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Abstract 39 

Assessment of ecological status for the European Water Framework Directive (WFD) is based on 40 

“Biological Quality Elements” (BQEs), namely phytoplankton, benthic flora, benthic invertebrates and 41 

fish. Morphological identification of these organisms is a time-consuming and expensive procedure. 42 

Here, we assess the options for complementing and, perhaps, replacing morphological identification 43 

with procedures using eDNA, metabarcoding or similar approaches. We rate the applicability of DNA-44 

based identification for the individual BQEs and water categories (rivers, lakes, transitional and 45 

coastal waters) against eleven criteria, summarised under the headlines representativeness (for 46 

example suitability of current sampling methods for DNA-based identification, errors from DNA-47 

based species detection), sensitivity (for example capability to detect sensitive taxa, unassigned 48 

reads), precision of DNA-based identification (knowledge about uncertainty), comparability with 49 

conventional approaches (for example sensitivity of metrics to differences in DNA-based 50 

identification), cost effectiveness and environmental impact. Overall, suitability of DNA-based 51 

identification is particularly high for fish, as eDNA is a well-suited sampling approach which can 52 

replace expensive and potentially harmful methods such as gill-netting, trawling or electrofishing. 53 

Furthermore, there are attempts to replace absolute by relative abundance in metric calculations. 54 

For invertebrates and phytobenthos, the main challenges include the modification of indices and 55 

completing barcode libraries. For phytoplankton, the barcode libraries are even more problematic, 56 

due to the high taxonomic diversity in plankton samples. If current assessment concepts are kept, 57 

DNA-based identification is least appropriate for macrophytes (rivers, lakes) and angiosperms / 58 

macroalgae (transitional and coastal waters), which are surveyed rather than sampled. We discuss 59 

general implications of implementing DNA-based identification into standard ecological assessment, 60 

in particular considering any adaptations to the WFD that may be required to facilitate the transition 61 

to molecular data.  62 
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 65 

Introduction  66 

Worldwide, aquatic ecosystems are monitored using a range of organisms as indicators (Foden et al., 67 

2008; Hallett et al., 2016; Patricio et al., 2016). In the European Union, most freshwater monitoring is 68 

performed to fulfil the requirements of the EU Water Framework Directive (WFD, 2000/60/EC), 69 

which aims to improve the status of European freshwater resources and ecosystems. It requires 70 

Member States to assess the ecological status of all surface water bodies at regular intervals (de 71 

Jonge et al., 2006). Chemical status of surface and groundwater bodies is also assessed, but not 72 

discussed in this paper. The number of monitored river, lakes, transitional and coastal waters in 73 

Europe exceeds 100,000, and for most of them several organism groups (“Biological Quality 74 

Elements”, BQEs) are investigated. These include phytoplankton, phytobenthos and larger aquatic 75 

plants, as well as benthic invertebrates and fish (EEA, 2012). The Marine Strategy Framework 76 

Directive (MSFD, 2008/56/EC) also requires the use of several indicators including species diversity, 77 

seafloor integrity, food web structure, and non-indigenous and commercial species, but its 78 

implementation is currently not as advanced as for the WFD (Danovaro et al., 2016).  79 

All monitoring and assessment methods applied under the WFD conform to the same conceptual 80 

framework, although the details differ among countries and regions (Birk et al., 2012). In short, 81 

organisms are sampled or surveyed following national or EU-wide standard methods to produce lists 82 

of taxa present and (in most cases) estimates of abundance, processed in the laboratory (if 83 

necessary), and identified using morpho-taxonomic approaches. The resulting data are used to 84 

compute assessment metrics, which are compared against values for each metric expected at 85 

“reference conditions” (i.e. in a more-or-less unimpacted state derived from historical conditions or 86 
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best available sites) specific to each type of water body. The distance between the calculated value 87 

and the value at reference conditions is termed the Ecological Quality Ratio (EQR), which is finally 88 

translated into a quality class (high, good, moderate, poor and bad) on which management decisions 89 

are based. The objective is to achieve at least “good status” for all water bodies in Europe by 2027: at 90 

present, half of all water bodies do not meet this goal (EEA, 2012).  91 

Most assessment methods for European freshwaters were developed in the 2000s, following 92 

adoption of the WFD by EU Member States. In many cases, these methods were based on 93 

approaches developed prior to adoption of the WFD with adjustments to translate assessment 94 

results into ecological status classes. Whilst field and laboratory methods were largely left 95 

unchanged, some Member States developed new assessment methods. Whatever the strategy 96 

adopted, each biological method was then “intercalibrated” with the respective methods of other 97 

Member States in the same broad ecoregion (termed  “Geographical Intercalibration Groups”, Birk et 98 

al., 2013). Although the formal definition of ecological status encompasses both structure and 99 

function (Article 2, definition 21, WFD), the assessment systems have been based primarily on 100 

structure. Some assessment metrics do use species traits, such as size structure of fish assemblages 101 

or feeding type composition of benthic invertebrates (Mondy et al., 2012; Pont et al., 2006) but most 102 

methods neglect this aspect. Overall, despite the shortcomings of many of the methods, the process 103 

of method development, adaptation and intercalibration have contributed to a better understanding 104 

of reference conditions, responses of biota to stressors and the uncertainties associated with various 105 

steps in the assessment of ecological status (Poikane et al., 2014). 106 

Some aspects of monitoring procedures are time consuming and costly, requiring teams of skilled 107 

individuals, for example the identification and counting of phytoplankton, phytobenthos and benthic 108 

invertebrates (Ferraro et al., 1989; Haase et al., 2004; Nygård et al., 2016). Electrofishing and 109 

gillnetting for fish are also costly and require teams of skilled staff. As budgets for such work are 110 
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under pressure, there is a demand to simplify methods, to lower the costs and to speed up the 111 

monitoring process (Borja and Elliott, 2013), whilst maintaining quality, robustness and 112 

comparability. Recent technological advances could go some way towards alleviating these budget 113 

constraints. 114 

New methods such as machine learning (Kiranyaz et al., 2011; Ärje et al., 2017), and genetic methods 115 

such as metabarcoding of DNA obtained from organisms or simply by sampling environmental DNA 116 

(eDNA) from the water (for example Taberlet et al., 2012a; Ji et al., 2013) provide alternative tools 117 

for multiple species detection and identification. In the medium term, these new methods have the 118 

potential to fundamentally change ecological assessment. Although still in the development phase, 119 

genetic methods are already sufficiently well advanced for biodiversity assessment (for example 120 

Elbrecht et al., 2017). Thus, it is now possible to complement or even replace traditional sample 121 

processing and identification methods with DNA-based methods which are of equal or lower cost and 122 

which are able to detect species occurrences with a similar or higher level of precision (Stein et al., 123 

2014; Smart et al., 2016; Aylagas, 2017; Elbrecht et al., 2017; Vasselon et al., 2017). DNA-based 124 

methods have some obvious advantages compared with traditional sampling and image recognition 125 

based identification schemes. Identification to species level is more precise and objective with DNA-126 

based methods,  particularly for cryptic taxa, microorganisms and difficult life stages (for example 127 

juveniles and pupae) while sample processing may be faster and cheaper than manual procedures 128 

(Hajibabaei et al., 2011; Kermarrec et al. 2014; Dafforn et al., 2014; Stein et al., 2014; Avó et al., 129 

2017). An additional advantage of molecular techniques is the potential for assessing functional 130 

diversity based on gene expression (transcription), fulfilling an aim of the WFD that has yet to be 131 

addressed adequately with morpho-taxonomic approaches (Bourlat et al., 2013). On the other hand, 132 

molecular techniques are still developing and require standardisation and harmonization (Cristescu, 133 

2014) before they can be used in national monitoring programmes. Furthermore, there is limited 134 
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capability for the determination of species abundance, which is a prerequisite for many BQEs 135 

assessed for the WFD. Reference barcodes are not yet available for a considerable - although 136 

decreasing - proportion of species.  137 

For a more general application of DNA-based techniques in WFD assessments, key questions 138 

regarding comparability with traditional methods need to be addressed, in particular the sensitivity 139 

of species detection and the precision of species identification (Leese et al., 2016). In principle, there 140 

are two options for including DNA-based methods into ecological status assessment:  141 

Option 1: Under this option, specific steps of the conventional assessment procedure, particularly 142 

those leading to the identification of organisms, could be replaced by DNA-based methods. Other 143 

elements, such as metrics, assessment system, interpretation and, in many cases, sampling, remain 144 

the same or are subject to minor adaptation, for example different preservatives, reassessment of 145 

taxa lists from reference water bodies, and replacement of electrofishing by water samples. This 146 

option could provide the same level of information as traditional methods, but may improve 147 

processing speed, comparability and cost efficiency. In the following, we refer to this method as 148 

“DNA-based identification”.  149 

Option 2: This option combines different ways of using new assessment metrics, which take full 150 

advantage of the higher taxonomic resolution of DNA-based methods, producing typically more 151 

highly resolved taxa lists and possibly information on ecosystem functioning (Grossmann et al., 152 

2016). This could, for example, enable the inclusion of  species of currently widely ignored organism 153 

groups (such as Chironomidae) into biodiversity metrics, or development of metrics based on the 154 

expression of genes involved in osmoregulation to assess the impact of freshwater salinization. In 155 

cases where only scarce taxon information exist (for example protists), Operational Taxonomic Units 156 

(OTUs) can be assigned and used for index development. This option can only be implemented in the 157 

medium- to long-term and may require the complete redesign of assessment systems, including 158 
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derivation of new reference condition values and the development of new assessment metrics. 159 

Functional metrics are currently underrepresented in WFD assessment systems, although trait-based 160 

data have been frequently derived from morphological criteria (Schmidt-Kloiber and Hering, 2015) 161 

and are used in several assessment methods. Molecular data, in particular transcriptomic data 162 

(Konopka and Wilkins, 2012; Creer et al. 2016) and placement into trait-informed phylogenies offer 163 

additional options for functional metrics, which would need to be  developed from scratch, and their  164 

response to stressor gradients investigated. However, research in this field is still its infancy and  165 

implementation into practical ecological assessment is unlikely in the short and medium term.  166 

Hybrid option: There is also the possibility of a hybrid between Options 1 and 2 where DNA-based 167 

methods are used to replace morphological identification whilst keeping metrics and reference 168 

conditions for assessment purposes (cf option 1). At the same time, additional information generated 169 

by DNA-based methods such as more highly resolved taxa lists or functional information derived 170 

from other approaches such as metagenomics and -transcriptomics would be used to better inform 171 

interpretation of assessment results, for example rating how stressors affect ecosystem functionality.  172 

Until 2027, only Option 1 provides a realistic option for operational monitoring under the WFD. 173 

European countries have spent considerable resource developing WFD assessment systems and have 174 

used them in previous monitoring cycles : they will continue to apply them until the end of the fourth 175 

River Basin Management Cycle in 2027. Therefore, this paper focuses on DNA-based identification 176 

(Option 1), acknowledging that it is a straightforward, but rather conservative approach in 177 

comparison with Option 2, as it aims for maximum comparability with traditional methods.  178 

In some circumstances, the inclusion of DNA-based techniques into WFD assessment has already 179 

been tested, for example for river phytobenthos in Mayotte Island, France (Vasselon et al., 2017) and 180 

the UK (Kelly et al., 2017), and is likely to be  used increasingly for a range of BQEs in other countries 181 

(Leese et al., submitted). However, for a variety of reasons the applicability of Option 1 differs 182 
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between BQEs and water body types (river, lakes, transitional and coastal waters). Amongst others, 183 

there is the need to secure comparability with traditional identification, which may be more 184 

problematic for those BQEs where there are large discrepancies between morphological and DNA-185 

based species identification. In addition, the potential benefits in sample processing speed differ 186 

strongly between BQEs.  187 

Here, we evaluate the potential  of DNA-based identification (Option 1) for routine WFD assessment 188 

for  different BQEs and water categories. Our aim is to rate the applicability of DNA-based 189 

identification methods, assuming  that current WFD assessment metrics are kept or only slightly 190 

adapted. We use a variety of criteria related to the anticipated suitability (for example the expected 191 

increase in processing speed, lower costs) and the maturity of development (for example the extent 192 

to which  assessment methods will need to be adapted). The paper is addressed at scientists and 193 

officials involved into the commissioning and development of DNA-based methods, stakeholders and 194 

consultants involved in WFD monitoring.  195 

 196 

 197 

Assessment and monitoring methods under the WFD 198 

Considerable research effort has been devoted to the development of methods for ecological 199 

assessment of waterbodies following implementation of the WFD (Birk et al., 2012). The primary 200 

focus has been to establish sensitive and precise methods capable of assessing the impact of a wide 201 

range of pressures on biota and, hence, guide management efforts to restore good ecological status. 202 

The reference condition approach is a central principle of the WFD: the biota observed are compared 203 

with those expected in the absence of environmental stress, resulting in an Ecological Quality Ratio 204 

(EQR), calculated as the observed score /expected score (Jones et al. 2010).  205 
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Although always based on the same principles, subsidiarity has led to diversity in the methods 206 

developed by Member States for each BQE-water category combination. This reflects the variety of 207 

methods and data existing prior to the WFD, and regional differences in stressors and taxonomic 208 

knowledge. Overall, more than 300 methods are in use across Europe (Birk et al., 2012), with 209 

comparability ensured by an obligatory intercalibration process (Birk et al., 2013; Poikane et al., 210 

2014). At a first glance, the large number of methods is bewildering; however, all methods are based 211 

on the same chain of steps and many differ only in detail (Birk et al., 2013):  212 

 Surveys are always stratified by water bodies, for example individual lakes or homogeneous 213 

river sections which may be several kilometres in length.  214 

 Sampling is conducted using standardised approaches allowing for (semi)quantitative 215 

analysis. Identification is to species for those BQEs with a low number of species (fish, 216 

macrophytes, macroalgae, angiosperms), and varies between species and family level (for 217 

the remaining BQEs (phytoplankton, phytobenthos and invertebrates), depending on 218 

feasibility, regional taxonomic knowledge, and bioindication potential.  219 

 Metrics are calculated from the resulting taxon lists, reflecting either general degradation or 220 

individual stressors. The results are compared with metric values obtained at reference 221 

conditions, which are specific to each type of water body.  222 

The deviation from reference conditions is expressed as the EQR (from 0 to 1) from which the 223 

biological status class (“high”, “good”, “moderate”, “poor” or “bad”) is derived, harmonised between 224 

EU member states through intercalibration. The status classes of the individual BQEs are finally 225 

combined with other quality elements into an ecological status class, using the “one-out-all-out” 226 

principle (the worst status class determines the overall ecological status class).  227 

Three types of monitoring are specified by the WFD, each with a different objective, namely: (1) 228 

surveillance monitoring to classify water bodies and assess large-scale, long-term change; (2) 229 
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operational monitoring, focussed on water bodies unlikely to reach good status, in order to establish 230 

local management options, and (3) investigative monitoring to identify the causes of a water body 231 

not achieving environmental objectives, and to assess the magnitude and source of accidental 232 

pollution. 233 

 234 

DNA-based methods for species identification 235 

DNA-based methods for species identification cover a wide range of techniques and considerations. 236 

Before any molecular analysis can be applied, DNA must first be obtained either by collecting 237 

organisms directly or by sampling the environment (for example water) and extracting the genetic 238 

material present (environmental DNA or eDNA) without sorting organisms (Baird and Hajibabaei, 239 

2012; Bohman et al., 2014; Taberlet et al., 2012a). These two broad sources of DNA differ in some 240 

fundamental aspects. First, whereas large amounts of DNA can be extracted from community bulk 241 

samples (for example macroinvertebrates) and microorganisms such as diatoms in biofilms or water, 242 

aqueous eDNA from macroorganisms (for example fish, amphibians) is generally present at very low 243 

concentrations (Pilliod et al., 2013) and can be heterogeneously distributed throughout the 244 

environment, which has consequences for species detection.  245 

Individually caught specimens can be identified using DNA barcoding, which uses short genetic 246 

markers (DNA barcodes) in an organism’s DNA to assign it to a species using a pre-existing 247 

classification and reference database. Today, the public library of standardized DNA barcodes 248 

(http://www.barcodeoflife.org) allows the identification of a wide range of species based on the 249 

corresponding sequence reference for animals (COI gene), plants (rbcL, matk, 18S), cyanobacteria 250 

(16S) and fungi (ITS) (see Creer et al. 2016 for an overview of other markers currently in use). Single 251 

specimen DNA barcoding is widely used, for example in biodiversity conservation, environmental 252 

http://www.barcodeoflife.org/
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management, invasion biology, studies of trophic interactions and food safety (Cristecu, 2014) but is 253 

not yet a cost efficient method for most ecological assessment purposes (Stein et al., 2014).  254 

More recently, high throughput sequencing (HTS) techniques have allowed the barcodes of multiple 255 

organisms to be obtained in a single reaction, enabling parallel sequence-based identification in an 256 

approach termed DNA metabarcoding (Taberlet et al., 2012b; Shokralla et al., 2012). This approach 257 

offers the opportunity for non-targeted (passive) detection of a wide range of rare and invasive 258 

species (for example Blackman et al., 2017; see Lawson Handley, 2015, for a review) and to assess 259 

the composition of whole communities. The application of DNA metabarcoding to community DNA 260 

extracted from organisms or environmental samples (eDNA) is the focus of this paper. 261 

Most current sequencing protocols rely on rather short (i.e. about 70-500 base pair) metabarcoding 262 

markers and thus are capable of using the degraded DNA often found in eDNA samples (see Elbrecht 263 

and Leese, 2017, for an overview). Recent research has shown that DNA-based methods are effective 264 

at detecting aquatic species of microalgae and protists (Medinger et al., 2010; Kermarrec et al., 2014; 265 

Kelly et al. 2017), meiofauna (Carugati et al., 2015), macroinvertebrates (Hajibabaei et al., 2011; 266 

Sweeney et al., 2011; Aylagas et al., 2016), fish (Thomsen et al., 2012; Kelly et al., 2014; Civade et al., 267 

2016; Hanfling et al., 2016; Shaw et al 2016) and amphibians (Ficetola et al., 2008; Dejean et al., 268 

2012). However, the protocols and workflows used for capture, extraction and identification of DNA 269 

are highly diverse even within BQEs. This makes comparison of results from different laboratories 270 

and studies difficult (Deiner et al., 2015) and will limit the use of DNA for aquatic biodiversity 271 

assessment until the biases associated with different methods are fully understood and controlled. 272 

Probably the critical consideration is choosing the most appropriate primer, which determines the 273 

DNA marker used for identification, and its length. This in turn influences the taxonomic resolution 274 

that can be achieved and affects the extent to which species level identifications can be made; 275 

primer choice also affects the specificity of the analysis. In some cases, highly specific primers can be 276 
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developed that will amplify the entire target organism group and little else (the 12S primers for fish 277 

are a good example). In other cases, primers that are general enough to capture the whole group will 278 

inevitably amplify non-target taxa as well. An example of this is the primers designed to amplify 279 

benthic invertebrates, which consistently amplify a wide range of non-metazoan taxa when used on 280 

environmental samples.  281 

 282 

Criteria to rate the potential for application of DNA-based identification 283 

Here we describe and justify a set of criteria, which will later be used to rate the applicability of DNA-284 

based identification for incorporation into WFD assessment for different BQEs and water categories. 285 

As we limit the applicability check to DNA-based identification, and do not include more advanced 286 

approaches (i.e. Option 2 described in the introduction), the criteria are restricted to those rating the 287 

performance of WFD-related assessment methods. The criteria are categorised under six headings: 1) 288 

Representativeness, 2) Sensitivity, 3) Precision, 4) Comparability, 5) Cost-effectiveness and 6) 289 

Environmental impact, and are not always independent. For example, the cost of sample collection 290 

and processing will influence the sampling strategy undertaken (frequency and number of samples 291 

collected), which, in turn, will influence the representativeness and precision of the overall 292 

assessment of ecological status. Here, we will address each of these criteria separately, whilst 293 

considering those interactions relevant to DNA-based identification. 294 

 295 

1) Representativeness 296 

Criterion 1.1: Applicability of current sampling methods, and availability of alternative methods for 297 

obtaining biological material for DNA-based identification 298 

This criterion addresses how samples are collected and processed prior to sequencing, to determine 299 

if current sampling methods are suitable for molecular methods, or if simple alternatives are 300 
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available. The criterion is relevant to establish whether DNA-based identification can be used without 301 

changing  current sampling strategies significantly,  or if major changes in sampling methods are 302 

required.  303 

For some taxa ( microalgae, macroinvertebrates) entire unprocessed samples have been used for 304 

extraction and subsequent metabarcoding (Zimmermann et al., 2015; Elbrecht et al., 2017), which 305 

can be analysed in parallel with microscopy. However, for inventories of fish species, the current 306 

sampling methods (for example electrofishing) cannot be used for DNA-based assays. The proposed 307 

solution of sampling eDNA from water is a simple and effective alternative. Results from eDNA 308 

approaches are often very similar to those from traditional netting or electrofishing, although usually 309 

more effective (Takahara et al., 2012; Shaw et al., 2016; Hanfling et al. 2016; Stoeckle et al., 2017; 310 

Pont et al. submitted). However, the inference of temporal and spatial distribution of species 311 

through eDNA is complicated since detection is influenced by environmentally variable DNA 312 

degradation rates, transport and species specific behavioural patterns (Barnes and Turner, 2015; 313 

Stoeckle et al., 2017). The spatial scale of eDNA detectability is of particular importance in lotic 314 

ecosystems, as eDNA may only detect species present in upstream regions or tributaries. On the 315 

other hand, eDNA may better represent species composition across the whole waterbody (from a 316 

few to several tens of kilometres; Civade et al., 2016; Pont et al. submitted), as is required for 317 

surveillance monitoring. Understanding the spatial and temporal scales that eDNA represents is a 318 

hurdle to the deployment of this approach for WFD monitoring.  319 

After the removal of an organism, DNA persistence under normal conditions in water is quite short (a 320 

few days to two weeks in mesocosms; Ficetola, 2008; Dejean et al., 2011; Pilliod et al., 2013). In 321 

rivers, eDNA concentration and detectability downstream from the point of production are 322 

dependent on production and degradation rates, dilution, transport through the river network, 323 

deposition, and resuspension (Thomsen et al., 2012). Detectable eDNA can be found at distances 324 
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from a few hundred metres to a few kilometres downstream of its source (Deiner and Altermatt, 325 

2014; Jane et al., 2015; Civade et al., 2016; Wilcox et al., 2016). The detection distance of eDNA is 326 

important for defining the scale at which eDNA can reveal spatial and temporal differences in 327 

biological communities (Civade et al., 2016; Deiner et al., 2016; Staehr et al., 2016; Bista et al., 2017; 328 

Stoeckle et al., 2017; Yamamoto et al., 2017).  329 

We used this criterion for rating the magnitude of alterations in sampling methods required to apply 330 

DNA-based identification. 331 

 332 

Criterion 1.2: Errors from DNA-based species detection and similarity of DNA-based and conventional 333 

taxon lists 334 

This criterion addresses the question of how comparable taxon lists obtained with DNA-based 335 

methods are to taxon lists obtained with traditional methods, in particular as a result of detection 336 

errors. The criterion is relevant to judge if current assessment indices and associated class 337 

boundaries can be applied to taxon lists generated with DNA-based methods.  338 

In the production of taxon lists, two types of error occur, false negatives, where a taxon is recorded 339 

as absent yet is in fact present, and false positives, where a taxon is recorded as present yet is in fact 340 

absent: misidentifications comprise both type of error (the correct species is falsely recorded as 341 

absent, whilst the incorrect species is falsely recorded as present). Both error types affect  index 342 

values and hence the accuracy of assessments (Criterion 2), and add uncertainty (Criterion 3). Both 343 

visual and DNA-based methods are prone to identification errors. Whilst it is known that errors can 344 

significantly affect the results of traditional assessments  (Haase et al., 2006), much work remains to 345 

be done for DNA-based methods. If the DNA-based identification targets morphotaxa rather than 346 

OTUs, benchmarking against morpho-taxonomic approaches will be critical before molecular 347 

approaches can be implemented in regular assessment programs. This has been performed partly for 348 
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fish (Hanfling et al., 2016), marine phytoplankton (Mohrbeck et al., 2015; Albaina et al., 2016), 349 

macroinvertebrates (for example Aylagas et al., 2016; Elbrecht and Leese, 2015) and diatoms 350 

(Zimmermann et al., 2015).  351 

Direct comparison of detection rates from DNA surveys and traditional survey methods have found 352 

that the likelihood of species detection increases with the  density of target organisms for both 353 

approaches, but at a higher rate for DNA based methods than for morpho-taxonomic methods 354 

(Darling and Mahon, 2011). Where they have been tested, false negative rates are either similar to 355 

those of established methods or lower (Deiner et al., 2017). Reasons for false negatives in DNA 356 

approaches include inefficiency of molecular assays (incomplete barcode libraries, primer bias, low 357 

sensitivity), low DNA quality (insufficient DNA, poor quality of eDNA due to environmental conditions 358 

or ineffective sample preservation; Darling and Mahon, 2011; Thomsen et al., 2016), the presence of 359 

PCR inhibitors (Jane et al., 2015), structural errors (for example errors in bioinformatics) and, in the 360 

case of eDNA studies, stochastic effects during sampling due to the low concentration and 361 

heterogeneous distribution of DNA molecules (Ficetola et al., 2015). In order to ensure that rare 362 

species are detected, sampling effort needs to be high in terms of the number of replicates or 363 

volume of water filtered (Hanfling et al., 2016; Shaw et al., 2016; Valentini et al., 2016). The low 364 

target DNA concentration typical for eDNA samples also increases the risk of contamination during 365 

sampling and laboratory work. Similarly, the probability of species detection is dependent on 366 

sampling effort when using traditional methods, such as electrofishing (Lyon et al., 2014).  367 

On the other hand, false positives (including “unexpected” detections) are an important problem 368 

especially in eDNA metabarcoding. False positive detections may arise through contamination during 369 

sampling and laboratory work, structural errors (for example errors in bioinformatics, chimeras), the 370 

presence of target DNA in samples where the organism in question is not  present (Darling and 371 

Mahon, 2011; Stoeckle et al., 2017; Yamamato et al. 2017) or only present in upstream sites 372 
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(Hänfling et al., 2016), and dead organisms or life-stages (seeds, spores, eggs, early instars) 373 

associated with non-viable populations. The results of eDNA studies can be influenced strongly by 374 

single molecules. It is less likely to be a concern for whole community analyses where the majority of 375 

organisms present in the sample will be relevant and their abundant DNA reduce the influence of 376 

trace DNA. There is a clear need to relate DNA reads to the presence of viable populations within the 377 

water body. At some point the information gained from molecular methods will tip from “signal” to 378 

“noise”, and it will be important to learn to differentiate between an indication of a genuinely rare 379 

species and reads caused by DNA from non-viable organisms. 380 

As a result, the taxa lists produced by DNA-based methods are different from those generated by 381 

traditional methods: additional taxa will be included that are not identifiable with morphometric 382 

methods, while other taxa will not be detected. In addition, detection limits will differ, dependent on 383 

the way specimens/DNA are extracted from the raw samples. DNA-based taxa lists will inevitably 384 

require some manipulation before they can be used in current assessment methods. This may 385 

involve filtering DNA-based lists against the operational taxon list used for that assessment system, 386 

thus eliminating those taxa which are not detected with traditional methods (Elbrecht et al., 2017) as 387 

well as indicating those that cannot (yet) be identified with DNA based methods (for example due to 388 

incomplete reference databases). Alternatively, assessment systems may need to be modified, by 389 

aligning (intercalibrating) future indices suitable for DNA-based methods with existing indices if the  390 

full potential of genetic identification is to be realised. 391 

We used this criterion to rate the suitability of DNA-based taxon lists for the calculation of the 392 

assessment indices applied in the current WFD assessment schemes.  393 

 394 

Criterion 1.3: Need for assessment of abundance and accuracy of abundance estimates with DNA-395 

based methods 396 
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This criterion addresses questions regarding the capability of DNA-based methods to estimate 397 

abundance alongside the relevance of abundance estimates is for current WFD assessment methods. 398 

The criterion is relevant to understand whether  missing information on abundance will be a 399 

significant obstacle before DNA-based assessments can be applied to meet  current WFD 400 

requirements.  401 

The WFD specifies that abundance should be considered when determining ecological status; hence, 402 

current WFD approaches include estimates of abundance (often as abundance classes). For 403 

straightforward integration of DNA-based identification into these approaches, molecular methods 404 

also need to generate  abundance estimates. Therefore, a key question is whether or not DNA-based 405 

methods can provide reliable estimates of absolute or relative species abundance (see for review 406 

Bohmann et al., 2014; Rees et al., 2014; Lawson-Handley, 2015). While quantitative PCR approaches 407 

can be used to quantify target organisms (Takahara et al., 2012; Kelly et al., 2014; Nathan et al., 408 

2014; Klymus et al., 2015; Baldigo et al., 2017), this becomes problematic for metabarcoding due to 409 

primer bias (Pinol et al., 2014; Elbrecht and Leese, 2015). Factors that influence DNA concentration 410 

and errors along the analytical pipeline can alter the relationship between the initial quantity of DNA 411 

in the sample and the final number of reads per species (see Bohman et al., 2014, for a review). 412 

Nevertheless, recent results have tended to demonstrate a link between the initial amount of DNA 413 

and the number of reads (Elbrecht et al., 2017; Klymus, 2017), opening the possibility of estimating 414 

relative abundances of target taxa from high-throughput sequences of eDNA samples (Hanfling et al. 415 

2016; Pont et al., submitted; Brys et al., submitted). Metagenomic approaches, where target DNA is 416 

sequenced without a PCR-amplification step, could potentially overcome or reduce taxa biases 417 

associated with some metabarcoding assays (Thomsen et al., 2016; Choo et al., 2017). Whilst  418 

correlations between metagenomic- approaches and PCR-based approaches are  significant, their 419 
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strength is moderate, and the first results have been a proof of concept rather than demonstration of 420 

quantitative [predictive?] relationships.  421 

It is important to note that even if a strong relationship can be obtained between amount of DNA in 422 

a sample and the number of sequence reads, the relationship between the number (or biomass) of 423 

organisms and the amount of DNA released into the environment is not straightforward. Some 424 

organisms (for example fish) shed DNA continuously while others (for example crayfish) shed large 425 

amounts when they breed or moult but very little at other times of year. Even for fish, spawning 426 

introduces large amounts of DNA into the environment that does not reflect the size of the adult 427 

population. Thus, sampling campaigns need to take account of the ecology and life-histories of the 428 

target organisms before quantitative inferences can be made.  429 

Correction factors can eliminate biases to an extent when DNA-based data are used in assessment 430 

systems (Thomas et al., 2016). Furthermore, many assessment systems use relative rather than 431 

absolute abundance or summarise absolute abundance as broad categories (for example log 432 

categories), where small biases may not introduce much uncertainty (Birk et al., 2012). A number of 433 

studies have demonstrated that relative abundance estimates from eDNA metabarcoding of fish 434 

communities show good correlations with abundance estimates from established survey methods. A 435 

comparison of electrofishing and eDNA based methods along the Rhône River, for example, revealed 436 

a sufficient correlation between the two techniques to describe the structure of fish assemblages 437 

and their longitudinal change in terms of relative abundance (Pont et al., submitted). In Windermere, 438 

a large lake in the UK, rank abundance from long-term traditional survey data correlated well with 439 

eDNA based estimates of relative abundance (Hanfling et al., 2016) and a recent study in Belgian 440 

ponds showed strong correlations between sequence read counts and fish biomass (Brys et al., 441 

submitted). As the WFD assessment approach demands that comparison are made between 442 
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observed and expected conditions, it may be possible to correct for consistent biases, particularly 443 

when the reference condition is based on new characterisation using molecular techniques.  444 

We used this criterion to rate the degree of changes required in current WFD assessment schemes to 445 

account for the differences in abundance data generated by DNA-based identification methods 446 

compared with traditional identification methods.  447 

 448 

2) Sensitivity of species detection 449 

Criterion 2.1: Capability of DNA-based methods to sample sensitive taxa 450 

This criterion addresses the question of whether or not DNA-based methods are suitable for the 451 

detection of sensitive taxa, which are an integral part of most WFD assessment methods. The 452 

criterion is relevant to rate if current assessment metrics can reasonably be applied with taxon lists 453 

generated with DNA-based methods.  454 

Whilst some management objectives may require complete lists of taxa present (for example the 455 

conservation objectives of the Habitats Directive, which target species listed in Annexes II, IV and V; 456 

see http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm), the 457 

objective of the WFD is the sustainable development of water bodies. Hence, the principal role of 458 

biological monitoring is to determine the condition of the ecosystem and to detect impacts that 459 

could impede WFD objectives. Those taxa that are sensitive to human-induced stress are not 460 

necessarily those that contribute the most to structure and function, and assessments need to be 461 

aware of this. For example, several sensitive benthic invertebrate species with a long life cycle, 462 

whose occurrence indicates the absence of pollution events over a long time period, tend to occur at 463 

low abundance (e.g. large Plecoptera species). Whilst a complete list of taxa might not be required to 464 

determine stress effects, rare taxa are important components of some assessment metrics as they 465 

are typically most sensitive to water body deterioration (Clarke and Murphy, 2006). For those BQEs 466 
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and water categories where this has been demonstrated, it is important to ensure that rare species 467 

are accurately characterised when developing techniques that involve bulk extraction of genetic 468 

material. For fish, the capacity of DNA based methods to detect rare species in rivers more effectively 469 

than traditional methods has been clearly demonstrated (Civade et al., 2016; Pont et al., submitted), 470 

whereas for invertebrate samples it may be necessary to transform or increase sequencing depth in 471 

order to ensure rare taxa are detected (Elbrecht et al., 2017). For phytobenthos, the main issue is the 472 

severe underrepresentation of rare species in existing reference databases (Kermarrec et al. 2014).  473 

Another issue affecting sensitivity is sequencing depth relative to non-target DNA. For example, 474 

samples may have high concentrations of DNA from taxa that are not relevant for calculation of 475 

indices (e.g. fungi) and these high concentrations may reduce sensitivity to target or rare taxa.  476 

We used this criterion to rate if current assessment indices can be applied with DNA-based taxon 477 

lists.  478 

 479 

Criterion 2.2: Unassigned reads 480 

This criterion addresses the separate but related question, of how  the influence of f “unassigned” 481 

reads (i.e. those reads or OTUs that do not match a Linnaean taxon in DNA reference databases) is 482 

minimised. This criterion is relevant to judge if it is necessary to either generate more data for DNA 483 

reference databases or, alternatively, to generate data on ecological preferences for unassigned 484 

OTUs before they could be used in assessment systems.  485 

The extent of this problem varies among BQEs and is particularly complex for taxa-rich BQEs. For 486 

microalgae, Linnaean nomenclature still needs to be reconciled with cryptic diversity and possibly the 487 

depth of coverage of each taxon needs to be reconsidered. Whilst chimeras and mistags occur for all 488 

BQEs, for most the frequency of unassigned reads is related to the completeness of barcode libraries. 489 

The COI gene, for example, is available for hundreds of thousands of species, yet many taxa have are 490 
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still to be sequenced. Additional sequences are needed for adequate representation of intraspecific 491 

and geographic variation (Bergsten et al., 2012). For groups where other gene regions are preferred 492 

(for example 18S and rbcL for microalgae, 16S for Cyanobacteria) the number of taxa sequenced is 493 

lower despite considerable sequencing effort (for example Rimet et al., 2016). For fish, a barcode 494 

library based on the 12S marker is still in development for Southern and Eastern Europe, but 90% of 495 

fish species encountered in Western European continental water bodies have already been 496 

sequenced (Valentini et al., 2016). For UK macroinvertebrates, most OTUs have been assigned to 497 

species based on COI data, although taxonomic problems resulting from cryptic species remain to be 498 

solved (Andujar et al., accepted). 499 

Poor species representation in reference databases may lead to incorrect identifications and, thus, 500 

affect the assessments of ecological quality (Aylagas et al., 2014). In turn, this depends on the 501 

structure of the index. Four types of indices are used to assess ecological status for  the WFD (Hering 502 

et al., 2006): Composition / abundances indices, richness / diversity indices, sensitivity / tolerance 503 

indices and functional indices. Incomplete barcode libraries may have little influence on diversity 504 

indices, as the number of OTUs overall or within broad classification groups (for example order) may 505 

be sufficient to derive index values. However, those indices that are calculated from species presence 506 

are more vulnerable, as they require correct species identification. Indices based on average scores 507 

are likely to be more robust to missing taxa, but efforts will be needed to benchmark indices derived 508 

through molecular methods against those derived using existing approaches (Ärje et al., 2017).  509 

We used this criterion to rate how complete barcode libraries are for the individual BQEs and how 510 

incomplete barcode libraries will affect assessment results.  511 

 512 

3) Precision of DNA-based identifications 513 

Criterion 3.1: Knowledge about uncertainty of DNA-based identification 514 
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This criterion addresses the question of how well the uncertainty associated with DNA-based 515 

identification is known. The criterion is relevant as the WFD explicitly requires (Annex 1.3.4) that the 516 

uncertainty of assessments  is reported.  517 

As WFD assessments are used to guide management decisions and, hence, have both political and 518 

economic implications, there is considerable focus on the confidence in any assessment of ecological 519 

status made. The level of uncertainty can be estimated using specifically designed software (Clarke 520 

and Hering, 2006, Kelly et al., 2009) but differs between BQEs and associated assessment methods 521 

(Birk et al., 2012). As the use of molecular approaches does not result in directly equivalent data (see 522 

criteria 1.1 to 1.3), it will be necessary to quantify the uncertainty associated with the new methods 523 

and the impact on assessment metrics and classification. All steps in the identification and 524 

enumeration process will need to be considered, including processing (for example platform chosen, 525 

sequencing depth, pre-treatment), and data analysis (for example bioinformatics), as each has the 526 

potential to influence the resulting taxa list. Identification is only one step in the process and, at this 527 

stage, it is unclear whether or not uncertainty will increase or decrease if molecular methods are 528 

adopted. Leaving aside stochastic variability from sampling and biases associated with primer 529 

selectivity, representation and other processing errors, assessments are affected by the power of 530 

identification. Structural changes in the power of identification are likely to occur over time (for 531 

example infilling of barcode libraries, technological developments in platforms, better links between 532 

DNA-based and morpho-taxonomy). Robust quality assurance methods will be necessary in order to 533 

quantify such changes. Quality assurance procedures based on morpho-taxonomic approaches are 534 

also fundamental to account for any bias introduced by DNA contamination and chimeras, and their 535 

adoption would allow for continuous comparison with existing methods to demonstrate the effects 536 

of future advances in technology. Simulations can help to better understand the effect of the 537 



25 
 

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

differing taxonomic resolution on assessment indices and the degree of bias between morphology-538 

based and DNA-based identification methods (for example Ärje et al., 2016).  539 

We used this criterion to roughly estimate the uncertainty associated with DNA-based identification 540 

of different BQEs.  541 

 542 

4) Comparability with conventional approaches 543 

Criterion 4.1: Sensitivity of EQRs to differences in DNA-based identification 544 

This criterion addresses the question of whether or not current Ecological Quality Ratios can be used 545 

with assessment results generated with DNA-based identification methods. The criterion is relevant 546 

to estimate the degree to which EQRs need to be adapted, to achieve similar assessment results as 547 

traditional methods. It is a validation criterion integrating aspects of Criteria 1.1 to 1.3.  548 

As the WFD approach requires the comparison of an observed assemblage to the  assemblage 549 

expected under “reference conditions” (i.e. an EQR), anything which influences the observed or the 550 

expected score will affect the EQR. The adoption of molecular methods will alter the probability of 551 

detection of observed species. However, increased resolution will create a demand for data 552 

describing species tolerances to stressors. Currently we have little understanding of tolerances for 553 

many taxa at species level, a situation that will not be easy to resolve for species with limited 554 

distributions. Reducing the DNA-generated taxa list (see Criterion 1.2) to match current taxonomic 555 

resolution may resolve this issue, otherwise the expected reference condition and/or quality class 556 

boundaries will have to be adjusted. Differences in scores between existing and DNA-based methods 557 

could be converted using correction factors to ensure comparability between past and future 558 

monitoring results (Vasselon et al., 2017). Alternatively, molecular data can be treated at face value, 559 

an option for phytobenthos, for example, where the traditional approach itself has inherent biases 560 

(Kelly et al., 2017).  561 
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We used this criterion to rate if adaptations of EQRs are necessary and feasible.  562 

 563 

Criterion 4.2: Intercalibration 564 

This criterion addresses the question regarding whether or not an intercalibration of boundaries for 565 

ecological status classes is feasible for assessment methods that use DNA-based identification. 566 

Intercalibration is a requirement for all new or revised assessment methods to be applied under the 567 

WFD.  568 

The statutory goal of Good Ecological Status requires that status class boundaries are harmonised 569 

between all Member States of the EU. Although each Member State is free to develop a method for a 570 

BQE that is most appropriate to its conditions, there is a practical need to have data that can be 571 

compared with that produced by neighbouring Member States in order to ensure consistent 572 

application of the WFD across the EU. Existing boundaries, in particular the high-good and good-573 

moderate boundaries, have been harmonised through the process of intercalibration. New molecular 574 

methods will need to fit into this framework and procedures exist (European Union, 2015) to help 575 

Member States achieve this. However, this will inevitably entail comparisons with countries still using 576 

traditional approaches. This, however, will not be the first time that a Member State has proposed an 577 

approach that cannot be compared directly with those of nearby countries (Poikane et al., 2014). In 578 

such circumstances, it will be necessary to apply both methods in parallel at sites ranged along key 579 

environmental gradients such that the position of boundaries established using the new method can 580 

be compared with existing boundaries. In practice, this will concern the average position of 581 

boundaries established by those countries that have already taken part in the intercalibration 582 

exercise for a particular BQE and water body type. As such parallel datasets are likely to be collected 583 

during the process of method development or testing in each country, intercalibration is unlikely to 584 

present a serious challenge.  585 
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It should be noted that intercalibrated standards do not just affect comparisons among Member 586 

States: the target of Good Ecological Status is a long-term policy goal and any change in methods 587 

within a country has implications for detection of long-term change and, hence, progress towards 588 

this target. Changes in the position of key status class boundaries will need to be justified to 589 

governments and stakeholders as these will have implications for regulation.  590 

We used this criterion to rate if there are obstacles for intercalibrating indices that are calculated 591 

with DNA-based taxon lists.  592 

 593 

5) Cost-effectiveness 594 

Criterion 5.1: Costs compared to traditional methods 595 

This criterion addresses the question of whether or not DNA-based methods have the potential to 596 

substantially lower the costs of monitoring. This is relevant as monitoring programmes are often 597 

subject to  severe financial pressure.  598 

In recent years, the cost of sequencing biological material has fallen sharply and is likely to fall 599 

further as technology develops. However, cost-effectiveness is not defined simply by the monetary 600 

cost of sample processing but includes factors such as cost and availability of facilities, training 601 

needs, speed of processing, sensitivity and precision. Here, molecular approaches could provide an 602 

advantage via low processing costs and rapid turn-round (“economies of scale”), potentially enabling 603 

increased sampling frequency, increasing precision of assessments and enabling more responsive 604 

monitoring of pollution events or restoration activities. Furthermore, sampling eDNA is often 605 

cheaper than traditional sampling methods, e.g. electrofishing, gillnetting or trawling. Again, we 606 

stress that the whole cycle should be considered when comparing approaches: advantages gained by 607 

mechanising one aspect can easily be offset by losses in other parts of the assessment process (Stein 608 

et al., 2014; Elbrecht et al., 2017).  609 
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We used this criterion to rate the potential for cost reduction through the use of DNA-based 610 

methods for the individual BQEs.  611 

 612 

Criterion 5.2: Processing speed 613 

This criterion addresses the question of whether sample processing can be accelerated by DNA-614 

based identification or not. The criterion is relevant as the time required for manual identification is 615 

often a bottleneck for processing biological samples for WFD monitoring, particularly those requiring 616 

trained experts for microscopic identification (i.e. phytoplankton and macroinvertebrates). The speed 617 

of processing could be enhanced by DNA-based methods (Goodwin et al., 2017). DNA based methods 618 

could also benefit those BQEs requiring time-consuming sampling (for example electrofishing, gill-619 

netting). At present, however, sequencing and computer capacities are limited for such DNA-based 620 

methods in many countries. This can itself create a bottleneck, potentially exacerbated by the need 621 

to run sequencing machines at full capacity in order to access the economies of scale described in 622 

5.1. Early experience in the UK is that the shift to DNA-based analysis of phytobenthos makes it 623 

harder for laboratories to respond to requests to prioritise particular samples. This situation should 624 

change over time, as capacity increases and technology advances, as well as through knowledge 625 

transfer (Leese et al., submitted). 626 

We used this criterion to  rate the potential for speeding up sample processing for individual BQEs.  627 

 628 

6) Criterion 6.1: Animal well-being, health and safety, environmental impact  629 

This criterion addresses the question of whether DNA-based identification can reduce the 630 

environmental impact and safety risks of sampling methods.  631 

“Hands-off” techniques, such as eDNA assessments of fish populations, provide benefits for the well-632 

being of fish (and bycatches of non-target organisms such as mammals or birds) particularly when 633 
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compared with destructive methods such as gill-netting. This also holds true for nationally or 634 

internationally protected or red-listed species. For endangered species, sampling is often limited 635 

during critical life stages (e.g. during breeding season) to reduce potential impacts on the species. 636 

However, that may be the best opportunity to document their presence or density. Use of eDNA 637 

provides an opportunity to sample during critical life history phases in a less intrusive manner. 638 

Similarly, health and safety risks may be reduced when individuals do not have to enter the water or 639 

use heavy or potentially dangerous equipment (for example electrofishing apparatus) to collect 640 

samples or perform surveys. 641 

We used this criterion to rate the potential for DNA-based methods to reduce the environmental and 642 

health and safety impacts of monitoring activities.  643 

 644 

Applicability of DNA-based identification for combinations of BQEs and water categories 645 

We applied the criteria listed in the previous chapter to each combination of BQEs (phytoplankton, 646 

benthic flora, invertebrates, fish) and water categories (rivers, lakes, coastal and transitional waters) 647 

(Figure 1). In the following, we provide justification for the values given in Figure 1, where the 648 

applicability of the individual criteria is rated as: 649 

 “high” (1), i.e. the criterion poses no obstacle to the implementation of DNA-based 650 

identification; 651 

 “medium” (2), i.e. DNA-based identification could be applied but requires changes in the 652 

sampling scheme or the assessment system; 653 

 “low” (3), i.e. DNA-based identification is currently not possible without substantial changes 654 

in the sampling scheme or the assessment system. 655 

The ranking is based on the qualitative analysis of the literature  given in the previous sections . As 656 

the criteria are not necessarily of equal relevance, the ranking of the individual criteria does not 657 
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imply an overall ranking of the BQEs. In particular, Criteria 5.1, 5.2 and 6.1 do not address the 658 

technical feasibility of DNA-based identification, rather additional arguments for the use of DNA-659 

based methods.  660 

 661 

Criterion 1.1 (Applicability of current sampling methods, and availability of alternative methods, for 662 

obtaining biological material for DNA-based identification): Applicability of sampling methods differs 663 

greatly between organism groups. For phytoplankton, phytobenthos and invertebrates the 664 

traditional sampling methods can be used for DNA-based assessment (high), although some aspects 665 

such as use of ethanol as a fixative is problematic for cost and safety reasons in several European 666 

states. For fish, traditional electrofishing or gill-netting can be replaced by water samples for 667 

extraction of eDNA, which would be a simple and effective alternative (high). Macrophytes, 668 

macroalgae and angiosperms are surveyed rather than sampled; most species are identified in the 669 

field and their abundance is estimated directly. A different, and as yet not available, sampling 670 

method capable of detecting all relevant species adequately would need to be applied for DNA-based 671 

identification (low).  672 

 673 

Criterion 1.2 (Errors from DNA-based species detection and similarity of DNA-based and conventional 674 

taxon lists): This criterion depends on the transferability of DNA-based taxon lists into taxon lists 675 

similar to those generated with morphology-based methods, and largely concerns taxa that are 676 

currently only identifiable with either morphology or DNA-based methods. In principle, additional 677 

taxa identified with DNA-based methods could be removed from a taxa list through use of filters 678 

(thus allowing the continuous use of the current assessment metrics; Elbrecht et al., 2017), while 679 

taxa not identified with DNA-based methods necessarily require changes in the assessment metrics. 680 

The number of the latter is low for fish and for invertebrates (Valentini et al., 2016; Aylagas, 2017) 681 
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(high suitability), and despite a lower number of identifiable taxa, transferability has been 682 

demonstrated for phytobenthos (Kelly et al., 2017) (high). For phytoplankton, this is still to be 683 

demonstrated (medium). Combining directly identifiable taxa with known ecology, with those that 684 

are assigned to an OTU to give an ecological value should improve current assessment systems, 685 

without fundamentally changing their concept. For macrophytes, macroalgae and angiosperms most 686 

species can be identified, but as sampling methods associated with current assessment systems do 687 

not result in samples of all species (see 1.1), taxa lists generated with DNA-based identification may 688 

differ more than for other BQEs (medium).  689 

 690 

Criterion 1.3 (Need for abundance assessment and accuracy of abundance estimates with DNA-based 691 

methods): The relevance of this criterion depends on  692 

 the role of abundance-based metrics in assessment methods for the individual BQEs;  693 

 options to measure relative abundance and to replace absolute by relative abundance;  694 

 options to transform abundance-based metrics into presence/absence-based metrics.  695 

Currently, the normative definitions for most BQEs specifies a need for abundance estimates. For 696 

phytoplankton, however, a measure of abundance is provided by chlorophyll concentration, resulting 697 

in a “medium” rating of this criterion. For phytobenthos and invertebrates, there are promising signs 698 

that presence/absence-based data and relative abundance estimates could be used (Vasselon et al., 699 

2017) (medium). For fish, there are attempts to infer relative abundance from eDNA, while age 700 

classes cannot be detected (Hanfling et al., 2016, Pont et al., submitted) (medium). The species-poor 701 

groups of macrophytes, angiosperms and macroalgae are surveyed rather than sampled under the 702 

current assessment schemes; in its extreme form, an assessment system can be based on a single 703 

species (e.g. Posidonia) and the assessment system simply rates its abundance and density. This 704 

cannot be inferred from eDNA (low). 705 
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 706 

Criterion 2.1 (Capability of DNA-based methods to sample sensitive taxa): For fish, DNA-based 707 

methods are clearly superior to electrofishing and gillnetting in terms of the detection of rare species 708 

(Hanfling et al., 2016) (high). For invertebrates and phytoplankton, there is good evidence that the 709 

relevant species are reliably captured with DNA-based methods (high), although unequal biomass 710 

still requires manual size adjustments especially for the biomass-rich specimens or great sequencing 711 

depths (Elbrecht et al. 2017). If a suitable sampling method could be found, this would also probably 712 

apply to macrophytes, but, in the absence of this, we rate it as “unknown”. For phytobenthos, the 713 

coverage of barcode libraries (see 2.2) limits this criterion (medium). There are currently no papers 714 

on DNA-based methods for marine angiosperms and macroalgae (unknown). This does not, however,  715 

mean that DNA-based identification is unsuitable for detecting sensitive marine angiosperm and 716 

macroalgae taxa, only that more work is needed.  717 

 718 

Criterion 2.2 (Unassigned reads): This criterion is mainly associated with the completeness of 719 

barcode libraries (COI gene, 18S and rbcL for microalgae, 16S for Cyanobacteria) and cryptic diversity. 720 

Fish and macrophytes in rivers and lakes rate “high”, while barcode libraries for phytobenthos, 721 

invertebrates and fish in transitional and coastal waters are in an intermediate state of completeness 722 

(medium). For phytoplankton, cryptic diversity is an issue, as the number of taxa sequenced is lower 723 

(low), while for macroalgae and angiosperms cryptic diversity could be an issue only for small 724 

epiphytic species (low). 725 

  726 

Criterion 3.1 (Knowledge about uncertainty of DNA-based identification): For all BQEs, data on 727 

uncertainty associated with the different steps of the DNA-based processing chain have not been 728 

collected systematically or simulated (Ärje et al., 2016). We rate this criterion as “low” for 729 
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macrophytes, angiosperms and macroalgae, as sampling provides an additional - yet unquantified - 730 

source of uncertainty, while in the absence of more precise data the criterion is rated as “medium” 731 

for all other BQEs.  732 

 733 

Criterion 4.1 (Sensitivity of EQRs to differences in DNA-based identification): It is likely that 734 

approaches used to derive EQRs will need to be adapted for DNA-based identification, even if 735 

taxonomic issues (Criteria 1.2 and 2.2) have been solved. The feasibility of this procedure has already 736 

been demonstrated for phytobenthos (Kelly et al. 2017) and fish (Civade et al., 2016; Pont et al. 737 

submitted) (high), and we assume that this procedure will be possible for most other BQEs (medium). 738 

Exceptions are macrophytes in rivers and lakes, and angiosperms and macroalgae in coastal and 739 

transitional waters, for which we question the suitability of currently applied indices for use with 740 

DNA-based data, as most rely on measures of cover.  741 

 742 

Criterion 4.2 (Intercalibration): In principle, there are no obstacles preventing the WFD 743 

intercalibration procedure being performed to compare DNA-based methods against traditional 744 

methods. However, to date this process has not been undertaken, as few countries  use DNA-based 745 

identification for formal  WFD assessments. Promising examples, for which DNA-based and morpho-746 

taxonomic approaches have been compared (although not yet intercalibrated) include phytobenthos 747 

in rivers, invertebrates in rivers and transitional and coastal waters, and fish in rivers and lakes (high), 748 

while we rate this criterion as “medium” for most other BQE-water type combinations. We expect 749 

more general problems for macrophytes, angiosperms and macroalgae (low), as the compatibility of 750 

these BQEs with DNA-based methods is generally questionable: These groups are species-poor, they 751 

are identified and their abundance estimated in the field; applying DNA-based identification would, 752 
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therefore, require a different sampling strategy and different metrics, which limits comparability with 753 

traditional approaches. 754 

 755 

Criterion 5.1 (Costs compared with traditional methods): A comprehensive overview of the costs 756 

associated with DNA-based methods compared with traditional methods is not yet available (but see 757 

Stein et al., 2014; Sigsgaard et al., 2015; Smart et al., 2016; Aylagas, 2017). It is expected that the 758 

costs will be significantly lower for fish in rivers, lakes and transitional waters, as sampling eDNA is 759 

much cheaper than electrofishing, gillnetting or trawling (high). For all other BQE-water category 760 

combinations, we expect a potential for cost reduction, which nevertheless still needs to be explored 761 

(medium).  762 

 763 

Criterion 5.2 (Processing speed): The potential for increased processing speed is particularly high for 764 

the labour-intensive identification of phytoplankton and invertebrates (high), while it is “low” for 765 

macrophytes, macroalgae and angiosperms, for which the field survey is the most time-consuming 766 

process. For all other BQEs, this criterion has been rated as “medium”.  767 

 768 

Criterion 6.1 (Animal well-being, health and safety, environmental impact): This criterion is only 769 

relevant for invertebrates and fish. For invertebrates, the same sampling methods are applied for 770 

traditional and DNA-based approaches. For traditional methods, the specimens are in most cases 771 

sacrificed for morphological identification, unless they are sorted and identified alive; however, rare 772 

and protected species (such as Odonata larvae and large mussels) are often identified in the field and 773 

placed back in the water body afterwards. Although this option is possible for DNA-based methods, 774 

there is generally a need to sacrifice specimens before DNA-based identification (low). For fish, the 775 
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sampling of eDNA is non-invasive and offers advantages over gillnetting, trawling or electrofishing 776 

(high).  777 

 778 

Discussion and outlook 779 

Suitability of DNA-based identification for different BQEs and water categories 780 

This paper is limited to the use of DNA-based identification for biological assessment systems in 781 

support of the WFD, although some of the issues discussed could be applicable to other directives 782 

(i.e. the Marine Strategy Framework Directive) and other geographical areas (for example in the USA, 783 

for the Clean Water Act; Keck et al. 2017). Clearly, DNA-based methods offer options, which can go 784 

beyond simple identification to a predefined taxonomic level. Therefore, DNA-based identification is 785 

likely to be a transition stage between conventional morpho-taxonomic approaches and DNA-based 786 

ecological assessment methods. However, even DNA-based identification poses many obstacles and 787 

cannot be implemented without adapting both the DNA-based identification procedure and the 788 

assessment methods to which they would be applied. These obstacles to implementation differ 789 

strongly among BQEs. 790 

The advantages of DNA-based identification are obvious for fish: eDNA offers a well-suited and 791 

reliable sampling method (although different from conventional methods), with a high probability of 792 

detecting species (compared to other organism groups), whilst avoiding cost-intensive and harmful 793 

sampling methods. But even for fish, assessment metrics will need to be adapted, in particular to 794 

account for the change from absolute to relative abundances. Furthermore, some criteria required 795 

by WFD legislation (for example age class) currently cannot be assessed using DNA-based methods 796 

but, on the other hand, several currently adopted (and intercalibrated) methods do not include age 797 

classes either.  798 
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For invertebrates and phytobenthos, DNA-based identification is close to being applicable in 799 

standard monitoring programmes. For invertebrates, the main challenges remaining include dealing 800 

with abundance and adaptation of EQRs for use with  DNA-based methods. Furthermore, barcode 801 

libraries need to be completed, in particular for phytobenthos. For phytoplankton, the latter problem 802 

is even more relevant, due to high taxonomic diversity in plankton samples. For phytoplankton, the 803 

problem of abundance can be circumvented, as chlorophyll concentration is also assessed. At 804 

present, risk of cyanobacterial blooms is inferred from the abundance estimates, and a future DNA-805 

based approach would need to satisfy this requirement. For phytobenthos, most of the current 806 

methods assess relative abundance of taxa, and do not take total abundance into account. 807 

DNA-based identification is currently least appropriate for macrophytes (rivers, lakes) and 808 

angiosperms / macroalgae (transitional and coastal waters), which are surveyed rather than sampled. 809 

Surveys require taxonomic knowledge to gain a representative sample, and most identification is 810 

carried out in the field. Furthermore, the indices rely on cover value, as a proxy for abundance. 811 

Consequently, the applicability of DNA-based identification differs markedly among BQEs, while 812 

there are only minor differences between water categories, mainly due to differences in the 813 

completeness of barcode libraries and the translocation of eDNA  in rivers. 814 

 815 

Implications of implementing DNA-based identification 816 

Even the relatively minor changes resulting from the replacement of morphological with DNA-based 817 

identification will have significant implications for WFD assessments. On the one hand, DNA-based 818 

identification will require flexibility in the interpretation  of the WFD and in how regulators use data. 819 

On the other hand, it will pave the way for the development of a new generation of ecological 820 

assessment tools, beyond and in parallel to the current WFD approaches. The principal challenge is 821 
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to solve the conflict between the inherent need for ecological assessment to be consistent over a 822 

long time period, and the opportunities provided by the new methods. 823 

The options for dealing with abundance is a good example of this conflict. Annex V of the WFD 824 

stipulates that abundance must be recorded for most BQEs. The legislation is based on the 825 

assumption that abundance provides more information than taxa lists alone, as changes in 826 

abundance may occur long before human-induced pressures lead to the extinction of species. As a 827 

consequence, the calculation of most functional indices requires data on either the abundance of a 828 

taxon or, at the very least, the proportion of the whole sample or sub-sample that it represents. 829 

Therefore, before DNA-based identification can be implemented, two questions need to be 830 

addressed: (1) How best to fulfil the legal requirement of recording abundance? And (2) How can the 831 

information given by species’ abundances best be provided? The answer to the first question differs 832 

between BQEs. For phytoplankton, there is  the option of using chlorophyll concentration as a proxy 833 

for abundance or biomass. From a practical point of view, a filtered plankton sample can be divided, 834 

with one half being used to measure chlorophyll and the other half for DNA-based identification. The 835 

remaining quantitative indicators required for phytoplankton are algal bloom frequency and 836 

amplitude, which could be measured with frequent readings of pigments from satellites or 837 

continuous reading from an automated buoy placed within the water body (Schluter et al., 2014). 838 

Thus, a combination of DNA-based identification and other methods could fulfil the WFD’s 839 

requirements. For fish, and probably other BQEs, there is the option to use relative rather than 840 

absolute abundance based on read count data, or frequency of occurrences in several eDNA samples 841 

as a proxy for abundance by analysing multiple eDNA replicates per site (Pilliod et al., 2013). In 842 

response to the second question, there are promising signs for various BQEs and metrics that 843 

presence-absence data give signals similar to abundance data and can be translated between one 844 

another (Aylagas, 2017). However,  questions remain, regarding the degree to which abundance data 845 
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– whether traditional or molecular –  reflects biomass or processes (for example related to the 846 

abundance of grazers or sediment feeders in the benthic invertebrate community. Currently applied 847 

measures of abundance do not discriminate between large and small specimens: a tiny chironomid 848 

larvae and a large stonefly larvae count the same, although the latter might have a 1,000 times 849 

greater biomass. Clearly, there is room for improvement through DNA-based methods. Barcodes 850 

potentially represent the abundance of mitochondria and plastids and may, indeed, offer greater 851 

insights into which taxa are actually driving ecological processes within an ecosystem, by reflecting 852 

the intensity of metabolic processes. 853 

More generally, there is the question of how to achieve compatibility in ecological assessments when 854 

replacing conventional by novel methods? The term “monitoring” implies recording of time series, 855 

and, inherently, the consistent use of standard methods. In case of the WFD, the monitoring intervals 856 

are very long: for River Basin Management Plans, for example, ecological status only needs to be 857 

reported at six-yearly intervals. It should be possible to change methods between these intervals in 858 

response to results and experience. DNA-based identification is only one, albeit significant, driver of 859 

changes to methods. The benefits of increased accuracy and performance of enhanced ecological 860 

assessment methods will always need to be carefully balanced against the potential loss of 861 

compatrability. The implementation of new methods should, therefore, always be accompanied by a 862 

re-calculation of indices from prior monitoring programmes, to ensure backward compatibility. This 863 

underlines the need to develop capacity to archive DNA samples, particularly from reference sites, so 864 

that as new technologies emerge, DNA from critical sites can be reanalysed using the new methods.  865 

Closely related with the question of backward compatibility is the future evolution of methods. With 866 

DNA-based identification, there is a clear need to allow methods to evolve, which may require 867 

constant adaptation of indices and assessment methods. This is a potential paradigm shift in  how to 868 

handle monitoring data. In future, a rolling  comparison with existing methods will be needed to 869 
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“buffer” monitoring results against the effects of advances in technology. However, provided there is 870 

sufficient storage capacity, sequence data can be stored and reanalysed more easily than traditional 871 

samples, ensuring a level of “forward compatibility” as bioinformatics and metrics improve, for as 872 

long as sampling, DNA extraction and the sequencing itself are robust. Most importantly, DNA 873 

extracts are relatively easy to store and this should be encouraged, as we do not know which 874 

barcodes and methods will be available in the future. 875 

The expense of implementation is another consideration when introducing DNA-based methods into 876 

WFD assessments, since costs may be reduced compared with traditional assessment methods 877 

(Aylagas, 2017). Expenses are not solely related to the costs of processing individual samples, but 878 

encompass training, equipment purchase, administrative and maintenance costs, quality assurance 879 

and, importantly, the costs of initial method development and ongoing evaluations and upgrades. 880 

Any change in assessment methods and results needs to be communicated to policy makers and the 881 

general public, which is not necessarily a straightforward procedure and which will require education  882 

of  stakeholder groups, including those from non-scientific backgrounds. 883 

A general challenge for river basin management will be the breakdown of the assessment procedure 884 

into several smaller steps, which are performed by different people or units. While in many countries  885 

microscopic identification is still  the responsibility of water boards, DNA-based identification is likely 886 

to induce a shift to external service providers. Care must be taken that the individual steps of the 887 

assessment procedure stay connected and allow informed interpretation of the data. Data generated 888 

by DNA-based identification will need to be transferred to the responsible authorities in a way that 889 

allows for simple understanding of procedures, results and their uncertainties. Decisions based on 890 

assessment results precipitate significant investment by the private and public sectors, and it is 891 

essential that decision makers are provided with monitoring data that have been generated in a 892 

transparent way.  893 
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 894 

Conclusions 895 

There is great potential for DNA-based identification to be used for assessment procedures to fulfil  896 

the requirements of the WFD. DNA-based identification can contribute to making assessment 897 

procedures more cost-effective, faster, more transparent and have greater reproducibility. There are, 898 

however, several practical obstacles, which will need to be overcome within the next years. We 899 

recommend  that the potential benefits of DNA-based identification are quantified relative to 900 

existing traditional methods, together with the parallel application of morphometric and DNA-based 901 

identification in order to learn how comparable the approaches are and to increase compatability 902 

where necessary. DNA-based identification will be a valuable step into more advanced methods of 903 

DNA-based monitoring, which may complement or even replace more traditional monitoring systems 904 

in the future.  905 
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 1222 

Figure 1: Rating of the criteria for different BQEs and water categories. Large circles = high suitability 1223 

of DNA-based identification; mid-sized circles = medium suitability; small circles = low suitability; N/A 1224 

= not applicable. TRaC: Transitional and Coastal waters. 1225 
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