Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Machine learning–assisted CO2 utilization in the catalytic dry reforming of hydrocarbons: Reaction pathways and multicriteria optimization analyses (2021)
Journal Article
Lim, J. Y., Loy, A. C. M., Alhazmi, H., Fui, B. C. L., Cheah, K. W., Taylor, M. J., …Yoo, C. K. (in press). Machine learning–assisted CO2 utilization in the catalytic dry reforming of hydrocarbons: Reaction pathways and multicriteria optimization analyses. International journal of energy research, https://doi.org/10.1002/er.7565

The catalytic dry reforming (DR) process is a clean approach to transform CO2 into H2 and CO-rich synthetic gas that can be used for various energy applications such as Fischer–Tropsch fuels production. A novel framework is proposed to determine the... Read More about Machine learning–assisted CO2 utilization in the catalytic dry reforming of hydrocarbons: Reaction pathways and multicriteria optimization analyses.

Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds: Catalysis, process, and kinetics (2021)
Journal Article
Cheah, K. W., Yusup, S., Loy, A. C. M., How, B. S., Skoulou, V., & Taylor, M. J. (2021). Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds: Catalysis, process, and kinetics. Molecular Catalysis, Article 111469. https://doi.org/10.1016/j.mcat.2021.111469

With the inevitable human innate aspirations for better urban mobility and sustainable economic development, bio-based transportation fuels are projected to play an essential role in the foreseeable automotive transportation sector. Agricultural-base... Read More about Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds: Catalysis, process, and kinetics.

Kinetic modelling of hydrogen transfer deoxygenation of a prototypical fatty acid over a bimetallic Pd60Cu40 catalyst: an investigation of the surface reaction mechanism and rate limiting step (2020)
Journal Article
Cheah, K. W., Yusup, S., Taylor, M. J., How, B. S., Osatiashtiani, A., Nowakowski, D. J., …Uemura, Y. (2020). Kinetic modelling of hydrogen transfer deoxygenation of a prototypical fatty acid over a bimetallic Pd60Cu40 catalyst: an investigation of the surface reaction mechanism and rate limiting step. Reaction Chemistry and Engineering, 5(9), 1682-1693. https://doi.org/10.1039/d0re00214c

Herein, for the first time, we demonstrate a novel continuous flow process involving the application of tetralin as a hydrogen donor solvent for the catalytic conversion of oleic acid to diesel-like hydrocarbons, using an efficient and stable carbon... Read More about Kinetic modelling of hydrogen transfer deoxygenation of a prototypical fatty acid over a bimetallic Pd60Cu40 catalyst: an investigation of the surface reaction mechanism and rate limiting step.

Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons (2019)
Journal Article
Cheah, K. W., Taylor, M. J., Osatiashtiani, A., Beaumont, S. K., Nowakowski, D. J., Yusup, S., …Kyriakou, G. (in press). Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons. Catalysis Today, https://doi.org/10.1016/j.cattod.2019.03.017

Bimetallic PdxNi(100-x) and PdxCu(100-x) structures of a wide compositional range supported on activated carbon were synthesised via a simple, cheap and commercially relevant method. The surface and bulk properties of both the bimetallic structures a... Read More about Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons.

In-situ hydrogen generation from 1,2,3,4-tetrahydronaphthalene for catalytic conversion of oleic acid to diesel fuel hydrocarbons: Parametric studies using Response Surface Methodology approach (2018)
Journal Article
Cheah, K. W., Yusup, S., Kyriakou, G., Ameen, M., Taylor, M. J., Nowakowski, D. J., …Uemura, Y. (2019). In-situ hydrogen generation from 1,2,3,4-tetrahydronaphthalene for catalytic conversion of oleic acid to diesel fuel hydrocarbons: Parametric studies using Response Surface Methodology approach. International Journal of Hydrogen Energy, 44(37), 20678-20689. https://doi.org/10.1016/j.ijhydene.2018.05.112

This work reported a new strategy in producing synthetic diesel hydrocarbons from a mono-unsaturated fatty acid model compound, oleic acid and replacing high pressure molecular hydrogen with a hydrogen-rich donor solvent, 1,2,3,4–tetrahydronaphthalen... Read More about In-situ hydrogen generation from 1,2,3,4-tetrahydronaphthalene for catalytic conversion of oleic acid to diesel fuel hydrocarbons: Parametric studies using Response Surface Methodology approach.