University of Hull logo

Does the canopy mixing layer model apply to highly flexible aquatic vegetation? Insights from numerical modelling

Lane, Stuart N.; Parsons, Daniel R.; Hardy, Richard J.; Marjoribanks, Timothy I.

Authors

Stuart N. Lane

Richard J. Hardy

Timothy I. Marjoribanks

Abstract

© 2016, The Author(s). Vegetation is a characteristic feature of shallow aquatic flows such as rivers, lakes and coastal waters. Flow through and above aquatic vegetation canopies is commonly described using a canopy mixing layer analogy which provides a canonical framework for assessing key hydraulic characteristics such as velocity profiles, large-scale coherent turbulent structures and mixing and transport processes for solutes and sediments. This theory is well developed for the case of semi-rigid terrestrial vegetation and has more recently been applied to the case of aquatic vegetation. However, aquatic vegetation often displays key differences in morphology and biomechanics to terrestrial vegetation due to the different environment it inhabits. Here we investigate the effect of plant morphology and biomechanical properties on flow–vegetation interactions through the application of a coupled LES-biomechanical model. We present results from two simulations of aquatic vegetated flows: one assuming a semi-rigid canopy and the other a highly flexible canopy and provide a comparison of the associated flow regimes. Our results show that while both cases display canopy mixing layers, there are also clear differences in the shear layer characteristics and turbulent processes between the two, suggesting that the semi-rigid approximation may not provide a complete representation of flow–vegetation interactions.

Journal Article Type Article
Publication Date Apr 1, 2017
Journal Environmental fluid mechanics
Print ISSN 1567-7419
Electronic ISSN 1573-1510
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 17
Issue 2
Pages 277-301
DOI https://doi.org/10.1007/s10652-016-9482-z
Keywords Eco-hydraulics, Computational fluid dynamics, Vegetation, Biomechanics, Canopy flows, Turbulence
Publisher URL http://link.springer.com/article/10.1007%2Fs10652-016-9482-z
Additional Information Copy of article: Marjoribanks, T.I., Hardy, R.J., Lane, S.N. et al. Environ Fluid Mech (2016). doi:10.1007/s10652-016-9482-z

Files



You might also like


Downloadable Citations