University of Hull logo

Powerful turbidity currents driven by dense basal layers (2018)
Journal Article
Paull, C. K., Talling, P. J., Maier, K. L., Parsons, D., Xu, J., Caress, D. W., …Cartigny, M. J. (2018). Powerful turbidity currents driven by dense basal layers. Nature communications, 9(1), doi:10.1038/s41467-018-06254-6

Seafloor sediment flows (turbidity currents) are among the volumetrically most important yet least documented sediment transport processes on Earth. A scarcity of direct observations means that basic characteristics, such as whether flows are entirel... Read More

Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics (2018)
Journal Article
Ramírez-Mendoza, R., Amoudry, L., Thorne, P., Cooke, R., McLelland, S., Jordan, L., …Murdoch, L. (2018). Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics. Renewable energy, 129(Part A), 271-284. doi:10.1016/j.renene.2018.05.094

© 2018 The Authors The need for hydrokinetic turbine wake characterisation and their environmental impact has led to a number of studies. However, a small number of them have taken into account mobile sediment bed effects. The aim of the present work... Read More

Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons (2017)
Journal Article
Azpiroz-Zabala, M., Cartigny, M. J. B., Talling, P. J., Parsons, D. R., Sumner, E. J., Clare, M. A., …Pope, E. L. (2017). Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons. Science Advances, 3(10), (e1700200). doi:10.1126/sciadv.1700200. ISSN 2375-2548

Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity c... Read More

An evaluation of the use of a multibeam echo-sounder for observations of suspended sediment (2017)
Journal Article
Simmons, S. M., Parsons, D. R., Best, J. L., Oberg, K. A., Czuba, J. A., & Keevil, G. M. (2017). An evaluation of the use of a multibeam echo-sounder for observations of suspended sediment. Applied acoustics. Acoustique appliqué. Angewandte Akustik, 126, (81-90). doi:10.1016/j.apacoust.2017.05.004. ISSN 0003-682X

The theory relating the acoustic backscatter from suspended sediments to the mass concentration of particles has been developed over several decades and is now routinely applied to provide measurements for commercial and scientific applications. Sing... Read More

An investigation of the wake recovery of two model horizontal-axis tidal stream turbines measured in a laboratory flume with Particle Image Velocimetry (2017)
Journal Article
Simmons, S. M., McLelland, S. J., Parsons, D. R., Jordan, L., Murphy, B. J., & Murdoch, L. (2018). An investigation of the wake recovery of two model horizontal-axis tidal stream turbines measured in a laboratory flume with Particle Image Velocimetry. Journal of Hydro-environment Research, 19, (179-188). doi:10.1016/j.jher.2017.03.003. ISSN 1570-6443

© 2017 International Association for Hydro-environment Engineering and Research, Asia Pacific Division. The uptake of tidal stream-turbine (TST) technology lags other renewable energy sources despite the advantages of predictability, stability and in... Read More

Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model (2017)
Journal Article
Li, X., Li, M., McLelland, S. J., Jordan, L. B., Simmons, S. M., Amoudry, L. O., …Thorne, P. D. (2017). Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model. Renewable energy, 114, 297-307. doi:10.1016/j.renene.2017.02.033

© 2017 The Author(s) A tidal turbine simulation system is developed based on a three-dimensional oceanographic numerical model. Both the current and turbulent controlling equations are modified to account for impact of tidal turbines on water velocit... Read More

The role of biophysical cohesion on subaqueous bed form size: COHESION IN SUBAQUEOUS BED FORMS (2016)
Journal Article
Parsons, D. R., Schindler, R. J., Hope, J. A., Malarkey, J., Baas, J. H., Peakall, J., …Thorne, P. D. (2016). The role of biophysical cohesion on subaqueous bed form size: COHESION IN SUBAQUEOUS BED FORMS. Geophysical research letters, 43(4), (1566-1573). doi:10.1002/2016gl067667. ISSN 0094-8276

Biologically active, fine-grained sediment forms abundant sedimentary deposits on Earth's surface, and mixed mud-sand dominates many coasts, deltas, and estuaries. Our predictions of sediment transport and bed roughness in these environments presentl... Read More

Sticky stuff: redefining bedform prediction in modern and ancient environments (2015)
Journal Article
Schindler, R. J., Parsons, D. R., Ye, L., Hope, J. A., Baas, J. H., Peakall, J., …Bass, S. J. (2015). Sticky stuff: redefining bedform prediction in modern and ancient environments. Geology, 43(5), (399-402). doi:10.1130/g36262.1. ISSN 0091-7613

The dimensions and dynamics of subaqueous bedforms are well known for cohesionless sediments. However, the effect of physical cohesion imparted by cohesive clay within mixed sand-mud substrates has not been examined, despite its recognized influence... Read More

A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding (MBES) (2010)
Journal Article
Simmons, S., Best, J., Parsons, D., Simmons, S., Best, J. L., Czuba, J., …Oberg, K. (2010). A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding (MBES). Geophysical research letters, 37(6), doi:10.1029/2009gl041852

In order to investigate the interactions between turbulence and suspended sediment transport in natural aqueous environments, we ideally require a technique that allows simultaneous measurement of fluid velocity and sediment concentration for the who... Read More