Skip to main content

Research Repository

Advanced Search

Alteration in endothelial permeability occurs in response to the activation of PAR2 by factor Xa but not directly by the TF-factor VIIa complex (2019)
Journal Article
Benelhaj, N. E., Maraveyas, A., Featherby, S., Collier, M. E., Johnson, M. J., & Ettelaie, C. (2019). Alteration in endothelial permeability occurs in response to the activation of PAR2 by factor Xa but not directly by the TF-factor VIIa complex. Thrombosis Research, 175, 13-20. https://doi.org/10.1016/j.thromres.2019.01.009

Alterations in the endothelial permeability occur in response to the activation of coagulation mechanisms in order to control clot formation. The activation of the protease activated receptors (PAR) can induce signals that regulate such cellular resp... Read More about Alteration in endothelial permeability occurs in response to the activation of PAR2 by factor Xa but not directly by the TF-factor VIIa complex.

Peptidyl-prolyl isomerase 1 (Pin1) preserves the phosphorylation state of tissue factor and prolongs its release within microvesicles (2017)
Journal Article
Ettelaie, C., Collier, M., Featherby, S., Greenman, J., & Maraveyas, A. (2018). Peptidyl-prolyl isomerase 1 (Pin1) preserves the phosphorylation state of tissue factor and prolongs its release within microvesicles. BBA - Molecular Cell Research, 1865(1), 12-24. https://doi.org/10.1016/j.bbamcr.2017.09.016

© 2017 Elsevier B.V. The exposure and release of TF is regulated by post-translational modifications of its cytoplasmic domain. Here, the potential of Pin1 to interact with the cytoplasmic domain of TF, and the outcome on TF function was examined. MD... Read More about Peptidyl-prolyl isomerase 1 (Pin1) preserves the phosphorylation state of tissue factor and prolongs its release within microvesicles.