Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints (2019)
Journal Article
Das, A. A., Remaud, P., Medlock, J., Das, A. A. K., Allsup, D. J., Madden, L. A., …Paunov, V. N. (2019). Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints. Materials Chemistry Frontiers, 4(1), 197-205. https://doi.org/10.1039/c9qm00531e

We report a new approach for separation of blood cancer cells from healthy white blood cells based on cell recognition by surface functionalised particle imprints. We prepared polymeric particle imprints from a layer of suspension of monodisperse PMM... Read More about Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints.

Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers (2019)
Journal Article
Weldrick, P. J., Hardman, M. J., & Paunov, V. N. (2019). Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers. ACS Applied Materials & Interfaces, 11(47), 43902-43919. https://doi.org/10.1021/acsami.9b16119

© 2019 American Chemical Society. Biofilms are prevalent in chronic wounds and once formed are very hard to remove, which is associated with poor outcomes and high mortality rates. Biofilms are comprised of surface-attached bacteria embedded in an ex... Read More about Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers.

Self-grafting copper oxide nanoparticles show a strong enhancement of their anti-algal and anti-yeast action (2019)
Journal Article
Halbus, A. F., Horozov, T. S., & Paunov, V. N. (2019). Self-grafting copper oxide nanoparticles show a strong enhancement of their anti-algal and anti-yeast action. Nanoscale advances, 1(6), 2323-2336. https://doi.org/10.1039/c9na00099b

© 2019 The Royal Society of Chemistry. We have developed and tested copper oxide nanoparticles (CuONPs) grafted with (3-glycidyloxypropyl)trimethoxysilane (GLYMO) and coupled with 4-hydroxyphenylboronic acid (4-HPBA), which provides a very strong boo... Read More about Self-grafting copper oxide nanoparticles show a strong enhancement of their anti-algal and anti-yeast action.