Skip to main content

Research Repository

Advanced Search

The inhibitory subunit of cardiac troponin (cTnI) is modified by arginine methylation in the human heart (2019)
Journal Article
Onwuli, D. O., Samuel, S., Sfyri, P., Welham, K., Goddard, M., Abu-Omar, Y., …Beltran-Alvarez, P. (2019). The inhibitory subunit of cardiac troponin (cTnI) is modified by arginine methylation in the human heart. International journal of cardiology, 282, 76-80. https://doi.org/10.1016/j.ijcard.2019.01.102

Background The inhibitory subunit of cardiac troponin (cTnI) is a gold standard cardiac biomarker and also an essential protein in cardiomyocyte excitation-contraction coupling. The interactions of cTnI with other proteins are fine-tuned by post-tra... Read More about The inhibitory subunit of cardiac troponin (cTnI) is modified by arginine methylation in the human heart.

Do sodium channel proteolytic fragments regulate sodium channel expression? (2017)
Journal Article
Onwuli, D. O., Yañez-Bisbe, L., Pinsach-Abuin, M., Tarradas, A., Brugada, R., Greenman, J., …Beltran-Alvarez, P. (2017). Do sodium channel proteolytic fragments regulate sodium channel expression?. Channels, 11(5), 476-481. https://doi.org/10.1080/19336950.2017.1355663

© 2017 Taylor & Francis The cardiac voltage-gated sodium channel (gene: SCN5A, protein: Na V 1.5) is responsible for the sodium current that initiates the cardiomyocyte action potential. Research into the mechanisms of SCN5A gene expression has gai... Read More about Do sodium channel proteolytic fragments regulate sodium channel expression?.

Mapping arginine methylation in the human body and cardiac disease (2016)
Journal Article
Onwuli, D. O., Rigau-Roca, L., Cawthorne, C., & Beltran-Alvarez, P. (2017). Mapping arginine methylation in the human body and cardiac disease. Proteomics. Clinical applications, 11(1-2), https://doi.org/10.1002/prca.201600106

Purpose Arginine methylation (ArgMe) is one of the most ubiquitous post-translational modifications, and hundreds of proteins undergo ArgMe in e.g. brain. However, the scope of ArgMe in many tissues, including the heart, is currently under explored.... Read More about Mapping arginine methylation in the human body and cardiac disease.