Skip to main content

In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures (2014)
Journal Article
Mi, J., Tan, D., & Lee, T. L. (2015). In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures. Metallurgical and Materials Transactions B, 46(4), 1615-1619. https://doi.org/10.1007/s11663-014-0256-z

Considerable progress has been made in studying the mechanism and effectiveness of using ultrasound waves to manipulate the solidification microstructures of metallic alloys. However, uncertainties remain in both the underlying physics of how microst... Read More about In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures.

The onset of plasticity of a Zr-based bulk metallic glass (2014)
Journal Article
Huang, Y., Khong, J. C., Connolley, T., & Mi, J. (2014). The onset of plasticity of a Zr-based bulk metallic glass. International Journal of Plasticity, 60, 87-100. https://doi.org/10.1016/j.ijplas.2014.05.003

The deformation behaviors of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glassy alloy under step-controlled tensile loads have been studied in situ and systematically using scanning electron microscopy and synchrotron X-ray diffraction. A circular h... Read More about The onset of plasticity of a Zr-based bulk metallic glass.

The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass (2014)
Journal Article
Huang, Y., Fan, H., Wang, D., Sun, Y., Liu, F., Shen, J., …Mi, J. (2014). The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass. Materials and Design, 58, 284-289. https://doi.org/10.1016/j.matdes.2014.01.067

In the present work, the local atomic ordering and the wear performance of ZrCuAlAg bulk metallic glass (BMG) samples with different diameters have been studied using transmission electron microscopy (TEM) plus autocorrelation function analysis, and... Read More about The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass.