Composition algebras and PG(m, 2)
(1994)
Journal Article
Gordon, N. A., Jarvis, T. M., Maks, J. G., & Shaw, R. (1994). Composition algebras and PG(m, 2). Journal of Geometry, 51(1-2), 50-59. https://doi.org/10.1007/bf01226856
All Outputs (2)
The lines of PG(4, 2) are the points on a quintic in PG(9,2) (1994)
Journal Article
Shaw, R., & Gordon, N. A. (1994). The lines of PG(4, 2) are the points on a quintic in PG(9,2). Journal of Combinatorial Theory, Series A, 68(1), 226-231. https://doi.org/10.1016/0097-3165%2894%2990102-3Let V denote a 5-dimensional vector space over a field, and let (bij) denote the 10 independent components of a bivectorb?Λ2Vrelative to a choice of product basis {eiΛej: 1 ≤i<j≤ 5} forΛ2V. It is well known thatb(≠ 0) is decomposable (pure, simple) i...