Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Relating the Flow Processes and Bedforms of Steady-State and Waning Density Currents (2020)
Journal Article
de Cala, I., Ohata, K., Dorrell, R., Naruse, H., Patacci, M., Amy, L. A., …McCaffrey, W. D. (2020). Relating the Flow Processes and Bedforms of Steady-State and Waning Density Currents. Frontiers in Earth Science, 8, Article 535743. https://doi.org/10.3389/feart.2020.535743

© Copyright© 2020 de Cala, Ohata, Dorrell, Naruse, Patacci, Amy, Simmons, McLelland and McCaffrey. The interaction between turbidity currents and mobile substrates can lead to the development of different types of bedforms. Although much research has... Read More about Relating the Flow Processes and Bedforms of Steady-State and Waning Density Currents.

Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (2020)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J. B., Talling, P. J., Hage, S., Lintern, D. G., …Hughes Clarke, J. E. (2020). Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution. Nature communications, 11(1), Article 3129. https://doi.org/10.1038/s41467-020-16861-x

Submarine channels are the primary conduits for terrestrial sediment, organic carbon, and pollutant transport to the deep sea. Submarine channels are far more difficult to monitor than rivers, and thus less well understood. Here we present 9 years of... Read More about Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution.

Asymmetric effects of a modelled tidal turbine on the flow and seabed (2020)
Journal Article
Ramírez -Mendoza, R., Murdoch, L., Jordan, L. B., Amoudry, L. O., McLelland, S., Cooke, R. D., …Vezza, M. (2020). Asymmetric effects of a modelled tidal turbine on the flow and seabed. Renewable energy, 159, 238-249. https://doi.org/10.1016/j.renene.2020.05.133

The extraction of power from the flow of water has become an important potential source of clean energy. In spite of significant interest in the interaction between energy extraction devices and water currents, comparatively little work has focused o... Read More about Asymmetric effects of a modelled tidal turbine on the flow and seabed.

Direct evidence of a high-concentration basal layer in a submarine turbidity current (2020)
Journal Article
Maier, K. L., Paull, C. K., Cartigny, M. J., Simmons, S. M., Talling, P. J., Wang, Z., …Parsons, D. R. (in press). Direct evidence of a high-concentration basal layer in a submarine turbidity current. Deep Sea Research Part I: Oceanographic Research Papers, Article 103300. https://doi.org/10.1016/j.dsr.2020.103300

Submarine turbidity currents are one of the most important sediment transfer processes on earth. Yet the fundamental nature of turbidity currents is still debated; especially whether they are entirely dilute and turbulent, or a thin and dense basal l... Read More about Direct evidence of a high-concentration basal layer in a submarine turbidity current.

Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents (2020)
Journal Article
Simmons, S. M., Azpiroz-Zabala, M., Cartigny, M. J. B., Clare, M. A., Cooper, C., Parsons, D. R., …Talling, P. J. (2020). Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents. Journal of Geophysical Research: Oceans, 125(5), Article e2019JC015904. https://doi.org/10.1029/2019JC015904

Turbidity currents transport prodigious volumes of sediment to the deep-sea. But there are very few direct measurements from oceanic turbidity currents, ensuring they are poorly understood. Recent studies have used acoustic Doppler current profilers... Read More about Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents.