Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Intracranial pressure changes during mouse development (2015)
Journal Article
Moazen, M., Alazmani, A., Rafferty, K., Liu, Z., Gustafson, J., Cunningham, M. L., …Herring, S. W. (2016). Intracranial pressure changes during mouse development. Journal of biomechanics, 49(1), 123-126. https://doi.org/10.1016/j.jbiomech.2015.11.012

During early stages of postnatal development, pressure from the growing brain as well as cerebrospinal fluid, i.e. intracranial pressure (ICP), load the calvarial bones. It is likely that such loading contributes to the peripheral bone formation at t... Read More about Intracranial pressure changes during mouse development.

Validity and sensitivity of a human cranial finite element model: Implications for comparative studies of biting performance (2015)
Journal Article
Toro-Ibacache, V., Fitton, L. C., Fagan, M. J., & O'Higgins, P. (2016). Validity and sensitivity of a human cranial finite element model: Implications for comparative studies of biting performance. Journal of anatomy, 228(1), 70-84. https://doi.org/10.1111/joa.12384

Finite element analysis (FEA) is a modelling technique increasingly used in anatomical studies investigating skeletal form and function. In the case of the cranium this approach has been applied to both living and fossil taxa to (for example) investi... Read More about Validity and sensitivity of a human cranial finite element model: Implications for comparative studies of biting performance.

A virtual approach to evaluate therapies for management of multiple myeloma induced bone disease: Modelling Therapies for Multiple Myeloma Induced Bone Disease (2015)
Journal Article
Ji, B., Genever, P. G., & Fagan, M. J. (2016). A virtual approach to evaluate therapies for management of multiple myeloma induced bone disease: Modelling Therapies for Multiple Myeloma Induced Bone Disease. International journal for numerical methods in biomedical engineering, 32(3), e02735. https://doi.org/10.1002/cnm.2735

Multiple myeloma bone disease is devastating for patients and a major cause of morbidity. The disease leads to bone destruction by inhibiting osteoblast activity while stimulating osteoclast activity. Recent advances in multiple myeloma research have... Read More about A virtual approach to evaluate therapies for management of multiple myeloma induced bone disease: Modelling Therapies for Multiple Myeloma Induced Bone Disease.

Mechanical properties of calvarial bones in a mouse model for craniosynostosis (2015)
Journal Article
Moazen, M., Peskett, E., Babbs, C., Pauws, E., & Fagan, M. J. (2015). Mechanical properties of calvarial bones in a mouse model for craniosynostosis. PLoS ONE, 10(5), e0125757. https://doi.org/10.1371/journal.pone.0125757

The mammalian cranial vault largely consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Premature closure of the cranial sutures, craniosynostosis, can lead to serious clinical pathology unle... Read More about Mechanical properties of calvarial bones in a mouse model for craniosynostosis.