Professor Bernard P Binks B.P.Binks@hull.ac.uk
Professor of Physical Chemistry
Professor Bernard P Binks B.P.Binks@hull.ac.uk
Professor of Physical Chemistry
Zhenggang Cui
Jianzhong Jiang
Xiaomei Pei
Yue Zhu
In the recent past, switchable surfactants and switchable/stimulus-responsive surface-active particles have been of great interest. Both can be transformed between surface-active and surface-inactive states via several triggers, making them recoverable and reusable afterward. However, the synthesis of these materials is complicated. In this paper we report a facile protocol to obtain responsive surface-active nanoparticles and their use in preparing responsive particle-stabilized foams. Hydrophilic silica nanoparticles are initially hydrophobized in situ with a trace amount of a conventional cationic surfactant in water, rendering them surface-active such that they stabilize aqueous foams. The latter can then be destabilized by adding equal moles of an anionic surfactant, and restabilized by adding another trace amount of the cationic surfactant followed by shaking. The stabilization–destabilization of the foams can be cycled many times at room temperature. The trigger is the stronger electrostatic interaction between the oppositely charged surfactants than that between the cationic surfactant and the negatively charged particles. The added anionic surfactant tends to form ion pairs with the cationic surfactant, leading to desorption of the latter from particle surfaces and dehydrophobization of the particles. Upon addition of another trace amount of cationic surfactant, the particles are rehydrophobized in situ and can then stabilize foams again. This principle makes it possible to obtain responsive surface-active particles using commercially available inorganic nanoparticles and conventional surfactants.
Binks, B. P., Cui, Z., Jiang, J., Pei, X., & Zhu, Y. (2015). Responsive aqueous foams stabilized by silica nanoparticles hydrophobized in situ with a conventional surfactant. Langmuir : the ACS journal of surfaces and colloids, 31(47), 12937-12943. https://doi.org/10.1021/acs.langmuir.5b03681
Acceptance Date | Nov 4, 2015 |
---|---|
Online Publication Date | Nov 5, 2015 |
Publication Date | 2015-12 |
Deposit Date | Dec 2, 2015 |
Publicly Available Date | Dec 2, 2015 |
Journal | Langmuir |
Print ISSN | 0743-7463 |
Electronic ISSN | 1520-5827 |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 31 |
Issue | 47 |
Pages | 12937-12943 |
DOI | https://doi.org/10.1021/acs.langmuir.5b03681 |
Keywords | Aqueous foams; Switchable surfactants; Silica nanoparticles |
Public URL | https://hull-repository.worktribe.com/output/382031 |
Publisher URL | http://pubs.acs.org/doi/10.1021/acs.langmuir.5b03681 |
Additional Information | This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.langmuir.5b03681 |
ESI.pdf
(351 Kb)
PDF
Article.pdf
(655 Kb)
PDF
Copyright Statement
©2016 University of Hull
How polymer additives reduce the pour point of hydrocarbon solvents containing wax crystals
(2015)
Journal Article
Self-propulsion of liquid marbles: Leidenfrost-like levitation driven by marangoni flow
(2015)
Journal Article
Mechanical compression to characterize the robustness of liquid marbles
(2015)
Journal Article
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Advanced Search