Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Bioartificial scaffolds fabrication and their use for in vitro testing of wound healing devices (2023)
Thesis
Mandolini, N. (2023). Bioartificial scaffolds fabrication and their use for in vitro testing of wound healing devices. (Thesis). University of Hull. Retrieved from https://hull-repository.worktribe.com/output/4386661

In the last decades Negative Pressure Wound Therapy (NPWT) has shown its efficacy in wound healing, applying continuous or intermittent subatmospheric pressure to the wound surface by means of dressing systems. While there is general consen... Read More about Bioartificial scaffolds fabrication and their use for in vitro testing of wound healing devices.

Airflow rates and breathlessness recovery from submaximal exercise in healthy adults: prospective, randomised, cross-over study (2023)
Journal Article
Brew, A., O'Beirne, S., Johnson, M. J., Ramsenthaler, C., Watson, P., Rubini, P. A., …Simpson, A. (in press). Airflow rates and breathlessness recovery from submaximal exercise in healthy adults: prospective, randomised, cross-over study. BMJ supportive & palliative care, https://doi.org/10.1136/spcare-2023-004309

Objectives: Facial airflow from a hand-held fan may reduce breathlessness severity and hasten postexertion recovery. Data from randomised controlled trials are limited and the optimal airflow speed remains unknown. We aimed to determine the effect of... Read More about Airflow rates and breathlessness recovery from submaximal exercise in healthy adults: prospective, randomised, cross-over study.

Assessment of the mechanical role of cranial sutures in the mammalian skull: Computational biomechanical modelling of the rat skull (2023)
Journal Article
Sharp, A. C., Dutel, H., Watson, P. J., Gröning, F., Crumpton, N., Fagan, M. J., & Evans, S. E. (2023). Assessment of the mechanical role of cranial sutures in the mammalian skull: Computational biomechanical modelling of the rat skull. Journal of morphology, 284(3), Article e21555. https://doi.org/10.1002/jmor.21555

Cranial sutures are fibrocellular joints between the skull bones that are progressively replaced with bone throughout ontogeny, facilitating growth and cranial shape change. This transition from soft tissue to bone is reflected in the biomechanical p... Read More about Assessment of the mechanical role of cranial sutures in the mammalian skull: Computational biomechanical modelling of the rat skull.