University of Hull logo

Optimized high performance thermoelectric generator with combined segmented and asymmetrical legs under pulsed heat input power (2019)
Journal Article
Shittu, S., Li, G., Zhao, X., Ma, X., Akhlaghi, Y. G., & Ayodele, E. (2019). Optimized high performance thermoelectric generator with combined segmented and asymmetrical legs under pulsed heat input power. Journal of power sources, 428, 53-66. https://doi.org/10.1016/j.jpowsour.2019.04.099

© 2019 Elsevier B.V. In this study, a segmented asymmetrical thermoelectric generator (SASTEG) is numerically investigated to optimize its electrical performance and mechanical reliability under transient and steady state conditions. The thermal and... Read More

Simulation and experiment on thermal performance of a micro-channel heat pipe under different evaporator temperatures and tilt angles (2019)
Journal Article
Li, G., Diallo, T. M., Akhlaghi, Y. G., Shittu, S., Zhao, X., Ma, X., & Wang, Y. (2019). Simulation and experiment on thermal performance of a micro-channel heat pipe under different evaporator temperatures and tilt angles. Energy, 179, 549-557. https://doi.org/10.1016/j.energy.2019.05.040

© 2019 Elsevier Ltd For a solar collector with a heat pipe, the tilt angle is an important factor which has a direct impact on the orientation (surface azimuth angle) and affects the amount of solar radiation reaching the surface of the collector. Th... Read More

Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe (2019)
Journal Article
Shittu, S., Li, G., Zhao, X., Golizadeh Akhlaghi, Y., Ma, X., & Yu, M. (2019). Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy Conversion and Management, 193, 1-14. https://doi.org/10.1016/j.enconman.2019.04.055

Thermal management of photovoltaic cells is an essential research objective for increasing the conversion efficiency of the photovoltaic. Flat plate heat pipe is a passive cooling device capable of effectively reducing the solar cell temperature. The... Read More

Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance (2019)
Journal Article
Shittu, S., Li, G., Akhlaghi, Y. G., Ma, X., Zhao, X., & Ayodele, E. (2019). Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance. Renewable & sustainable energy reviews, 109, 24-54. https://doi.org/10.1016/j.rser.2019.04.023

Effective thermal management of photovoltaic cells is essential for improving its conversion efficiency and increasing its life span. Solar cell temperature and efficiency have an inverse relationship therefore, cooling of solar cells is a critical r... Read More

High performance and thermal stress analysis of a segmented annular thermoelectric generator (2019)
Journal Article
Shittu, S., Li, G., Zhao, X., Ma, X., Akhlaghi, Y. G., & Ayodele, E. (2019). High performance and thermal stress analysis of a segmented annular thermoelectric generator. Energy Conversion and Management, 184, 180-193. https://doi.org/10.1016/j.enconman.2019.01.064

Annular thermoelectric generators can eliminate the thermal contact resistance formed due to geometry mismatch when flat-plate thermoelectric generators are used with round shaped heat source or heat sink. Therefore, in this study, the numerical simu... Read More

Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric (2019)
Journal Article
Li, G., Shittu, S., Ma, X., & Zhao, X. (2019). Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric. Energy, 171, 599-610. https://doi.org/10.1016/j.energy.2019.01.057

The optimization of the thermoelectric (TE) device geometry is one of the significant ways to improve its efficiency and power output. However, the complex relationship between the Photovoltaic and the thermoelectric device necessitates the need for... Read More

Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric (2019)
Journal Article
Li, G., Shittu, S., Ma, X., & Zhao, X. (2019). Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric. Energy, 171, 599-610. https://doi.org/10.1016/j.energy.2019.01.057

The optimization of the thermoelectric (TE) device geometry is one of the significant ways to improve its efficiency and power output. However, the complex relationship between the Photovoltaic and the thermoelectric device necessitates the need for... Read More

Analytical and experimental study of an innovative multiple-throughout-flowing micro-channel-panels-array for a solar-powered rural house space heating system (2019)
Journal Article
Fan, Y., Zhao, X., Li, G., Cheng, Y., Zhou, J., Yu, M., …Ma, X. (2019). Analytical and experimental study of an innovative multiple-throughout-flowing micro-channel-panels-array for a solar-powered rural house space heating system. Energy, 171, 566-580. https://doi.org/10.1016/j.energy.2019.01.049

This paper presents a combined analytical and experimental study of an innovative multiple-throughout-flowing micro-channel-panels-array applicable to a solar-powered rural house space heating system. This array, compared to the traditional one-to-on... Read More

Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect (2018)
Journal Article
Shittu, S., Li, G., Zhao, X., & Ma, X. (2019). Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect. Renewable energy, 130, 930-942. https://doi.org/10.1016/j.renene.2018.07.002

This study investigates the optimum geometry for maximum efficiency of a hybrid PV-TE uni-couple using Finite Element Method. COMSOL Multiphysics is used to solve the 3-Dimensional heat transfer equations considering thermoelectric materials with tem... Read More

Experimental investigation of a super performance dew point air cooler (2017)
Journal Article
Xu, P., Ma, X., Zhao, X., & Fancey, K. (2017). Experimental investigation of a super performance dew point air cooler. Applied energy, 203, 761-777. https://doi.org/10.1016/j.apenergy.2017.06.095

This paper presents an experimental investigation of a super performance dew point air cooler which, by employing a super performance wet material layer, innovative heat and mass exchanger and intermittent water supply scheme, has achieved a signific... Read More

Micro-encapsulated phase change material (MPCM) slurries: characterization and building applications (2017)
Journal Article
Qiu, Z., Ma, X., Li, P., Zhao, X., & Wright, A. (2017). Micro-encapsulated phase change material (MPCM) slurries: characterization and building applications. Renewable & sustainable energy reviews, 77, 246-262. https://doi.org/10.1016/j.rser.2017.04.001

© 2017 Micro-encapsulated Phase Change Material (MPCM) slurries, acting as the heat transfer fluids or thermal storage mediums, have gained applications in various building thermal energy systems, significantly enhancing their energy efficiency and o... Read More

Experimental investigation on performance of fabrics for indirect evaporative cooling applications (2016)
Journal Article
Xu, P., Ma, X., Zhao, X., & Fancey, K. S. (2016). Experimental investigation on performance of fabrics for indirect evaporative cooling applications. Building and Environment, 110, 104-114. https://doi.org/10.1016/j.buildenv.2016.10.003

© 2016 Indirect evaporative cooling, by using water evaporation to absorb heat to lower the air temperature without adding moisture, is an extremely low energy and environmentally friendly cooling principle. The properties of the wet channel surface... Read More

Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules (2016)
Journal Article
Qiu, Z., Ma, X., Zhao, X., Zhou, J., Du, Z., Ji, J., & Yu, M. (2016). Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules. Applied energy, 178, 484-495. https://doi.org/10.1016/j.apenergy.2016.06.063

© 2016 Elsevier Ltd This paper aims to investigate a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules, in terms of its solar thermal, electrical and overall efficiency, as well as coefficient of... Read More

Numerical investigation of the energy performance of a guideless irregular heat and mass exchanger with corrugated heat transfer surface for dew point cooling (2016)
Journal Article
Diallo, T. M. O., Fancey, K., Ma, X., Xu, P., Zhao, X., Chen, H., & Li, D. (2016). Numerical investigation of the energy performance of a guideless irregular heat and mass exchanger with corrugated heat transfer surface for dew point cooling. Energy, 109, 803-817. https://doi.org/10.1016/j.energy.2016.05.062

© 2016 The Author(s) The paper presents an investigation into the energy performance of a novel irregular heat and mass exchanger for dew point cooling which, compared to the existing flat-plate heat exchangers, removed the use of the channel support... Read More

Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system (2016)
Journal Article
Qiu, Z., Ma, X., Zhao, X., Li, P., & Ali, S. (2016). Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system. Applied energy, 165, 260-271. https://doi.org/10.1016/j.apenergy.2015.11.053

© 2015 Elsevier Ltd. As a follow-on work of the authors' theoretical study, the paper presented an experimental investigation into the energy performance of a novel PV/T thermal and power system employing the Micro-encapsulated Phase Change Material... Read More