University of Hull logo

Producing carbon nanotubes from thermochemical conversion of waste plastics using Ni/ceramic based catalyst (2018)
Journal Article
Liu, X., Shen, B., Wu, Z., Parlett, C. M., Han, Z., George, A., …Wu, C. (2018). Producing carbon nanotubes from thermochemical conversion of waste plastics using Ni/ceramic based catalyst. Chemical engineering science, 192, 882-891. https://doi.org/10.1016/j.ces.2018.07.047

© 2018 As the amount of waste plastic increases, thermo-chemical conversion of plastics provides an economic flexible and environmental friendly method to manage recycled plastics, and generate valuable materials, such as carbon nanotubes (CNTs). The... Read More

Simultaneous removal of NO and Hg⁰ using Fe and Co co-doped Mn-Ce/TiO₂ catalysts (2018)
Journal Article
Shen, B., Zhu, S., Zhang, X., Chi, G., Patel, D., Si, M., & Wu, C. (2018). Simultaneous removal of NO and Hg⁰ using Fe and Co co-doped Mn-Ce/TiO₂ catalysts. Fuel, 224, 241-249. https://doi.org/10.1016/j.fuel.2018.03.080

Fe and Co co-doped Mn-Ce/TiO2 (MCT) catalysts were investigated for the simultaneous removal of nitric oxide (NO) and elemental mercury (Hg0) at reaction temperature lower than 200 °C. The catalysts were characterized by Brunauer–Emmett–Teller (BET),... Read More

Thermal Chemical Conversion of High-Density Polyethylene for the Production of Valuable Carbon Nanotubes Using Ni/AAO Membrane Catalyst (2017)
Journal Article
Liu, X., Sun, H., Wu, C., Patel, D., & Huang, J. (2018). Thermal Chemical Conversion of High-Density Polyethylene for the Production of Valuable Carbon Nanotubes Using Ni/AAO Membrane Catalyst. Energy and Fuels, 32(4), 4511-4520. https://doi.org/10.1021/acs.energyfuels.7b03160

© 2017 American Chemical Society. Thermal chemical conversion of waste plastics for syngas production is a promising alternative method for the management of waste plastics. However, one of the challenges of facilitating the deployment of this techno... Read More