University of Hull logo

Validity and sensitivity of a human cranial finite element model: Implications for comparative studies of biting performance (2015)
Journal Article
Toro-Ibacache, V., Fitton, L. C., Fagan, M. J., & O'Higgins, P. (2016). Validity and sensitivity of a human cranial finite element model: Implications for comparative studies of biting performance. Journal of anatomy, 228(1), (70-84). doi:10.1111/joa.12384. ISSN 0021-8782

Finite element analysis (FEA) is a modelling technique increasingly used in anatomical studies investigating skeletal form and function. In the case of the cranium this approach has been applied to both living and fossil taxa to (for example) investi... Read More

Masticatory biomechanics in the rabbit: a multi-body dynamics analysis (2014)
Journal Article
Watson, P. J., Gröning, F., Curtis, N., Fitton, L. C., Herrel, A., McCormack, S. W., & Fagan, M. J. (2014). Masticatory biomechanics in the rabbit: a multi-body dynamics analysis. Journal of the Royal Society interface / the Royal Society, 11(99), (20140564-20140564). doi:10.1098/rsif.2014.0564. ISSN 1742-5689

Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbi... Read More

Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study (2012)
Journal Article
Fitton, L. C., Shi, J. F., Fagan, M. J., & O'Higgins, P. (2012). Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study. Journal of anatomy, 221(1), (55-68). doi:10.1111/j.1469-7580.2012.01516.x. ISSN 0021-8782

Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recor... Read More

The application of muscle wrapping to voxel-based finite element models of skeletal structures (2011)
Journal Article
O’Higgins, P., Liu, J., Shi, J., Fitton, L. C., O'Higgins, P., Phillips, R., & Fagan, M. J. (2011). The application of muscle wrapping to voxel-based finite element models of skeletal structures. Biomechanics and Modeling in Mechanobiology, 11(1-2), 35-47. doi:10.1007/s10237-011-0291-5

Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action i... Read More

Combining geometric morphometrics and functional simulation: an emerging toolkit for virtual functional analyses (2010)
Journal Article
O'Higgins, P., Cobb, S. N., Fitton, L. C., Gröning, F., Phillips, R., Liu, J., & Fagan, M. J. (2010). Combining geometric morphometrics and functional simulation: an emerging toolkit for virtual functional analyses. Journal of anatomy, 218(1), 3-15. doi:10.1111/j.1469-7580.2010.01301.x

The development of virtual methods for anatomical reconstruction and functional simulation of skeletal structures offers great promise in evolutionary and ontogenetic investigations of form-function relationships. Key developments reviewed here inclu... Read More