA-B PartX 0.00729927 0.00729927 100 / 100

Mmusc20160114 PBLS 0.01438849 0.03632427 1 / 100
StS AMA 1PX 0.0166158 0.0250686 1 / 100
StS AMA UX 0.01343183 0.01960684 1 / 100
StS AMA PartX 0.01276024 0.01582498 1 / 100
PBLS-B 0.00578035 0.00578035 100 / 100
StS AMA-B 1PX 0.00578035 0.00578035 100 / 100
StS AMA-B UX 0.00578035 0.00578035 100 / 100
StS AMA-B PartX 0.00578035 0.00578035 100 / 100

Scere20160114 PBLS 0.23796338 0.23828424 1 / 100
StS AMA 1PX 0.23771743 0.23787464 1 / 100
StS AMA UX 0.20287425 0.23594457 1 / 100
StS AMA PartX 0.23771998 0.2378532 1 / 100
PBLS-B 0.14285714 0.14285714 100 / 100
StS AMA-B 1PX 0.14285714 0.14285714 100 / 100
StS AMA-B UX 0.14285714 0.14285714 100 / 100
StS AMA-B PartX 0.14285714 0.14285714 100 / 100
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Figure 4: Box-whisker plots depicting the objective values found by all algorithms studied
in the short runs with a maximum of 500 generations for selected social network samples
and the adjective-noun adjacency network.
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Figure 5: Box-whisker plots depicting the objective values found by all algorithms stud-
ied in the short runs with a maximum of 500 generations for selected protein-protein
interaction networks.
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Table 3 presents the results in short runs obtained for social network sam-
ples and an adjective-noun adjacency network [41]. For gplus 500, the bridge-
based component ensures 100% success rate. For gplus 2000 and pokec 2000,
the results are more mixed. StS AMA-B PartX works best on average. How-
ever, the results for pokec 2000 are intriguing in the sense that the variants
with one-point crossover were the only ones to produce the best solution in
“lucky” runs, even though these were less successful on average. The results
for large samples are also quite interesting. For gplus 10000, the bridge-based
variants performed better again. On the other hand, pokec 10000 seems to
be the instance, for which the algorithms exhibit the clearest probabilistic be-
haviour. This will be discussed further in the next paragraphs. For adjnoun,
one can observe that the use of a crossover improves on the success rate.

In Table 4, the results obtained are presented for protein-protein interac-
tion networks from the UCLA database of interacting proteins [37, 38, 39, 40].
For some of the networks, the bridge-based component was particularly help-
ful. One can observe that the bridge-based variants perform considerably well
for Dmela20160114, Hpylo20160114, Hsapi20160114 and Scere20160114.
For Celeg20160114, all algorithms seem to behave probabilistically, pro-
ducing the best bottleneck roughly in one in three runs. The results for
Ecoli20160114 were relatively interesting. Even though most algorithms pro-
duced the best bottleneck, they did so only occasionally. A similar situation
occurs also for Hpylo20160114.

For both Table 3 and Table 4, the corresponding box-whisker plots are
also presented in Figure 4 and Figure 5, respectively. These also provide some
further insights. One can observe that crossover-based algorithms performed
much better than the crossover-free PBLS for gplus 2000 and pokec 2000.
This indicates that a crossover is beneficial in solving this problem already
for moderately large social networks. The distinctive performance of StS
AMA 1PX and StS AMA-B 1PX for pokec 10000 can also be observed. For
protein-protein interaction networks, the intriguing nature of Ecoli20160114
can be observed on the number of outlier points in its box-whisker plot.
Interestingly, some of the plots suggest that the partition crossover was the
most reliable (particularly Hsapi20160114 and Mmusc20160114). However,
this seems to depend on a particular instance and contrasts with the success of
one-point crossover for pokec 10000. One can also note that the bridge-based
component notably helped in improving the performance for Hpylo20160114.
The plot for Scere20160114 is omitted here, since it was very flat, only
showing the differences between the bridge-based and other algorithms.
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Table 5: Experimental results comparing the population-based local search (PBLS) with
variants of the steady-state memetic algorithm (StS AMA) with one-point (1PX), uniform
(UX) and partition crossovers (PartX) in short runs within a maximum of 500 generations
for easy problem instances. Bridge-based variants (-B) of the algorithms are also included
in the comparison.

G algorithm min Φ(S) E[Φ(S)] success rate

gplus 200 PBLS 0.02040816 0.02679298 83 / 100
StS AMA 1PX 0.02040816 0.02547221 85 / 100
StS AMA UX 0.02040816 0.02551323 82 / 100
StS AMA PartX 0.02040816 0.02655511 81 / 100
PBLS-B 0.02040816 0.02040816 100 / 100
StS AMA-B 1PX 0.02040816 0.02040816 100 / 100
StS AMA-B UX 0.02040816 0.02040816 100 / 100
StS AMA-B PartX 0.02040816 0.02040816 100 / 100

pokec 500 PBLS 0.01345291 0.01353298 99 / 100
StS AMA 1PX 0.01345291 0.01362846 99 / 100
StS AMA UX 0.01345291 0.01353298 99 / 100
StS AMA PartX 0.01345291 0.01377617 96 / 100
PBLS-B 0.01345291 0.01365892 97 / 100
StS AMA-B 1PX 0.01345291 0.01345291 100 / 100
StS AMA-B UX 0.01345291 0.01388407 95 / 100
StS AMA-B PartX 0.01345291 0.01373918 96 / 100

Rnorv20160114 PBLS 0.00671141 0.00693076 96 / 100
StS AMA 1PX 0.00671141 0.00671141 100 / 100
StS AMA UX 0.00671141 0.00671141 100 / 100
StS AMA PartX 0.00671141 0.00671141 100 / 100
PBLS-B 0.00671141 0.00671141 100 / 100
StS AMA-B 1PX 0.00671141 0.00671141 100 / 100
StS AMA-B UX 0.00671141 0.00671141 100 / 100
StS AMA-B PartX 0.00671141 0.00671141 100 / 100
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Table 6: Experimental results comparing the variants of the steady-state memetic algo-
rithm (StS AMA) with one-point (1PX), uniform (UX) and partition crossovers (PartX) in
long runs within a maximum of 10000 generations for the more difficult problem instances.
All variants of the algorithms were bridge-based (-B) and used crossover operators.

G algorithm min Φ(S) E[Φ(S)] success rate

gplus 2000 StS AMA-B 1PX 0.04937560 0.04978619 3 / 30
StS AMA-B UX 0.04941531 0.04955669 21 / 30
StS AMA-B PartX 0.04931558 0.04949921 1 / 30

pokec 2000 StS AMA-B 1PX 0.02360775 0.02433515 13 / 30
StS AMA-B UX 0.02470694 0.02477831 10 / 30
StS AMA-B PartX 0.02470694 0.02474227 8 / 30

gplus 10000 StS AMA-B 1PX 0.04347826 0.04347826 30 / 30
StS AMA-B UX 0.04347826 0.04347826 30 / 30
StS AMA-B PartX 0.04347826 0.04347826 30 / 30

pokec 10000 StS AMA-B 1PX 0.03030303 0.04593560 1 / 30
StS AMA-B UX 0.04616896 0.04900827 1 / 30
StS AMA-B PartX 0.04601006 0.04810808 1 / 30

Celeg20160114 StS AMA-B 1PX 0.01226994 0.01553310 22 / 30
StS AMA-B UX 0.01226994 0.01489945 26 / 30
StS AMA-B PartX 0.01226994 0.01624947 19 / 30

Dmela20160114 StS AMA-B 1PX 0.03030303 0.03030303 30 / 30
StS AMA-B UX 0.03030303 0.03030303 30 / 30
StS AMA-B PartX 0.03030303 0.03030303 30 / 30

Ecoli20160114 StS AMA-B 1PX 0.03333333 0.03977778 1 / 30
StS AMA-B UX 0.06666667 0.06666667 30 / 30
StS AMA-B PartX 0.03333333 0.06549784 1 / 30

Hpylo20160114 StS AMA-B 1PX 0.14855876 0.15114257 1 / 30
StS AMA-B UX 0.14855876 0.15137511 1 / 30
StS AMA-B PartX 0.14855876 0.15045777 1 / 30

Hsapi20160114 StS AMA-B 1PX 0.00729927 0.00729927 30 / 30
StS AMA-B UX 0.00729927 0.00729927 30 / 30
StS AMA-B PartX 0.00729927 0.00729927 30 / 30

Mmusc20160114 StS AMA-B 1PX 0.00578035 0.00578035 30 / 30
StS AMA-B UX 0.00578035 0.00578035 30 / 30
StS AMA-B PartX 0.00578035 0.00578035 30 / 30

Scere20160114 StS AMA-B 1PX 0.07317073 0.13362950 1 / 30
StS AMA-B UX 0.14285714 0.14285714 30 / 30
StS AMA-B PartX 0.14285714 0.14285714 30 / 30
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Table 5 summarises the results obtained for some of the easier prob-
lem instances identified. Remarkably, all eight algorithms studied had the
same performance also for a number of instances that seem very easy to
solve. For all of these instances, all algorithms achieved solutions of the same
quality with 100 / 100 success rate. These results included 0.13108614 for
soc52, 0.12252964 for lesmis [42], 0.10116086 for football [4], 0.12820513 for
zachary [49], 0.165575758 for celegansneural [43], 0.06382979 for dolphins
[44] and 0.04347826 for polbooks.

Last but not least, Table 6 summarises the results obtained for the
more difficult instances identified with a maximum of 10000 generations.
These are of a high interest, to determine whether an extension of the run-
time budget can lead to an improvement of the results achieved. One can
observe that the results were preserved for gplus 10000, Dmela20160114,
Hsapi20160114 and Mmusc20160114, mainly due to the bridge-based com-
ponent. For gplus 2000, the dominance of StS AMA-B 1PX has been con-
firmed with a higher success rate. The best result for gplus 2000 was re-
produced. However, this was achieved by a different algorithm this time.
A similar result was obtained for Ecoli20160114, for which the one-point
crossover seems to work best. However, one can also observe that the best
result obtained for pokec 10000 is still worse than that obtained with the
shorter limit. This indicates that for some instances, the algorithms may be
more suitable as probabilistic sampling routines. In contrast, StS AMA-B
1PX produced a notable improvement in one of the runs, nearly halving the
best objective value found in the rest of the experiments.

4.4. Discussion

Figure 6 illustrates the bottlenecks found for the more difficult instances,
i.e. those which have not been easily found by all of the algorithms. The
bridge-based characteristics are clearly visible for some of the solutions found,
including protein-protein interaction networks Dmela20160114,
Hsapi20160114 and Mmusc20160114. However, one can also identify several
sparse cuts with more than one edge situated between S and V \S that stand
out from the drawings, including the solutions found for Celeg20160114,
Ecoli20160114 and Scere20160114. Remarkably, the bottlenecks found for
gplus 2000 and pokec 2000 are situated between relatively balanced parti-
tions, the bottlenecks found for gplus 10000 and pokec 10000 are quite im-
balanced, representing a partition into a relatively small community and the
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Figure 6: An illustration of the bottlenecks identified for each instance using StS AMA
for the more difficult test instances. These includes bottlenecks found for (a) gplus 200,
(b) pokec 2000, (c) gplus 10000, (d) pokec 10000, (e) Celeg20160114, (f) Dmela20160114,
(g) Ecoli20160114, (h) Hpylo20160114, (i) Hsapi20160114, (j) Mmusc20160114 and (k)
Scere20160114.
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Table 7: A comparison of all algorithms tested in producing bottlenecks with best conduc-
tance for each instance. Both experiments in short runs and long runs were considered.
A success rate information is given as a percentage and represents that the corresponding
algorithm was able to find the bottleneck with best conductance found so far in at least
one run.
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Figure 7: Box-whisker plots depicting the objective values found by StS AMA-B 1PX, StS
AMA-B UX and StS AMA-B PartX in the long runs with a maximum of 10000 generations
for the social networks. These figures are generated for selected instances, for which the
algorithms exhibit notably distinct performance characteristics.
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Figure 8: Box-whisker plots depicting the objective values found by StS AMA-B 1PX, StS
AMA-B UX and StS AMA-B PartX in the long runs with a maximum of 10000 generations
for the protein-protein interaction networks. Similarly to the previous figure, these results
were also chosen for their notable characteristics.

rest of the network. These findings support our hypothesis that the high-
quality solutions to the problem can have a variety of structural properties
and depend on the properties of the entire network.

Regarding the algorithms suitable for finding these partitions, the box-
whisker plots presented in Figure 7 and Figure 8 shed light on suitable al-
gorithm choice. These correspond to the computational results presented in
Table 6. These results are mixed and there seems to be no golden rule for
the choice of the right crossover in particular. While the uniform and par-
tition crossovers work better for gplus 2000, the one-point crossover worked
for pokec 2000. However, the plots obtained for pokec 10000, Ecoli20160114
and Scere20160114 indicate that one-point crossover can sometimes obtain
better results that the uniform and partition crossovers were not able to pro-
duce. This is exhibited by a presence of several successful runs observed for
pokec 10000 and Scere20160114, as well as the better median performance
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for Ecoli20160114.
To provide a high-level perspective, Table 7 presents a summary of the

results of the algorithms in finding the best bottleneck identified in both short
and long runs. A success rate value is given as a percentage and denotes that
the algorithm was able to produce the best result known for that instance
in at least one run. The results confirm that the bridge-based variants are
able to solve the problem successfully for a wider variety of instances. PBLS-
B, StS AMA-B 1PX and StS AMA-B UX in short runs produced the best
results for 6 instances, while StS AMA-B PartX worked for 8 instances. For
the long runs, the number of instances with best results remained at 6 for
StS AMA-B UX and 8 for StS AMA-B PartX. However, it increased to 9
for StS AMA-B 1PX. This confirms that crossover operators are beneficial in
solving this problem. Some of our results suggest that the partition crossover
works quite well, even though the simple one-point crossover seems to lead
to a good performance in long runs in particular.

5. Conclusions

In this paper a new hybrid bridge-based memetic approach to find bot-
tlenecks in complex networks was proposed. The approach is based on min-
imising the symmetric variant of the conductance metric. A steady-state
adaptive memetic algorithm (StS AMA) is proposed to solve the problem,
incorporating a specialised initialisation procedure with a crossover and two
local search subroutines. The specialised initialisation procedure includes
adaptive generation of potentially imbalanced solutions, as well as the use of
bridge identification to decompose the network. All solutions in the popula-
tion in StS AMA represent local optima at all times in the search process.

To the best of our knowledge, this is the first study aimed at solving the
minimum conductance problem in the discrete domain. We focused on the
symmetric variant of conductance, for which the optimum is also known in
statistical mechanics as the Cheeger constant [20]. While conductance has
previously been widely used as metric to evaluate the performance of com-
munity detection algorithms [2, 12], it seems that its direct optimisation has
so far been studied only using a continuous generalisation of its asymmetric
variant [25].

The experimental results obtained indicate that the problem is indeed of a
high interest for evolutionary computation techniques. A comparison of StS
AMA with crossover operators to a crossover-free variant of the algorithm
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shows that crossover seems beneficial in solving this problem. Three crossover
operators were used, including one-point crossover, uniform crossover and our
own partition crossover. Even though all of these operators seem beneficial
in general, the magnitude of the impact of a particular crossover seems to
depend on the instance structure entirely.

The bottlenecks identified have a variety of structures, including simple
bridge-based decompositions, sparse imbalanced cuts into a community and
the rest of the network, as well as relatively balanced partitions.

We believe that this study may shed some light on the suitable algo-
rithms and tools to explore the bottlenecks in complex networks. It seems
that a proper blend of classical graph algorithms and stochastic optimisation
techniques can pave the way towards strong approaches to solve this type of
problem. As this seems to be the first study of the minimum conductance
problem from the computational discrete optimisation perspective, further
studies can be of a high interest, to enrich the variety of literature using
conductance as a metric.
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