Skip to main content

Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (2020)
Journal Article
Heijnen, M. S., Simmons, S. M., Cartigny, M. J. B., Hughes Clarke, J. E., Talling, P. J., Clare, M. A., …Hughes Clarke, J. E. (2020). Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution. Nature communications, 11(1), https://doi.org/10.1038/s41467-020-16861-x

Submarine channels are the primary conduits for terrestrial sediment, organic carbon, and pollutant transport to the deep sea. Submarine channels are far more difficult to monitor than rivers, and thus less well understood. Here we present 9 years of... Read More about Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution.

A bedform phase diagram for dense granular currents (2020)
Journal Article
Smith, G., Rowley, P., Williams, R., Giordano, G., Trolese, M., Silleni, A., …Capon, S. (2020). A bedform phase diagram for dense granular currents. Nature communications, 11(1), https://doi.org/10.1038/s41467-020-16657-z

Pyroclastic density currents (PDCs) are a life-threatening volcanic hazard. Our understanding and hazard assessments of these flows rely on interpretations of their deposits. The occurrence of stratified layers, cross-stratification, and bedforms in... Read More about A bedform phase diagram for dense granular currents.

Asymmetric effects of a modelled tidal turbine on the flow and seabed (2020)
Journal Article
Ramírez-Mendoza, R., Ramírez -Mendoza, R., Murdoch, L., Jordan, L. B., Amoudry, L. O., McLelland, S., …Vezza, M. (2020). Asymmetric effects of a modelled tidal turbine on the flow and seabed. Renewable energy, 159, 238-249. https://doi.org/10.1016/j.renene.2020.05.133

The extraction of power from the flow of water has become an important potential source of clean energy. In spite of significant interest in the interaction between energy extraction devices and water currents, comparatively little work has focused o... Read More about Asymmetric effects of a modelled tidal turbine on the flow and seabed.

Asymmetric effects of a modelled tidal turbine on the flow and seabed (2020)
Journal Article
Ramírez -Mendoza, R., Murdoch, L., Jordan, L., Amoudry, L. B. D., Mclelland, S., Cooke, R. D., …Vezza, M. (2020). Asymmetric effects of a modelled tidal turbine on the flow and seabed. Renewable energy, 159, 238-249. https://doi.org/10.1016/j.renene.2020.05.133

The extraction of power from the flow of water has become an important potential source of clean energy. In spite of significant interest in the interaction between energy extraction devices and water currents, comparatively little work has focused o... Read More about Asymmetric effects of a modelled tidal turbine on the flow and seabed.

Direct evidence of a high-concentration basal layer in a submarine turbidity current (2020)
Journal Article
Maier, K. L., Paull, C. K., Cartigny, M. J., Simmons, S. M., Talling, P. J., Wang, Z., …Parsons, D. R. (in press). Direct evidence of a high-concentration basal layer in a submarine turbidity current. Deep Sea Research Part I: Oceanographic Research Papers, https://doi.org/10.1016/j.dsr.2020.103300

Submarine turbidity currents are one of the most important sediment transfer processes on earth. Yet the fundamental nature of turbidity currents is still debated; especially whether they are entirely dilute and turbulent, or a thin and dense basal l... Read More about Direct evidence of a high-concentration basal layer in a submarine turbidity current.

Drainage and erosion of Cambodia's Great Lake in the middle-late Holocene: the combined role of climatic drying, base-level fall and river capture (2020)
Journal Article
Leng, M. J., Nicholas, A. P., Morgan, P. R., Hackney, C. R., Langdon, P. G., Best, J. L., …Penh, D. (2020). Drainage and erosion of Cambodia's Great Lake in the middle-late Holocene: the combined role of climatic drying, base-level fall and river capture. Quaternary science reviews, 236, https://doi.org/10.1016/j.quascirev.2020.106265

We provide evidence for a large-scale geomorphic event in Cambodia’s great lake, the Tonlé Sap, during the middle Holocene. The present-day hydrology of the basin is dominated by an annual flood pulse where water from the Mekong River raises the lake... Read More about Drainage and erosion of Cambodia's Great Lake in the middle-late Holocene: the combined role of climatic drying, base-level fall and river capture.

Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents (2020)
Journal Article
Simmons, S. M., Azpiroz-Zabala, M., Cartigny, M. J. B., Clare, M. A., Cooper, C., Parsons, D., …Talling, P. J. (2020). Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents. Journal of Geophysical Research: Oceans, 125(5), https://doi.org/10.1029/2019jc015904

Turbidity currents transport prodigious volumes of sediment to the deep-sea. But there are very few direct measurements from oceanic turbidity currents, ensuring they are poorly understood. Recent studies have used acoustic Doppler current profilers... Read More about Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents.

Influence of light and temperature cycles on the expression of circadian clock genes in the mussel Mytilus edulis (2020)
Journal Article
Chapman, E., Bonsor, B., Parsons, D. R., & Rotchell, J. (2020). Influence of light and temperature cycles on the expression of circadian clock genes in the mussel Mytilus edulis. Marine environmental research, 159, https://doi.org/10.1016/j.marenvres.2020.104960

Clock genes and environmental cues regulate essential biological rhythms. The blue mussel, Mytilus edulis, is an ecologically and economically important intertidal bivalve undergoing seasonal reproductive rhythms. We previously identified seasonal... Read More about Influence of light and temperature cycles on the expression of circadian clock genes in the mussel Mytilus edulis.

Dunes in the world’s big rivers are characterized by low-angle lee-side slopes and a complex shape (2020)
Journal Article
Cisneros, J., Best, J., van Dijk, T., Almeida, R. P. D., Amsler, M., Boldt, J., …Zhang, Y. (2020). Dunes in the world’s big rivers are characterized by low-angle lee-side slopes and a complex shape. Nature Geoscience, 13(2), 156-162. https://doi.org/10.1038/s41561-019-0511-7

Dunes are present in all the worlds’ big rivers and form critical agents of bedload transport, constitute appreciable sources of bed roughness and flow resistance, and generate stratification that is the most common depositional element of ancient al... Read More about Dunes in the world’s big rivers are characterized by low-angle lee-side slopes and a complex shape.

River bank instability from unsustainable sand mining in the lower Mekong River (2020)
Journal Article
Houseago, R. C., Nicholas, A. P., Best, J. L., Darby, S. E., Hackney, C. R., Darby, S., …Houseago, R. (in press). River bank instability from unsustainable sand mining in the lower Mekong River. Nature Sustainability, https://doi.org/10.1038/s41893-019-0455-3

Recent growth of the construction industry has fuelled demand for sand, with considerable volumes being extracted from the world’s large rivers. Sediment transport from upstream naturally replenishes sediment stored in river beds, but the absence of... Read More about River bank instability from unsustainable sand mining in the lower Mekong River.

What determines the downstream evolution of turbidity currents? (2019)
Journal Article
Heerema, C. J., Talling, P. J., Cartigny, M. J., Paull, C. K., Bailey, L., Simmons, S. M., …Pope, E. (2020). What determines the downstream evolution of turbidity currents?. Earth and planetary science letters, 532, https://doi.org/10.1016/j.epsl.2019.116023

© 2019 Seabed sediment flows called turbidity currents form some of the largest sediment accumulations, deepest canyons and longest channel systems on Earth. Only rivers transport comparable sediment volumes over such large areas; but there are far f... Read More about What determines the downstream evolution of turbidity currents?.

Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes (2019)
Journal Article
Hage, S., Cartigny, M. J., Sumner, E. J., Clare, M. A., Hughes Clarke, J. E., Talling, P. J., …Watts, C. (2019). Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophysical research letters, 46(20), 11310-11320. https://doi.org/10.1029/2019gl084526

Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current paradigm, based on... Read More about Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes.

Linking direct measurements of turbidity currents to submarine canyon-floor deposits (2019)
Journal Article
Maier, K. L., Gales, J. A., Paull, C. K., Rosenberger, K., Talling, P. J., Simmons, S. M., …Sumner, E. J. (2019). Linking direct measurements of turbidity currents to submarine canyon-floor deposits. Frontiers in Earth Science, 7, https://doi.org/10.3389/feart.2019.00144

Submarine canyons are conduits for episodic and powerful sediment density flows (commonly called turbidity currents) that move globally significant amounts of terrestrial sediment and organic carbon into the deep sea, forming some of the largest sedi... Read More about Linking direct measurements of turbidity currents to submarine canyon-floor deposits.

Self-sharpening induces jet-like structure in seafloor gravity currents (2019)
Journal Article
Dorrell, R. M., Peakall, J., Darby, S. E., Parsons, D. R., Johnson, J., Sumner, E. J., …Tezcan, D. (2019). Self-sharpening induces jet-like structure in seafloor gravity currents. Nature communications, 10(1), https://doi.org/10.1038/s41467-019-09254-2

Gravity currents are the primary means by which sediments, solutes and heat are transported across the ocean-floor. Existing theory of gravity current flow employs a statistically-stable model of turbulent diffusion that has been extant since the 196... Read More about Self-sharpening induces jet-like structure in seafloor gravity currents.

Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery (2019)
Journal Article
Strick, R. J., Ashworth, P. J., Sambrook Smith, G. H., Nicholas, A. P., Best, J. L., Lane, S. N., …Dale, J. (2019). Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery. Earth surface processes and landforms : the journal of the British Geomorphological Research Group, 44(4), 953-972. https://doi.org/10.1002/esp.4558

Images from specially‐commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicle (UAV) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, C... Read More about Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery.

Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes (2019)
Journal Article
Hage, S., Cartigny, M. J. B., Sumner, E. J., Clare, M. A., Hughes Clarke, J., Talling, P. J., …Watts, C. (2019). Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophysical research letters, 11310-11320. https://doi.org/10.1029/2019GL084526

©2019. The Authors. Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current... Read More about Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes.

On the causes of pulsing in continuous turbidity currents (2018)
Journal Article
Kostaschuk, R., Nasr-Azadani, M. M., Meiburg, E., Wei, T., Chen, Z., Negretti, M. E., …Parsons, D. R. (2018). On the causes of pulsing in continuous turbidity currents. Journal of Geophysical Research: Earth Surface, 123(11), 2827-2843. https://doi.org/10.1029/2018JF004719

Velocity pulsing has previously been observed in continuous turbidity currents in lakes and reservoirs, even though the input flow is steady. Several different mechanisms have been ascribed to the generation of these fluctuations, including Rayleigh‐... Read More about On the causes of pulsing in continuous turbidity currents.

Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring (2018)
Journal Article
Wu, X., Baas, J. H., Parsons, D. R., Eggenhuisen, J., Amoudry, L., Cartigny, M., …Ruessink, G. (2018). Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring. Journal of Geophysical Research: Earth Surface, 123(11), 2784-2801. https://doi.org/10.1029/2018JF004681

Based on bed form experiments in a large‐scale flume, we demonstrate that the rate of development of wave ripples on a mixed sand‐clay bed under regular waves is significantly lower than on a pure‐sand bed, even at clay fractions as low as 4.2%, and... Read More about Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring.

Powerful turbidity currents driven by dense basal layers (2018)
Journal Article
Paull, C. K., Talling, P. J., Maier, K. L., Parsons, D., Xu, J., Caress, D. W., …Cartigny, M. J. (2018). Powerful turbidity currents driven by dense basal layers. Nature communications, 9(1), https://doi.org/10.1038/s41467-018-06254-6

Seafloor sediment flows (turbidity currents) are among the volumetrically most important yet least documented sediment transport processes on Earth. A scarcity of direct observations means that basic characteristics, such as whether flows are entirel... Read More about Powerful turbidity currents driven by dense basal layers.

Controls on mud distribution and architecture along the fluvialto- marine transition (2018)
Journal Article
van de Lageweg, W. I., Braat, L., Parsons, D. R., & Kleinhans, M. G. (2018). Controls on mud distribution and architecture along the fluvialto- marine transition. Geology, 46(11), 971-974. https://doi.org/10.1130/G45504.1

© 2018 Geological Society of America. The interaction of marine (tides and waves) and fluvial processes determines the sedimentary fill of coastal systems in the fluvial-tomarine (FTM) transition zone. Despite frequent recognition of tidal and wave i... Read More about Controls on mud distribution and architecture along the fluvialto- marine transition.


;