University of Hull logo

Modelling impacts of tidal stream turbines on surface waves (2018)
Journal Article
Li, X., Li, M., Jordan, L. B., McLelland, S., Parsons, D. R., Amoudry, L. O., …Comerford, L. (2019). Modelling impacts of tidal stream turbines on surface waves. Renewable energy, 130, 725-734. doi:10.1016/j.renene.2018.05.098

© 2018 Elsevier Ltd A high resolution Computational Flow Dynamics (CFD) numerical model is built based on a laboratory experiment in this research to study impacts of tidal turbines on surface wave dynamics. A reduction of ∼3% in wave height is obser... Read More

Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics (2018)
Journal Article
Ramírez-Mendoza, R., Amoudry, L., Thorne, P., Cooke, R., McLelland, S., Jordan, L., …Murdoch, L. (2018). Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics. Renewable energy, 129(Part A), 271-284. doi:10.1016/j.renene.2018.05.094

© 2018 The Authors The need for hydrokinetic turbine wake characterisation and their environmental impact has led to a number of studies. However, a small number of them have taken into account mobile sediment bed effects. The aim of the present work... Read More

Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model (2017)
Journal Article
Li, X., Li, M., McLelland, S. J., Jordan, L. B., Simmons, S. M., Amoudry, L. O., …Thorne, P. D. (2017). Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model. Renewable energy, 114, 297-307. doi:10.1016/j.renene.2017.02.033

© 2017 The Author(s) A tidal turbine simulation system is developed based on a three-dimensional oceanographic numerical model. Both the current and turbulent controlling equations are modified to account for impact of tidal turbines on water velocit... Read More