Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Rapid Detection of Group B Streptococcus (GBS) from artificial urine samples based on IFAST and ATP Bioluminescence Assay: from development to practical challenges during protocol testing in Kenya (2019)
Journal Article
Ngamsom, B., Wandera, E. A., Iles, A., Kimani, R., Muregi, F., Gitaka, J., & Pamme, N. (2019). Rapid Detection of Group B Streptococcus (GBS) from artificial urine samples based on IFAST and ATP Bioluminescence Assay: from development to practical challenges during protocol testing in Kenya. Analyst, 144(23), 6889-6897. https://doi.org/10.1039/c9an01808e

© The Royal Society of Chemistry 2019. We report the rapid detection (20 min) of Streptococcus agalactiae, Group B Streptococcus (GBS) employing on-chip magnetic isolation of GBS based on immiscible filtration assisted by surface tension (IFAST), fol... Read More about Rapid Detection of Group B Streptococcus (GBS) from artificial urine samples based on IFAST and ATP Bioluminescence Assay: from development to practical challenges during protocol testing in Kenya.

A feasibility study of a leaky waveguide aptasensor for thrombin (2019)
Journal Article
Alamrani, N. A., Greenway, G. M., Pamme, N., Goddard, N. J., & Gupta, R. (2019). A feasibility study of a leaky waveguide aptasensor for thrombin. Analyst, 144(20), 6048-6054. https://doi.org/10.1039/c9an01421g

This proof-of-principle study demonstrates the feasibility of a leaky waveguide (LW) aptasensor, where aptamers were immobilised in a mesoporous chitosan waveguiding film for the detection of thrombin. This work has demonstrated that aptamers immobil... Read More about A feasibility study of a leaky waveguide aptasensor for thrombin.

“Learning on a chip:” Microfluidics for formal and informal science education (2019)
Journal Article
Rackus, D. G., Riedel-Kruse, I. H., & Pamme, N. (2019). “Learning on a chip:” Microfluidics for formal and informal science education. Biomicrofluidics, 13(4), Article 041501. https://doi.org/10.1063/1.5096030

© 2019 Author(s). Microfluidics is a technique for the handling of small volumes of liquids on the order of picoliters to nanoliters and has impact for miniaturized biomedical science and fundamental research. Because of its multi- and interdisciplin... Read More about “Learning on a chip:” Microfluidics for formal and informal science education.

A method for determining average iron content of ferritin by measuring its optical dispersion (2019)
Journal Article
Gupta, R., Alamrani, N. A., Greenway, G. M., Pamme, N., & Goddard, N. J. (2019). A method for determining average iron content of ferritin by measuring its optical dispersion. Analytical chemistry, 91(11), 7366-7372. https://doi.org/10.1021/acs.analchem.9b01231

© 2019 American Chemical Society. We report a method where the refractive index increments of an iron storage protein, ferritin, and apoferritin (ferritin minus iron) were measured over the wavelength range of 450-678 nm to determine the average iron... Read More about A method for determining average iron content of ferritin by measuring its optical dispersion.

Developing a novel spheroid-on-chip microfluidic device for investigations into metastasis (2019)
Thesis
Collins, T. C. (2019). Developing a novel spheroid-on-chip microfluidic device for investigations into metastasis. (Thesis). University of Hull. Retrieved from https://hull-repository.worktribe.com/output/4221851

One in two people born after 1960 will develop cancer, with 90% of all cancer deaths arising from metastasis. Conventional 2D in vitro metastasis models do not fully replicate tumour complexity. In vivo models can address tumour complexity, but do no... Read More about Developing a novel spheroid-on-chip microfluidic device for investigations into metastasis.

Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers (2019)
Journal Article
Gómez-Pastora, J., Amiri Roodan, V., Karampelas, I. H., Alorabi, A. Q., Tarn, M. D., Iles, A., …Ortiz, I. (2019). Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers. Journal of physical chemistry. C, 123(15), 10065-10080. https://doi.org/10.1021/acs.jpcc.9b01393

Copyright © 2019 American Chemical Society. In this study, a computational fluid dynamics approach is implemented to investigate the dynamic behavior of continuous-flow droplet microfluidics. The developed approach predicts both droplet generation an... Read More about Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers.

Stereolithographic 3D printing of extrinsically self-healing composites (2019)
Journal Article
Sanders, P., Young, A. J., Qin, Y., Fancey, K. S., Reithofer, M. R., Guillet-Nicolas, R., …Chin, J. M. (2019). Stereolithographic 3D printing of extrinsically self-healing composites. Scientific reports, 9(1), Article 388. https://doi.org/10.1038/s41598-018-36828-9

We demonstrate for the first time the direct stereolithographic 3D printing of an extrinsically self-healing composite, comprised of commercial photocurable resin modified with anisole and PMMA-filled microcapsules. The composites demonstrate solvent... Read More about Stereolithographic 3D printing of extrinsically self-healing composites.

A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects (2019)
Journal Article
Ghobaei Namhil, Z., Kemp, C., Verrelli, E., Iles, A., Pamme, N., Adawi, A. M., & Kemp, N. (2019). A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects. Physical chemistry chemical physics : PCCP, 21(2), 681-691. https://doi.org/10.1039/c8cp05510f

A significant impediment to the use of impedance spectroscopy in bio-sensing is the electrode polarization effect that arises from the movement of free ions to the electrode-solution interface, forming an electrical double layer (EDL). The EDL screen... Read More about A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects.