Skip to main content

Research Repository

Advanced Search

Smart active antibiotic nanocarriers with protease surface functionality can overcome biofilms of resistant bacteria (2020)
Journal Article
Weldrick, P. J., Hardman, M. J., & Paunov, V. N. (2021). Smart active antibiotic nanocarriers with protease surface functionality can overcome biofilms of resistant bacteria. Materials Chemistry Frontiers, 5(2), 961-972. https://doi.org/10.1039/d0qm00874e

Treating bacterial infections with species demonstrating antibiotic resistance to the chosen antibiotic is often hindered due to the ability of certain bacteria to grow biofilms where they can effectively hide and resist the antibiotic action. We rep... Read More about Smart active antibiotic nanocarriers with protease surface functionality can overcome biofilms of resistant bacteria.

Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints (2019)
Journal Article
Das, A. A., Remaud, P., Medlock, J., Das, A. A. K., Allsup, D. J., Madden, L. A., …Paunov, V. N. (2019). Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints. Materials Chemistry Frontiers, 4(1), 197-205. https://doi.org/10.1039/c9qm00531e

We report a new approach for separation of blood cancer cells from healthy white blood cells based on cell recognition by surface functionalised particle imprints. We prepared polymeric particle imprints from a layer of suspension of monodisperse PMM... Read More about Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints.

Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers (2019)
Journal Article
Weldrick, P. J., Hardman, M. J., & Paunov, V. N. (2019). Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers. ACS applied materials & interfaces, 11(47), 43902-43919. https://doi.org/10.1021/acsami.9b16119

© 2019 American Chemical Society. Biofilms are prevalent in chronic wounds and once formed are very hard to remove, which is associated with poor outcomes and high mortality rates. Biofilms are comprised of surface-attached bacteria embedded in an ex... Read More about Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers.

Breathing new life into old antibiotics: Overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality (2019)
Journal Article
Weldrick, P. J., Iveson, S., Hardman, M. J., & Paunov, V. N. (2019). Breathing new life into old antibiotics: Overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality. Nanoscale, 11(21), 10472-10485. https://doi.org/10.1039/c8nr10022e

Multidrug-resistant pathogens are prevalent in chronic wounds. There is an urgent need to develop novel antimicrobials and formulation strategies that can overcome antibiotic resistance and provide a safe alternative to traditional antibiotics. This... Read More about Breathing new life into old antibiotics: Overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality.

Amplified antimicrobial action of chlorhexidine encapsulated in PDAC-functionalized acrylate copolymer nanogel carriers (2018)
Journal Article
Al-Awady, M. J., Weldrick, P. J., Hardman, M. J., Greenway, G. M., & Paunov, V. N. (2018). Amplified antimicrobial action of chlorhexidine encapsulated in PDAC-functionalized acrylate copolymer nanogel carriers. Materials Chemistry Frontiers, 2(11), 2032-2044. https://doi.org/10.1039/c8qm00343b

We have developed and tested a novel functionalised nanocarrier for chlorhexidine (CHX) which provides a very strong enhancement of its antimicrobial action. The nanocarrier was based on lightly-cross-linked acrylate copolymer nanogel particles loade... Read More about Amplified antimicrobial action of chlorhexidine encapsulated in PDAC-functionalized acrylate copolymer nanogel carriers.