University of Hull logo

Numerical and experimental studies of excitation force approximation for wave energy conversion (2018)
Journal Article
Guo, B., Patton, R. J., Jin, S., & Lan, J. (2018). Numerical and experimental studies of excitation force approximation for wave energy conversion. Renewable energy, 125, 877-889. doi:10.1016/j.renene.2018.03.007

Past or/and future information of the excitation force is useful for real-time power maximisation control of Wave Energy Converter (WEC) systems. Current WEC modelling approaches assume that the wave excitation force is accessible and known. However,... Read More

Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion (2017)
Journal Article
Gilbert, J., Guo, B., Jin, S., Parsons, D., & Patton, R. (2017). Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion. IEEE Transactions on Sustainable Energy, 9(1), (453-461). doi:10.1109/tste.2017.2741341. ISSN 1949-3029

Although the heaving Point Absorber (PA) concept is well known in wave energy conversion research, few studies focus on appropriate modelling of non-linear fluid viscous and mechanical friction dynamics. Even though these concepts are known to have n... Read More

Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation (2017)
Journal Article
Lan, J., Patton, R. J., & Zhu, X. (2017). Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation. IET Control Theory and Applications, 11(14), 2232-2241. doi:10.1049/iet-cta.2016.1602

© The Institution of Engineering and Technology 2017. This study proposes a fault estimation (FE)-based fault-tolerant control (FTC) strategy to maintain system reliability and achieve desirable control performance for a 3-DOF helicopter system with... Read More

Application of model-based LPV actuator fault estimation for an industrial benchmark (2016)
Journal Article
Chen, L., Patton, R., & Goupil, P. (2016). Application of model-based LPV actuator fault estimation for an industrial benchmark. Control engineering practice, 56, (60-74). doi:10.1016/j.conengprac.2016.08.003. ISSN 0967-0661

To bridge the gap between model-based fault diagnosis theory and the industry practice, a linear parameter varying H_/H∞ fault estimation approach is applied to a high fidelity nonlinear aircraft benchmark, to deal with the various actuator fault det... Read More

Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modelling (2016)
Journal Article
Lan, J., & Patton, R. J. (2017). Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modelling. IEEE Transactions on Fuzzy Systems, 25(5), (1141-1154). doi:10.1109/tfuzz.2016.2598849. ISSN 1063-6706

This paper proposes an integrated design of faulttolerant control (FTC) for nonlinear systems using Takagi-Sugeno (T-S) fuzzy models in the presence of modelling uncertainty along with actuator/sensor faults and external disturbance. An augmented sta... Read More

Integrated fault estimation and fault-tolerant control for uncertain Lipschitz nonlinear systems (2016)
Journal Article
Lan, J., & Patton, R. J. (2017). Integrated fault estimation and fault-tolerant control for uncertain Lipschitz nonlinear systems. International journal of robust and nonlinear control, 27(5), (761-780). doi:10.1002/rnc.3597. ISSN 1049-8923

This paper proposes an integrated fault estimation and fault-tolerant control (FTC) design for Lipschitz non-linear systems subject to uncertainty, disturbance, and actuator/sensor faults. A non-linear unknown input observer without rank requirement... Read More

A new strategy for integration of fault estimation within fault-tolerant control (2016)
Journal Article
Lan, J., & Patton, R. J. (2016). A new strategy for integration of fault estimation within fault-tolerant control. Automatica : the journal of IFAC, the International Federation of Automatic Control, 69, (48-59). doi:10.1016/j.automatica.2016.02.014. ISSN 0005-1098

© 2016 Elsevier Ltd. All rights reserved. The problem of active fault tolerant control (FTC) of dynamical systems involves the process of fault detection and isolation/fault estimation (FDI/FE) used to either make a decision as to when and how to cha... Read More

Robust fault estimation using an LPV reference model : ADDSAFE benchmark case study (2015)
Journal Article
Chen, L., Patton, R., & Goupil, P. (2016). Robust fault estimation using an LPV reference model : ADDSAFE benchmark case study. Control engineering practice, 49, (194-203). doi:10.1016/j.conengprac.2015.12.006. ISSN 0967-0661

This paper investigates a mixed H−/H∞ linear parameter varying (LPV) fault estimator using an LPV reference estimator. LMIs are used to calculate the affine parameter-dependent gains of the LPV fault estimator. The design strategy is applied to a hig... Read More

Integrated fault estimation and fault tolerant control: A joint design (2015)
Journal Article
Tan, D., & Patton, R. J. (2015). Integrated fault estimation and fault tolerant control: A joint design. IFAC postprint volumes IPPV / International Federation of Automatic Control, 28(21), 517-522. doi:10.1016/j.ifacol.2015.09.578

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. Over the past decades, substantial progress has been made in fault detection and diagnosis (FDD) and fault tolerant control (FTC) research. Rec... Read More

A relaxed solution to unknown input observers for state and fault estimation (2015)
Journal Article
Tan, D., Patton, R. J., & Wang, X. (2015). A relaxed solution to unknown input observers for state and fault estimation. IFAC postprint volumes IPPV / International Federation of Automatic Control, 28(21), 1048-1053. doi:10.1016/j.ifacol.2015.09.665

A lot of effort has been devoted to the unknown input observer (UIO) research over the past years. However, the strong disturbance decoupling assumption (manifested as some rank constraint) is often implicitly embedded in much of the existing UIO wor... Read More

Chemical process disturbance compensation as a fault tolerant control problem (2015)
Journal Article
Simani, S., Farsoni, S., & Patton, R. J. (2015). Chemical process disturbance compensation as a fault tolerant control problem. IFAC postprint volumes IPPV / International Federation of Automatic Control, 28(21), 1102-1107. doi:10.1016/j.ifacol.2015.09.674

In general, the control of chemical processes that involve unknown disturbances presents interesting challenges. Research issues have been focused on detailed modelling of the involved phenomena in order to use e.g. robust on-line disturbance compens... Read More

An active fault tolerant control approach to an offshore wind turbine model (2014)
Journal Article
Patton, R., & Shi, F. (2015). An active fault tolerant control approach to an offshore wind turbine model. Renewable energy, 75(March), (788-798). doi:10.1016/j.renene.2014.10.061. ISSN 0960-1481

The paper proposes an observer based active fault tolerant control (AFTC) approach to a non-linear large rotor wind turbine benchmark model. A sensor fault hiding and actuator fault compensation strategy is adopted in the design. The adapted observer... Read More

Fault estimation and active fault tolerant control for linear parameter varying descriptor systems (2014)
Journal Article
Patton, R. J., & Shi, F. (2015). Fault estimation and active fault tolerant control for linear parameter varying descriptor systems. International journal of robust and nonlinear control, 25(5), (689-706). doi:10.1002/rnc.3266. ISSN 1049-8923

Starting with the baseline controller design, this paper proposes an integrated approach of active fault tolerant control based on proportional derivative extended state observer (PDESO) for linear parameter varying descriptor systems. The PDESO can... Read More

Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model (2014)
Journal Article
Patton, R. J., & Shaker, M. S. (2014). Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model. Engineering applications of artificial intelligence, 34, (1-12). doi:10.1016/j.engappai.2014.04.005. ISSN 0952-1976

This paper presents a new approach to active sensor fault tolerant tracking control (FTTC) for offshore wind turbine (OWT) described via Takagi–Sugeno (T–S) multiple models. The FTTC strategy is designed in such way that aims to maintain nominal wind... Read More

Mathematical modelling of the pathogenesis of multiple myeloma-induced bone disease (2014)
Journal Article
Ji, B., Genever, P. G., Patton, R. J., & Fagan, M. J. (2014). Mathematical modelling of the pathogenesis of multiple myeloma-induced bone disease. International journal for numerical methods in biomedical engineering, 30(11), 1085-1102. doi:10.1002/cnm.2645

Multiple myeloma (MM) is the second most common haematological malignancy and results in destructive bone lesions. The interaction between MM cells and the bone microenvironment plays an important role in the development of the tumour cells and MM-in... Read More

Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults (2013)
Journal Article
Patton, R. J., & Sami, M. (2013). Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults. International journal of control, automation, and systems, 11(6), (1149-1161). doi:10.1007/s12555-013-0227-1. ISSN 1598-6446

The goal of this paper is to describe a novel fault tolerant tracking control (FTTC) strategy based on robust fault estimation and compensation of simultaneous actuator and sensor faults. Within the framework of fault tolerant control (FTC) the chall... Read More

An LPV pole-placement approach to friction compensation as an FTC problem (2012)
Journal Article
Chen, L., Patton, R., & Klinkhieo, S. (2012). An LPV pole-placement approach to friction compensation as an FTC problem. International Journal of Applied Mathematics and Computer Science, 22(1), (149-160). doi:10.2478/v10006-012-0011-z. ISSN 1641-876X

The concept of combining robust fault estimation within a controller system to achieve active Fault Tolerant Control (FTC) has been the subject of considerable interest in the recent literature. The current study is motivated by the need to develop m... Read More

A novel mathematical model of bone remodelling cycles for trabecular bone at the cellular level (2012)
Journal Article
Ji, B., Genever, P. G., Patton, R. J., Putra, D., & Fagan, M. J. (2012). A novel mathematical model of bone remodelling cycles for trabecular bone at the cellular level. Biomechanics and Modeling in Mechanobiology, 11(7), 973-982. doi:10.1007/s10237-011-0366-3

After an initial phase of growth and development, bone undergoes a continuous cycle of repair, renewal and optimisation by a process called remodelling. This paper describes a novel mathematical model of the trabecular bone remodelling cycle. It is e... Read More

Robust FDI applied to thruster faults of a satellite system (2010)
Journal Article
Patton, R. J., Polle, B., Simani, S., & Uppal, F. J. (2010). Robust FDI applied to thruster faults of a satellite system. Control engineering practice, 18(9), (1093-1109). doi:10.1016/j.conengprac.2009.04.011. ISSN 0967-0661

This paper presents a practical solution to the problem of robust fault detection and isolation (FDI) for faults affecting the thrusters of a satellite system Mars Express (MEX). A non-linear model of MEX is used and the system is considered in the p... Read More